1
|
Yang M, Smit S, de Ridder D, Feng J, Liu T, Xu J, van der Lee TAJ, Zhang H, Chen W. Adaptation of Fusarium Head Blight Pathogens to Changes in Agricultural Practices and Human Migration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401899. [PMID: 39099330 PMCID: PMC11423162 DOI: 10.1002/advs.202401899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/28/2024] [Indexed: 08/06/2024]
Abstract
Fusarium head blight (FHB) is one of the most destructive wheat diseases worldwide. To understand the impact of human migration and changes in agricultural practices on crop pathogens, here population genomic analysis with 245 representative strains from a collection of 4,427 field isolates of Fusarium asiaticum, the causal agent of FHB in Southern China is conducted. Three populations with distinct evolution trajectories are identifies over the last 10,000 years that can be correlated with historically documented changes in agricultural practices due to human migration caused by the Southern Expeditions during the Jin Dynasty. The gradual decrease of 3ADON-producing isolates from north to south along with the population structure and spore dispersal patterns shows the long-distance (>250 km) dispersal of F. asiaticum. These insights into population dynamics and evolutionary history of FHB pathogens are corroborated by a genome-wide analysis with strains originating from Japan, South America, and the USA, confirming the adaptation of FHB pathogens to cropping systems and human migration.
Collapse
Affiliation(s)
- Meixin Yang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
- Bioinformatics Group, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, PB, 6708, The Netherlands
| | - Sandra Smit
- Bioinformatics Group, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, PB, 6708, The Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, PB, 6708, The Netherlands
| | - Jie Feng
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Taiguo Liu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
- National Agricultural Experimental Station for Plant Protection, Gangu, Ministry of Agriculture and Rural Affairs, Tianshui, 741200, P. R. China
| | - Jinrong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Theo A J van der Lee
- Biointeractions and Plant Health, Wageningen Plant Research, Droevendaalsesteeg 1, Wageningen, PB, 6708, The Netherlands
| | - Hao Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
- National Agricultural Experimental Station for Plant Protection, Gangu, Ministry of Agriculture and Rural Affairs, Tianshui, 741200, P. R. China
| | - Wanquan Chen
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| |
Collapse
|
2
|
Riley AB, Grillo MA, Epstein B, Tiffin P, Heath KD. Discordant population structure among rhizobium divided genomes and their legume hosts. Mol Ecol 2023; 32:2646-2659. [PMID: 36161739 DOI: 10.1111/mec.16704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/29/2022]
Abstract
Symbiosis often occurs between partners with distinct life history characteristics and dispersal mechanisms. Many bacterial symbionts have genomes comprising multiple replicons with distinct rates of evolution and horizontal transmission. Such differences might drive differences in population structure between hosts and symbionts and among the elements of the divided genomes of bacterial symbionts. These differences might, in turn, shape the evolution of symbiotic interactions and bacterial evolution. Here we use whole genome resequencing of a hierarchically structured sample of 191 strains of Sinorhizobium meliloti collected from 21 locations in southern Europe to characterize population structures of this bacterial symbiont, which forms a root nodule symbiosis with the host plant Medicago truncatula. S. meliloti genomes showed high local (within-site) variation and little isolation by distance. This was particularly true for the two symbiosis elements, pSymA and pSymB, which have population structures that are similar to each other, but distinct from both the bacterial chromosome and the host plant. Given limited recombination on the chromosome, compared to the symbiosis elements, distinct population structures may result from differences in effective gene flow. Alternatively, positive or purifying selection, with little recombination, may explain distinct geographical patterns at the chromosome. Discordant population structure between hosts and symbionts indicates that geographically and genetically distinct host populations in different parts of the range might interact with genetically similar symbionts, potentially minimizing local specialization.
Collapse
Affiliation(s)
- Alex B Riley
- Department of Plant Biology, University of Illinois, Urbana, Illinois, USA
| | - Michael A Grillo
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Brendan Epstein
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Peter Tiffin
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Katy D Heath
- Department of Plant Biology, University of Illinois, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
3
|
Feurtey A, Lorrain C, McDonald MC, Milgate A, Solomon PS, Warren R, Puccetti G, Scalliet G, Torriani SFF, Gout L, Marcel TC, Suffert F, Alassimone J, Lipzen A, Yoshinaga Y, Daum C, Barry K, Grigoriev IV, Goodwin SB, Genissel A, Seidl MF, Stukenbrock EH, Lebrun MH, Kema GHJ, McDonald BA, Croll D. A thousand-genome panel retraces the global spread and adaptation of a major fungal crop pathogen. Nat Commun 2023; 14:1059. [PMID: 36828814 PMCID: PMC9958100 DOI: 10.1038/s41467-023-36674-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 02/10/2023] [Indexed: 02/26/2023] Open
Abstract
Human activity impacts the evolutionary trajectories of many species worldwide. Global trade of agricultural goods contributes to the dispersal of pathogens reshaping their genetic makeup and providing opportunities for virulence gains. Understanding how pathogens surmount control strategies and cope with new climates is crucial to predicting the future impact of crop pathogens. Here, we address this by assembling a global thousand-genome panel of Zymoseptoria tritici, a major fungal pathogen of wheat reported in all production areas worldwide. We identify the global invasion routes and ongoing genetic exchange of the pathogen among wheat-growing regions. We find that the global expansion was accompanied by increased activity of transposable elements and weakened genomic defenses. Finally, we find significant standing variation for adaptation to new climates encountered during the global spread. Our work shows how large population genomic panels enable deep insights into the evolutionary trajectory of a major crop pathogen.
Collapse
Affiliation(s)
- Alice Feurtey
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland
- Plant Pathology, D-USYS, ETH Zurich, CH-8092, Zurich, Switzerland
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Cécile Lorrain
- Plant Pathology, D-USYS, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Megan C McDonald
- Division of Plant Science, Research School of Biology, The Australian National University, Canberra, ACT, Australia
- School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Andrew Milgate
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Pine Gully Road, Wagga Wagga, NSW, 2650, Australia
| | - Peter S Solomon
- Division of Plant Science, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Rachael Warren
- The New Zealand Institute for Plant and Food Research Limited, Lincoln, New Zealand
| | - Guido Puccetti
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland
- Syngenta Crop Protection AG, CH-4332, Stein, Switzerland
| | | | | | - Lilian Gout
- Université Paris Saclay, INRAE, UR BIOGER, 91120, Palaiseau, France
| | - Thierry C Marcel
- Université Paris Saclay, INRAE, UR BIOGER, 91120, Palaiseau, France
| | - Frédéric Suffert
- Université Paris Saclay, INRAE, UR BIOGER, 91120, Palaiseau, France
| | | | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yuko Yoshinaga
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Christopher Daum
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 9472, USA
| | | | - Anne Genissel
- Université Paris Saclay, INRAE, UR BIOGER, 91120, Palaiseau, France
| | - Michael F Seidl
- Wageningen University and Research, Laboratory of Phytopathology, Wageningen, The Netherlands
- Utrecht University, Theoretical Biology and Bioinformatics, Utrecht, The Netherlands
| | - Eva H Stukenbrock
- Max Planck Institute for Evolutionary Biology, Plön, Germany
- Environmental Genomics, Christian-Albrechts University of Kiel, Kiel, Germany
| | | | - Gert H J Kema
- Wageningen University and Research, Laboratory of Phytopathology, Wageningen, The Netherlands
| | - Bruce A McDonald
- Plant Pathology, D-USYS, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland.
| |
Collapse
|
4
|
Amandine C, Ebert D, Stukenbrock E, Rodríguez de la Vega RC, Tiffin P, Croll D, Tellier A. Unraveling coevolutionary dynamics using ecological genomics. Trends Genet 2022; 38:1003-1012. [PMID: 35715278 DOI: 10.1016/j.tig.2022.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 11/27/2022]
Abstract
Coevolutionary interactions, from the delicate co-dependency in mutualistic interactions to the antagonistic relationship of hosts and parasites, are a ubiquitous driver of adaptation. Surprisingly, little is known about the genomic processes underlying coevolution in an ecological context. However, species comprise genetically differentiated populations that interact with temporally variable abiotic and biotic environments. We discuss the recent advances in coevolutionary theory and genomics as well as shortcomings, to identify coevolving genes that take into account this spatial and temporal variability of coevolution, and propose a practical guide to understand the dynamic of coevolution using an ecological genomics lens.
Collapse
Affiliation(s)
- Cornille Amandine
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, 91190 Gif-sur-Yvette, France.
| | - Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| | - Eva Stukenbrock
- Max Planck Institute for Terrestrial Microbiology, Max Planck Research Group, Fungal Biodiversity, Marburg, Germany
| | | | - Peter Tiffin
- Department of Plant and Microbial Biology, 250 Biological Sciences, 1445 Gortner Ave., University of Minnesota, Saint Paul, MN 55108, USA
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland.
| | - Aurélien Tellier
- Population Genetics, Department of Life Science Systems, Technical University of Munich, Liesel-Beckman-Str. 2, 85354 Freising, Germany.
| |
Collapse
|
5
|
Walters SJ, Robinson TP, Byrne M, Wardell‐Johnson GW, Nevill P. Association of putatively adaptive genetic variation with climatic variables differs between a parasite and its host. Evol Appl 2021; 14:1732-1746. [PMID: 34295360 PMCID: PMC8288004 DOI: 10.1111/eva.13234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 11/28/2022] Open
Abstract
Parasitism is a pervasive phenomenon in nature with the relationship between species driving evolution in both parasite and host. Due to their host-dependent lifestyle, parasites may adapt to the abiotic environment in ways that differ from their hosts or from free-living relatives; yet rarely has this been assessed. Here, we test two competing hypotheses related to whether putatively adaptive genetic variation in a specialist mistletoe associates with the same, or different, climatic variables as its host species. We sampled 11 populations of the specialist mistletoe Amyema gibberula var. tatei (n = 154) and 10 populations of its associated host Hakea recurva subsp. recurva (n = 160). Reduced-representation sequencing was used to obtain genome-wide markers and putatively adaptive variation detected using genome scan methods. Climate associations were identified using generalized dissimilarity modelling, and these were mapped geographically to visualize the spatial patterns of genetic composition. Our results supported the hypothesis of parasites and host species responding differently to climatic variables. Temperature was relatively more important in predicting allelic turnover in the specialist mistletoe while precipitation was more important for the host. This suggests that parasitic plants and host species may respond differently to selective pressures, potentially as a result of differing nutrient acquisition strategies. Specifically, mistletoes acquire water from hosts (rather than the abiotic environment), which may provide a buffer to precipitation as a selective pressure. This work deepens and complements the physiological and other ecological studies of adaptation and provides a window into the evolutionary processes that underlie previously observed phenomena. Applying these methods to a comparative study in a host-parasite system has also highlighted factors that affect the study of selection pressure on nonmodel organisms, such as differing adaptation rates and lack of reference genomes.
Collapse
Affiliation(s)
- Sheree J. Walters
- ARC Centre for Mine Site RestorationSchool of Molecular and Life SciencesCurtin UniversityBentleyWAAustralia
| | - Todd P. Robinson
- School of Earth and Planetary ScienceCurtin UniversityBentleyWAAustralia
| | - Margaret Byrne
- Biodiversity and Conservation ScienceDepartment of Biodiversity, Conservation and AttractionsBentleyWAAustralia
- School of Molecular and Life SciencesCurtin UniversityBentleyWAAustralia
| | - Grant W. Wardell‐Johnson
- ARC Centre for Mine Site RestorationSchool of Molecular and Life SciencesCurtin UniversityBentleyWAAustralia
| | - Paul Nevill
- ARC Centre for Mine Site RestorationSchool of Molecular and Life SciencesCurtin UniversityBentleyWAAustralia
- Trace and Environmental DNA LaboratorySchool of Molecular and Life SciencesCurtin UniversityBentleyWAAustralia
| |
Collapse
|
6
|
Märkle H, John S, Cornille A, Fields PD, Tellier A. Novel genomic approaches to study antagonistic coevolution between hosts and parasites. Mol Ecol 2021; 30:3660-3676. [PMID: 34038012 DOI: 10.1111/mec.16001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/09/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022]
Abstract
Host-parasite coevolution is ubiquitous, shaping genetic and phenotypic diversity and the evolutionary trajectory of interacting species. With the advances of high throughput sequencing technologies applicable to model and non-model organisms alike, it is now feasible to study in greater detail (a) the genetic underpinnings of coevolution, (b) the speed and type of dynamics at coevolving loci, and (c) the genomic consequences of coevolution. This review focuses on three recently developed approaches that leverage information from host and parasite full genome data simultaneously to pinpoint coevolving loci and draw inference on the coevolutionary history. First, co-genome-wide association study (co-GWAS) methods allow pinpointing the loci underlying host-parasite interactions. These methods focus on detecting associations between genetic variants and the outcome of experimental infection tests or on correlations between genomes of naturally infected hosts and their infecting parasites. Second, extensions to population genomics methods can detect genes under coevolution and infer the coevolutionary history, such as fitness costs. Third, correlations between host and parasite population size in time are indicative of coevolution, and polymorphism levels across independent spatially distributed populations of hosts and parasites can reveal coevolutionary loci and infer coevolutionary history. We describe the principles of these three approaches and discuss their advantages and limitations based on coevolutionary theory. We present recommendations for their application to various host (prokaryotes, fungi, plants, and animals) and parasite (viruses, bacteria, fungi, and macroparasites) species. We conclude by pointing out methodological and theoretical gaps to be filled to extract maximum information from full genome data and thereby to shed light on the molecular underpinnings of coevolution.
Collapse
Affiliation(s)
- Hanna Märkle
- Professorship for Population Genetics, Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Freising, Germany.,Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Sona John
- Professorship for Population Genetics, Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Amandine Cornille
- INRAE, CNRS, AgroParisTech, GQE - Le Moulon, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Peter D Fields
- Department of Environmental Sciences, University of Basel, Zoology, Basel, Switzerland
| | - Aurélien Tellier
- Professorship for Population Genetics, Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
7
|
Hessenauer P, Feau N, Gill U, Schwessinger B, Brar GS, Hamelin RC. Evolution and Adaptation of Forest and Crop Pathogens in the Anthropocene. PHYTOPATHOLOGY 2021; 111:49-67. [PMID: 33200962 DOI: 10.1094/phyto-08-20-0358-fi] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Anthropocene marks the era when human activity is making a significant impact on earth, its ecological and biogeographical systems. The domestication and intensification of agricultural and forest production systems have had a large impact on plant and tree health. Some pathogens benefitted from these human activities and have evolved and adapted in response to the expansion of crop and forest systems, resulting in global outbreaks. Global pathogen genomics data including population genomics and high-quality reference assemblies are crucial for understanding the evolution and adaptation of pathogens. Crops and forest trees have remarkably different characteristics, such as reproductive time and the level of domestication. They also have different production systems for disease management with more intensive management in crops than forest trees. By comparing and contrasting results from pathogen population genomic studies done on widely different agricultural and forest production systems, we can improve our understanding of pathogen evolution and adaptation to different selection pressures. We find that in spite of these differences, similar processes such as hybridization, host jumps, selection, specialization, and clonal expansion are shaping the pathogen populations in both crops and forest trees. We propose some solutions to reduce these impacts and lower the probability of global pathogen outbreaks so that we can envision better management strategies to sustain global food production as well as ecosystem services.
Collapse
Affiliation(s)
- Pauline Hessenauer
- Faculty of Forestry, Geography and Geomatics, Laval University, Quebec City, QC, G1V 0A6 Canada
| | - Nicolas Feau
- Faculty of Forestry, The University of British Columbia, Vancouver, BC, V6T 1Z4 Canada
| | - Upinder Gill
- College of Agriculture, Food Systems, and Natural Resources, North Dakota State University, Fargo, ND 58102, U.S.A
| | - Benjamin Schwessinger
- Research School of Biology, Australian National University, Acton, ACT 2601 Australia
| | - Gurcharn S Brar
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, V6T 1Z4 Canada
| | - Richard C Hamelin
- Faculty of Forestry, Geography and Geomatics, Laval University, Quebec City, QC, G1V 0A6 Canada
- Faculty of Forestry, The University of British Columbia, Vancouver, BC, V6T 1Z4 Canada
| |
Collapse
|
8
|
Hartmann FE, Rodríguez de la Vega RC, Gladieux P, Ma WJ, Hood ME, Giraud T. Higher Gene Flow in Sex-Related Chromosomes than in Autosomes during Fungal Divergence. Mol Biol Evol 2020; 37:668-682. [PMID: 31651949 PMCID: PMC7038665 DOI: 10.1093/molbev/msz252] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nonrecombining sex chromosomes are widely found to be more differentiated than autosomes among closely related species, due to smaller effective population size and/or to a disproportionally large-X effect in reproductive isolation. Although fungal mating-type chromosomes can also display large nonrecombining regions, their levels of differentiation compared with autosomes have been little studied. Anther-smut fungi from the Microbotryum genus are castrating pathogens of Caryophyllaceae plants with largely nonrecombining mating-type chromosomes. Using whole genome sequences of 40 fungal strains, we quantified genetic differentiation among strains isolated from the geographically overlapping North American species and subspecies of Silene virginica and S. caroliniana. We inferred that gene flow likely occurred at the early stages of divergence and then completely stopped. We identified large autosomal genomic regions with chromosomal inversions, with higher genetic divergence than the rest of the genomes and highly enriched in selective sweeps, supporting a role of rearrangements in preventing gene flow in genomic regions involved in ecological divergence. Unexpectedly, the nonrecombining mating-type chromosomes showed lower divergence than autosomes due to higher gene flow, which may be promoted by adaptive introgressions of less degenerated mating-type chromosomes. The fact that both mating-type chromosomes are always heterozygous and nonrecombining may explain such patterns that oppose to those found for XY or ZW sex chromosomes. The specific features of mating-type chromosomes may also apply to the UV sex chromosomes determining sexes at the haploid stage in algae and bryophytes and may help test general hypotheses on the evolutionary specificities of sex-related chromosomes.
Collapse
Affiliation(s)
- Fanny E Hartmann
- Ecologie Systematique Evolution, Batiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, Orsay, France
| | - Ricardo C Rodríguez de la Vega
- Ecologie Systematique Evolution, Batiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, Orsay, France
| | - Pierre Gladieux
- UMR BGPI, Univ Montpellier, INRA, CIRAD, Montpellier SupAgro, Montpellier, France
| | - Wen-Juan Ma
- Biology Department, Science Centre, Amherst College, Amherst, MA
| | - Michael E Hood
- Biology Department, Science Centre, Amherst College, Amherst, MA
| | - Tatiana Giraud
- Ecologie Systematique Evolution, Batiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, Orsay, France
| |
Collapse
|
9
|
Sweet AD, Wilson RE, Sonsthagen SA, Johnson KP. Lousy grouse: Comparing evolutionary patterns in Alaska galliform lice to understand host evolution and host-parasite interactions. Ecol Evol 2020; 10:8379-8393. [PMID: 32788987 PMCID: PMC7417246 DOI: 10.1002/ece3.6545] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/05/2020] [Accepted: 06/11/2020] [Indexed: 11/08/2022] Open
Abstract
Understanding both sides of host-parasite relationships can provide more complete insights into host and parasite biology in natural systems. For example, phylogenetic and population genetic comparisons between a group of hosts and their closely associated parasites can reveal patterns of host dispersal, interspecies interactions, and population structure that might not be evident from host data alone. These comparisons are also useful for understanding factors that drive host-parasite coevolutionary patterns (e.g., codivergence or host switching) over different periods of time. However, few studies have compared the evolutionary histories between multiple groups of parasites from the same group of hosts at a regional geographic scale. Here, we used genomic data to compare phylogenomic and population genomic patterns of Alaska ptarmigan and grouse species (Aves: Tetraoninae) and two genera of their associated feather lice: Lagopoecus and Goniodes. We used whole-genome sequencing to obtain hundreds of genes and thousands of single-nucleotide polymorphisms (SNPs) for the lice and double-digest restriction-associated DNA sequences to obtain SNPs from Alaska populations of two species of ptarmigan. We found that both genera of lice have some codivergence with their galliform hosts, but these relationships are primarily characterized by host switching and phylogenetic incongruence. Population structure was also uncorrelated between the hosts and lice. These patterns suggest that grouse, and ptarmigan in particular, share habitats and have likely had historical and ongoing dispersal within Alaska. However, the two genera of lice also have sufficient dissimilarities in the relationships with their hosts to suggest there are other factors, such as differences in louse dispersal ability, that shape the evolutionary patterns with their hosts.
Collapse
Affiliation(s)
- Andrew D. Sweet
- Department of EntomologyPurdue UniversityWest LafayetteINUSA
| | | | | | - Kevin P. Johnson
- Illinois Natural History SurveyPrairie Research InstituteUniversity of IllinoisChampaignILUSA
| |
Collapse
|
10
|
Hartmann FE, Snirc A, Cornille A, Godé C, Touzet P, Van Rossum F, Fournier E, Le Prieur S, Shykoff J, Giraud T. Congruent population genetic structures and divergence histories in anther‐smut fungi and their host plants
Silene italica
and the
Silene nutans
species complex. Mol Ecol 2020; 29:1154-1172. [DOI: 10.1111/mec.15387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Fanny E. Hartmann
- Ecologie Systematique Evolution Batiment 360 AgroParisTech CNRS Universite Paris‐Saclay Orsay France
| | - Alodie Snirc
- Ecologie Systematique Evolution Batiment 360 AgroParisTech CNRS Universite Paris‐Saclay Orsay France
| | - Amandine Cornille
- Genetique Quantitative et Evolution–Le Moulon AgroParisTech CNRS INRAE Universite Paris‐Saclay Gif‐sur‐Yvette France
| | - Cécile Godé
- UMR 8198 ‐ Evo‐Eco‐Paleo CNRS Univ. Lille Lille France
| | - Pascal Touzet
- UMR 8198 ‐ Evo‐Eco‐Paleo CNRS Univ. Lille Lille France
| | - Fabienne Van Rossum
- Meise Botanic Garden Meise Belgium
- Fédération Wallonie–Bruxelles Brussels Belgium
| | | | - Stéphanie Le Prieur
- Ecologie Systematique Evolution Batiment 360 AgroParisTech CNRS Universite Paris‐Saclay Orsay France
| | - Jacqui Shykoff
- Ecologie Systematique Evolution Batiment 360 AgroParisTech CNRS Universite Paris‐Saclay Orsay France
| | - Tatiana Giraud
- Ecologie Systematique Evolution Batiment 360 AgroParisTech CNRS Universite Paris‐Saclay Orsay France
| |
Collapse
|
11
|
Godbout J, Gros-Louis M, Lamothe M, Isabel N. Going with the flow: Intraspecific variation may act as a natural ally to counterbalance the impacts of global change for the riparian species Populus deltoides. Evol Appl 2020; 13:176-194. [PMID: 31892951 PMCID: PMC6935597 DOI: 10.1111/eva.12854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/16/2019] [Accepted: 07/31/2019] [Indexed: 12/19/2022] Open
Abstract
The speed and magnitude of global change will have major impacts on riparian ecosystems, thereby leading to greater forest vulnerability. Assessing species' adaptive capacities to provide relevant information for vulnerability assessments remains challenging, especially for nonmodel species like the North American Populus deltoides W. Bartram ex Marshall. The objective of this study was to understand how genomic diversity of this foundation species was shaped by its environment (climate, soil, and biotic interactions) to gauge its adaptive capacity. We used two complementary approaches to get a full portrait of P. deltoides genetic diversity at both the species and whole-genome ranges. First, we used a set of 93 nuclear and three chloroplastic SNP markers in 946 individuals covering most of the species' natural distribution. Then, to measure the degree of intraspecific divergence at the whole-genome level and to support the outlier and genomic-environment association analyses, we used a sequence capture approach on DNA pools. Three distinct lineages for P. deltoides were detected, and their current distribution was associated with abiotic and biotic variations. The comparison between both cpDNA and ncDNA patterns showed that gene flow between the lineages is unbalanced. The southern and northeastern populations may benefit from the input, through river flow, of novel alleles located upstream to their local gene pools. These alleles could migrate from populations that are already adapted to conditions that fit the predicted climates in the receiving local populations, hotter at the northeastern limit and drier in the Central United States. These "preadapted" incoming alleles may help to cope with maladaptation in populations facing changing conditions.
Collapse
Affiliation(s)
- Julie Godbout
- Ministère des Forêts, de la Faune et des Parcs, Direction de la recherche forestièreQuébecQCCanada
- Canadian Forest Service, Laurentian Forestry CentreNatural Resources CanadaQuébecQCCanada
| | | | - Manuel Lamothe
- Canadian Forest Service, Laurentian Forestry CentreNatural Resources CanadaQuébecQCCanada
| | - Nathalie Isabel
- Canadian Forest Service, Laurentian Forestry CentreNatural Resources CanadaQuébecQCCanada
| |
Collapse
|
12
|
Cause and Effectors: Whole-Genome Comparisons Reveal Shared but Rapidly Evolving Effector Sets among Host-Specific Plant-Castrating Fungi. mBio 2019; 10:mBio.02391-19. [PMID: 31690676 PMCID: PMC6831777 DOI: 10.1128/mbio.02391-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Plant pathogens use molecular weapons to successfully infect their hosts, secreting a large portfolio of various proteins and enzymes. Different plant species are often parasitized by host-specific pathogens; however, it is still unclear whether the molecular basis of such host specialization involves species-specific weapons or different variants of the same weapons. We therefore compared the genes encoding secreted proteins in three plant-castrating pathogens parasitizing different host plants, producing their spores in plant anthers by replacing pollen. We validated our predictions for secretion signals for some genes and checked that our predicted secreted proteins were often highly expressed during plant infection. While we found few species-specific secreted proteins, numerous genes encoding secreted proteins showed signs of rapid evolution and of natural selection. Our study thus found that most changes among closely related host-specific pathogens involved rapid adaptive changes in shared molecular weapons rather than innovations for new weapons. Plant pathogens utilize a portfolio of secreted effectors to successfully infect and manipulate their hosts. It is, however, still unclear whether changes in secretomes leading to host specialization involve mostly effector gene gains/losses or changes in their sequences. To test these hypotheses, we compared the secretomes of three host-specific castrating anther smut fungi (Microbotryum), two being sister species. To address within-species evolution, which might involve coevolution and local adaptation, we compared the secretomes of strains from differentiated populations. We experimentally validated a subset of signal peptides. Secretomes ranged from 321 to 445 predicted secreted proteins (SPs), including a few species-specific proteins (42 to 75), and limited copy number variation, i.e., little gene family expansion or reduction. Between 52% and 68% of the SPs did not match any Pfam domain, a percentage that reached 80% for the small secreted proteins, indicating rapid evolution. In comparison to background genes, we indeed found SPs to be more differentiated among species and strains, more often under positive selection, and highly expressed in planta; repeat-induced point mutations (RIPs) had no role in effector diversification, as SPs were not closer to transposable elements than background genes and were not more RIP affected. Our study thus identified both conserved core proteins, likely required for the pathogenic life cycle of all Microbotryum species, and proteins that were species specific or evolving under positive selection; these proteins may be involved in host specialization and/or coevolution. Most changes among closely related host-specific pathogens, however, involved rapid changes in sequences rather than gene gains/losses.
Collapse
|
13
|
Hartmann FE, Rodríguez de la Vega RC, Carpentier F, Gladieux P, Cornille A, Hood ME, Giraud T. Understanding Adaptation, Coevolution, Host Specialization, and Mating System in Castrating Anther-Smut Fungi by Combining Population and Comparative Genomics. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:431-457. [PMID: 31337277 DOI: 10.1146/annurev-phyto-082718-095947] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Anther-smut fungi provide a powerful system to study host-pathogen specialization and coevolution, with hundreds of Microbotryum species specialized on diverse Caryophyllaceae plants, castrating their hosts through manipulation of the hosts' reproductive organs to facilitate disease transmission. Microbotryum fungi have exceptional genomic characteristics, including dimorphic mating-type chromosomes, that make this genus anexcellent model for studying the evolution of mating systems and their influence on population genetics structure and adaptive potential. Important insights into adaptation, coevolution, host specialization, and mating system evolution have been gained using anther-smut fungi, with new insights made possible by the recent advent of genomic approaches. We illustrate with Microbotryum case studies how using a combination of comparative genomics, population genomics, and transcriptomics approaches enables the integration of different evolutionary perspectives across different timescales. We also highlight current challenges and suggest future studies that will contribute to advancing our understanding of the mechanisms underlying adaptive processes in populations of fungal pathogens.
Collapse
Affiliation(s)
- Fanny E Hartmann
- Ecologie Systématique Evolution, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400 Orsay, France;
| | | | - Fantin Carpentier
- Ecologie Systématique Evolution, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400 Orsay, France;
| | - Pierre Gladieux
- UMR BGPI, Univ. Montpellier, INRA, CIRAD, Montpellier SupAgro, 34398 Montpellier, France
| | - Amandine Cornille
- Génétique Quantitative et Evolution-Le Moulon, INRA; Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Michael E Hood
- Biology Department, Amherst College, Amherst, Massachusetts 01002-5000, USA
| | - Tatiana Giraud
- Ecologie Systématique Evolution, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400 Orsay, France;
| |
Collapse
|
14
|
|
15
|
Fortuna TM, Namias A, Snirc A, Branca A, Hood ME, Raquin C, Shykoff JA, Giraud T. Multiple infections, relatedness and virulence in the anther-smut fungus castrating Saponaria plants. Mol Ecol 2018; 27:4947-4959. [PMID: 30372557 DOI: 10.1111/mec.14911] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/28/2018] [Accepted: 10/08/2018] [Indexed: 11/26/2022]
Abstract
Multiple infections (co-occurrence of multiple pathogen genotypes within an individual host) can have important impacts on diseases. Relatedness among pathogens can affect the likelihood of multiple infections and their consequences through kin selection. Previous studies on the castrating anther-smut fungus Microbotryum lychnidis-dioicae have shown that multiple infections occur in its host plant Silene latifolia. Relatedness was high among fungal genotypes within plants, which could result from competitive exclusion between unrelated fungal genotypes, from population structure or from interactions between plant and fungal genotypes for infection ability. Here, we aimed at disentangling these hypotheses using M. saponariae and its host Saponaria officinalis, both experimentally tractable for these questions. By analysing populations using microsatellite markers, we also found frequent occurrence of multiple infections and high relatedness among strains within host plants. Infections resulting from experimental inoculations in the greenhouse also revealed high relatedness among strains co-infecting host plants, even in clonally replicated plant genotypes, indicating that high relatedness within plants did not result merely from plant x fungus interactions or population structure. Furthermore, hyphal growth in vitro was affected by the presence of a competitor growing nearby and by its genetic similarity, although this latter effect was strain-dependent. Altogether, our results support the hypothesis that relatedness-dependent competitive exclusion occurs in Microbotryum fungi within plants. These microorganisms can thus respond to competitors and to their level of relatedness.
Collapse
Affiliation(s)
- Taiadjana M Fortuna
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - Alice Namias
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France.,Département de Biologie, Ecole Normale Supérieure, PSL Research University, Paris, France
| | - Alodie Snirc
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - Antoine Branca
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - Michael E Hood
- Department of Biology, Amherst College, Amherst, Massachusetts
| | - Christian Raquin
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - Jacqui A Shykoff
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - Tatiana Giraud
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France
| |
Collapse
|
16
|
Giraud T, Koskella B, Laine AL. Introduction: microbial local adaptation: insights from natural populations, genomics and experimental evolution. Mol Ecol 2018; 26:1703-1710. [PMID: 28409900 DOI: 10.1111/mec.14091] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 02/14/2017] [Accepted: 03/02/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Tatiana Giraud
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
| | - Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Anna-Liisa Laine
- Metapopulation Research Centre, Department of Biosciences, University of Helsinki, Viikinkaari 1, 00014, Helsinki, Finland
| |
Collapse
|
17
|
Abbate JL, Gladieux P, Hood ME, de Vienne DM, Antonovics J, Snirc A, Giraud T. Co-occurrence among three divergent plant-castrating fungi in the same Silene host species. Mol Ecol 2018; 27:10.1111/mec.14805. [PMID: 30030861 PMCID: PMC6340787 DOI: 10.1111/mec.14805] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 06/21/2018] [Accepted: 07/05/2018] [Indexed: 01/04/2023]
Abstract
The competitive exclusion principle postulates that different species can only coexist in sympatry if they occupy distinct ecological niches. The goal of this study was to understand the geographical distribution of three species of Microbotryum anther-smut fungi that are distantly related but infect the same host plants, the sister species Silene vulgaris and S. uniflora, in Western Europe. We used microsatellite markers to investigate pathogen distribution in relation to host specialization and ecological factors. Microbotryum violaceo-irregulare was only found on S. vulgaris at high elevations in the Alps. Microbotryum lagerheimii could be subdivided into two genetically differentiated clusters, one on S. uniflora in the UK and the second on S. vulgaris in the Alps and Pyrenees. The most abundant pathogen species, M. silenes-inflatae, could be subdivided into four genetic clusters, co-occurring in the Alps, the UK and the Pyrenees, and was found on both S. vulgaris and S. uniflora. All three fungal species had high levels of homozygosity, in agreement with the selfing mating system generally observed in anther-smut fungi. The three pathogen species and genetic clusters had large range overlaps, but occurred at sites with different elevations, temperatures and precipitation levels. The three Microbotryum species thus do not appear to be maintained by host specialization or geographic allopatry, but instead may occupy different ecological niches in terms of environmental conditions.
Collapse
Affiliation(s)
- Jessica L. Abbate
- UMR MIVEGEC, IRD 224, CNRS, Université de Montpellier, F-34394 Montpellier, France
- UMR UMMISCO, IRD 209, UPMC, F-93143 Bondy, France
| | - Pierre Gladieux
- Laboratoire Ecologie Systématique et Evolution, Univ. Paris Sud, CNRS, AgroParisTech, Université Paris Saclay, Orsay, F-91400 France
- INRA, UMR BGPI, Bâtiment K; Campus International de Baillarguet, F-34398, Montpellier, France
| | - Michael E. Hood
- Biology Department, McGuire Life Sciences Building, Amherst College, Rts 9 & 116, Amherst, MA USA 01002-5000
| | - Damien M. de Vienne
- Laboratoire Ecologie Systématique et Evolution, Univ. Paris Sud, CNRS, AgroParisTech, Université Paris Saclay, Orsay, F-91400 France
- Laboratoire de Biométrie et Biologie Evolutive, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5558, Université Lyon 1, F-69622 Villeurbanne, France
- Université de Lyon, F-69000 Lyon, France
| | - Janis Antonovics
- University of Virginia, Dept. of Biology, Gilmer Hall, Charlottesville, VA 22904, USA
| | - Alodie Snirc
- Laboratoire Ecologie Systématique et Evolution, Univ. Paris Sud, CNRS, AgroParisTech, Université Paris Saclay, Orsay, F-91400 France
| | - Tatiana Giraud
- Laboratoire Ecologie Systématique et Evolution, Univ. Paris Sud, CNRS, AgroParisTech, Université Paris Saclay, Orsay, F-91400 France
| |
Collapse
|
18
|
Ziegler R, Lutz M, Piątek J, Piątek M. Dismantling a complex of anther smuts (Microbotryum) on carnivorous plants in the genus Pinguicula. Mycologia 2018; 110:361-374. [PMID: 29792777 DOI: 10.1080/00275514.2018.1451697] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The anther smuts of the genus Microbotryum are known from host plant species belonging to the Caryophyllaceae, Dipsacaceae, Lamiaceae, Lentibulariaceae, Montiaceae, and Primulaceae. Of these, the anther smuts on Caryophyllaceae, in particular on Silene spp., are best known because they include model organisms studied in many disciplines of fungal biology. For Microbotryum species parasitic on Caryophyllaceae, a high degree of host specificity was revealed and several cryptic species were described. In contrast, the host specificity within Microbotryum pinguiculae occurring in anthers of different Pinguicula species (Lentibulariaceae) has not been investigated in detail until now. The anther smuts on Pinguicula alpina, P. villosa, and P. vulgaris, on which M. pinguiculae was described, were analyzed using nuc rDNA ITS1-5.8S-ITS2 and nuc rDNA 28S D1-D2 sequences and morphology to determine if they belong to one polyphagous species or rather represent three host-specific species. The results of the morphological investigations revealed no decisive differences between the anther smuts on different Pinguicula species. However, genetic divergence and molecular phylogenetic analyses, which split the specimens according to host plant species, supported host specificity of the anther smuts on different Pinguicula species. Accordingly, in addition to Microbotryum pinguiculae s. str. on Pinguicula vulgaris, M. alpinum sp. nov. on P. alpina from Europe and M. liroi sp. nov. on P. villosa from Asia are described and illustrated.
Collapse
Affiliation(s)
- Rebekka Ziegler
- a Plant Evolutionary Ecology , Institute of Evolution and Ecology, University of Tübingen , Auf der Morgenstelle 5, D-72076 Tübingen , Germany
| | - Matthias Lutz
- a Plant Evolutionary Ecology , Institute of Evolution and Ecology, University of Tübingen , Auf der Morgenstelle 5, D-72076 Tübingen , Germany
| | - Jolanta Piątek
- b Department of Phycology , W. Szafer Institute of Botany, Polish Academy of Sciences , Lubicz 46, PL-31-512 Kraków , Poland
| | - Marcin Piątek
- c Department of Mycology , W. Szafer Institute of Botany, Polish Academy of Sciences , Lubicz 46, PL-31-512 Kraków , Poland
| |
Collapse
|
19
|
Andras JP, Fields PD, Ebert D. Spatial population genetic structure of a bacterial parasite in close coevolution with its host. Mol Ecol 2018; 27:1371-1384. [DOI: 10.1111/mec.14545] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Jason P. Andras
- Department of Biological Sciences; Clapp Laboratory; Mount Holyoke College; South Hadley MA USA
| | - Peter D. Fields
- Department of Environmental Sciences - Zoology; University of Basel; Basel Switzerland
| | - Dieter Ebert
- Department of Environmental Sciences - Zoology; University of Basel; Basel Switzerland
| |
Collapse
|
20
|
Hartmann FE, Rodríguez de la Vega RC, Brandenburg JT, Carpentier F, Giraud T. Gene Presence-Absence Polymorphism in Castrating Anther-Smut Fungi: Recent Gene Gains and Phylogeographic Structure. Genome Biol Evol 2018; 10:1298-1314. [PMID: 29722826 PMCID: PMC5967549 DOI: 10.1093/gbe/evy089] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2018] [Indexed: 12/14/2022] Open
Abstract
Gene presence-absence polymorphisms segregating within species are a significant source of genetic variation but have been little investigated to date in natural populations. In plant pathogens, the gain or loss of genes encoding proteins interacting directly with the host, such as secreted proteins, probably plays an important role in coevolution and local adaptation. We investigated gene presence-absence polymorphism in populations of two closely related species of castrating anther-smut fungi, Microbotryum lychnidis-dioicae (MvSl) and M. silenes-dioicae (MvSd), from across Europe, on the basis of Illumina genome sequencing data and high-quality genome references. We observed presence-absence polymorphism for 186 autosomal genes (2% of all genes) in MvSl, and only 51 autosomal genes in MvSd. Distinct genes displayed presence-absence polymorphism in the two species. Genes displaying presence-absence polymorphism were frequently located in subtelomeric and centromeric regions and close to repetitive elements, and comparison with outgroups indicated that most were present in a single species, being recently acquired through duplications in multiple-gene families. Gene presence-absence polymorphism in MvSl showed a phylogeographic structure corresponding to clusters detected based on SNPs. In addition, gene absence alleles were rare within species and skewed toward low-frequency variants. These findings are consistent with a deleterious or neutral effect for most gene presence-absence polymorphism. Some of the observed gene loss and gain events may however be adaptive, as suggested by the putative functions of the corresponding encoded proteins (e.g., secreted proteins) or their localization within previously identified selective sweeps. The adaptive roles in plant and anther-smut fungi interactions of candidate genes however need to be experimentally tested in future studies.
Collapse
Affiliation(s)
- Fanny E Hartmann
- Department Génétique et Ecologie Evolutives, Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, Orsay, France
| | - Ricardo C Rodríguez de la Vega
- Department Génétique et Ecologie Evolutives, Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, Orsay, France
| | - Jean-Tristan Brandenburg
- Department Génétique et Ecologie Evolutives, Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, Orsay, France
| | - Fantin Carpentier
- Department Génétique et Ecologie Evolutives, Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, Orsay, France
| | - Tatiana Giraud
- Department Génétique et Ecologie Evolutives, Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, Orsay, France
| |
Collapse
|
21
|
Abstract
The successful interaction between pathogen/parasite and host requires a delicate balance between fitness of the former and survival of the latter. To optimize fitness a parasite/pathogen must effectively create an environment conducive to reproductive success, while simultaneously avoiding or minimizing detrimental host defense response. The association between Microbotryum lychnidis-dioicae and its host Silene latifolia serves as an excellent model to examine such interactions. This fungus is part of a species complex that infects species of the Caryophyllaceae, replacing pollen with the fungal spores. In the current study, transcriptome analyses of the fungus and its host were conducted during discrete stages of bud development so as to identify changes in fungal gene expression that lead to spore development and to identify changes associated with infection in the host plant. In contrast to early biotrophic phase stages of infection for the fungus, the latter stages involve tissue necrosis and in the case of infected female flowers, further changes in the developmental program in which the ovary aborts and a pseudoanther is produced. Transcriptome analysis via Illumina RNA sequencing revealed enrichment of fungal genes encoding small secreted proteins, with hallmarks of effectors and genes found to be relatively unique to the Microbotryum species complex. Host gene expression analyses also identified interesting sets of genes up-regulated, including those involving stress response, host defense response, and several agamous-like MADS-box genes (AGL61 and AGL80), predicted to interact and be involved in male gametophyte development.
Collapse
|
22
|
Dornburg A, Townsend JP, Wang Z. Maximizing Power in Phylogenetics and Phylogenomics: A Perspective Illuminated by Fungal Big Data. ADVANCES IN GENETICS 2017; 100:1-47. [PMID: 29153398 DOI: 10.1016/bs.adgen.2017.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Since its original inception over 150 years ago by Darwin, we have made tremendous progress toward the reconstruction of the Tree of Life. In particular, the transition from analyzing datasets comprised of small numbers of loci to those comprised of hundreds of loci, if not entire genomes, has aided in resolving some of the most vexing of evolutionary problems while giving us a new perspective on biodiversity. Correspondingly, phylogenetic trees have taken a central role in fields that span ecology, conservation, and medicine. However, the rise of big data has also presented phylogenomicists with a new set of challenges to experimental design, quantitative analyses, and computation. The sequencing of a number of very first genomes presented significant challenges to phylogenetic inference, leading fungal phylogenomicists to begin addressing pitfalls and postulating solutions to the issues that arise from genome-scale analyses relevant to any lineage across the Tree of Life. Here we highlight insights from fungal phylogenomics for topics including systematics and species delimitation, ecological and phenotypic diversification, and biogeography while providing an overview of progress made on the reconstruction of the fungal Tree of Life. Finally, we provide a review of considerations to phylogenomic experimental design for robust tree inference. We hope that this special issue of Advances in Genetics not only excites the continued progress of fungal evolutionary biology but also motivates the interdisciplinary development of new theory and methods designed to maximize the power of genomic scale data in phylogenetic analyses.
Collapse
Affiliation(s)
- Alex Dornburg
- North Carolina Museum of Natural Sciences, Raleigh, NC, United States
| | | | - Zheng Wang
- Yale University, New Haven, CT, United States.
| |
Collapse
|
23
|
|
24
|
Depotter JRL, Seidl MF, van den Berg GCM, Thomma BPHJ, Wood TA. A distinct and genetically diverse lineage of the hybrid fungal pathogen Verticillium longisporum population causes stem striping in British oilseed rape. Environ Microbiol 2017; 19:3997-4009. [PMID: 28523726 DOI: 10.1111/1462-2920.13801] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/11/2017] [Accepted: 05/13/2017] [Indexed: 11/30/2022]
Abstract
Population genetic structures illustrate evolutionary trajectories of organisms adapting to differential environmental conditions. Verticillium stem striping disease on oilseed rape was mainly observed in continental Europe, but has recently emerged in the United Kingdom. The disease is caused by the hybrid fungal species Verticillium longisporum that originates from at least three separate hybridization events, yet hybrids between Verticillium progenitor species A1 and D1 are mainly responsible for Verticillium stem striping. We reveal a hitherto un-described dichotomy within V. longisporum lineage A1/D1 that correlates with the geographic distribution of the isolates with an 'A1/D1 West' and an 'A1/D1 East' cluster. Genome comparison between representatives of the A1/D1 West and East clusters excluded population distinctiveness through separate hybridization events. Remarkably, the A1/D1 West population that is genetically more diverse than the entire A1/D1 East cluster caused the sudden emergence of Verticillium stem striping in the UK, whereas in continental Europe Verticillium stem striping is predominantly caused by the more genetically uniform A1/D1 East population. The observed genetic diversity of the A1/D1 West population argues against a recent introduction of the pathogen into the UK, but rather suggests that the pathogen previously established in the UK and remained latent or unnoticed as oilseed rape pathogen until recently.
Collapse
Affiliation(s)
- Jasper R L Depotter
- Laboratory of Phytopathology, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands.,Department of Crops and Agronomy, National Institute of Agricultural Botany, Huntingdon Road, Cambridge, CB3 0LE, UK
| | - Michael F Seidl
- Laboratory of Phytopathology, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| | - Grardy C M van den Berg
- Laboratory of Phytopathology, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| | - Bart P H J Thomma
- Laboratory of Phytopathology, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| | - Thomas A Wood
- Department of Crops and Agronomy, National Institute of Agricultural Botany, Huntingdon Road, Cambridge, CB3 0LE, UK
| |
Collapse
|
25
|
Petit E, Silver C, Cornille A, Gladieux P, Rosenthal L, Bruns E, Yee S, Antonovics J, Giraud T, Hood ME. Co-occurrence and hybridization of anther-smut pathogens specialized on Dianthus hosts. Mol Ecol 2017; 26:1877-1890. [PMID: 28231407 DOI: 10.1111/mec.14073] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/13/2017] [Accepted: 02/09/2017] [Indexed: 01/05/2023]
Abstract
Host specialization has important consequences for the diversification and ecological interactions of obligate pathogens. The anther-smut disease of natural plant populations, caused by Microbotryum fungi, has been characterized by specialized host-pathogen interactions, which contribute in part to the isolation among these numerous fungal species. This study investigated the molecular variation of Microbotryum pathogens within the geographic and host-specific distributions on wild Dianthus species in southern European Alps. In contrast to prior studies on this pathogen genus, a range of overlapping host specificities was observed for four delineated Microbotryum lineages on Dianthus hosts, and their frequent co-occurrence within single-host populations was quantified at local and regional scales. In addition to potential consequences for direct pathogen competition, the sympatry of Microbotryum lineages led to hybridization between them in many populations, and these admixed genotypes suffered significant meiotic sterility. Therefore, this investigation of the anther-smut fungi reveals how variation in the degrees of host specificity can have major implications for ecological interactions and genetic integrity of differentiated pathogen lineages.
Collapse
Affiliation(s)
- Elsa Petit
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA
| | - Casey Silver
- Biology Department, Amherst College, Amherst, MA, 01002, USA
| | - Amandine Cornille
- Center for Adaptation to a Changing Environment, ETH Zürich, 8092, Zürich, Switzerland
| | - Pierre Gladieux
- UMR BGPI, INRA, Campus International de Baillarguet, 34398, Montpellier, France
| | - Lisa Rosenthal
- Biology Department, Amherst College, Amherst, MA, 01002, USA
| | - Emily Bruns
- Department of Biology, University of Virginia, Charlottesville, VA, 22903, USA
| | - Sarah Yee
- Biology Department, Amherst College, Amherst, MA, 01002, USA
| | - Janis Antonovics
- Department of Biology, University of Virginia, Charlottesville, VA, 22903, USA
| | - Tatiana Giraud
- Ecologie Systematique Evolution, CNRS, University of Paris-Sud, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
| | - Michael E Hood
- Biology Department, Amherst College, Amherst, MA, 01002, USA
| |
Collapse
|
26
|
Badouin H, Gladieux P, Gouzy J, Siguenza S, Aguileta G, Snirc A, Le Prieur S, Jeziorski C, Branca A, Giraud T. Widespread selective sweeps throughout the genome of model plant pathogenic fungi and identification of effector candidates. Mol Ecol 2017; 26:2041-2062. [DOI: 10.1111/mec.13976] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 12/11/2022]
Affiliation(s)
- H. Badouin
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech; Université Paris-Saclay; 91400 Orsay France
| | - P. Gladieux
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech; Université Paris-Saclay; 91400 Orsay France
- UMR BGPI; Campus International de Baillarguet; INRA; 34398 Montpellier France
| | - J. Gouzy
- Laboratoire des Interactions Plantes-Microorganismes (LIPM); UMR441; INRA; 31326 Castanet-Tolosan France
- Laboratoire des Interactions Plantes-Microorganismes (LIPM); UMR2594; CNRS; 31326 Castanet-Tolosan France
| | - S. Siguenza
- Laboratoire des Interactions Plantes-Microorganismes (LIPM); UMR441; INRA; 31326 Castanet-Tolosan France
- Laboratoire des Interactions Plantes-Microorganismes (LIPM); UMR2594; CNRS; 31326 Castanet-Tolosan France
| | - G. Aguileta
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech; Université Paris-Saclay; 91400 Orsay France
| | - A. Snirc
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech; Université Paris-Saclay; 91400 Orsay France
| | - S. Le Prieur
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech; Université Paris-Saclay; 91400 Orsay France
| | - C. Jeziorski
- Genotoul; GeT-PlaGe; INRA Auzeville 31326 Castanet-Tolosan France
- UAR1209; INRA Auzeville 31326 Castanet-Tolosan France
| | - A. Branca
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech; Université Paris-Saclay; 91400 Orsay France
| | - T. Giraud
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech; Université Paris-Saclay; 91400 Orsay France
| |
Collapse
|
27
|
Croll D, Laine AL. What the population genetic structures of host and pathogen tell us about disease evolution. THE NEW PHYTOLOGIST 2016; 212:537-539. [PMID: 27735071 DOI: 10.1111/nph.14203] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Affiliation(s)
- Daniel Croll
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Universitätsstrasse 2, Zürich, CH-8092, Switzerland.
| | - Anna-Liisa Laine
- Metapopulation Research Centre, Plant Biology, Department of Biosciences, University of Helsinki, PO Box 65 (Viikinkaari 1), Helsinki, FI-00014, Finland.
| |
Collapse
|