1
|
Lin Y, He C, Li Z, Sun Y, Tong L, Chen X, Zeng R, Su Z, Song Y. sly-miR408b Targets a Plastocyanin-Like Protein to Regulate Mycorrhizal Symbiosis in Tomato. PLANT, CELL & ENVIRONMENT 2025; 48:3590-3602. [PMID: 39789691 DOI: 10.1111/pce.15363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/07/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025]
Abstract
Symbiosis between arbuscular mycorrhizal fungi and plants plays a crucial role in nutrient acquisition and stress resistance for terrestrial plants. microRNAs have been reported to participate in the regulation of mycorrhizal symbiosis by controlling the expression of their target genes. Herein, we found that sly-miR408b was significantly downregulated in response to mycorrhizal colonisation. Overexpression of sly-miR408b compromised mycorrhizal colonisation by Rhizophagus irregularis in tomato (Solanum lycopersicum) roots. A basic blue protein gene (SlBBP) was then identified as the new target gene of miR408b in tomato. The expression of membrane-located SlBBP was induced in a copper-dependent manner. Importantly, the loss function of SlBBP decreased the root mycorrhizal colonisation. Overexpression of SlBBP decreased SOD activity, which may interfere with the process of scavenging excessive reactive oxygen species (ROS). Mutation of RBOH1, which encodes ROS-producing enzymes NADPH oxidases, obviously reduced the arbuscule abundance in the mutant roots. Overall, our results provide evidence that sly-miR408b and its target gene SlBBP regulate mycorrhizal symbiosis in tomato through mediating ROS production.
Collapse
Affiliation(s)
- Yibin Lin
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chenling He
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhenfang Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Shanxi Agricultural University, Taigu, China
| | - Yingying Sun
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lu Tong
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinyu Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhenxia Su
- School of Life Science, Shanxi University, Taiyuan, China
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
2
|
Tan X, Wang D, Zhang X, Zheng S, Jia X, Liu H, Liu Z, Yang H, Dai H, Chen X, Qian Z, Wang R, Ma M, Zhang P, Yu N, Wang E. A pair of LysM receptors mediates symbiosis and immunity discrimination in Marchantia. Cell 2025; 188:1330-1348.e27. [PMID: 39855200 DOI: 10.1016/j.cell.2024.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/09/2024] [Accepted: 12/18/2024] [Indexed: 01/27/2025]
Abstract
Most land plants form symbioses with microbes to acquire nutrients but also must restrict infection by pathogens. Here, we show that a single pair of lysin-motif-containing receptor-like kinases, MpaLYR and MpaCERK1, mediates both immunity and symbiosis in the liverwort Marchantia paleacea. MpaLYR has a higher affinity for long-chain (CO7) versus short-chain chitin oligomers (CO4). Although both CO7 and CO4 can activate symbiosis-related genes, CO7 triggers stronger immune responses than CO4 in a dosage-dependent manner. CO4 can inhibit CO7-induced strong immune responses, recapitulating the early response to inoculation with the symbiont arbuscular mycorrhizal fungi. We show that phosphate starvation of plants increases their production of strigolactone, which stimulates CO4/CO5 secretion from mycorrhizal fungi, thereby prioritizing symbiosis over immunity. Thus, a single pair of LysM receptors mediates dosage-dependent perception of different chitin oligomers to discern symbiotic and pathogenic microbes in M. paleacea, which may facilitate terrestrialization.
Collapse
Affiliation(s)
- Xinhang Tan
- New Cornerstone Science Laboratory, Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Dapeng Wang
- New Cornerstone Science Laboratory, Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaowei Zhang
- New Cornerstone Science Laboratory, Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shuang Zheng
- New Cornerstone Science Laboratory, Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiaojie Jia
- New Cornerstone Science Laboratory, Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Sciences and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Hui Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Zilin Liu
- New Cornerstone Science Laboratory, Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Hao Yang
- New Cornerstone Science Laboratory, Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Huiling Dai
- New Cornerstone Science Laboratory, Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xi Chen
- New Cornerstone Science Laboratory, Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zhixin Qian
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Ran Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Miaolian Ma
- New Cornerstone Science Laboratory, Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Peng Zhang
- New Cornerstone Science Laboratory, Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Nan Yu
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Ertao Wang
- New Cornerstone Science Laboratory, Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Sciences and Technology, Shanghai Tech University, Shanghai 201210, China.
| |
Collapse
|
3
|
Hosseiniyan Khatibi SM, Dimaano NG, Veliz E, Sundaresan V, Ali J. Exploring and exploiting the rice phytobiome to tackle climate change challenges. PLANT COMMUNICATIONS 2024; 5:101078. [PMID: 39233440 PMCID: PMC11671768 DOI: 10.1016/j.xplc.2024.101078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/07/2024] [Accepted: 09/02/2024] [Indexed: 09/06/2024]
Abstract
The future of agriculture is uncertain under the current climate change scenario. Climate change directly and indirectly affects the biotic and abiotic elements that control agroecosystems, jeopardizing the safety of the world's food supply. A new area that focuses on characterizing the phytobiome is emerging. The phytobiome comprises plants and their immediate surroundings, involving numerous interdependent microscopic and macroscopic organisms that affect the health and productivity of plants. Phytobiome studies primarily focus on the microbial communities associated with plants, which are referred to as the plant microbiome. The development of high-throughput sequencing technologies over the past 10 years has dramatically advanced our understanding of the structure, functionality, and dynamics of the phytobiome; however, comprehensive methods for using this knowledge are lacking, particularly for major crops such as rice. Considering the impact of rice production on world food security, gaining fresh perspectives on the interdependent and interrelated components of the rice phytobiome could enhance rice production and crop health, sustain rice ecosystem function, and combat the effects of climate change. Our review re-conceptualizes the complex dynamics of the microscopic and macroscopic components in the rice phytobiome as influenced by human interventions and changing environmental conditions driven by climate change. We also discuss interdisciplinary and systematic approaches to decipher and reprogram the sophisticated interactions in the rice phytobiome using novel strategies and cutting-edge technology. Merging the gigantic datasets and complex information on the rice phytobiome and their application in the context of regenerative agriculture could lead to sustainable rice farming practices that are resilient to the impacts of climate change.
Collapse
Affiliation(s)
| | - Niña Gracel Dimaano
- International Rice Research Institute, Los Baños, Laguna, Philippines; College of Agriculture and Food Science, University of the Philippines Los Baños, Los Baños, Laguna, Philippines
| | - Esteban Veliz
- College of Biological Sciences, University of California, Davis, Davis, CA, USA
| | - Venkatesan Sundaresan
- College of Biological Sciences, University of California, Davis, Davis, CA, USA; College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, USA
| | - Jauhar Ali
- International Rice Research Institute, Los Baños, Laguna, Philippines.
| |
Collapse
|
4
|
Fiorilli V, Martínez-Medina A, Pozo MJ, Lanfranco L. Plant Immunity Modulation in Arbuscular Mycorrhizal Symbiosis and Its Impact on Pathogens and Pests. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:127-156. [PMID: 39251211 DOI: 10.1146/annurev-phyto-121423-042014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Arbuscular mycorrhizal (AM) symbiosis is the oldest and most widespread mutualistic association on Earth and involves plants and soil fungi belonging to Glomeromycotina. A complex molecular, cellular, and genetic developmental program enables partner recognition, fungal accommodation in plant tissues, and activation of symbiotic functions such as transfer of phosphorus in exchange for carbohydrates and lipids. AM fungi, as ancient obligate biotrophs, have evolved strategies to circumvent plant defense responses to guarantee an intimate and long-lasting mutualism. They are among those root-associated microorganisms able to boost plants' ability to cope with biotic stresses leading to mycorrhiza-induced resistance (MIR), which can be effective across diverse hosts and against different attackers. Here, we examine the molecular mechanisms underlying the modulation of plant immunity during colonization by AM fungi and at the onset and display of MIR against belowground and aboveground pests and pathogens. Understanding the MIR efficiency spectrum and its regulation is of great importance to optimizing the biotechnological application of these beneficial microbes for sustainable crop protection.
Collapse
Affiliation(s)
- V Fiorilli
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy;
| | - A Martínez-Medina
- Department of Plant-Microbe Interactions, Institute of Natural Resources and Agrobiology of Salamanca, CSIC, Salamanca, Spain
| | - Maria J Pozo
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada, Spain;
| | - L Lanfranco
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy;
| |
Collapse
|
5
|
Giovannetti M, Binci F, Navazio L, Genre A. Fungal signals and calcium-mediated transduction pathways along the plant defence-symbiosis continuum. THE NEW PHYTOLOGIST 2024; 242:1404-1407. [PMID: 38659109 DOI: 10.1111/nph.19759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
This article is a Commentary on Giovannetti et al., 241: 1393–1400.
Collapse
Affiliation(s)
- Marco Giovannetti
- Department of Life Sciences and Systems Biology, University of Torino, 10125, Torino, Italy
- Department of Biology, University of Padova, 35131, Padova, Italy
| | - Filippo Binci
- Department of Biology, University of Padova, 35131, Padova, Italy
| | - Lorella Navazio
- Department of Biology, University of Padova, 35131, Padova, Italy
| | - Andrea Genre
- Department of Life Sciences and Systems Biology, University of Torino, 10125, Torino, Italy
| |
Collapse
|
6
|
Giovannetti M, Binci F, Navazio L, Genre A. Nonbinary fungal signals and calcium-mediated transduction in plant immunity and symbiosis. THE NEW PHYTOLOGIST 2024; 241:1393-1400. [PMID: 38013492 DOI: 10.1111/nph.19433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
Chitin oligomers (COs) are among the most common and active fungal elicitors of plant responses. Short-chain COs from symbiotic arbuscular mycorrhizal fungi activate accommodation responses in the host root, while long-chain COs from pathogenic fungi are acknowledged to trigger defence responses. The modulation of intracellular calcium concentration - a common second messenger in a wide variety of plant signal transduction processes - plays a central role in both signalling pathways with distinct signature features. Nevertheless, mounting evidence suggests that plant immunity and symbiosis signalling partially overlap at multiple levels. Here, we elaborate on recent findings on this topic, highlighting the nonbinary nature of chitin-based fungal signals, their perception and their interpretation through Ca2+ -mediated intracellular signals. Based on this, we propose that plant perception of symbiotic and pathogenic fungi is less clear-cut than previously described and involves a more complex scenario in which partially overlapping and blurred signalling mechanisms act upstream of the unambiguous regulation of gene expression driving accommodation or defence responses.
Collapse
Affiliation(s)
- Marco Giovannetti
- Department of Life Sciences and Systems Biology, University of Torino, 10125, Torino, Italy
- Department of Biology, University of Padova, 35131, Padova, Italy
| | - Filippo Binci
- Department of Biology, University of Padova, 35131, Padova, Italy
| | - Lorella Navazio
- Department of Biology, University of Padova, 35131, Padova, Italy
| | - Andrea Genre
- Department of Life Sciences and Systems Biology, University of Torino, 10125, Torino, Italy
| |
Collapse
|
7
|
Álvarez C, Jiménez-Ríos L, Iniesta-Pallarés M, Jurado-Flores A, Molina-Heredia FP, Ng CKY, Mariscal V. Symbiosis between cyanobacteria and plants: from molecular studies to agronomic applications. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6145-6157. [PMID: 37422707 PMCID: PMC10575698 DOI: 10.1093/jxb/erad261] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/06/2023] [Indexed: 07/10/2023]
Abstract
Nitrogen-fixing cyanobacteria from the order Nostocales are able to establish symbiotic relationships with diverse plant species. They are promiscuous symbionts, as the same strain of cyanobacterium is able to form symbiotic biological nitrogen-fixing relationships with different plants species. This review will focus on the different types of cyanobacterial-plant associations, both endophytic and epiphytic, and provide insights from a structural viewpoint, as well as our current understanding of the mechanisms involved in the symbiotic crosstalk. In all these symbioses, the benefit for the plant is clear; it obtains from the cyanobacterium fixed nitrogen and other bioactive compounds, such as phytohormones, polysaccharides, siderophores, or vitamins, leading to enhanced plant growth and productivity. Additionally, there is increasing use of different cyanobacterial species as bio-inoculants for biological nitrogen fixation to improve soil fertility and crop production, thus providing an eco-friendly, alternative, and sustainable approach to reduce the over-reliance on synthetic chemical fertilizers.
Collapse
Affiliation(s)
- Consolación Álvarez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain
| | - Lucía Jiménez-Ríos
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain
| | - Macarena Iniesta-Pallarés
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain
| | - Ana Jurado-Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain
| | - Fernando P Molina-Heredia
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain
| | - Carl K Y Ng
- UCD School of Biology and Environmental Science, University College Dublin, Belfield, Dublin, Ireland
- UCD Centre for Plant Science, University College Dublin, Belfield, Dublin, Ireland
- UCD Earth Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Vicente Mariscal
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain
| |
Collapse
|
8
|
Chiu CH, Roszak P, Orvošová M, Paszkowski U. Arbuscular mycorrhizal fungi induce lateral root development in angiosperms via a conserved set of MAMP receptors. Curr Biol 2022; 32:4428-4437.e3. [PMID: 36115339 DOI: 10.1016/j.cub.2022.08.069] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/06/2022] [Accepted: 08/23/2022] [Indexed: 10/14/2022]
Abstract
Root systems regulate their branching patterns in response to environmental stimuli. Lateral root development in both monocotyledons and dicotyledons is enhanced in response to inoculation with arbuscular mycorrhizal (AM) fungi, which has been interpreted as a developmental response to specific, symbiosis-activating chitinaceous signals. Here, we report that generic instead of symbiosis-specific, chitin-derived molecules trigger lateral root formation. We demonstrate that this developmental response requires the well-known microbe-associated molecular pattern (MAMP) receptor, ChitinElicitorReceptorKinase 1 (CERK1), in rice, Medicago truncatula, and Lotus japonicus, as well as the non-host of AM fungi, Arabidopsis thaliana, lending further support for a broadly conserved signal transduction mechanism across angiosperms. Using rice mutants impaired in strigolactone biosynthesis and signaling, we show that strigolactone signaling is necessary to regulate this developmental response. Rice CERK1 operates together with either Chitin Elicitor Binding Protein (CEBiP) or Nod Factor Receptor 5 (NFR5) in immunity and symbiosis signaling, respectively; for the lateral root response, however, all three LysM receptors are required. Our work, therefore, reveals an overlooked but a conserved role of LysM receptors integrating MAMP perception with developmental responses in plants, an ability that might influence the interaction between roots and the rhizosphere biota.
Collapse
Affiliation(s)
- Chai Hao Chiu
- Crop Science Centre, Department of Plant Sciences, University of Cambridge, 93 Lawrence Weaver Road, Cambridge CB3 0LE, UK.
| | - Pawel Roszak
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Martina Orvošová
- Crop Science Centre, Department of Plant Sciences, University of Cambridge, 93 Lawrence Weaver Road, Cambridge CB3 0LE, UK
| | - Uta Paszkowski
- Crop Science Centre, Department of Plant Sciences, University of Cambridge, 93 Lawrence Weaver Road, Cambridge CB3 0LE, UK.
| |
Collapse
|
9
|
Chetri SPK, Rahman Z, Thomas L, Lal R, Gour T, Agarwal LK, Vashishtha A, Kumar S, Kumar G, Kumar R, Sharma K. Paradigms of actinorhizal symbiosis under the regime of global climatic changes: New insights and perspectives. J Basic Microbiol 2022; 62:764-778. [PMID: 35638879 DOI: 10.1002/jobm.202200043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/17/2022] [Accepted: 05/14/2022] [Indexed: 11/05/2022]
Abstract
Nitrogen occurs as inert and inaccessible dinitrogen gaseous form (N2 ) in the atmosphere. Biological nitrogen fixation is a chief process that makes this dinitrogen (N2 ) accessible and bioavailable in the form of ammonium (NH4 + ) ions. The key organisms to fix nitrogen are certain prokaryotes, called diazotrophs either in the free-living form or establishing significant mutual relationships with a variety of plants. On such examples is ~95-100 MY old incomparable symbiosis between dicotyledonous trees and a unique actinobacterial diazotroph in diverse ecosystems. In this association, the root of the certain dicotyledonous tree (~25 genera and 225 species) belonging to three different taxonomic orders, Fagales, Cucurbitales, and Rosales (FaCuRo) known as actinorhizal trees can host a diazotroph, Frankia of order Frankiales. Frankia is gram-positive, branched, filamentous, sporulating, and free-living soil actinobacterium. It resides in the specialized, multilobed, and coralloid organs (lateral roots but without caps), the root nodules of actinorhizal tress. This review aims to provide systematic information on the distribution and the phylogenetic diversity of hosts from FaCuRo and their micro-endosymbionts (Frankia spp.), colonization mechanisms, and signaling pathways. We also aim to provide details on developmental and physiological imperatives for gene regulation and functional genomics of symbiosis, phenomenal restoration ecology, influences of contemporary global climatic changes, and anthropogenic impacts on plant-Frankia interactions for the functioning of ecosystems and the biosphere.
Collapse
Affiliation(s)
| | - Zeeshanur Rahman
- Department of Botany, Zakir Husain Delhi College, University of Delhi, New Delhi, Delhi, India
| | - Lebin Thomas
- Department of Botany, Hansraj College, University of Delhi, New Delhi, Delhi, India
| | - Ratan Lal
- Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Tripti Gour
- Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Lokesh Kumar Agarwal
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Akanksha Vashishtha
- Department of Plant Protection, CCS University, Meerut, Uttar Pradesh, India
| | - Sachin Kumar
- Department of Botany, Shri Venkateshwara College, University of Delhi, New Delhi, Delhi, India
| | - Gaurav Kumar
- Department of Environmental Studies, PGDAV College, University of Delhi, New Delhi, Delhi, India
| | - Rajesh Kumar
- Department of Botany, Hindu College, University of Delhi, New Delhi, Delhi, India
| | - Kuldeep Sharma
- Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| |
Collapse
|
10
|
Crosino A, Moscato E, Blangetti M, Carotenuto G, Spina F, Bordignon S, Puech-Pagès V, Anfossi L, Volpe V, Prandi C, Gobetto R, Varese GC, Genre A. Extraction of short chain chitooligosaccharides from fungal biomass and their use as promoters of arbuscular mycorrhizal symbiosis. Sci Rep 2021; 11:3798. [PMID: 33589668 PMCID: PMC7884697 DOI: 10.1038/s41598-021-83299-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/29/2021] [Indexed: 01/30/2023] Open
Abstract
Short chain chitooligosaccharides (COs) are chitin derivative molecules involved in plant-fungus signaling during arbuscular mycorrhizal (AM) interactions. In host plants, COs activate a symbiotic signalling pathway that regulates AM-related gene expression. Furthermore, exogenous CO application was shown to promote AM establishment, with a major interest for agricultural applications of AM fungi as biofertilizers. Currently, the main source of commercial COs is from the shrimp processing industry, but purification costs and environmental concerns limit the convenience of this approach. In an attempt to find a low cost and low impact alternative, this work aimed to isolate, characterize and test the bioactivity of COs from selected strains of phylogenetically distant filamentous fungi: Pleurotus ostreatus, Cunninghamella bertholletiae and Trichoderma viride. Our optimized protocol successfully isolated short chain COs from lyophilized fungal biomass. Fungal COs were more acetylated and displayed a higher biological activity compared to shrimp-derived COs, a feature that-alongside low production costs-opens promising perspectives for the large scale use of COs in agriculture.
Collapse
Affiliation(s)
- Andrea Crosino
- Department of Life Science and Systems Biology, University of Turin, 10125, Turin, Italy
| | - Elisa Moscato
- Department of Life Science and Systems Biology, University of Turin, 10125, Turin, Italy
| | - Marco Blangetti
- Department of Chemistry, University of Turin, 10125, Turin, Italy
| | - Gennaro Carotenuto
- Department of Life Science and Systems Biology, University of Turin, 10125, Turin, Italy
| | - Federica Spina
- Department of Life Science and Systems Biology, University of Turin, 10125, Turin, Italy
| | - Simone Bordignon
- Department of Chemistry, University of Turin, 10125, Turin, Italy
| | - Virginie Puech-Pagès
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 31320, Castanet-Tolosan, France
| | - Laura Anfossi
- Department of Chemistry, University of Turin, 10125, Turin, Italy
| | - Veronica Volpe
- Department of Life Science and Systems Biology, University of Turin, 10125, Turin, Italy
| | - Cristina Prandi
- Department of Chemistry, University of Turin, 10125, Turin, Italy
| | - Roberto Gobetto
- Department of Chemistry, University of Turin, 10125, Turin, Italy
| | | | - Andrea Genre
- Department of Life Science and Systems Biology, University of Turin, 10125, Turin, Italy.
| |
Collapse
|
11
|
Afkhami ME, Almeida BK, Hernandez DJ, Kiesewetter KN, Revillini DP. Tripartite mutualisms as models for understanding plant-microbial interactions. CURRENT OPINION IN PLANT BIOLOGY 2020; 56:28-36. [PMID: 32247158 DOI: 10.1016/j.pbi.2020.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/01/2020] [Accepted: 02/11/2020] [Indexed: 06/11/2023]
Abstract
All plants host diverse microbial assemblages that shape plant health, productivity, and function. While some microbial effects are attributable to particular symbionts, interactions among plant-associated microbes can nonadditively affect plant fitness and traits in ways that cannot be predicted from pairwise interactions. Recent research into tripartite plant-microbe mutualisms has provided crucial insight into this nonadditivity and the mechanisms underlying plant interactions with multiple microbes. Here, we discuss how interactions among microbial mutualists affect plant performance, highlight consequences of biotic and abiotic context-dependency for nonadditive outcomes, and summarize burgeoning efforts to determine the molecular bases of how plants regulate establishment, resource exchange, and maintenance of tripartite interactions. We conclude with four goals for future tripartite studies that will advance our overall understanding of complex plant-microbial interactions.
Collapse
Affiliation(s)
- Michelle E Afkhami
- University of Miami, Department of Biology, Coral Gables, FL 33146, USA.
| | - Brianna K Almeida
- University of Miami, Department of Biology, Coral Gables, FL 33146, USA
| | | | | | | |
Collapse
|
12
|
Genre A, Lanfranco L, Perotto S, Bonfante P. Unique and common traits in mycorrhizal symbioses. Nat Rev Microbiol 2020; 18:649-660. [PMID: 32694620 DOI: 10.1038/s41579-020-0402-3] [Citation(s) in RCA: 230] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2020] [Indexed: 12/16/2022]
Abstract
Mycorrhizas are among the most important biological interkingdom interactions, as they involve ~340,000 land plants and ~50,000 taxa of soil fungi. In these mutually beneficial interactions, fungi receive photosynthesis-derived carbon and provide the host plant with mineral nutrients such as phosphorus and nitrogen in exchange. More than 150 years of research on mycorrhizas has raised awareness of their biology, biodiversity and ecological impact. In this Review, we focus on recent phylogenomic, molecular and cell biology studies to present the current state of knowledge of the origin of mycorrhizal fungi and the evolutionary history of their relationship with land plants. As mycorrhizas feature a variety of phenotypes, depending on partner taxonomy, physiology and cellular interactions, we explore similarities and differences between mycorrhizal types. During evolution, mycorrhizal fungi have refined their biotrophic capabilities to take advantage of their hosts as food sources and protective niches, while plants have developed multiple strategies to accommodate diverse fungal symbionts. Intimate associations with pervasive ecological success have originated at the crossroads between these two evolutionary pathways. Our understanding of the biological processes underlying these symbioses, where fungi act as biofertilizers and bioprotectors, provides the tools to design biotechnological applications addressing environmental and agricultural challenges.
Collapse
Affiliation(s)
- Andrea Genre
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Silvia Perotto
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy.
| |
Collapse
|
13
|
Tian W, Wang C, Gao Q, Li L, Luan S. Calcium spikes, waves and oscillations in plant development and biotic interactions. NATURE PLANTS 2020; 6:750-759. [PMID: 32601423 DOI: 10.1038/s41477-020-0667-6] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/15/2020] [Indexed: 05/08/2023]
Abstract
The calcium ion (Ca2+) is a universal signal in all eukaryotic cells. A fundamental question is how Ca2+, a simple cation, encodes complex information with high specificity. Extensive research has established a two-step process (encoding and decoding) that governs the specificity of Ca2+ signals. While the encoding mechanism entails a complex array of channels and transporters, the decoding process features a number of Ca2+ sensors and effectors that convert Ca2+ signals into cellular effects. Along this general paradigm, some signalling components may be highly conserved, but others are divergent among different organisms. In plant cells, Ca2+ participates in numerous signalling processes, and here we focus on the latest discoveries on Ca2+-encoding mechanisms in development and biotic interactions. In particular, we use examples such as polarized cell growth of pollen tube and root hair in which tip-focused Ca2+ oscillations specify the signalling events for rapid cell elongation. In plant-microbe interactions, Ca2+ spiking and oscillations hold the key to signalling specificity: while pathogens elicit cytoplasmic spiking, symbiotic microorganisms trigger nuclear Ca2+ oscillations. Herbivore attacks or mechanical wounding can trigger Ca2+ waves traveling a long distance to transmit and convert the local signal to a systemic defence program in the whole plant. What channels and transporters work together to carve out the spatial and temporal patterns of the Ca2+ fluctuations? This question has remained enigmatic for decades until recent studies uncovered Ca2+ channels that orchestrate specific Ca2+ signatures in each of these processes. Future work will further expand the toolkit for Ca2+-encoding mechanisms and place Ca2+ signalling steps into larger signalling networks.
Collapse
Affiliation(s)
- Wang Tian
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
- School of Life Sciences, Northwest University, Xi'an, China
| | - Chao Wang
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Qifei Gao
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
- School of Life Sciences, Northwest University, Xi'an, China
| | - Legong Li
- School of Life Sciences, Capital Normal University, Beijing, China
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
14
|
Skiada V, Avramidou M, Bonfante P, Genre A, Papadopoulou KK. An endophytic Fusarium-legume association is partially dependent on the common symbiotic signalling pathway. THE NEW PHYTOLOGIST 2020; 226:1429-1444. [PMID: 31997356 DOI: 10.1111/nph.16457] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Legumes interact with a wide range of microbes in their root systems, ranging from beneficial symbionts to pathogens. Symbiotic rhizobia and arbuscular mycorrhizal glomeromycetes trigger a so-called common symbiotic signalling pathway (CSSP), including the induction of nuclear calcium spiking in the root epidermis. By combining gene expression analysis, mutant phenotypic screening and analysis of nuclear calcium elevations, we demonstrate that recognition of an endophytic Fusarium solani strain K (FsK) in model legumes is initiated via perception of chitooligosaccharidic molecules and is, at least partially, CSSP-dependent. FsK induced the expression of Lysin-motif receptors for chitin-based molecules, CSSP members and CSSP-dependent genes in Lotus japonicus. In LysM and CSSP mutant/RNAi lines, root penetration and fungal intraradical progression was either stimulated or limited, whereas FsK exudates triggered CSSP-dependent nuclear calcium spiking, in epidermal cells of Medicago truncatula root organ cultures. Our results corroborate CSSP being involved in the perception of signals from other microbes beyond the restricted group of symbiotic interactions sensu stricto.
Collapse
Affiliation(s)
- Vasiliki Skiada
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Larissa, 41500, Greece
| | - Marianna Avramidou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Larissa, 41500, Greece
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Torino, Torino, 10125, Italy
| | - Andrea Genre
- Department of Life Sciences and Systems Biology, University of Torino, Torino, 10125, Italy
| | - Kalliope K Papadopoulou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Larissa, 41500, Greece
| |
Collapse
|
15
|
Genre A, Bonfante P. A Rice Receptor for Mycorrhizal Fungal Signals Opens New Opportunities for the Development of Sustainable Agricultural Practices. MOLECULAR PLANT 2020; 13:181-183. [PMID: 31981734 DOI: 10.1016/j.molp.2020.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Affiliation(s)
- A Genre
- Department of Life Science and Systems Biology, University of Turin, Viale Mattioli 25, 10125 Torino, Italy.
| | - P Bonfante
- Department of Life Science and Systems Biology, University of Turin, Viale Mattioli 25, 10125 Torino, Italy
| |
Collapse
|
16
|
Volpe V, Carotenuto G, Berzero C, Cagnina L, Puech-Pagès V, Genre A. Short chain chito-oligosaccharides promote arbuscular mycorrhizal colonization in Medicago truncatula. Carbohydr Polym 2020; 229:115505. [DOI: 10.1016/j.carbpol.2019.115505] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/25/2019] [Accepted: 10/17/2019] [Indexed: 01/17/2023]
|
17
|
Chabaud M, Fournier J, Brichet L, Abdou-Pavy I, Imanishi L, Brottier L, Pirolles E, Hocher V, Franche C, Bogusz D, Wall LG, Svistoonoff S, Gherbi H, Barker DG. Chitotetraose activates the fungal-dependent endosymbiotic signaling pathway in actinorhizal plant species. PLoS One 2019; 14:e0223149. [PMID: 31600251 PMCID: PMC6786586 DOI: 10.1371/journal.pone.0223149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/13/2019] [Indexed: 01/17/2023] Open
Abstract
Mutualistic plant-microbe associations are widespread in natural ecosystems and have made major contributions throughout the evolutionary history of terrestrial plants. Amongst the most remarkable of these are the so-called root endosymbioses, resulting from the intracellular colonization of host tissues by either arbuscular mycorrhizal (AM) fungi or nitrogen-fixing bacteria that both provide key nutrients to the host in exchange for energy-rich photosynthates. Actinorhizal host plants, members of the Eurosid 1 clade, are able to associate with both AM fungi and nitrogen-fixing actinomycetes known as Frankia. Currently, little is known about the molecular signaling that allows these plants to recognize their fungal and bacterial partners. In this article, we describe the use of an in vivo Ca2+ reporter to identify symbiotic signaling responses to AM fungi in roots of both Casuarina glauca and Discaria trinervis, actinorhizal species with contrasting modes of Frankia colonization. This approach has revealed that, for both actinorhizal hosts, the short-chain chitin oligomer chitotetraose is able to mimic AM fungal exudates in activating the conserved symbiosis signaling pathway (CSSP) in epidermal root cells targeted by AM fungi. These results mirror findings in other AM host plants including legumes and the monocot rice. In addition, we show that chitotetraose is a more efficient elicitor of CSSP activation compared to AM fungal lipo-chitooligosaccharides. These findings reinforce the likely role of short-chain chitin oligomers during the initial stages of the AM association, and are discussed in relation to both our current knowledge about molecular signaling during Frankia recognition as well as the different microsymbiont root colonization mechanisms employed by actinorhizal hosts.
Collapse
Affiliation(s)
- Mireille Chabaud
- Laboratory of Plant-Microbe Interactions (INRA/CNRS/University of Toulouse), Castanet-Tolosan, France
| | - Joëlle Fournier
- Laboratory of Plant-Microbe Interactions (INRA/CNRS/University of Toulouse), Castanet-Tolosan, France
| | - Lukas Brichet
- Laboratory of Plant-Microbe Interactions (INRA/CNRS/University of Toulouse), Castanet-Tolosan, France
| | - Iltaf Abdou-Pavy
- Laboratory of Plant-Microbe Interactions (INRA/CNRS/University of Toulouse), Castanet-Tolosan, France
| | - Leandro Imanishi
- Laboratory of Biochemistry, Microbiology and Soil Biological Interactions, Department of Science and Technology, National University of Quilmes, CONICET, Bernal, Argentina
| | - Laurent Brottier
- Laboratory of Tropical and Mediterranean Symbioses (IRD/INRA/CIRAD/University of Montpellier/Supagro), Montpellier, France
| | - Elodie Pirolles
- Laboratory of Tropical and Mediterranean Symbioses (IRD/INRA/CIRAD/University of Montpellier/Supagro), Montpellier, France
| | - Valérie Hocher
- Laboratory of Tropical and Mediterranean Symbioses (IRD/INRA/CIRAD/University of Montpellier/Supagro), Montpellier, France
| | - Claudine Franche
- Plant Diversity, Adaptation and Development (IRD/University of Montpellier), Montpellier, France
| | - Didier Bogusz
- Plant Diversity, Adaptation and Development (IRD/University of Montpellier), Montpellier, France
| | - Luis G. Wall
- Laboratory of Biochemistry, Microbiology and Soil Biological Interactions, Department of Science and Technology, National University of Quilmes, CONICET, Bernal, Argentina
| | - Sergio Svistoonoff
- Laboratory of Tropical and Mediterranean Symbioses (IRD/INRA/CIRAD/University of Montpellier/Supagro), Montpellier, France
| | - Hassen Gherbi
- Laboratory of Tropical and Mediterranean Symbioses (IRD/INRA/CIRAD/University of Montpellier/Supagro), Montpellier, France
| | - David G. Barker
- Laboratory of Plant-Microbe Interactions (INRA/CNRS/University of Toulouse), Castanet-Tolosan, France
| |
Collapse
|
18
|
Liu CW, Breakspear A, Stacey N, Findlay K, Nakashima J, Ramakrishnan K, Liu M, Xie F, Endre G, de Carvalho-Niebel F, Oldroyd GED, Udvardi MK, Fournier J, Murray JD. A protein complex required for polar growth of rhizobial infection threads. Nat Commun 2019; 10:2848. [PMID: 31253759 PMCID: PMC6599036 DOI: 10.1038/s41467-019-10029-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 03/18/2019] [Indexed: 12/13/2022] Open
Abstract
During root nodule symbiosis, intracellular accommodation of rhizobia by legumes is a prerequisite for nitrogen fixation. For many legumes, rhizobial colonization initiates in root hairs through transcellular infection threads. In Medicago truncatula, VAPYRIN (VPY) and a putative E3 ligase LUMPY INFECTIONS (LIN) are required for infection thread development but their cellular and molecular roles are obscure. Here we show that LIN and its homolog LIN-LIKE interact with VPY and VPY-LIKE in a subcellular complex localized to puncta both at the tip of the growing infection thread and at the nuclear periphery in root hairs and that the punctate accumulation of VPY is positively regulated by LIN. We also show that an otherwise nuclear and cytoplasmic exocyst subunit, EXO70H4, systematically co-localizes with VPY and LIN during rhizobial infection. Genetic analysis shows that defective rhizobial infection in exo70h4 is similar to that in vpy and lin. Our results indicate that VPY, LIN and EXO70H4 are part of the symbiosis-specific machinery required for polar growth of infection threads.
Collapse
Affiliation(s)
- Cheng-Wu Liu
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge, CB2 1LR, UK
| | - Andrew Breakspear
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Nicola Stacey
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Kim Findlay
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Jin Nakashima
- Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | | | - Miaoxia Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular and Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Fang Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular and Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Gabriella Endre
- Institute of Plant Biology, Biological Research Centre, Szeged, 6726, Hungary
| | | | - Giles E D Oldroyd
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge, CB2 1LR, UK
| | - Michael K Udvardi
- Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Joëlle Fournier
- LIPM, Université de Toulouse, INRA, CNRS, 31326, Castanet-Tolosan, France.
| | - Jeremy D Murray
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
- National Key Laboratory of Plant Molecular Genetics, CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), CAS Center for Excellence in Molecular and Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
19
|
Russo G, Carotenuto G, Fiorilli V, Volpe V, Chiapello M, Van Damme D, Genre A. Ectopic activation of cortical cell division during the accommodation of arbuscular mycorrhizal fungi. THE NEW PHYTOLOGIST 2019; 221:1036-1048. [PMID: 15558330 DOI: 10.1111/nph.15398] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/17/2018] [Indexed: 05/12/2023]
Abstract
Arbuscular mycorrhizas (AMs) between plants and soil fungi are widespread symbioses with a major role in soil nutrient uptake. In this study we investigated the induction of root cortical cell division during AM colonization by combining morphometric and gene expression analyses with promoter activation and protein localization studies of the cell-plate-associated exocytic marker TPLATE. Our results show that TPLATE promoter is activated in colonized cells of the root cortex where we also observed the appearance of cells that are half the size of the surrounding cells. Furthermore, TPLATE-green fluorescent protein recruitment to developing cell plates highlighted ectopic cell division events in the inner root cortex during early AM colonization. Lastly, transcripts of TPLATE, KNOLLE and Cyclinlike 1 (CYC1) are all upregulated in the same context, alongside endocytic markers Adaptor-Related Protein complex 2 alpha 1 subunit (AP2A1) and Clathrin Heavy Chain 2 (CHC2), known to be active during cell plate formation. This pattern of gene expression was recorded in wild-type Medicago truncatula roots, but not in a common symbiotic signalling pathway mutant where fungal colonization is blocked at the epidermal level. Altogether, these results suggest the activation of cell-division-related mechanisms by AM hosts during the accommodation of the symbiotic fungus.
Collapse
Affiliation(s)
- Giulia Russo
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torin, Italy
| | - Gennaro Carotenuto
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torin, Italy
| | - Valentina Fiorilli
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torin, Italy
| | - Veronica Volpe
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torin, Italy
| | - Marco Chiapello
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torin, Italy
| | - Daniel Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, 9052, Ghent, Belgium
| | - Andrea Genre
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torin, Italy
| |
Collapse
|
20
|
Bonfante P. The future has roots in the past: the ideas and scientists that shaped mycorrhizal research. THE NEW PHYTOLOGIST 2018; 220:982-995. [PMID: 30160311 DOI: 10.1111/nph.15397] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/10/2018] [Indexed: 05/09/2023]
Abstract
Contents Summary 982 I. Introduction 982 II. The portraits of our ancestors: a gallery of ideas from more than 100 years of mycorrhizal research 983 III. Mycorrhizal fungi in the 'omics' era: first puzzle, how to name mycorrhizal fungi 985 IV. Signalling: a central question of our time? 987 V. The colonization process: how cellular studies predicted future 'omics' data 989 VI. The genetics underlying colonization events 991 VII. Concluding thoughts: chance and needs in mycorrhizal symbioses 992 Acknowledgements 992 References 992 SUMMARY: Our knowledge of mycorrhizas dates back to at least 150 years ago, when the plant pathologists A. B. Frank and G. Gibelli described the surprisingly morphology of forest tree roots surrounded by a fungal mantle. Compared with this history, our molecular study of mycorrhizas remains a young science. To trace the history of mycorrhizal research, from its roots in the distant past, to the present and the future, this review outlines a few topics that were already central in the 19th century and were seminal in revealing the biological meaning of mycorrhizal associations. These include investigations of nutrient exchange between partners, plant responses to mycorrhizal fungi, and the identity and evolution of mycorrhizal symbionts as just a few examples of how the most recent molecular studies of mycorrhizal biology sprouted from the roots of past research. In addition to clarifying the ecological role of mycorrhizas, some of the recent results have changed the perception of the relevance of mycorrhizas in the scientific community, and in the whole of society. Looking to past knowledge while foreseeing strategies for the next steps can help us catch a glimpse of the future of mycorrhizal research.
Collapse
Affiliation(s)
- Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli, 25, 10125, Turin, Italy
| |
Collapse
|
21
|
Carotenuto G, Chabaud M, Miyata K, Capozzi M, Takeda N, Kaku H, Shibuya N, Nakagawa T, Barker DG, Genre A. The rice LysM receptor-like kinase OsCERK1 is required for the perception of short-chain chitin oligomers in arbuscular mycorrhizal signaling. THE NEW PHYTOLOGIST 2017; 214:1440-1446. [PMID: 28369864 DOI: 10.1111/nph.14539] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/28/2017] [Indexed: 05/18/2023]
Abstract
The rice lysin-motif (LysM) receptor-like kinase OsCERK1 is now known to have a dual role in both pathogenic and symbiotic interactions. Following the recent discovery that the Oscerk1 mutant is unable to host arbuscular mycorrhizal (AM) fungi, we have examined whether OsCERK1 is directly involved in the perception of the short-chain chitin oligomers (Myc-COs) identified in AM fungal exudates and shown to activate nuclear calcium (Ca2+ ) spiking in the rice root epidermis. An Oscerk1 knockout mutant expressing the cameleon NLS-YC2.60 was used to monitor nuclear Ca2+ signaling following root treatment with either crude fungal exudates or purified Myc-COs. Compared with wild-type rice, Ca2+ spiking responses to AM fungal elicitation were absent in root atrichoblasts of the Oscerk1 mutant. By contrast, rice lines mutated in OsCEBiP, encoding the LysM receptor-like protein which associates with OsCERK1 to perceive chitin elicitors of the host immune defense pathway, responded positively to Myc-COs. These findings provide direct evidence that the bi-functional OsCERK1 plays a central role in perceiving short-chain Myc-CO signals and activating the downstream conserved symbiotic signal transduction pathway.
Collapse
Affiliation(s)
- Gennaro Carotenuto
- Department of Life Sciences and Systems Biology, University of Torino, Torino, 10125, Italy
| | - Mireille Chabaud
- Laboratory of Plant-Microbe Interactions (LIPM), INRA-CNRS-Toulouse University, Castanet-Tolosan, 31326, France
| | - Kana Miyata
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571, Japan
| | - Martina Capozzi
- Department of Life Sciences and Systems Biology, University of Torino, Torino, 10125, Italy
| | - Naoya Takeda
- National Institute for Basic Biology (NIBB)/SOKENDAI, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Hanae Kaku
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571, Japan
| | - Naoto Shibuya
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571, Japan
| | - Tomomi Nakagawa
- National Institute for Basic Biology (NIBB)/SOKENDAI, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - David G Barker
- Laboratory of Plant-Microbe Interactions (LIPM), INRA-CNRS-Toulouse University, Castanet-Tolosan, 31326, France
| | - Andrea Genre
- Department of Life Sciences and Systems Biology, University of Torino, Torino, 10125, Italy
| |
Collapse
|