1
|
Li B, Liu W, Xu J, Huang X, Yang L, Xu F. Decoding maize meristems maintenance and differentiation: integrating single-cell and spatial omics. J Genet Genomics 2025; 52:319-333. [PMID: 39921079 DOI: 10.1016/j.jgg.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 02/10/2025]
Abstract
All plant organs are derived from stem cell-containing meristems. In maize, the shoot apical meristem (SAM) is responsible for generating all above-ground structures, including the male and female inflorescence meristems (IMs), which give rise to tassel and ear, respectively. Forward and reverse genetic studies on maize meristem mutants have driven forward our fundamental understanding of meristem maintenance and differentiation mechanisms. However, the high genetic redundancy of the maize genome has impeded progress in functional genomics. This review comprehensively summarizes recent advancements in understanding maize meristem development, with a focus on the integration of single-cell and spatial technologies. We discuss the mechanisms governing stem cell maintenance and differentiation in SAM and IM, emphasizing the roles of gene regulatory networks, hormonal pathways, and cellular omics insights into stress responses and adaptation. Future directions include cross-species comparisons, multi-omics integration, and the application of these technologies to precision breeding and stress adaptation research, with the ultimate goal of translating our understanding of meristem into the development of higher yield varieties.
Collapse
Affiliation(s)
- Bin Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Wenhao Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Jie Xu
- Housing and Urban Rural Development Bureau of Jimo District, Qingdao, Shandong 266200, China
| | - Xuxu Huang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Long Yang
- Agricultural Big-Data Research Center and College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Fang Xu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
2
|
Wang J, Li H, Tang W, Liang K, Zhao C, Yu F, Qiu F. A candidate association study of transcription factors in maize revealed the ZmPLATZ15-ZmEREB200 module as a key regulator of waterlogging tolerance at the seedling stage. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109664. [PMID: 40010256 DOI: 10.1016/j.plaphy.2025.109664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/13/2025] [Accepted: 02/16/2025] [Indexed: 02/28/2025]
Abstract
Soil waterlogging is a major abiotic stress that severely impairs maize growth and development by inducing hypoxic conditions that disrupt essential physiological processes. Transcription factors (TFs) play crucial roles in modulating plant responses to waterlogging stress by regulating the expression of stress-related genes that enhance or diminish stress tolerance. In this study, we conducted an association analysis to identify 11 TFs closely associated with waterlogging stress in maize. Notably, the PLATZ family emerged as a novel and significant contributor to waterlogging stress. Overexpression of ZmPLATZ15 resulted in increased sensitivity to waterlogging at maize seedlings. Conversely, ZmEREB200, a member of the maize Group VII ERF (ZmERFVII) family, was significantly downregulated in the ZmPLATZ15 overexpression lines under waterlogging stress. Promoter analysis revealed that ZmPLATZ15 regulates ZmEREB200 by binding to the A/T-rich motifs in the ZmEREB200 promoter. Interestingly, overexpression of ZmEREB200 was found to enhance waterlogging tolerance at maize seedlings. To further elucidate their roles, we analyzed the transcriptomic profiles of ZmPLATZ15 and ZmEREB200 overexpression lines under waterlogging stress. The overlapping differentially expressed genes in both ZmPLATZ15 and ZmEREB200 overexpression lines were significantly enriched in pathways associated with redox balance and salicylic acid metabolism, both of which are crucial for modulating waterlogging tolerance at maize seedlings. Metabolomic analysis revealed that antioxidant enzyme activity, salicylic acid, and glutathione levels were decreased in OE-ZmPLATZ15, while these metabolites were significantly increased in OE-ZmEREB200. These contrasting metabolic responses in overexpression lines may underlie their different tolerances to waterlogging stress. Our findings provide valuable insights into the regulatory mechanisms underlying maize's response to waterlogging stress and highlight the potential of TFs as tools for developing maize varieties with enhanced waterlogging tolerance.
Collapse
Affiliation(s)
- Jing Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huanyu Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenbin Tang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Kun Liang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chenxu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Feng Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China.
| | - Fazhan Qiu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
3
|
Khaksefidi RE, Chen W, Shen C, Langridge P, Tucker MR, Zhang D. The role of Ancestral MicroRNAs in grass inflorescence development. JOURNAL OF PLANT PHYSIOLOGY 2025; 304:154417. [PMID: 39754787 DOI: 10.1016/j.jplph.2024.154417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/06/2025]
Abstract
Plant inflorescences are complex, highly diverse structures whose morphology is determined in meristems that form during reproductive development. Inflorescence structure influences flower formation, and consequently grain number, and yield in crops. Correct inflorescence and flower development require tight control of gene expression via complex interplay between regulatory networks. MicroRNAs (miRNAs) have emerged as fundamental modulators of gene expression at the transcriptional and/or post-transcriptional level in plant inflorescence development. First discovered more than three decades ago, miRNAs have proved to be revolutionary in advancing our mechanistic understanding of gene expression. This review highlights current knowledge of downstream target genes and pathways of some highly conserved miRNAs that regulate the maintenance, identity, and activity of inflorescence and floral meristems in economically and agriculturally important grass species, including rice (Oryza sativa), maize (Zea mays), barley (Hordeum vulgare), and wheat (Triticum aestivum). Furthermore, we summarize emerging regulatory networks of miRNAs and their targets to suggest new avenues and strategies for application of miRNAs as a tool to enhance crop yield and performance.
Collapse
Affiliation(s)
- Reyhaneh Ebrahimi Khaksefidi
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Weiwei Chen
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Chaoqun Shen
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia; Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Peter Langridge
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia; Wheat Initiative, Julius Kühn Institute, 14195, Berlin, Germany
| | - Matthew R Tucker
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia.
| | - Dabing Zhang
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia; Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
4
|
Chaudhry A, Chen Z, Gallavotti A. Hormonal influence on maize inflorescence development and reproduction. PLANT REPRODUCTION 2024; 37:393-407. [PMID: 39367960 PMCID: PMC11511735 DOI: 10.1007/s00497-024-00510-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/04/2024] [Indexed: 10/07/2024]
Abstract
KEY MESSAGE Different plant hormones contribute to maize reproductive success. Maize is a major crop species and significantly contributes directly and indirectly to human calorie uptake. Its success can be mainly attributed to its unisexual inflorescences, the tassel and the ear, whose formation is regulated by complex genetic and hormonal networks, and is influenced by environmental cues such as temperature, and nutrient and water availability. Traditional genetic analysis of classic developmental mutants, together with new molecular approaches, have shed light on many crucial aspects of maize reproductive development including the influence that phytohormones exert on key developmental steps leading to successful reproduction and seed yield. Here we will review both historical and recent findings concerning the main roles that phytohormones play in maize reproductive development, from the commitment to reproductive development to sexual reproduction.
Collapse
Affiliation(s)
- Amina Chaudhry
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Zongliang Chen
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
| | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA.
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
5
|
Shang C, Hou Q, Qiao G, Tian T, Wen X. CpSPL10-CpELF4 module involves in the negative regulation of flower bud differentiation in Chinese cherry. Int J Biol Macromol 2024; 280:135964. [PMID: 39322142 DOI: 10.1016/j.ijbiomac.2024.135964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
SQUAMOSA promoter-binding protein-like (SPL) genes play a crucial role in regulating floral induction. Despite such importance, a comprehensive study of SPLs in Chinese cherry flower bud development has been absent. In this study, 32 CpSPL genes were identified. According to expression profiling, CpSPLs exhibited tissue-specific expression and distinct trends throughout flower bud differentiation. Specifically, CpSPL10 was greatly expressed at the beginning of the differentiation, and its role was further investigated. Its overexpression extended the vegetative growth of transgenic tobacco plants, delayed flowering by about 20 days. Moreover, the accumulation of NbELF4 (Early flowering 4) transcripts was enhanced due to the up-regulated levels of CpSPL10 in tobacco plants. ELF4 functions as a major element of the circadian clock; its high expression typically delays the transition from vegetative-to-reproductive growth. Further experiments revealed that CpSPL10 interacts with CpSPL9 or a transposase-derived transcription factor CpFRS5 (FAR1-RELATED SEQUENCE 5) and activates the expression of the downstream gene CpELF4. Notably, the GUS fusing reporter assay detected the activation of CpSPL10 and CpELF4 promoters in shoot apical meristems of transgenic Arabidopsis. These findings revealed the negative regulation of the CpSPL10-CpELF4 module in flower bud differentiation, providing references for supplementing the specific relationships among SPL, FRS, and ELF4.
Collapse
Affiliation(s)
- Chunqiong Shang
- Institute for Forest Resources & Environment of Guizhou, College of Forestry, Guizhou University, Guiyang 550025, Guizhou Province, China; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Qiandong Hou
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Guang Qiao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Tian Tian
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Xiaopeng Wen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
6
|
Du D, Li Z, Yuan J, He F, Li X, Wang N, Li R, Ke W, Zhang D, Chen Z, Jiang Z, Liu Y, Chai L, Liu J, Hu Z, Guo W, Peng H, Yao Y, Sun Q, Ni Z, Xin M. The TaWAK2-TaNAL1-TaDST pathway regulates leaf width via cytokinin signaling in wheat. SCIENCE ADVANCES 2024; 10:eadp5541. [PMID: 39196932 PMCID: PMC11352840 DOI: 10.1126/sciadv.adp5541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/24/2024] [Indexed: 08/30/2024]
Abstract
Leaves play a crucial role in photosynthesis and respiration, ultimately affecting the final grain yield of crops, including wheat (Triticum aestivum L.); however, the molecular mechanisms underlying wheat leaf development remain largely unknown. Here, we isolated a narrow-leaf gene, TaWAK2-A, through a map-based cloning strategy. TaWAK2-A encodes a wall-associated kinase (WAK), for which a single Ala-to-Val amino acid substitution reduces the protein stability, leading to a narrow-leaf phenotype in wheat. Further investigation suggests that TaWAK2 directly interacts with and phosphorylates TaNAL1, a trypsin-like serine/cysteine protease. The phosphorylated TaNAL1 is then involved in the degradation of the zinc finger transcription factor TaDST, which acts as a repressor of leaf expansion by activating the expression of the cytokinin oxidase gene TaCKX9 and triggering in vivo cytokinin degradation. Therefore, our findings elucidate a signaling cascade involving TaWAK2-TaNAL1-TaDST that sheds light on the regulation of wheat leaf development.
Collapse
Affiliation(s)
| | | | | | - Fei He
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xiongtao Li
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Naijiao Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Renhan Li
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Wensheng Ke
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Dongxue Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhaoyan Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zihao Jiang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yunjie Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Lingling Chai
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jie Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | | | | | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| |
Collapse
|
7
|
Wen S, Hu Q, Wang J, Li H. Transcriptome analysis and functional validation reveal the novel role of LhCYCL in axillary bud development in hybrid Liriodendron. PLANT MOLECULAR BIOLOGY 2024; 114:55. [PMID: 38727895 DOI: 10.1007/s11103-024-01458-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/25/2024] [Indexed: 06/01/2024]
Abstract
Shoot branching significantly influences yield and timber quality in woody plants, with hybrid Liriodendron being particularly valuable due to its rapid growth. However, understanding of the mechanisms governing shoot branching in hybrid Liriodendron remains limited. In this study, we systematically examined axillary bud development using morphological and anatomical approaches and selected four distinct developmental stages for an extensive transcriptome analysis. A total of 9,449 differentially expressed genes have been identified, many of which are involved in plant hormone signal transduction pathways. Additionally, we identified several transcription factors downregulated during early axillary bud development, including a noteworthy gene annotated as CYC-like from the TCP TF family, which emerged as a strong candidate for modulating axillary bud development. Quantitative real-time polymerase chain reaction results confirmed the highest expression levels of LhCYCL in hybrid Liriodendron axillary buds, while histochemical β-glucuronidase staining suggested its potential role in Arabidopsis thaliana leaf axil development. Ectopic expression of LhCYCL in A. thaliana led to an increase of branches and a decrease of plant height, accompanied by altered expression of genes involved in the plant hormone signaling pathways. This indicates the involvement of LhCYCL in regulating shoot branching through plant hormone signaling pathways. In summary, our results emphasize the pivotal role played by LhCYCL in shoot branching, offering insights into the function of the CYC-like gene and establishing a robust foundation for further investigations into the molecular mechanisms governing axillary bud development in hybrid Liriodendron.
Collapse
Affiliation(s)
- Shaoying Wen
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Qinghua Hu
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Jing Wang
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Huogen Li
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| |
Collapse
|
8
|
Ludwig Y, Dueñas C, Arcillas E, Macalalad-Cabral RJ, Kohli A, Reinke R, Slamet-Loedin IH. CRISPR-mediated promoter editing of a cis-regulatory element of OsNAS2 increases Zn uptake/translocation and plant yield in rice. Front Genome Ed 2024; 5:1308228. [PMID: 38322756 PMCID: PMC10844396 DOI: 10.3389/fgeed.2023.1308228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/27/2023] [Indexed: 02/08/2024] Open
Abstract
Developing nutritious rice with a higher yield is one approach to alleviating the problem of micronutrient deficiency in developing countries, especially human malnutrition involving zinc and iron (Fe) deficiency, and achieving better adoption. The transport of micronutrients such as Fe and Zn is mainly regulated via the nicotianamine synthase (OsNAS) gene family, whereas yield is a complex trait that involves multiple loci. Genome editing via CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9, focusing on the OsNAS2 promoter, particularly the deletion of the cis-regulatory element ARR1AT at position -933, was conducted for an enhanced accumulation of Zn in the grain and per plant. The results showed that our promoter editing increased Zn concentration per plant. Evidence also showed that an improved spikelet number per main panicle led to increased grain per plant. The traits were inherited in "transgene-free" and homozygous plant progenies. Further investigation needs to be conducted to validate trait performance under field conditions and elucidate the cause of the spikelet increase.
Collapse
Affiliation(s)
- Yvonne Ludwig
- International Rice Research Institute, Rice Genetic Design and Validation Unit, Rice Breeding Innovations, Los Baños, Philippines
| | - Conrado Dueñas
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Erwin Arcillas
- International Rice Research Institute, Rice Genetic Design and Validation Unit, Rice Breeding Innovations, Los Baños, Philippines
| | - Reena Jesusa Macalalad-Cabral
- International Rice Research Institute, Rice Genetic Design and Validation Unit, Rice Breeding Innovations, Los Baños, Philippines
| | - Ajay Kohli
- International Rice Research Institute, Rice Genetic Design and Validation Unit, Rice Breeding Innovations, Los Baños, Philippines
| | - Russell Reinke
- International Rice Research Institute, Rice Genetic Design and Validation Unit, Rice Breeding Innovations, Los Baños, Philippines
| | - Inez H. Slamet-Loedin
- International Rice Research Institute, Rice Genetic Design and Validation Unit, Rice Breeding Innovations, Los Baños, Philippines
| |
Collapse
|
9
|
Chen Y, Ling Q, Li X, Ma Q, Tang S, Yuanzhi P, Liu QL, Jia Y, Yong X, Jiang B. Transcriptome analysis during axillary bud growth in chrysanthemum ( chrysanthemum× morifolium). PeerJ 2023; 11:e16436. [PMID: 38111658 PMCID: PMC10726743 DOI: 10.7717/peerj.16436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 10/19/2023] [Indexed: 12/20/2023] Open
Abstract
The chrysanthemum DgLsL gene, homologous with tomato Ls, is one of the earliest expressed genes controlling axillary meristem initiation. In this study, the wild-type chrysanthemum (CW) and DgLsL-overexpressed line 15 (C15) were used to investigate the regulatory mechanism of axillary bud development in chrysanthemum. Transcriptome sequencing was carried out to detect the differentially expressed genes of the axillary buds 0 h, 24 h and 48 h after decapitation. The phenotypic results showed that the number of axillary buds of C15 was significantly higher than CW. A total of 9,224 DEGs were identified in C15-0 vs. CW-0, 10,622 DEGs in C15-24 vs. CW-24, and 8,929 DEGs in C15-48 vs. CW-48.GO and KEGG pathway enrichment analyses showed that the genes of the flavonoid, phenylpropanoids and plant hormone pathways appeared to be differentially expressed, indicating their important roles in axillary bud germination. DgLsL reduces GA content in axillary buds by promoting GA2ox expression.These results confirmed previous studies on axillary bud germination and growth, and revealed the important roles of genes involved in plant hormone biosynthesis and signal transduction, aiding in the study of the gene patterns involved in axillary bud germination and growth.
Collapse
Affiliation(s)
- Yijun Chen
- College of Landscape Architecture, Sichuan Agricultural University, Chendu, Sichuan, China
| | - Qin Ling
- College of Landscape Architecture, Sichuan Agricultural University, Chendu, Sichuan, China
| | - Xin Li
- College of Landscape Architecture, Sichuan Agricultural University, Chendu, Sichuan, China
| | - Qiqi Ma
- College of Landscape Architecture, Sichuan Agricultural University, Chendu, Sichuan, China
| | - ShaoKang Tang
- College of Landscape Architecture, Sichuan Agricultural University, Chendu, Sichuan, China
| | - Pan Yuanzhi
- College of Landscape Architecture, Sichuan Agricultural University, Chendu, Sichuan, China
| | - Qing-lin Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chendu, Sichuan, China
| | - Yin Jia
- College of Landscape Architecture, Sichuan Agricultural University, Chendu, Sichuan, China
| | - Xue Yong
- College of Landscape Architecture, Sichuan Agricultural University, Chendu, Sichuan, China
| | - Beibei Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chendu, Sichuan, China
| |
Collapse
|
10
|
Barrera-Rojas CH, Vicente MH, Pinheiro Brito DA, Silva EM, Lopez AM, Ferigolo LF, do Carmo RM, Silva CMS, Silva GFF, Correa JPO, Notini MM, Freschi L, Cubas P, Nogueira FTS. Tomato miR156-targeted SlSBP15 represses shoot branching by modulating hormone dynamics and interacting with GOBLET and BRANCHED1b. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5124-5139. [PMID: 37347477 DOI: 10.1093/jxb/erad238] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/19/2023] [Indexed: 06/23/2023]
Abstract
The miRNA156 (miR156)/SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE (SPL/SBP) regulatory hub is highly conserved among phylogenetically distinct species, but how it interconnects multiple pathways to converge to common integrators controlling shoot architecture is still unclear. Here, we demonstrated that the miR156/SlSBP15 node modulates tomato shoot branching by connecting multiple phytohormones with classical genetic pathways regulating both axillary bud development and outgrowth. miR156-overexpressing plants (156-OE) displayed high shoot branching, whereas plants overexpressing a miR156-resistant SlSBP15 allele (rSBP15) showed arrested shoot branching. Importantly, the rSBP15 allele was able to partially restore the wild-type shoot branching phenotype in the 156-OE background. rSBP15 plants have tiny axillary buds, and their activation is dependent on shoot apex-derived auxin transport inhibition. Hormonal measurements revealed that indole-3-acetic acid (IAA) and abscisic acid (ABA) concentrations were lower in 156-OE and higher in rSBP15 axillary buds, respectively. Genetic and molecular data indicated that SlSBP15 regulates axillary bud development and outgrowth by inhibiting auxin transport and GOBLET (GOB) activity, and by interacting with tomato BRANCHED1b (SlBRC1b) to control ABA levels within axillary buds. Collectively, our data provide a new mechanism by which the miR156/SPL/SBP hub regulates shoot branching, and suggest that modulating SlSBP15 activity might have potential applications in shaping tomato shoot architecture.
Collapse
Affiliation(s)
- Carlos Hernán Barrera-Rojas
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, CEP: 13418-900, Brazil
| | - Mateus Henrique Vicente
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, CEP: 13418-900, Brazil
| | - Diego Armando Pinheiro Brito
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, CEP: 13418-900, Brazil
| | - Eder M Silva
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, CEP: 13418-900, Brazil
| | - Aitor Muñoz Lopez
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Leticia F Ferigolo
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, CEP: 13418-900, Brazil
| | - Rafael Monteiro do Carmo
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, CEP: 13418-900, Brazil
| | - Carolina M S Silva
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, CEP: 13418-900, Brazil
| | - Geraldo F F Silva
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, CEP: 13418-900, Brazil
| | - Joao P O Correa
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, CEP: 13418-900, Brazil
| | - Marcela M Notini
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, CEP: 13418-900, Brazil
| | - Luciano Freschi
- Biosciences Institute, University of Sao Paulo (USP), Sao Paulo, CEP: 05508-090, Brazil
| | - Pilar Cubas
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Fabio T S Nogueira
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, CEP: 13418-900, Brazil
| |
Collapse
|
11
|
Vicentini G, Biancucci M, Mineri L, Chirivì D, Giaume F, Miao Y, Kyozuka J, Brambilla V, Betti C, Fornara F. Environmental control of rice flowering time. PLANT COMMUNICATIONS 2023; 4:100610. [PMID: 37147799 PMCID: PMC10504588 DOI: 10.1016/j.xplc.2023.100610] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 04/14/2023] [Accepted: 04/30/2023] [Indexed: 05/07/2023]
Abstract
Correct measurement of environmental parameters is fundamental for plant fitness and survival, as well as for timing developmental transitions, including the switch from vegetative to reproductive growth. Important parameters that affect flowering time include day length (photoperiod) and temperature. Their response pathways have been best described in Arabidopsis, which currently offers a detailed conceptual framework and serves as a comparison for other species. Rice, the focus of this review, also possesses a photoperiodic flowering pathway, but 150 million years of divergent evolution in very different environments have diversified its molecular architecture. The ambient temperature perception pathway is strongly intertwined with the photoperiod pathway and essentially converges on the same genes to modify flowering time. When observing network topologies, it is evident that the rice flowering network is centered on EARLY HEADING DATE 1, a rice-specific transcriptional regulator. Here, we summarize the most important features of the rice photoperiodic flowering network, with an emphasis on its uniqueness, and discuss its connections with hormonal, temperature perception, and stress pathways.
Collapse
Affiliation(s)
- Giulio Vicentini
- Department of Agricultural and Environmental Sciences, University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Marco Biancucci
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Lorenzo Mineri
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Daniele Chirivì
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Francesca Giaume
- Department of Agricultural and Environmental Sciences, University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Yiling Miao
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Vittoria Brambilla
- Department of Agricultural and Environmental Sciences, University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Camilla Betti
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Fabio Fornara
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy.
| |
Collapse
|
12
|
Li C, Li Y, Song G, Yang D, Xia Z, Sun C, Zhao Y, Hou M, Zhang M, Qi Z, Wang B, Wang H. Gene expression and expression quantitative trait loci analyses uncover natural variations underlying the improvement of important agronomic traits during modern maize breeding. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:772-787. [PMID: 37186341 DOI: 10.1111/tpj.16260] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023]
Abstract
Maize (Zea mays L.) is a major staple crop worldwide, and during modern maize breeding, cultivars with increased tolerance to high-density planting and higher yield per plant have contributed significantly to the increased yield per unit land area. Systematically identifying key agronomic traits and their associated genomic changes during modern maize breeding remains a significant challenge because of the complexity of genetic regulation and the interactions of the various agronomic traits, with most of them being controlled by numerous small-effect quantitative trait loci (QTLs). Here, we performed phenotypic and gene expression analyses for a set of 137 elite inbred lines of maize from different breeding eras in China. We found four yield-related traits are significantly improved during modern maize breeding. Through gene-clustering analyses, we identified four groups of expressed genes with distinct trends of expression pattern change across the historical breeding eras. In combination with weighted gene co-expression network analysis, we identified several candidate genes regulating various plant architecture- and yield-related agronomic traits, such as ZmARF16, ZmARF34, ZmTCP40, ZmPIN7, ZmPYL10, ZmJMJ10, ZmARF1, ZmSWEET15b, ZmGLN6 and Zm00001d019150. Further, by combining expression quantitative trait loci (eQTLs) analyses, correlation coefficient analyses and population genetics, we identified a set of candidate genes that might have been under selection and contributed to the genetic improvement of various agronomic traits during modern maize breeding, including a number of known key regulators of plant architecture, flowering time and yield-related traits, such as ZmPIF3.3, ZAG1, ZFL2 and ZmBES1. Lastly, we validated the functional variations in GL15, ZmPHYB2 and ZmPYL10 that influence kernel row number, flowering time, plant height and ear height, respectively. Our results demonstrates the effectiveness of our combined approaches for uncovering key candidate regulatory genes and functional variation underlying the improvement of important agronomic traits during modern maize breeding, and provide a valuable genetic resource for the molecular breeding of maize cultivars with tolerance for high-density planting.
Collapse
Affiliation(s)
- Changyu Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, 010070, China
| | - Yaoyao Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Guangshu Song
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, 136100, China
| | - Di Yang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhanchao Xia
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Changhe Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuelei Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mei Hou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mingyue Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zhi Qi
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, 010070, China
| | - Baobao Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- HainanYazhou Bay Seed Lab, Sanya, 572025, China
| | - Haiyang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| |
Collapse
|
13
|
Clark CB, Ma J. The genetic basis of shoot architecture in soybean. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:55. [PMID: 37351274 PMCID: PMC10281916 DOI: 10.1007/s11032-023-01391-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/26/2023] [Indexed: 06/24/2023]
Abstract
Shoot architecture refers to the three-dimensional body plan of the above ground organs of the plant. The patterning of this body plan results from the tight genetic control of the size and maintenance of meristems, the initiation of axillary growth, and the timing of developmental phase transition. Variation in shoot architecture can result in dramatic differences in plant productivity and/or grain yield due to their effects on light interception, photosynthetic efficiency, response to agronomic inputs, and environmental adaptation. The fine-tuning of shoot architecture has consequently been of great interest to plant breeders, driving the need for deeper understanding of the genes and molecular mechanisms governing these traits. In soybean, the world's most important oil and protein crop, major components of shoot architecture include stem growth habit, plant height, branch angle, branch number, leaf petiole angle, and the size and shape of leaves. Key genes underlying some of these traits have been identified to integrate hormonal, developmental, and environmental signals modulating the growth and orientation of shoot organs. Here we summarize the current knowledge and recent advances in the understanding of the genetic control of these important architectural traits in soybean.
Collapse
Affiliation(s)
- Chancelor B. Clark
- Department of Agronomy, Purdue University, 915 W Mitch Daniels Blvd, West Lafayette, 47907 IN USA
| | - Jianxin Ma
- Department of Agronomy, Purdue University, 915 W Mitch Daniels Blvd, West Lafayette, 47907 IN USA
- Center for Plant Biology, Purdue University, West Lafayette, IN USA
| |
Collapse
|
14
|
Yang Q, Yuan C, Cong T, Zhang Q. The Secrets of Meristems Initiation: Axillary Meristem Initiation and Floral Meristem Initiation. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091879. [PMID: 37176937 PMCID: PMC10181267 DOI: 10.3390/plants12091879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023]
Abstract
The branching phenotype is an extremely important agronomic trait of plants, especially for horticultural crops. It is not only an important yield character of fruit trees, but also an exquisite ornamental trait of landscape trees and flowers. The branching characteristics of plants are determined by the periodic initiation and later development of meristems, especially the axillary meristem (AM) in the vegetative stage and the floral meristem (FM) in the reproductive stage, which jointly determine the above-ground plant architecture. The regulation of meristem initiation has made great progress in model plants in recent years. Meristem initiation is comprehensively regulated by a complex regulatory network composed of plant hormones and transcription factors. However, as it is an important trait, studies on meristem initiation in horticultural plants are very limited, and the mechanism of meristem initiation regulation in horticultural plants is largely unknown. This review summarizes recent research advances in axillary meristem regulation and mainly reviews the regulatory networks and mechanisms of AM and FM initiation regulated by transcription factors and hormones. Finally, considering the existing problems in meristem initiation studies and the need for branching trait improvement in horticulture plants, we prospect future studies to accelerate the genetic improvement of the branching trait in horticulture plants.
Collapse
Affiliation(s)
- Qingqing Yang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing 100083, China
- National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China
- Engineering Research Center of Landscape Environment of Ministry of Education, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing 100083, China
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Cunquan Yuan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing 100083, China
- National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China
- Engineering Research Center of Landscape Environment of Ministry of Education, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing 100083, China
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Tianci Cong
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing 100083, China
- National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China
- Engineering Research Center of Landscape Environment of Ministry of Education, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing 100083, China
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing 100083, China
- National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China
- Engineering Research Center of Landscape Environment of Ministry of Education, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing 100083, China
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
15
|
Li Q, Liu N, Wu C. Novel insights into maize (Zea mays) development and organogenesis for agricultural optimization. PLANTA 2023; 257:94. [PMID: 37031436 DOI: 10.1007/s00425-023-04126-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
In maize, intrinsic hormone activities and sap fluxes facilitate organogenesis patterning and plant holistic development; these hormone movements should be a primary focus of developmental biology and agricultural optimization strategies. Maize (Zea mays) is an important crop plant with distinctive life history characteristics and structural features. Genetic studies have extended our knowledge of maize developmental processes, genetics, and molecular ecophysiology. In this review, the classical life cycle and life history strategies of maize are analyzed to identify spatiotemporal organogenesis properties and develop a definitive understanding of maize development. The actions of genes and hormones involved in maize organogenesis and sex determination, along with potential molecular mechanisms, are investigated, with findings suggesting central roles of auxin and cytokinins in regulating maize holistic development. Furthermore, investigation of morphological and structural characteristics of maize, particularly node ubiquity and the alternate attachment pattern of lateral organs, yields a novel regulatory model suggesting that maize organ initiation and subsequent development are derived from the stimulation and interaction of auxin and cytokinin fluxes. Propositions that hormone activities and sap flow pathways control organogenesis are thoroughly explored, and initiation and development processes of distinctive maize organs are discussed. Analysis of physiological factors driving hormone and sap movement implicates cues of whole-plant activity for hormone and sap fluxes to stimulate maize inflorescence initiation and organ identity determination. The physiological origins and biogenetic mechanisms underlying maize floral sex determination occurring at the tassel and ear spikelet are thoroughly investigated. The comprehensive outline of maize development and morphogenetic physiology developed in this review will enable farmers to optimize field management and will provide a reference for de novo crop domestication and germplasm improvement using genome editing biotechnologies, promoting agricultural optimization.
Collapse
Affiliation(s)
- Qinglin Li
- Crop Genesis and Novel Agronomy Center, Yangling, 712100, Shaanxi, China.
| | - Ning Liu
- Shandong ZhongnongTiantai Seed Co., Ltd, Pingyi, 273300, Shandong, China
| | - Chenglai Wu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
16
|
Kong D, Li C, Xue W, Wei H, Ding H, Hu G, Zhang X, Zhang G, Zou T, Xian Y, Wang B, Zhao Y, Liu Y, Xie Y, Xu M, Wu H, Liu Q, Wang H. UB2/UB3/TSH4-anchored transcriptional networks regulate early maize inflorescence development in response to simulated shade. THE PLANT CELL 2023; 35:717-737. [PMID: 36472157 PMCID: PMC9940873 DOI: 10.1093/plcell/koac352] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/11/2022] [Accepted: 12/05/2022] [Indexed: 05/12/2023]
Abstract
Increasing planting density has been adopted as an effective means to increase maize (Zea mays) yield. Competition for light from neighbors can trigger plant shade avoidance syndrome, which includes accelerated flowering. However, the regulatory networks of maize inflorescence development in response to high-density planting remain poorly understood. In this study, we showed that shade-mimicking treatments cause precocious development of the tassels and ears. Comparative transcriptome profiling analyses revealed the enrichment of phytohormone-related genes and transcriptional regulators among the genes co-regulated by developmental progression and simulated shade. Network analysis showed that three homologous Squamosa promoter binding protein (SBP)-like (SPL) transcription factors, Unbranched2 (UB2), Unbranched3 (UB3), and Tasselsheath4 (TSH4), individually exhibited connectivity to over 2,400 genes across the V3-to-V9 stages of tassel development. In addition, we showed that the ub2 ub3 double mutant and tsh4 single mutant were almost insensitive to simulated shade treatments. Moreover, we demonstrated that UB2/UB3/TSH4 could directly regulate the expression of Barren inflorescence2 (BIF2) and Zea mays teosinte branched1/cycloidea/proliferating cell factor30 (ZmTCP30). Furthermore, we functionally verified a role of ZmTCP30 in regulating tassel branching and ear development. Our results reveal a UB2/UB3/TSH4-anchored transcriptional regulatory network of maize inflorescence development and provide valuable targets for breeding shade-tolerant maize cultivars.
Collapse
Affiliation(s)
- Dexin Kong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Changyu Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weicong Xue
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Hongbin Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Hui Ding
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Guizhen Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoming Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Guisen Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Ting Zou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Yuting Xian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Baobao Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongping Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuting Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Yurong Xie
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Miaoyun Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hong Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Qing Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Haiyang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
17
|
Yan P, Li W, Zhou E, Xing Y, Li B, Liu J, Zhang Z, Ding D, Fu Z, Xie H, Tang J. Integrating BSA-Seq with RNA-Seq Reveals a Novel Fasciated Ear5 Mutant in Maize. Int J Mol Sci 2023; 24:ijms24021182. [PMID: 36674701 PMCID: PMC9867142 DOI: 10.3390/ijms24021182] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Increasing grain yield is required to meet the rapidly expanding demands for food, feed, and fuel. Inflorescence meristems are central to plant growth and development. However, the question concerning whether inflorescence development can be regulated to improve grain yield remains unclear. Here, we describe a naturally occurring single recessive mutation called fea5 that can increase grain yield in maize. Using bulk segregant analysis sequencing (BSA-seq), the candidate region was initially mapped to a large region on chromosome 4 (4.68 Mb-11.26 Mb). Transcriptome sequencing (RNA-seq) revealed a total of 1246 differentially expressed genes (DEGs), of which 835 were up-regulated and 411 were down-regulated. Further analysis revealed the enrichment of DEGs in phytohormone signal transduction. Consistently, phytohormone profiling indicated that auxin (IAA), jasmonic acid (JA), ethylene (ETH), and cytokinin (CK) levels increased significantly, whereas the gibberellin (GA) level decreased significantly in fea5. By integrating BSA-seq with RNA-seq, we identified Zm00001d048841 as the most likely candidate gene. Our results provide valuable insight into this new germplasm resource and the molecular mechanism underlying fasciated ears that produce a higher kernel row number in maize.
Collapse
Affiliation(s)
- Pengshuai Yan
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Weihua Li
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
- Correspondence: (W.L.); (J.T.); Tel.: +86-371-56990188 (W.L.); +86-371-56990336 (J.T.)
| | - Enxiang Zhou
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Ye Xing
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Bing Li
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Jing Liu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhanhui Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Dong Ding
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhiyuan Fu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Huiling Xie
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
- Correspondence: (W.L.); (J.T.); Tel.: +86-371-56990188 (W.L.); +86-371-56990336 (J.T.)
| |
Collapse
|
18
|
Wang Q, Fan J, Cong J, Chen M, Qiu J, Liu J, Zhao X, Huang R, Liu H, Huang X. Natural variation of ZmLNG1 alters organ shapes in maize. THE NEW PHYTOLOGIST 2023; 237:471-482. [PMID: 36266960 DOI: 10.1111/nph.18563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
The development of a series of elite maize hybrids has greatly increased crop yield in the past decades. Parental lines of these hybrids usually come from different heterotic groups and contain many genetic differences. Identifications of important quantitative trait genes in the elite hybrids can extend our understanding of heterosis and also help to guide genetic improvement. Here, we mapped a major quantitative trait locus using a linkage population from an elite maize hybrid Zhengdan958 and identified ZmLNG1 as the causative gene controlling multiple morphologic traits in maize. A 6-kb deletion in one parental line of the hybrid leads to the fusion of ZmLNG1 with its nearby gene. The fusion event prevents the C-terminal of ZmLNG1 from interacting with ZmTON1, which resulted in the change of plant architecture. Further experiments demonstrated that ZmLNG1 could act as a mediator to connect ZmTON1 and ZmOFPs, which belong to another type of plant morphological regulatory proteins, thereby affecting the phosphorylation level of ZmOFPs. These results demonstrate the importance of ZmLNG1 in forming the TON1-TRM-PP2A complex and provide a model for the regulation of plant organ morphology by TON1-recruiting motifs (TRMs) and Ovate family proteins (OFPs).
Collapse
Affiliation(s)
- Qin Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jiongjiong Fan
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jia Cong
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Mengjiao Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jie Qiu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jie Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xiaoyan Zhao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Ruipeng Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Hongjun Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Xuehui Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
19
|
Du Y, Wu B, Xing Y, Zhang Z. Conservation and divergence: Regulatory networks underlying reproductive branching in rice and maize. J Adv Res 2022; 41:179-190. [PMID: 36328747 PMCID: PMC9637487 DOI: 10.1016/j.jare.2022.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/27/2021] [Accepted: 01/26/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cereal crops are a major source of raw food and nutrition for humans worldwide. Inflorescence of cereal crops is their reproductive organ, which also contributes to crop productivity. The branching pattern in flowering plant species not only determines inflorescence architecture but also determines the grain yield. There are good reviews describing the grass inflorescence architecture contributing to the final grain yield. However, very few discuss the aspects of inflorescence branching. AIM OF REVIEW This review aimed at systematically and comprehensively summarizing the latest progress in the field of conservation and divergence of genetic regulatory network that controls inflorescence branching in maize and rice, provide strategies to efficiently utilize the achievements in reproductive branching for crop yield improvement, and suggest a potential regulatory network underlying the inflorescence branching and vegetative branching system. KEY SCIENTIFIC CONCEPTS OF REVIEW Inflorescence branching is the consequence of a series of developmental events including the initiation, outgrowth, determinacy, and identity of reproductive axillary meristems, and it is controlled by a complex functional hierarchy of genetic networks. Initially, we compared the inflorescence architecture of maize and rice; then, we reviewed the genetic regulatory pathways controlling the inflorescence meristem size, bud initiation, and outgrowth, and the key transition steps that shape the inflorescence branching in maize and rice; additionally, we summarized strategies to effectively apply the recent advances in inflorescence branching for crop yield improvement. Finally, we discussed how the newly discovered hormones coordinate the regulation of inflorescence branching and yield traits. Furthermore, we discussed the possible reason behind distinct regulatory pathways for vegetative and inflorescence branching.
Collapse
Affiliation(s)
- Yanfang Du
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Bi Wu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zuxin Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
20
|
Chun Y, Kumar A, Li X. Genetic and molecular pathways controlling rice inflorescence architecture. FRONTIERS IN PLANT SCIENCE 2022; 13:1010138. [PMID: 36247571 PMCID: PMC9554555 DOI: 10.3389/fpls.2022.1010138] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Rice inflorescence is one of the major organs in determining grain yield. The genetic and molecular regulation on rice inflorescence architecture has been well investigated over the past years. In the present review, we described genes regulating rice inflorescence architecture based on their roles in meristem activity maintenance, meristem identity conversion and branch elongation. We also introduced the emerging regulatory pathways of phytohormones involved in rice inflorescence development. These studies show the intricacies and challenges of manipulating inflorescence architecture for rice yield improvement.
Collapse
Affiliation(s)
- Yan Chun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ashmit Kumar
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agriculture, Fisheries and Forestry, Fiji National University, Nausori, Fiji
| | - Xueyong Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
21
|
Zhang M, Zheng H, Jin L, Xing L, Zou J, Zhang L, Liu C, Chu J, Xu M, Wang L. miR169o and ZmNF-YA13 act in concert to coordinate the expression of ZmYUC1 that determines seed size and weight in maize kernels. THE NEW PHYTOLOGIST 2022; 235:2270-2284. [PMID: 35713356 DOI: 10.1111/nph.18317] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
MicroRNAs (miRNAs) play key regulatory roles in seed development and emerge as new key targets for engineering grain size and yield. The Zma-miRNA169 family is highly expressed during maize seed development, but its functional roles in seed development remain elusive. Here, we generated zma-miR169o and ZmNF-YA13 transgenic plants. Phenotypic and genetic analyses were performed on these lines. Seed development and auxins contents were investigated. Overexpression of maize miRNA zma-miR169o increases seed size and weight, whereas the opposite is true when its expression is suppressed. Further studies revealed that zma-miR169 acts by negatively regulating its target gene, a transcription factor ZmNF-YA13 that also plays a key role in determining seed size. We demonstrate that ZmNF-YA13 regulates the expression of the auxin biosynthetic gene ZmYUC1, which modulates auxin levels in the early developing seeds and determines the number of endosperm cells, thereby governing maize seed size and ultimately yield. Overall, our present study has identified zma-miR169o and ZmNF-YA13 that form a functional module regulating auxin accumulation in maize seeds and playing an important role in determining maize seed size and yield, providing a set of novel molecular tools for yield improvement in molecular breeding and genetic engineering.
Collapse
Affiliation(s)
- Min Zhang
- Biotechnology Research Institute, CAAS/Key Laboratory of Agricultural Genomics (Beijing), Ministry of Agriculture, 100081, Beijing, China
| | - Hongyan Zheng
- Biotechnology Research Institute, CAAS/Key Laboratory of Agricultural Genomics (Beijing), Ministry of Agriculture, 100081, Beijing, China
- National Nanfan Research Institute (Sanya), 572022, Sanya, Hainan, China
| | - Lian Jin
- Biotechnology Research Institute, CAAS/Key Laboratory of Agricultural Genomics (Beijing), Ministry of Agriculture, 100081, Beijing, China
| | - Lijuan Xing
- Biotechnology Research Institute, CAAS/Key Laboratory of Agricultural Genomics (Beijing), Ministry of Agriculture, 100081, Beijing, China
| | - Junjie Zou
- Biotechnology Research Institute, CAAS/Key Laboratory of Agricultural Genomics (Beijing), Ministry of Agriculture, 100081, Beijing, China
| | - Lan Zhang
- Biotechnology Research Institute, CAAS/Key Laboratory of Agricultural Genomics (Beijing), Ministry of Agriculture, 100081, Beijing, China
| | - Cuimei Liu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100039, Beijing, China
| | - Miaoyun Xu
- Biotechnology Research Institute, CAAS/Key Laboratory of Agricultural Genomics (Beijing), Ministry of Agriculture, 100081, Beijing, China
| | - Lei Wang
- Biotechnology Research Institute, CAAS/Key Laboratory of Agricultural Genomics (Beijing), Ministry of Agriculture, 100081, Beijing, China
- National Nanfan Research Institute (Sanya), 572022, Sanya, Hainan, China
| |
Collapse
|
22
|
Wang Y, Du F, Wang J, Wang K, Tian C, Qi X, Lu F, Liu X, Ye X, Jiao Y. Improving bread wheat yield through modulating an unselected AP2/ERF gene. NATURE PLANTS 2022; 8:930-939. [PMID: 35851621 DOI: 10.1038/s41477-022-01197-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Crop breeding heavily relies on natural genetic variation. However, additional new variations are desired to meet the increasing human demand. Inflorescence architecture determines grain number per spike, a major determinant of bread wheat (Triticum aestivum L.) yield. Here, using Brachypodium distachyon as a wheat proxy, we identified DUO-B1, encoding an APETALA2/ethylene response factor (AP2/ERF) transcription factor, regulating spike inflorescence architecture in bread wheat. Mutations of DUO-B1 lead to mild supernumerary spikelets, increased grain number per spike and, importantly, increased yield under field conditions without affecting other major agronomic traits. DUO-B1 suppresses cell division and promotes the expression of BHt/WFZP, whose mutations could lead to branched 'miracle-wheat'. Pan-genome analysis indicated that DUO-B1 has not been utilized in breeding, and holds promise to increase wheat yield further.
Collapse
Affiliation(s)
- Yuange Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Fei Du
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Jian Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Ke Wang
- National Key Facility of Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Caihuan Tian
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Xiaoquan Qi
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fei Lu
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Xigang Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Xingguo Ye
- National Key Facility of Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuling Jiao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology, School of Life Sciences, Peking University, Beijing, China.
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China.
| |
Collapse
|
23
|
Del Rosario Cárdenas-Aquino M, Sarria-Guzmán Y, Martínez-Antonio A. Review: Isoprenoid and aromatic cytokinins in shoot branching. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 319:111240. [PMID: 35487650 DOI: 10.1016/j.plantsci.2022.111240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Shoot branching is an important event of plant development that defines growth and reproduction. The BRANCHED1 gene (BRC1/TB1/FC1) is crucial for this process. Within the phytohormones, cytokinins directly activate axillary buds to promote shoot branching. In addition, strigolactones and auxins inhibit bud outgrowth. This review addresses the involvement of aromatic and isoprenoid cytokinins in shoot branching. And how auxins and strigolactones contribute to regulating this process also. The results obtained by others and our working group with lemongrass (Cymbopogon citratus) show that cytokinins affect both shoot and root apical meristem development, consistent with other plant species. However, many questions remain about how cytokinins and strigolactones antagonistically regulate BRC1 gene expression. Additionally, many details of the interaction among cytokinins, auxins, and strigolactones need to be clarified. We will gain a more comprehensive scheme of bud outgrowth with these details.
Collapse
Affiliation(s)
| | - Yohanna Sarria-Guzmán
- Facultad de Ingeniería y Ciencias Básicas, Fundación Universitaria del Área Andina, Transv 22 Bis #4-105, Valledupar 200005, Cesar, Colombia
| | - Agustino Martínez-Antonio
- Biological Engineering Laboratory, Cinvestav Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato 36824, Gto, México.
| |
Collapse
|
24
|
Wang Y, Bao J, Wei X, Wu S, Fang C, Li Z, Qi Y, Gao Y, Dong Z, Wan X. Genetic Structure and Molecular Mechanisms Underlying the Formation of Tassel, Anther, and Pollen in the Male Inflorescence of Maize ( Zea mays L.). Cells 2022; 11:1753. [PMID: 35681448 PMCID: PMC9179574 DOI: 10.3390/cells11111753] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 02/08/2023] Open
Abstract
Maize tassel is the male reproductive organ which is located at the plant's apex; both its morphological structure and fertility have a profound impact on maize grain yield. More than 40 functional genes regulating the complex tassel traits have been cloned up to now. However, the detailed molecular mechanisms underlying the whole process, from male inflorescence meristem initiation to tassel morphogenesis, are seldom discussed. Here, we summarize the male inflorescence developmental genes and construct a molecular regulatory network to further reveal the molecular mechanisms underlying tassel-trait formation in maize. Meanwhile, as one of the most frequently studied quantitative traits, hundreds of quantitative trait loci (QTLs) and thousands of quantitative trait nucleotides (QTNs) related to tassel morphology have been identified so far. To reveal the genetic structure of tassel traits, we constructed a consensus physical map for tassel traits by summarizing the genetic studies conducted over the past 20 years, and identified 97 hotspot intervals (HSIs) that can be repeatedly mapped in different labs, which will be helpful for marker-assisted selection (MAS) in improving maize yield as well as for providing theoretical guidance in the subsequent identification of the functional genes modulating tassel morphology. In addition, maize is one of the most successful crops in utilizing heterosis; mining of the genic male sterility (GMS) genes is crucial in developing biotechnology-based male-sterility (BMS) systems for seed production and hybrid breeding. In maize, more than 30 GMS genes have been isolated and characterized, and at least 15 GMS genes have been promptly validated by CRISPR/Cas9 mutagenesis within the past two years. We thus summarize the maize GMS genes and further update the molecular regulatory networks underlying male fertility in maize. Taken together, the identified HSIs, genes and molecular mechanisms underlying tassel morphological structure and male fertility are useful for guiding the subsequent cloning of functional genes and for molecular design breeding in maize. Finally, the strategies concerning efficient and rapid isolation of genes controlling tassel morphological structure and male fertility and their application in maize molecular breeding are also discussed.
Collapse
Affiliation(s)
- Yanbo Wang
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Y.W.); (J.B.); (X.W.); (S.W.); (C.F.); (Y.Q.); (Y.G.)
| | - Jianxi Bao
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Y.W.); (J.B.); (X.W.); (S.W.); (C.F.); (Y.Q.); (Y.G.)
| | - Xun Wei
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Y.W.); (J.B.); (X.W.); (S.W.); (C.F.); (Y.Q.); (Y.G.)
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China;
| | - Suowei Wu
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Y.W.); (J.B.); (X.W.); (S.W.); (C.F.); (Y.Q.); (Y.G.)
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China;
| | - Chaowei Fang
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Y.W.); (J.B.); (X.W.); (S.W.); (C.F.); (Y.Q.); (Y.G.)
| | - Ziwen Li
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China;
| | - Yuchen Qi
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Y.W.); (J.B.); (X.W.); (S.W.); (C.F.); (Y.Q.); (Y.G.)
| | - Yuexin Gao
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Y.W.); (J.B.); (X.W.); (S.W.); (C.F.); (Y.Q.); (Y.G.)
| | - Zhenying Dong
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Y.W.); (J.B.); (X.W.); (S.W.); (C.F.); (Y.Q.); (Y.G.)
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China;
| | - Xiangyuan Wan
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Y.W.); (J.B.); (X.W.); (S.W.); (C.F.); (Y.Q.); (Y.G.)
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China;
| |
Collapse
|
25
|
Chen L, Jameson GB, Guo Y, Song J, Jameson PE. The LONELY GUY gene family: from mosses to wheat, the key to the formation of active cytokinins in plants. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:625-645. [PMID: 35108444 PMCID: PMC8989509 DOI: 10.1111/pbi.13783] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/06/2022] [Accepted: 01/13/2022] [Indexed: 05/19/2023]
Abstract
LONELY GUY (LOG) was first identified in a screen of rice mutants with defects in meristem maintenance. In plants, LOG codes for cytokinin riboside 5'-monophosphate phosphoribohydrolase, which converts inactive cytokinin nucleotides directly to the active free bases. Many enzymes with the PGGxGTxxE motif have been misannotated as lysine decarboxylases; conversely not all enzymes containing this motif are cytokinin-specific LOGs. As LOG mutants clearly impact yield in rice, we investigated the LOG gene family in bread wheat. By interrogating the wheat (Triticum aestivum) genome database, we show that wheat has multiple LOGs. The close alignment of TaLOG1, TaLOG2 and TaLOG6 with the X-ray structures of two functional Arabidopsis thaliana LOGs allows us to infer that the wheat LOGs 1-11 are functional LOGs. Using RNA-seq data sets, we assessed TaLOG expression across 70 tissue types, their responses to various stressors, the pattern of cis-regulatory elements (CREs) and intron/exon patterns. TaLOG gene family members are expressed variously across tissue types. When the TaLOG CREs are compared with those of the cytokinin dehydrogenases (CKX) and glucosyltransferases (CGT), there is close alignment of CREs between TaLOGs and TaCKXs reflecting the key role of CKX in maintaining cytokinin homeostasis. However, we suggest that the main homeostatic mechanism controlling cytokinin levels in response to biotic and abiotic challenge resides in the CGTs, rather than LOG or CKX. However, LOG transgenics and identified mutants in rice variously impact yield, providing interesting avenues for investigation in wheat.
Collapse
Affiliation(s)
- Lei Chen
- School of Life SciencesYantai UniversityYantaiChina
| | | | - Yichu Guo
- School of Life SciencesYantai UniversityYantaiChina
| | - Jiancheng Song
- School of Life SciencesYantai UniversityYantaiChina
- Yantai Jien Biological Science & Technology LtdYEDAYantaiChina
| | - Paula E. Jameson
- School of Life SciencesYantai UniversityYantaiChina
- School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
| |
Collapse
|
26
|
Tregear JW, Richaud F, Collin M, Esbelin J, Parrinello H, Cochard B, Nodichao L, Morcillo F, Adam H, Jouannic S. Micro-RNA-Regulated SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) Gene Expression and Cytokinin Accumulation Distinguish Early-Developing Male and Female Inflorescences in Oil Palm (Elaeis guineensis). PLANTS 2022; 11:plants11050685. [PMID: 35270155 PMCID: PMC8912876 DOI: 10.3390/plants11050685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 11/16/2022]
Abstract
Sexual differentiation of inflorescences and flowers is important for reproduction and affects crop plant productivity. We report here on a molecular study of the process of sexual differentiation in the immature inflorescence of oil palm (Elaeis guineensis). This species is monoecious and exhibits gender diphasy, producing male and female inflorescences separately on the same plant in alternation. Three main approaches were used: small RNA-seq to characterise and study the expression of miRNA genes; RNA-seq to monitor mRNA accumulation patterns; hormone quantification to assess the role of cytokinins and auxins in inflorescence differentiation. Our study allowed the characterisation of 30 previously unreported palm MIRNA genes. In differential gene and miRNA expression studies, we identified a number of key developmental genes and miRNA-mRNA target modules previously described in relation to their developmental regulatory role in the cereal panicle, notably the miR156/529/535-SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE (SPL) gene regulatory module. Gene enrichment analysis highlighted the importance of hormone-related genes, and this observation was corroborated by the detection of much higher levels of cytokinins in the female inflorescence. Our data illustrate the importance of branching regulation within the developmental window studied, during which the female inflorescence, unlike its male counterpart, produces flower clusters on new successive axes by sympodial growth.
Collapse
Affiliation(s)
- James W. Tregear
- DIADE, University of Montpellier, CIRAD, IRD, 34394 Montpellier, France; (M.C.); (J.E.); (F.M.); (H.A.); (S.J.)
- Correspondence:
| | - Frédérique Richaud
- CIRAD, UMR AGAP, 34398 Montpellier, France;
- AGAP, University of Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France
| | - Myriam Collin
- DIADE, University of Montpellier, CIRAD, IRD, 34394 Montpellier, France; (M.C.); (J.E.); (F.M.); (H.A.); (S.J.)
| | - Jennifer Esbelin
- DIADE, University of Montpellier, CIRAD, IRD, 34394 Montpellier, France; (M.C.); (J.E.); (F.M.); (H.A.); (S.J.)
| | - Hugues Parrinello
- MGX-Montpellier GenomiX, University of Montpellier, CNRS, INSERM, 34094 Montpellier, France;
| | | | | | - Fabienne Morcillo
- DIADE, University of Montpellier, CIRAD, IRD, 34394 Montpellier, France; (M.C.); (J.E.); (F.M.); (H.A.); (S.J.)
- CIRAD, UMR DIADE, 34394 Montpellier, France
| | - Hélène Adam
- DIADE, University of Montpellier, CIRAD, IRD, 34394 Montpellier, France; (M.C.); (J.E.); (F.M.); (H.A.); (S.J.)
| | - Stefan Jouannic
- DIADE, University of Montpellier, CIRAD, IRD, 34394 Montpellier, France; (M.C.); (J.E.); (F.M.); (H.A.); (S.J.)
| |
Collapse
|
27
|
Jiao P, Jiang Z, Wei X, Liu S, Qu J, Guan S, Ma Y. Overexpression of the homeobox-leucine zipper protein ATHB-6 improves the drought tolerance of maize (Zea mays L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 316:111159. [PMID: 35151445 DOI: 10.1016/j.plantsci.2021.111159] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Homeo-Leucine Zipper (HD-Zip) proteins are a class of transcription factors unique to higher plants and are involved in plant stress responses and regulation of growth and development. However, the function of maize HD-Zip genes in enhancing drought tolerance is unknown. Here, Sub-Cellular Localization results showed that ATHB-6 fusion proteins were only localized in the nucleus. The malondialdehyde content was lower than the wild type under drought tolerance, proving that the introduction of the ATHB-6 gene can improve the drought tolerance of plants. Follow-up analysis showed that ATHB-6 could promote root growth and activities of a series of ROS-scavenging enzymes in maize. Moreover, overexpression of ATHB-6 in maize activated the expression of critical genes in the ROS signals pathway and ABA-dependent pathway under drought tolerance.Our results provides a significant advancement in undestanding the functions of HD-Zip transcription factors in maize.
Collapse
Affiliation(s)
- Peng Jiao
- College of Life Sciences, Jilin Agricultural University, Changchun, China; Joint Laboratory of Intemational Cooperation in Modem Agricultural Technology of Ministry of Educaltion, Jilin Agricultural University, Changchun, China
| | - Zhenzhong Jiang
- College of Life Sciences, Jilin Agricultural University, Changchun, China; Joint Laboratory of Intemational Cooperation in Modem Agricultural Technology of Ministry of Educaltion, Jilin Agricultural University, Changchun, China
| | - Xiaotong Wei
- College of Life Sciences, Jilin Agricultural University, Changchun, China; Joint Laboratory of Intemational Cooperation in Modem Agricultural Technology of Ministry of Educaltion, Jilin Agricultural University, Changchun, China
| | - Siyan Liu
- College of Agronomy, Jilin Agricultural University, Changchun, China; Joint Laboratory of Intemational Cooperation in Modem Agricultural Technology of Ministry of Educaltion, Jilin Agricultural University, Changchun, China
| | - Jing Qu
- College of Agronomy, Jilin Agricultural University, Changchun, China; Joint Laboratory of Intemational Cooperation in Modem Agricultural Technology of Ministry of Educaltion, Jilin Agricultural University, Changchun, China
| | - Shuyan Guan
- College of Agronomy, Jilin Agricultural University, Changchun, China; Joint Laboratory of Intemational Cooperation in Modem Agricultural Technology of Ministry of Educaltion, Jilin Agricultural University, Changchun, China.
| | - Yiyong Ma
- College of Agronomy, Jilin Agricultural University, Changchun, China; Joint Laboratory of Intemational Cooperation in Modem Agricultural Technology of Ministry of Educaltion, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
28
|
Wang H, Tong X, Tang L, Wang Y, Zhao J, Li Z, Liu X, Shu Y, Yin M, Adegoke TV, Liu W, Wang S, Xu H, Ying J, Yuan W, Yao J, Zhang J. RLB (RICE LATERAL BRANCH) recruits PRC2-mediated H3K27 tri-methylation on OsCKX4 to regulate lateral branching. PLANT PHYSIOLOGY 2022; 188:460-476. [PMID: 34730827 PMCID: PMC8774727 DOI: 10.1093/plphys/kiab494] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 09/24/2021] [Indexed: 05/26/2023]
Abstract
Lateral branches such as shoot and panicle are determining factors and target traits for rice (Oryza sativa L.) yield improvement. Cytokinin promotes rice lateral branching; however, the mechanism underlying the fine-tuning of cytokinin homeostasis in rice branching remains largely unknown. Here, we report the map-based cloning of RICE LATERAL BRANCH (RLB) encoding a nuclear-localized, KNOX-type homeobox protein from a rice cytokinin-deficient mutant showing more tillers, sparser panicles, defected floret morphology as well as attenuated shoot regeneration from callus. RLB directly binds to the promoter and represses the transcription of OsCKX4, a cytokinin oxidase gene with high abundance in panicle branch meristem. OsCKX4 over-expression lines phenocopied rlb, which showed upregulated OsCKX4 levels. Meanwhile, RLB physically binds to Polycomb repressive complex 2 (PRC2) components OsEMF2b and co-localized with H3K27me3, a suppressing histone modification mediated by PRC2, in the OsCKX4 promoter. We proposed that RLB recruits PRC2 to the OsCKX4 promoter to epigenetically repress its transcription, which suppresses the catabolism of cytokinin, thereby promoting rice lateral branching. Moreover, antisense inhibition of OsCKX4 under the LOG promoter successfully increased panicle size and spikelet number per plant without affecting other major agronomic traits. This study provides insight into cytokinin homeostasis, lateral branching in plants, and also promising target genes for rice genetic improvement.
Collapse
Affiliation(s)
- Huimei Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Xiaohong Tong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Liqun Tang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Yifeng Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Juan Zhao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Zhiyong Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Xixi Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Yazhou Shu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Man Yin
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Tosin Victor Adegoke
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Wanning Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Shuang Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Huayu Xu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Jiezheng Ying
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Wenya Yuan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jialing Yao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| |
Collapse
|
29
|
Ma J, Xie L, Zhao Q, Sun Y, Zhang D. Cyclanilide Induces Lateral Bud Outgrowth by Modulating Cytokinin Biosynthesis and Signalling Pathways in Apple Identified via Transcriptome Analysis. Int J Mol Sci 2022; 23:ijms23020581. [PMID: 35054767 PMCID: PMC8776233 DOI: 10.3390/ijms23020581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 02/04/2023] Open
Abstract
Cyclanilide (CYC), a plant growth regulator, is a potent shoot branching agent in apple. However, its mechanism remains unclear. The current study revealed that CYC treatment resulted in massive reprogramming of the axillary bud transcriptome, implicating several hormones in the response. We observed a marked increase (approximately 2-fold) in the level of zeatin riboside and a significant decrease (approximately 2-fold) in the level of abscisic acid (ABA). Zeatin metabolism gene cytokinin (CTK) oxidase 1 (CKX 1) was down-regulated at 168 h after CYC treatment compared with the control. Weighted gene co-expression network analysis of differentially expressed genes demonstrated the turquoise module clusters exhibited the highest positive correlation with zeatin riboside (r = 0.92) and the highest negative correlation with ABA (r = -0.8). A total of 37 genes were significantly enriched in the plant hormone signal transduction pathway in the turquoise module. Among them, the expressions of CTK receptor genes WOODEN LEG and the CTK type-A response regulators genes ARR3 and ARR9 were up-regulated. ABA signal response genes protein phosphatase 2C genes ABI2 and ABI5 were down-regulated in lateral buds after CYC treatment at 168 h. In addition, exogenous application of 6-benzylaminopurine (6-BA, a synthetic type of CTK) and CYC enhanced the inducing effect of CYC, whereas exogenous application of lovastatin (a synthetic type of inhibitor of CTK biosynthesis) or ABA and CYC weakened the promoting effect of CYC. These results collectively revealed that the stimulation of bud growth by CYC might involve CTK biosynthesis and signalling, including genes CKX1 and ARR3/9, which provided a direction for further study of the branching promoting mechanism of CYC.
Collapse
Affiliation(s)
| | | | | | | | - Dong Zhang
- Correspondence: ; Tel./Fax: +86-029-87082849
| |
Collapse
|
30
|
Polko JK, Potter KC, Burr CA, Schaller GE, Kieber JJ. Meta-analysis of transcriptomic studies of cytokinin-treated rice roots defines a core set of cytokinin response genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1387-1402. [PMID: 34165836 DOI: 10.1111/tpj.15386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/06/2021] [Accepted: 06/19/2021] [Indexed: 05/25/2023]
Abstract
Cytokinins regulate diverse aspects of plant growth and development, primarily through modulation of gene expression. The cytokinin-responsive transcriptome has been thoroughly described in dicots, especially Arabidopsis, but much less so in monocots. Here, we present a meta-analysis of five different transcriptomic analyses of rice (Oryza sativa) roots treated with cytokinin, including three previously unpublished experiments. We developed a treatment method in which hormone is added to the media of rice seedlings grown in sterile hydroponic culture under a continuous airflow, which resulted in minimal perturbation of the seedlings, thus greatly reducing changes in gene expression in the absence of exogenous hormone. We defined a core set of 205 upregulated and 86 downregulated genes that were differentially expressed in at least three of the transcriptomic datasets. This core set includes genes encoding the type-A response regulators (RRs) and cytokinin oxidases/dehydrogenases, which have been shown to be primary cytokinin response genes. GO analysis revealed that the upregulated genes were enriched for terms related to cytokinin/hormone signaling and metabolism, while the downregulated genes were significantly enriched for genes encoding transporters. Variations of type-B RR binding motifs were significantly enriched in the promoters of the upregulated genes, as were binding sites for other potential partner transcription factors. The promoters of the downregulated genes were generally enriched for distinct cis-acting motifs and did not include the type-B RR binding motif. This analysis provides insight into the molecular mechanisms underlying cytokinin action in a monocot and provides a useful foundation for future studies of this hormone in rice and other cereals.
Collapse
Affiliation(s)
- Joanna K Polko
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kevin C Potter
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Christian A Burr
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - G Eric Schaller
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Joseph J Kieber
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
31
|
Li G, Kuijer HNJ, Yang X, Liu H, Shen C, Shi J, Betts N, Tucker MR, Liang W, Waugh R, Burton RA, Zhang D. MADS1 maintains barley spike morphology at high ambient temperatures. NATURE PLANTS 2021; 7:1093-1107. [PMID: 34183784 DOI: 10.1038/s41477-021-00957-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 06/02/2021] [Indexed: 05/05/2023]
Abstract
Temperature stresses affect plant phenotypic diversity. The developmental stability of the inflorescence, required for reproductive success, is tightly regulated by the interplay of genetic and environmental factors. However, the mechanisms underpinning how plant inflorescence architecture responds to temperature are largely unknown. We demonstrate that the barley SEPALLATA MADS-box protein HvMADS1 is responsible for maintaining an unbranched spike architecture at high temperatures, while the loss-of-function mutant forms a branched inflorescence-like structure. HvMADS1 exhibits increased binding to target promoters via A-tract CArG-box motifs, which change conformation with temperature. Target genes for high-temperature-dependent HvMADS1 activation are predominantly associated with inflorescence differentiation and phytohormone signalling. HvMADS1 directly regulates the cytokinin-degrading enzyme HvCKX3 to integrate temperature response and cytokinin homeostasis, which is required to repress meristem cell cycle/division. Our findings reveal a mechanism by which genetic factors direct plant thermomorphogenesis, extending the recognized role of plant MADS-box proteins in floral development.
Collapse
Affiliation(s)
- Gang Li
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Waite Campus, Glen Osmond, South Australia, Australia.
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China.
| | - Hendrik N J Kuijer
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Waite Campus, Glen Osmond, South Australia, Australia
| | - Xiujuan Yang
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Waite Campus, Glen Osmond, South Australia, Australia
| | - Huiran Liu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chaoqun Shen
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Waite Campus, Glen Osmond, South Australia, Australia
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Natalie Betts
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Waite Campus, Glen Osmond, South Australia, Australia
| | - Matthew R Tucker
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Waite Campus, Glen Osmond, South Australia, Australia
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Robbie Waugh
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Waite Campus, Glen Osmond, South Australia, Australia
- James Hutton Institute, Dundee, UK
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, UK
| | - Rachel A Burton
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Waite Campus, Glen Osmond, South Australia, Australia
| | - Dabing Zhang
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Waite Campus, Glen Osmond, South Australia, Australia.
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
32
|
Liu L, Lindsay PL, Jackson D. Next Generation Cereal Crop Yield Enhancement: From Knowledge of Inflorescence Development to Practical Engineering by Genome Editing. Int J Mol Sci 2021; 22:5167. [PMID: 34068350 PMCID: PMC8153303 DOI: 10.3390/ijms22105167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022] Open
Abstract
Artificial domestication and improvement of the majority of crops began approximately 10,000 years ago, in different parts of the world, to achieve high productivity, good quality, and widespread adaptability. It was initiated from a phenotype-based selection by local farmers and developed to current biotechnology-based breeding to feed over 7 billion people. For most cereal crops, yield relates to grain production, which could be enhanced by increasing grain number and weight. Grain number is typically determined during inflorescence development. Many mutants and genes for inflorescence development have already been characterized in cereal crops. Therefore, optimization of such genes could fine-tune yield-related traits, such as grain number. With the rapidly advancing genome-editing technologies and understanding of yield-related traits, knowledge-driven breeding by design is becoming a reality. This review introduces knowledge about inflorescence yield-related traits in cereal crops, focusing on rice, maize, and wheat. Next, emerging genome-editing technologies and recent studies that apply this technology to engineer crop yield improvement by targeting inflorescence development are reviewed. These approaches promise to usher in a new era of breeding practice.
Collapse
Affiliation(s)
| | | | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; (L.L.); (P.L.L.)
| |
Collapse
|
33
|
Molecular mechanism of lateral bud differentiation of Pinus massoniana based on high-throughput sequencing. Sci Rep 2021; 11:9033. [PMID: 33907200 PMCID: PMC8079368 DOI: 10.1038/s41598-021-87787-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/25/2021] [Indexed: 01/15/2023] Open
Abstract
Knot-free timber cultivation is an important goal of forest breeding, and lateral shoots affect yield and stem shape of tree. The purpose of this study was to analyze the molecular mechanism of lateral bud development by removing the apical dominance of Pinus massoniana young seedlings through transcriptome sequencing and identify key genes involved in lateral bud development. We analyzed hormone contents and transcriptome data for removal of apical dominant of lateral buds as well as apical and lateral buds of normal development ones. Data were analyzed using an comprehensive approach of pathway- and gene-set enrichment analysis, Mapman visualization tool, and gene expression analysis. Our results showed that the contents of auxin (IAA), Zea and strigolactone (SL) in lateral buds significantly increased after removal of apical dominance, while abscisic acid (ABA) decreased. Gibberellin (GA) metabolism, cytokinin (CK), jasmonic acid, zeatin pathway-related genes positively regulated lateral bud development, ABA metabolism-related genes basically negatively regulated lateral bud differentiation, auxin, ethylene, SLs were positive and negative regulation, while only A small number of genes of SA and BRASSINOSTEROID, such as TGA and TCH4, were involved in lateral bud development. In addition, it was speculated that transcription factors such as WRKY, TCP, MYB, HSP, AuxIAA, and AP2 played important roles in the development of lateral buds. In summary, our results provided a better understanding of lateral bud differentiation and lateral shoot formation of P. massoniana from transcriptome level. It provided a basis for molecular characteristics of side branch formation of other timber forests, and contributed to knot-free breeding of forest trees.
Collapse
|
34
|
Liu X, Hu X, Li K, Liu Z, Wu Y, Feng G, Huang C, Wang H. Identifying quantitative trait loci for the general combining ability of yield-relevant traits in maize. BREEDING SCIENCE 2021; 71:217-228. [PMID: 34377070 PMCID: PMC8329886 DOI: 10.1270/jsbbs.20008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 12/14/2020] [Indexed: 06/13/2023]
Abstract
Maize is the most important staple crop worldwide. Many of its agronomic traits present with a high level of heterosis. Combining ability was proposed to exploit the rule of heterosis, and general combining ability (GCA) is a crucial measure of parental performance. In this study, a recombinant inbred line population was used to construct testcross populations by crossing with four testers based on North Carolina design II. Six yield-relevant traits were investigated as phenotypic data. GCA effects were estimated for three scenarios based on the heterotic group and the number of tester lines. These estimates were then used to identify quantitative trait loci (QTL) and dissect genetic basis of GCA. A higher heritability of GCA was obtained for each trait. Thus, testing in early generation of breeding may effectively select candidate lines with relatively superior GCA performance. The GCA QTL detected in each scenario was slightly different according to the linkage mapping. Most of the GCA-relevant loci were simultaneously detected in all three datasets. Therefore, the genetic basis of GCA was nearly constant although discrepant inbred lines were appointed as testers. In addition, favorable alleles corresponding to GCA could be pyramided via marker-assisted selection and made available for maize hybrid breeding.
Collapse
Affiliation(s)
- Xiaogang Liu
- Institute of Crop Science, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaojiao Hu
- Institute of Crop Science, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kun Li
- Institute of Crop Science, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhifang Liu
- Institute of Crop Science, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yujin Wu
- Institute of Crop Science, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guang Feng
- Liaoning Dandong Academy of Agricultural Sciences, Dandong 118109, China
| | - Changling Huang
- Institute of Crop Science, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongwu Wang
- Institute of Crop Science, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
35
|
Zhang H, Lu Y, Ma Y, Fu J, Wang G. Genetic and molecular control of grain yield in maize. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:18. [PMID: 37309425 PMCID: PMC10236077 DOI: 10.1007/s11032-021-01214-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/07/2021] [Indexed: 06/14/2023]
Abstract
Understanding the genetic and molecular basis of grain yield is important for maize improvement. Here, we identified 49 consensus quantitative trait loci (cQTL) controlling maize yield-related traits using QTL meta-analysis. Then, we collected yield-related traits associated SNPs detected by association mapping and identified 17 consensus significant loci. Comparing the physical positions of cQTL with those of significant SNPs revealed that 47 significant SNPs were located within 20 cQTL regions. Furthermore, intensive reviews of 31 genes regulating maize yield-related traits found that the functions of many genes were conservative in maize and other plant species. The functional conservation indicated that some of the 575 maize genes (orthologous to 247 genes controlling yield or seed traits in other plant species) might be functionally related to maize yield-related traits, especially the 49 maize orthologous genes in cQTL regions, and 41 orthologous genes close to the physical positions of significant SNPs. In the end, we prospected on the integration of the public sources for exploring the genetic and molecular mechanisms of maize yield-related traits, and on the utilization of genetic and molecular mechanisms for maize improvement. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01214-3.
Collapse
Affiliation(s)
- Hongwei Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 The People’s Republic of China
| | - Yantian Lu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 The People’s Republic of China
| | - Yuting Ma
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 The People’s Republic of China
| | - Junjie Fu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 The People’s Republic of China
| | - Guoying Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 The People’s Republic of China
| |
Collapse
|
36
|
Ma L, Liu X, Liu W, Wen H, Zhang Y, Pang Y, Wang X. Characterization of Squamosa-Promoter Binding Protein-Box Family Genes Reveals the Critical Role of MsSPL20 in Alfalfa Flowering Time Regulation. FRONTIERS IN PLANT SCIENCE 2021; 12:775690. [PMID: 35069631 PMCID: PMC8766856 DOI: 10.3389/fpls.2021.775690] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/14/2021] [Indexed: 05/22/2023]
Abstract
SQUAMOSA Promoter-binding protein-Like (SPL) genes affect a broad range of plant biological processes and show potential application in crop improvement by genetic modification. As the most widely planted forage crop in the world, biomass and abiotic stresses tolerance are important breeding targets for alfalfa (Medicago sativa L.). Nevertheless, the systematic analysis of SPL genes in alfalfa genome remains lacking. In the present study, we characterized 22 putative non-redundant SPL genes in alfalfa genome and uncovered the abundant structural variation among MsSPL genes. The phylogenetic analysis of plant SPL proteins separated them into 10 clades and clade J was an alfalfa-specific clade, suggesting SPL genes in alfalfa might have experienced gene duplication and functional differentiation within the genome. Meanwhile, 11 MsSPL genes with perfect matches to miRNA response elements (MREs) could be degraded by miR156, and the cleavage sites were gene specific. In addition, we investigated the temporal and spatial expression patterns of MsSPL genes and their expression patterns in response to multiple treatments, characterizing candidate SPL genes in alfalfa development and abiotic stress tolerant regulation. More importantly, overexpression of the alfalfa-specific SPL gene (MsSPL20) showed stable delayed flowering time, as well as increased biomass. Further studies indicated that MsSPL20 delayed flowering time by regulating the expression of genes involved in floret development, including HD3A, FTIP1, TEM1, and HST1. Together, our findings provide valuable information for future research and utilization of SPL genes in alfalfa and elucidate a possibly alfalfa-specific flowering time regulation, thereby supplying candidate genes for alfalfa molecular-assisted breeding.
Collapse
Affiliation(s)
- Lin Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiqiang Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Wenhui Liu
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Hongyu Wen
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongchao Zhang
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Yongzhen Pang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Yongzhen Pang,
| | - Xuemin Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Xuemin Wang,
| |
Collapse
|
37
|
Mallet J, Laufs P, Leduc N, Le Gourrierec J. Photocontrol of Axillary Bud Outgrowth by MicroRNAs: Current State-of-the-Art and Novel Perspectives Gained From the Rosebush Model. FRONTIERS IN PLANT SCIENCE 2021; 12:770363. [PMID: 35173747 PMCID: PMC8841825 DOI: 10.3389/fpls.2021.770363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/13/2021] [Indexed: 05/05/2023]
Abstract
Shoot branching is highly dependent on environmental factors. While many species show some light dependence for branching, the rosebush shows a strict requirement for light to allow branching, making this species an excellent model to further understand how light impinges on branching. Here, in the first part, we provide a review of the current understanding of how light may modulate the complex regulatory network of endogenous factors like hormones (SL, IAA, CK, GA, and ABA), nutrients (sugar and nitrogen), and ROS to control branching. We review the regulatory contribution of microRNAs (miRNAs) to branching in different species, highlighting the action of such evolutionarily conserved factors. We underline some possible pathways by which light may modulate miRNA-dependent regulation of branching. In the second part, we exploit the strict light dependence of rosebush for branching to identify putative miRNAs that could contribute to the photocontrol of branching. For this, we first performed a profiling of the miRNAs expressed in early light-induced rosebush buds and next tested whether they were predicted to target recognized regulators of branching. Thus, we identified seven miRNAs (miR156, miR159, miR164, miR166, miR399, miR477, and miR8175) that could target nine genes (CKX1/6, EXPA3, MAX4, CYCD3;1, SUSY, 6PFK, APX1, and RBOHB1). Because these genes are affecting branching through different hormonal or metabolic pathways and because expression of some of these genes is photoregulated, our bioinformatic analysis suggests that miRNAs may trigger a rearrangement of the regulatory network to modulate branching in response to light environment.
Collapse
Affiliation(s)
- Julie Mallet
- University of Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Patrick Laufs
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Nathalie Leduc
- University of Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - José Le Gourrierec
- University of Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
- *Correspondence: José Le Gourrierec,
| |
Collapse
|
38
|
Xia T, Chen H, Dong S, Ma Z, Ren H, Zhu X, Fang X, Chen F. OsWUS promotes tiller bud growth by establishing weak apical dominance in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1635-1647. [PMID: 33064890 DOI: 10.1111/tpj.15026] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/19/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Two branching strategies are exhibited in crops: enhanced apical dominance, as in maize; or weak apical dominance, as in rice. However, the underlying mechanism of weak apical dominance remains elusive. OsWUS, an ortholog of Arabidopsis WUSCHEL (WUS) in rice, is required for tiller development. In this study, we identified and functionally characterized a low-tillering mutant decreased culm number 1 (dc1) that resulted from loss-of-function of OsWUS. The dc1 tiller buds are viable but repressed by the main culm apex, leading to stronger apical dominance than that of the wild-type (WT). Auxin response is enhanced in the dc1 mutant, and knocking out the auxin action-associated gene ABERRANT SPIKELET AND PANICLE 1 (ASP1) de-repressed growth of the tiller buds in the dc1 mutant, suggesting that OsWUS and ASP1 are both involved in outgrowth of the rice tiller bud. Decapitation triggers higher contents of cytokinins in the shoot base of the dc1 mutant compared with those in the WT, and exogenous application of cytokinin is not sufficient for sustained growth of the dc1 tiller bud. Transcriptome analysis indicated that expression levels of transcription factors putatively bound by ORYZA SATIVA HOMEOBOX 1 (OSH1) are changed in response to decapitation and display a greater fold change in the dc1 mutant than that in the WT. Collectively, these findings reveal an important role of OsWUS in tiller bud growth by influencing apical dominance, and provide the basis for an improved understanding of tiller bud development in rice.
Collapse
Affiliation(s)
- Tianyu Xia
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hongqi Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Sujun Dong
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zeyang Ma
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Haibo Ren
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xudong Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Xiaohua Fang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fan Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
39
|
Yu H, Yang J, Cui H, Li Z, Jia F, Chen J, Li X. Effects of plant density on tillering in the weed grass Aegilops tauschii Coss. and its phytohormonal regulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 157:70-78. [PMID: 33091798 DOI: 10.1016/j.plaphy.2020.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
Aegilops tauschii Coss, a notorious wheat field weed, poses a serious threat to wheat in China. Tillers are an important agronomic tool for yield. In this study, a total of 12 Ae. tauschii populations were collected from China to investigate the effect of plant density on tiller occurrence and its phytohormonal regulation. We assayed the growth parameters of Ae. tauschii and the levels of endogenous hormones at different plant densities. The results showed that plant density had a significant effect on the quantity and quality of Ae. tauschii seeds produced per plant. In particular, the tiller and spike numbers per plant were negatively affected by plant density (P < 0.0001). The contents of 13 endogenous hormones in the tiller nodes changed in response to plant density. Among them, indole-3-acetic acid (IAA) and gibberellin (GA) positively responded to plant density. However, the reverse result was found for cytokinin (CTK). Interestingly, phylogenetic tree analysis of auxin (AeYUCCA), CK (AeIPT) and GA (AeCPS) biosynthesis related genes found that phylogenies in the Gramineae for the three different genes were various, hinting at horizontal gene transfer. Moreover, the dynamics of the expression of AeYUCCA, AeIPT and AeCPS were roughly consistent with their phytohormone contents during tillering stage. When externally sprayed on plants of Ae. tauschii, 2,4-D isooctyl ester and GA3 markedly reduced its tillering while 6-BA had no significant effect.
Collapse
Affiliation(s)
- Haiyan Yu
- Key Laboratory of Weed Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuanxilu, Beijing, 100193, People's Republic of China
| | - Juan Yang
- Hebei Normal University of Science and Technology, Hebei Street No.360, Qinhuangdao, Hebei, 066004, People's Republic of China
| | - Hailan Cui
- Key Laboratory of Weed Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuanxilu, Beijing, 100193, People's Republic of China
| | - Zheng Li
- Key Laboratory of Weed Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuanxilu, Beijing, 100193, People's Republic of China
| | - Fang Jia
- Key Laboratory of Weed Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuanxilu, Beijing, 100193, People's Republic of China
| | - Jingchao Chen
- Key Laboratory of Weed Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuanxilu, Beijing, 100193, People's Republic of China
| | - Xiangju Li
- Key Laboratory of Weed Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuanxilu, Beijing, 100193, People's Republic of China.
| |
Collapse
|
40
|
Deveshwar P, Prusty A, Sharma S, Tyagi AK. Phytohormone-Mediated Molecular Mechanisms Involving Multiple Genes and QTL Govern Grain Number in Rice. Front Genet 2020; 11:586462. [PMID: 33281879 PMCID: PMC7689023 DOI: 10.3389/fgene.2020.586462] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/09/2020] [Indexed: 11/13/2022] Open
Abstract
Increasing the grain number is the most direct route toward enhancing the grain yield in cereals. In rice, grain number can be amplified through increasing the shoot branching (tillering), panicle branching, panicle length, and seed set percentage. Phytohormones have been conclusively shown to control the above characteristics by regulating molecular factors and their cross-interactions. The dynamic equilibrium of cytokinin levels in both shoot and inflorescence meristems, maintained by the regulation of its biosynthesis, activation, and degradation, determines the tillering and panicle branching, respectively. Auxins and gibberellins are known broadly to repress the axillary meristems, while jasmonic acid is implicated in the determination of reproductive meristem formation. The balance of auxin, gibberellin, and cytokinin determines meristematic activities in the inflorescence. Strigolactones have been shown to repress the shoot branching but seem to regulate panicle branching positively. Ethylene, brassinosteroids, and gibberellins regulate spikelet abortion and grain filling. Further studies on the optimization of endogenous hormonal levels can help in the expansion of the grain yield potential of rice. This review focuses on the molecular machinery, involving several genes and quantitative trait loci (QTL), operational in the plant that governs hormonal control and, in turn, gets governed by the hormones to regulate grain number and yield in rice.
Collapse
Affiliation(s)
- Priyanka Deveshwar
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Ankita Prusty
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Shivam Sharma
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Akhilesh K Tyagi
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| |
Collapse
|
41
|
An Y, Chen L, Li YX, Li C, Shi Y, Zhang D, Li Y, Wang T. Genome-wide association studies and whole-genome prediction reveal the genetic architecture of KRN in maize. BMC PLANT BIOLOGY 2020; 20:490. [PMID: 33109077 PMCID: PMC7590725 DOI: 10.1186/s12870-020-02676-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/24/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND Kernel row number (KRN) is an important trait for the domestication and improvement of maize. Exploring the genetic basis of KRN has great research significance and can provide valuable information for molecular assisted selection. RESULTS In this study, one single-locus method (MLM) and six multilocus methods (mrMLM, FASTmrMLM, FASTmrEMMA, pLARmEB, pKWmEB and ISIS EM-BLASSO) of genome-wide association studies (GWASs) were used to identify significant quantitative trait nucleotides (QTNs) for KRN in an association panel including 639 maize inbred lines that were genotyped by the MaizeSNP50 BeadChip. In three phenotyping environments and with best linear unbiased prediction (BLUP) values, the seven GWAS methods revealed different numbers of KRN-associated QTNs, ranging from 11 to 177. Based on these results, seven important regions for KRN located on chromosomes 1, 2, 3, 5, 9, and 10 were identified by at least three methods and in at least two environments. Moreover, 49 genes from the seven regions were expressed in different maize tissues. Among the 49 genes, ARF29 (Zm00001d026540, encoding auxin response factor 29) and CKO4 (Zm00001d043293, encoding cytokinin oxidase protein) were significantly related to KRN, based on expression analysis and candidate gene association mapping. Whole-genome prediction (WGP) of KRN was also performed, and we found that the KRN-associated tagSNPs achieved a high prediction accuracy. The best strategy was to integrate all of the KRN-associated tagSNPs identified by all GWAS models. CONCLUSIONS These results aid in our understanding of the genetic architecture of KRN and provide useful information for genomic selection for KRN in maize breeding.
Collapse
Affiliation(s)
- Yixin An
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Lin Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yong-Xiang Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Chunhui Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yunsu Shi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Dengfeng Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yu Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Tianyu Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
42
|
Cui L, Zheng F, Wang J, Zhang C, Xiao F, Ye J, Li C, Ye Z, Zhang J. miR156a-targeted SBP-Box transcription factor SlSPL13 regulates inflorescence morphogenesis by directly activating SFT in tomato. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1670-1682. [PMID: 31916387 PMCID: PMC7336387 DOI: 10.1111/pbi.13331] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 12/18/2019] [Accepted: 12/21/2019] [Indexed: 05/05/2023]
Abstract
The inflorescences and lateral branches of higher plants are generated by lateral meristems. The structure of the inflorescence has a direct effect on fruit yield in tomato (Solanum lycopersicum). We previously demonstrated that miR156a plays important roles in determining the structures of the inflorescences and lateral branches in tomato by suppressing the expression of the SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL) transcription factor gene family. However, information on regulatory pathways associated with inflorescence morphogenesis is still lacking. In this study, we demonstrate that SPL13 is the major SPL involved in miR156a-regulated tomato inflorescence structure determination and lateral branch production. Suppressing the expression of SPL13 in tomato increases the number of inflorescences on vegetative branches and lateral branches, decreases the number of flowers and fruit, and reduces fruit size and yield. Genetic and biochemical evidence indicate that SPL13 controls inflorescence development by positively regulating the expression of the tomato inflorescence-associated gene SINGLE FLOWER TRUSS (SFT) by directly binding to its promoter region. Thus, our findings provide a major advance to our understanding of the miR156a-SlSPL-based mechanism that regulates plant architecture and yield in tomato.
Collapse
Affiliation(s)
- Long Cui
- Key Laboratory of Horticultural Plant BiologyMinistry of EducationHuazhong Agricultural UniversityWuhanChina
| | - Fangyan Zheng
- Key Laboratory of Horticultural Plant BiologyMinistry of EducationHuazhong Agricultural UniversityWuhanChina
| | - Jiafa Wang
- Key Laboratory of Horticultural Plant BiologyMinistry of EducationHuazhong Agricultural UniversityWuhanChina
| | - Chunli Zhang
- Key Laboratory of Horticultural Plant BiologyMinistry of EducationHuazhong Agricultural UniversityWuhanChina
| | - Fangming Xiao
- Department of Plant SciencesUniversity of IdahoMoscowIDUSA
| | - Jie Ye
- Key Laboratory of Horticultural Plant BiologyMinistry of EducationHuazhong Agricultural UniversityWuhanChina
| | - Changxing Li
- Key Laboratory of Horticultural Plant BiologyMinistry of EducationHuazhong Agricultural UniversityWuhanChina
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant BiologyMinistry of EducationHuazhong Agricultural UniversityWuhanChina
| | - Junhong Zhang
- Key Laboratory of Horticultural Plant BiologyMinistry of EducationHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
43
|
|
44
|
Cheng HP, Yang XH, Lan L, Xie LJ, Chen C, Liu C, Chu J, Li ZY, Liu L, Zhang TQ, Luo DQ, Cheng L. Chemical Deprenylation of N 6 -Isopentenyladenosine (i 6 A) RNA. Angew Chem Int Ed Engl 2020; 59:10645-10650. [PMID: 32198805 DOI: 10.1002/anie.202003360] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/20/2020] [Indexed: 12/19/2022]
Abstract
N6 -isopentenyladenosine (i6 A) is an RNA modification found in cytokinins, which regulate plant growth/differentiation, and a subset of tRNAs, where it improves the efficiency and accuracy of translation. The installation and removal of this modification is mediated by prenyltransferases and cytokinin oxidases, and a chemical approach to selective deprenylation of i6 A has not been developed. We show that a selected group of oxoammonium cations function as artificial deprenylases to promote highly selective deprenylation of i6 A in nucleosides, oligonucleotides, and live cells. Importantly, other epigenetic modifications, amino acid residues, and natural products were not affected. Moreover, a significant phenotype difference in the Arabidopsis thaliana shoot and root development was observed with incubation of the cation. These results establish these small organic molecules as direct chemical regulators/artificial deprenylases of i6 A.
Collapse
Affiliation(s)
- Hou-Ping Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Hui Yang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Life Science, Hebei University, Hebei, 071002, China
| | - Ling Lan
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Jun Xie
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuan Chen
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Life Science, Hebei University, Hebei, 071002, China
| | - Cuimei Liu
- National Centre for Plant Gene Research (Beijing), Innovation Academy for Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Innovation Academy for Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Yan Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Li Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tian-Qi Zhang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences, Shanghai, 200032, China
| | - Du-Qiang Luo
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Life Science, Hebei University, Hebei, 071002, China
| | - Liang Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
45
|
Genome-wide selection and genetic improvement during modern maize breeding. Nat Genet 2020; 52:565-571. [DOI: 10.1038/s41588-020-0616-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 03/23/2020] [Indexed: 11/08/2022]
|
46
|
UNBRANCHED3 Expression and Inflorescence Development is Mediated by UNBRANCHED2 and the Distal Enhancer, KRN4, in Maize. PLoS Genet 2020; 16:e1008764. [PMID: 32330129 PMCID: PMC7202667 DOI: 10.1371/journal.pgen.1008764] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/06/2020] [Accepted: 04/07/2020] [Indexed: 12/22/2022] Open
Abstract
Enhancers are cis-acting DNA segments with the ability to increase target gene expression. They show high sensitivity to DNase and contain specific DNA elements in an open chromatin state that allows the binding of transcription factors (TFs). While numerous enhancers are annotated in the maize genome, few have been characterized genetically. KERNEL ROW NUMBER4 (KRN4), an intergenic quantitative trait locus for kernel row number, is assumed to be a cis-regulatory element of UNBRANCHED3 (UB3), a key inflorescence gene. However, the mechanism by which KRN4 controls UB3 expression remains unclear. Here, we found that KRN4 exhibits an open chromatin state, harboring sequences that showed high enhancer activity toward the 35S and UB3 promoters. KRN4 is bound by UB2-centered transcription complexes and interacts with the UB3 promoter by three duplex interactions to affect UB3 expression. Sequence variation at KRN4 enhances ub2 and ub3 mutant ear fasciation. Therefore, we suggest that KRN4 functions as a distal enhancer of the UB3 promoter via chromatin interactions and recruitment of UB2-centered transcription complexes for the fine-tuning of UB3 expression in meristems of ear inflorescences. These results provide evidence that an intergenic region helps to finely tune gene expression, providing a new perspective on the genetic control of quantitative traits.
Collapse
|
47
|
Xie Y, Zhou Q, Zhao Y, Li Q, Liu Y, Ma M, Wang B, Shen R, Zheng Z, Wang H. FHY3 and FAR1 Integrate Light Signals with the miR156-SPL Module-Mediated Aging Pathway to Regulate Arabidopsis Flowering. MOLECULAR PLANT 2020; 13:483-498. [PMID: 32017999 DOI: 10.1016/j.molp.2020.01.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/13/2020] [Accepted: 01/28/2020] [Indexed: 05/15/2023]
Abstract
In response to competition for light from their neighbors, shade-intolerant plants flower precociously to ensure reproductive success and survival. However, the molecular mechanisms underlying this key developmental switch are not well understood. Here, we show that a pair of Arabidopsis transcription factors essential for phytochrome A signaling, FAR-RED ELONGATED HYPOCOTYL3 (FHY3) and FAR-RED IMPAIRED RESPONSE1 (FAR1), regulate flowering time by integrating environmental light signals with the miR156-SPL module-mediated aging pathway. We found that FHY3 and FAR1 directly interact with three flowering-promoting SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors, SPL3, SPL4, and SPL5, and inhibit their binding to the promoters of several key flowering regulatory genes, including FRUITFUL (FUL), LEAFY (LFY), APETALA1 (AP1), and MIR172C, thus downregulating their transcript levels and delaying flowering. Under simulated shade conditions, levels of SPL3/4/5 proteins increase, whereas levels of FHY3 and FAR1 proteins decline, thus releasing SPL3/4/5 from FHY3/FAR1 inhibition to allow activation of FUL, LFY, AP1, and MIR172C and, consequently, early flowering. Taken together, these results unravel a novel mechanism whereby plants regulate flowering time by integrating environmental cues (such as light conditions) and an internal developmental program (the miR156-SPL module-mediated aging pathway).
Collapse
Affiliation(s)
- Yurong Xie
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qin Zhou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongping Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Quanquan Li
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Yang Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mengdi Ma
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Baobao Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rongxin Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Zhigang Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Haiyang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
48
|
Wang C, Wang G, Gao Y, Lu G, Habben JE, Mao G, Chen G, Wang J, Yang F, Zhao X, Zhang J, Mo H, Qu P, Liu J, Greene TW. A cytokinin-activation enzyme-like gene improves grain yield under various field conditions in rice. PLANT MOLECULAR BIOLOGY 2020; 102:373-388. [PMID: 31872309 DOI: 10.1007/s11103-019-00952-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/18/2019] [Indexed: 05/11/2023]
Abstract
CRISPR-edited variants at the 3'-end of OsLOGL5's coding sequence (CDS), significantly increased rice grain yield under well-watered, drought, normal nitrogen, and low nitrogen field conditions at multiple geographical locations. Cytokinins impact numerous aspects of plant growth and development. This study reports that constitutive ectopic overexpression of a rice cytokinin-activation enzyme-like gene, OsLOGL5, significantly reduced primary root growth, tiller number, and yield. Conversely, mutations at the 3'-end of OsLOGL5 CDS resulted in normal rice plant morphology but with increased grain yield under well-watered, drought, normal nitrogen, and low nitrogen field conditions at multiple geographical locations. Six gene edited variants (Edit A to F) were created and tested in the field. Edit-B and Edit-F plants increased, but Edit-D and Edit-E plants decreased, the panicle number per plant. All OsLOGL5-edited plants significantly increased seed setting rate, total grain numbers, full-filled grain numbers per panicle, and thousand seed weight under drought conditions, suggesting that OsLOGL5 is likely involved in the regulation of both seed development and grain filling processes. Our results indicate that the C-terminal end of OsLOGL5 protein plays an important role in regulating rice yield improvement under different abiotic stress conditions, and OsLOGL5 is important for rice yield enhancement and stability.
Collapse
Affiliation(s)
- Changgui Wang
- Sinobioway Bio-Agriculture Group Co., Ltd, Beijing, China
| | - Guokui Wang
- Sinobioway Bio-Agriculture Group Co., Ltd, Beijing, China
| | - Yang Gao
- Sinobioway Bio-Agriculture Group Co., Ltd, Beijing, China
| | - Guihua Lu
- Corteva Agriscience, Johnston, IA, USA.
| | | | - Guanfan Mao
- Sinobioway Bio-Agriculture Group Co., Ltd, Beijing, China
| | - Guangwu Chen
- Sinobioway Bio-Agriculture Group Co., Ltd, Beijing, China
| | - Jiantao Wang
- Sinobioway Bio-Agriculture Group Co., Ltd, Beijing, China
| | - Fan Yang
- Sinobioway Bio-Agriculture Group Co., Ltd, Beijing, China
| | - Xiaoqiang Zhao
- Sinobioway Bio-Agriculture Group Co., Ltd, Beijing, China
| | - Jing Zhang
- Sinobioway Bio-Agriculture Group Co., Ltd, Beijing, China
| | - Hua Mo
- Corteva Agriscience, Johnston, IA, USA
| | - Pingping Qu
- Sinobioway Bio-Agriculture Group Co., Ltd, Beijing, China
| | - Junhua Liu
- Sinobioway Bio-Agriculture Group Co., Ltd, Beijing, China.
| | | |
Collapse
|
49
|
Wang D, Yu K, Jin D, Sun L, Chu J, Wu W, Xin P, Gregová E, Li X, Sun J, Yang W, Zhan K, Zhang A, Liu D. Natural variations in the promoter of Awn Length Inhibitor 1 (ALI-1) are associated with awn elongation and grain length in common wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:1075-1090. [PMID: 31628879 DOI: 10.1111/tpj.14575] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
Wheat awn plays a vital role in photosynthesis, grain production, and drought tolerance. However, the systematic identification or cloning of genes controlling wheat awn development is seldom reported. Here, we conducted a genome-wide association study (GWAS) with 364 wheat accessions and identified 26 loci involved in awn length development, including previously characterized B1, B2, Hd, and several rice homologs. The dominant awn suppressor B1 was fine mapped to a 125-kb physical interval, and a C2 H2 zinc finger protein Awn Length Inhibitor 1 (ALI-1) was confirmed to be the underlying gene of the B1 locus through the functional complimentary test with native awnless allele. ALI-1 expresses predominantly in the developing spike of awnless individuals, transcriptionally suppressing downstream genes. ALI-1 reduces cytokinin content and simultaneously restrains cytokinin signal transduction, leading to a stagnation of cell proliferation and reduction of cell numbers during awn development. Polymorphisms of four single nucleotide polymorphisms (SNPs) located in ALI-1 promoter region are diagnostic for the B1/b1 genotypes, and these SNPs are associated with awn length (AL), grain length (GL) and thousand-grain weight (TGW). More importantly, ali-1 was observed to increase grain length in wheat, which is a valuable attribute of awn on grain weight, aside from photosynthesis. Therefore, ALI-1 pleiotropically regulates awn and grain development, providing an alternative for grain yield improvement and addressing future climate changes.
Collapse
Affiliation(s)
- Dongzhi Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Kang Yu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- BGI Institute of Applied Agriculture, BGI-Agro, Shenzhen, 518120, China
| | - Di Jin
- College of Agronomy/The Collaborative Innovation Center of Grain Crops in Henan, Henan Agricultural University, Zhengzhou, 450002, China
| | - Linhe Sun
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenying Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Peiyong Xin
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Edita Gregová
- National Agricultural and Food centre, Research Institute of Plant Production, Bratislavská cesta 122, 921 68, Piešťany, Slovakia
| | - Xin Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiazhu Sun
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenlong Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kehui Zhan
- College of Agronomy/The Collaborative Innovation Center of Grain Crops in Henan, Henan Agricultural University, Zhengzhou, 450002, China
| | - Aimin Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dongcheng Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing, 100024, China
| |
Collapse
|
50
|
Liu J, Fernie AR, Yan J. The Past, Present, and Future of Maize Improvement: Domestication, Genomics, and Functional Genomic Routes toward Crop Enhancement. PLANT COMMUNICATIONS 2020; 1:100010. [PMID: 33404535 PMCID: PMC7747985 DOI: 10.1016/j.xplc.2019.100010] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/07/2019] [Accepted: 11/22/2019] [Indexed: 05/14/2023]
Abstract
After being domesticated from teosinte, cultivated maize (Zea mays ssp. mays) spread worldwide and now is one of the most important staple crops. Due to its tremendous phenotypic and genotypic diversity, maize also becomes to be one of the most widely used model plant species for fundamental research, with many important discoveries reported by maize researchers. Here, we provide an overview of the history of maize domestication and key genes controlling major domestication-related traits, review the currently available resources for functional genomics studies in maize, and discuss the functions of most of the maize genes that have been positionally cloned and can be used for crop improvement. Finally, we provide some perspectives on future directions regarding functional genomics research and the breeding of maize and other crops.
Collapse
Affiliation(s)
- Jie Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Corresponding author
| | - Alisdair R. Fernie
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Corresponding author
| |
Collapse
|