1
|
Parris S, Lovell JT, Ding F, Zhang Z, Olvey J, Olvey M, Schmutz J, Grimwood J, Sreedasyam A, Kumar S, Li Z, Joshi P, Jenkins JW, Plott C, Stewart A, Webber J, Stiller WN, Jones DC, Saski CA. Polyploidy-mediated variations in glutamate receptor proteins linked to Fusarium wilt resistance in upland cotton. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70125. [PMID: 40227120 PMCID: PMC11995877 DOI: 10.1111/tpj.70125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 04/15/2025]
Abstract
Cotton production in the US faces a serious threat from Fusarium oxysporum f. sp. vasinfectum race 4 (FOV4), a soil-borne fungus causing Fusarium wilt by infecting the roots and vascular system of susceptible cotton, leading to rapid wilting and death. Here, we investigate genetic mechanisms of resistance to FOV4 in the highly resistant upland cotton genotype "U1" using an early-generation segregating biparental population ("U1" × "CSX8308") with comprehensive genomic resources. Reference-grade genomic assemblies of the parents revealed minor structural variations between "U1" haplotypes, a high degree of collinearity at chromosome synteny and micro-synteny levels, and significant divergence from "CSX8308" with 8.9 million SNPs. QTL analysis identified significant markers on chromosomes D03 and A02 linked to reduced Fusarium wilt severity. Within these regions, two glutamate-receptor-like (GLR) genes showed structural variation and overlapped between translocated segments on A02 and D03, suggesting a rare but important reinforcing effect of parallel evolution between susceptible and resistant genotypes. Transcriptome profiles of "U1" under FOV4 infection reveal activation of calcium-binding proteins and transcription factors regulating plant hormones (ethylene, abscisic acid, jasmonic acid, and salicylic acid), along with enzymes involved in cell wall remodeling and phytoalexin production. Advancing cotton improvement depends on incorporating durable genetic disease resistance into high-yielding, high-quality cultivars.
Collapse
Affiliation(s)
- Stephen Parris
- Department of Plant and Environmental SciencesClemson UniversityClemsonSouth CarolinaUSA
| | - John T. Lovell
- Genome Sequencing CenterHudsonAlpha Institute for BiotechnologyHuntsvilleAlabamaUSA
- Department of Energy Joint Genome InstituteBerkeleyCaliforniaUSA
| | - Feng Ding
- Department of Physics and AstronomyClemson UniversityClemsonSouth CarolinaUSA
| | - Zhenzhen Zhang
- Department of Physics and AstronomyClemson UniversityClemsonSouth CarolinaUSA
| | | | | | - Jeremy Schmutz
- Genome Sequencing CenterHudsonAlpha Institute for BiotechnologyHuntsvilleAlabamaUSA
- Department of Energy Joint Genome InstituteBerkeleyCaliforniaUSA
| | - Jane Grimwood
- Genome Sequencing CenterHudsonAlpha Institute for BiotechnologyHuntsvilleAlabamaUSA
| | - Avinash Sreedasyam
- Genome Sequencing CenterHudsonAlpha Institute for BiotechnologyHuntsvilleAlabamaUSA
| | - Sonika Kumar
- Department of Plant and Environmental SciencesClemson UniversityClemsonSouth CarolinaUSA
| | - Zhigang Li
- Department of Plant and Environmental SciencesClemson UniversityClemsonSouth CarolinaUSA
| | - Priyanka Joshi
- Department of Plant and Environmental SciencesClemson UniversityClemsonSouth CarolinaUSA
| | - Jerry W. Jenkins
- Genome Sequencing CenterHudsonAlpha Institute for BiotechnologyHuntsvilleAlabamaUSA
| | - Christopher Plott
- Genome Sequencing CenterHudsonAlpha Institute for BiotechnologyHuntsvilleAlabamaUSA
| | - Ada Stewart
- Genome Sequencing CenterHudsonAlpha Institute for BiotechnologyHuntsvilleAlabamaUSA
| | - Jenell Webber
- Genome Sequencing CenterHudsonAlpha Institute for BiotechnologyHuntsvilleAlabamaUSA
| | | | | | - Christopher A. Saski
- Department of Plant and Environmental SciencesClemson UniversityClemsonSouth CarolinaUSA
| |
Collapse
|
2
|
Lu J, Sun K, Yang W, Mou Y, Zhang R, Voegele RT, Kang Z, Guo J, Guo J. The wheat stripe rust effector PstEXLX1 inhibits formate dehydrogenase activity to suppress immunity in wheat. PLANT PHYSIOLOGY 2025; 197:kiaf083. [PMID: 39977245 DOI: 10.1093/plphys/kiaf083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/03/2025] [Accepted: 01/18/2025] [Indexed: 02/22/2025]
Abstract
Effectors are the most critical weapons that Puccinia striiformis f. sp. tritici (Pst) employs to engage with wheat (Triticum aestivum L.). Discovering important effectors is essential for deciphering the pathogenic mechanisms of Pst. In this study, we identified the expansin-like protein 1 from Pst (PstEXLX1), which suppresses cell death in Nicotiana benthamiana. In wheat, knockdown of PstEXLX1 diminished Pst development, whereas PstEXLX1 overexpression enhanced Pst virulence by inhibiting pathogen-associated molecular pattern-triggered immunity, indicating its importance in pathogenesis. Further investigation revealed that PstEXLX1 stabilizes itself through self-association mediated by its expansin-like domain, which also determines its association with the wheat formate dehydrogenase (FDH) TaFDH1. Wheat lines overexpressing TaFDH1 exhibited increased resistance to Pst, which was associated with elevated TaFDH1 catalytic activity and induced defense responses. In addition, TaFDH1 activity was strongly inhibited in the presence of PstEXLX1 but became more robust in PstEXLX1-silenced plants, suggesting that PstEXLX1 suppresses TaFDH1 activity. Collectively, our results uncover a strategy employed by Pst to facilitate infection, wherein PstEXLX1 suppresses TaFDH1 activity to repress host immune responses.
Collapse
Affiliation(s)
- Jingwei Lu
- State Key Laboratory for Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Kexin Sun
- State Key Laboratory for Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wenxin Yang
- State Key Laboratory for Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ying Mou
- State Key Laboratory for Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ruijie Zhang
- State Key Laboratory for Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ralf T Voegele
- Institute of Phytomedicine, University of Hohenheim, Stuttgart 70599, Germany
| | - Zhensheng Kang
- State Key Laboratory for Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jia Guo
- State Key Laboratory for Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jun Guo
- State Key Laboratory for Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
3
|
Brownlee C, Wheeler GL. Cellular calcium homeostasis and regulation of its dynamic perturbation. QUANTITATIVE PLANT BIOLOGY 2025; 6:e5. [PMID: 40070722 PMCID: PMC11894410 DOI: 10.1017/qpb.2025.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 03/14/2025]
Abstract
Calcium ions (Ca2+) play pivotal roles in a host of cellular signalling processes. The requirement to maintain resting cytosolic Ca2+ levels in the 100-200 nM range provides a baseline for dynamic excursions from resting levels that determine the nature of many physiological responses to external stimuli and developmental processes. This review provides an overview of the key components of the Ca2+ homeostatic machinery, including known channel-mediated Ca2+ entry pathways along with transporters that act to shape the cytosolic Ca2+ signature. The relative roles of the vacuole and endoplasmic reticulum as sources or sinks for cytosolic Ca2+ are considered, highlighting significant gaps in our understanding. The components contributing to mitochondrial, chloroplast and nuclear Ca2+ homeostasis and organellar Ca2+ signals are also considered. Taken together, a complex picture of the cellular Ca2+ homeostatic machinery emerges with some clear differences from mechanisms operating in many animal cells.
Collapse
Affiliation(s)
- Colin Brownlee
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, UK
- School of Ocean and Earth Sciences, University of Southampton, Southampton, UK
| | - Glen L. Wheeler
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, UK
| |
Collapse
|
4
|
Wang L, Shi Q, Pan Y, Shi L, Huang X. ROS and Ca 2+ signaling involved in important lipid changes of Chlorella pyrenoidosa under nitrogen stress conditions. PLANTA 2024; 260:39. [PMID: 38951320 DOI: 10.1007/s00425-024-04471-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024]
Abstract
MAIN CONCLUSION Nitrogen stress altered important lipid parameters and related genes in Chlorella pyrenoidosa via ROS and Ca2+ signaling. The mutual interference between ROS and Ca2+ signaling was also uncovered. The changed mechanisms of lipid parameters (especially lipid classes and unsaturation of fatty acids) in microalgae are not completely well known under nitrogen stress. Therefore, Chlorella pyrenoidosa was exposed to 0, 0.5, 1 and 1.5 g L-1 NaNO3 for 4 days. Then, the physiological and biochemical changes were measured. It was shown that the total lipid contents, neutral lipid ratios as well as their related genes (accD and DGAT) increased obviously while the polar lipid ratios, degrees of unsaturation as well as their related genes (PGP and desC) decreased significantly in nitrogen stress groups. The obvious correlations supported that gene expressions should be the necessary pathways to regulate the lipid changes in C. pyrenoidosa under nitrogen stress. The changes in ROS and Ca2+ signaling as well as their significant correlations with corresponding genes and lipid parameters were analyzed. The results suggested that ROS and Ca2+ may regulate these gene expressions and lipid changes in C. pyrenoidosa under nitrogen stress conditions. This was verified by the subordinate tests with an ROS inhibitor and calcium reagents. It also uncovered the clues of mutual interference between ROS and Ca2+ signaling. To summarize, this study revealed the signaling pathways of important lipid changes in microalgae under N stress.
Collapse
Affiliation(s)
- Liufu Wang
- China-ASEAN "The Belt and Road" Joint Laboratory of Marine Culture Technology (Shanghai), Shanghai Ocean University, Shanghai, 201306, China
| | - Qiang Shi
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yingying Pan
- China-ASEAN "The Belt and Road" Joint Laboratory of Marine Culture Technology (Shanghai), Shanghai Ocean University, Shanghai, 201306, China
| | - Liqiu Shi
- China-ASEAN "The Belt and Road" Joint Laboratory of Marine Culture Technology (Shanghai), Shanghai Ocean University, Shanghai, 201306, China
| | - Xuxiong Huang
- China-ASEAN "The Belt and Road" Joint Laboratory of Marine Culture Technology (Shanghai), Shanghai Ocean University, Shanghai, 201306, China.
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Nanhui New City, No.999, Huchenghuan Road, Shanghai, 201306, People's Republic of China.
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, 201306, China.
| |
Collapse
|
5
|
Bakshi A, Choi WG, Kim SH, Gilroy S. The vacuolar Ca 2+ transporter CATION EXCHANGER 2 regulates cytosolic calcium homeostasis, hypoxic signaling, and response to flooding in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2023; 240:1830-1847. [PMID: 37743731 DOI: 10.1111/nph.19274] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023]
Abstract
Flooding represents a major threat to global agricultural productivity and food security, but plants are capable of deploying a suite of adaptive responses that can lead to short- or longer-term survival to this stress. One cellular pathway thought to help coordinate these responses is via flooding-triggered Ca2+ signaling. We have mined publicly available transcriptomic data from Arabidopsis subjected to flooding or low oxygen stress to identify rapidly upregulated, Ca2+ -related transcripts. We then focused on transporters likely to modulate Ca2+ signals. Candidates emerging from this analysis included AUTOINHIBITED Ca2+ ATPASE 1 and CATION EXCHANGER 2. We therefore assayed mutants in these genes for flooding sensitivity at levels from growth to patterns of gene expression and the kinetics of flooding-related Ca2+ changes. Knockout mutants in CAX2 especially showed enhanced survival to soil waterlogging coupled with suppressed induction of many marker genes for hypoxic response and constitutive activation of others. CAX2 mutants also generated larger and more sustained Ca2+ signals in response to both flooding and hypoxic challenges. CAX2 is a Ca2+ transporter located on the tonoplast, and so these results are consistent with an important role for vacuolar Ca2+ transport in the signaling systems that trigger flooding response.
Collapse
Affiliation(s)
- Arkadipta Bakshi
- Department of Botany, University of Wisconsin, Birge Hall, 430 Lincoln Dr., Madison, WI, 53706, USA
| | - Won-Gyu Choi
- Department of Biochemistry and Molecular Biology, 1664 N. Virginia St, Reno, NV, 89557, USA
| | - Su-Hwa Kim
- Department of Biochemistry and Molecular Biology, 1664 N. Virginia St, Reno, NV, 89557, USA
| | - Simon Gilroy
- Department of Botany, University of Wisconsin, Birge Hall, 430 Lincoln Dr., Madison, WI, 53706, USA
| |
Collapse
|
6
|
Costa A, Resentini F, Buratti S, Bonza MC. Plant Ca 2+-ATPases: From biochemistry to signalling. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119508. [PMID: 37290725 DOI: 10.1016/j.bbamcr.2023.119508] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023]
Abstract
Calcium (Ca2+)-ATPases are ATP-dependent enzymes that transport Ca2+ ions against their electrochemical gradient playing the fundamental biological function of keeping the free cytosolic Ca2+ concentration in the submicromolar range to prevent cytotoxic effects. In plants, type IIB autoinhibited Ca2+-ATPases (ACAs) are localised both at the plasma membrane and at the endomembranes including endoplasmic reticulum (ER) and tonoplast and their activity is primarily regulated by Ca2+-dependent mechanisms. Instead, type IIA ER-type Ca2+-ATPases (ECAs) are present mainly at the ER and Golgi Apparatus membranes and are active at resting Ca2+. Whereas research in plants has historically focused on the biochemical characterization of these pumps, more recently the attention has been also addressed on the physiological roles played by the different isoforms. This review aims to highlight the main biochemical properties of both type IIB and type IIA Ca2+ pumps and their involvement in the shaping of cellular Ca2+ dynamics induced by different stimuli.
Collapse
Affiliation(s)
- Alex Costa
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milano, Italy; Institute of Biophysics, National Research Council of Italy (CNR), 20133 Milano, Italy.
| | - Francesca Resentini
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milano, Italy
| | - Stefano Buratti
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milano, Italy.
| | - Maria Cristina Bonza
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milano, Italy.
| |
Collapse
|
7
|
Pantazopoulou CK, Buti S, Nguyen CT, Oskam L, Weits DA, Farmer EE, Kajala K, Pierik R. Mechanodetection of neighbor plants elicits adaptive leaf movements through calcium dynamics. Nat Commun 2023; 14:5827. [PMID: 37730832 PMCID: PMC10511701 DOI: 10.1038/s41467-023-41530-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 09/07/2023] [Indexed: 09/22/2023] Open
Abstract
Plants detect their neighbors via various cues, including reflected light and touching of leaf tips, which elicit upward leaf movement (hyponasty). It is currently unknown how touch is sensed and how the signal is transferred from the leaf tip to the petiole base that drives hyponasty. Here, we show that touch-induced hyponasty involves a signal transduction pathway that is distinct from light-mediated hyponasty. We found that mechanostimulation of the leaf tip upon touching causes cytosolic calcium ([Ca2+]cyt induction in leaf tip trichomes that spreads towards the petiole. Both perturbation of the calcium response and the absence of trichomes reduce touch-induced hyponasty. Finally, using plant competition assays, we show that touch-induced hyponasty is adaptive in dense stands of Arabidopsis. We thus establish a novel, adaptive mechanism regulating hyponastic leaf movement in response to mechanostimulation by neighbors in dense vegetation.
Collapse
Affiliation(s)
- Chrysoula K Pantazopoulou
- Plant-Environment Signaling, Institute of Environment Biology, Utrecht University, Utrecht, The Netherlands.
| | - Sara Buti
- Plant-Environment Signaling, Institute of Environment Biology, Utrecht University, Utrecht, The Netherlands
| | - Chi Tam Nguyen
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Lisa Oskam
- Plant-Environment Signaling, Institute of Environment Biology, Utrecht University, Utrecht, The Netherlands
| | - Daan A Weits
- Plant-Environment Signaling, Institute of Environment Biology, Utrecht University, Utrecht, The Netherlands
| | - Edward E Farmer
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Kaisa Kajala
- Plant-Environment Signaling, Institute of Environment Biology, Utrecht University, Utrecht, The Netherlands
| | - Ronald Pierik
- Plant-Environment Signaling, Institute of Environment Biology, Utrecht University, Utrecht, The Netherlands.
- Laboratory of Molecular Biology, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
8
|
Folke Olsen L. Complex dynamics in an unexplored simple model of the peroxidase-oxidase reaction. CHAOS (WOODBURY, N.Y.) 2023; 33:023102. [PMID: 36859227 DOI: 10.1063/5.0129095] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
A previously overlooked version of the so-called Olsen model of the peroxidase-oxidase reaction has been studied numerically using 2D isospike stability and maximum Lyapunov exponent diagrams and reveals a rich variety of dynamic behaviors not observed before. The model has a complex bifurcation structure involving mixed-mode and bursting oscillations as well as quasiperiodic and chaotic dynamics. In addition, multiple periodic and non-periodic attractors coexist for the same parameters. For some parameter values, the model also reveals formation of mosaic patterns of complex dynamic states. The complex dynamic behaviors exhibited by this model are compared to those of another version of the same model, which has been studied in more detail. The two models show similarities, but also notable differences between them, e.g., the organization of mixed-mode oscillations in parameter space and the relative abundance of quasiperiodic and chaotic oscillations. In both models, domains with chaotic dynamics contain apparently disorganized subdomains of periodic attractors with dinoflagellate-like structures, while the domains with mainly quasiperiodic behavior contain subdomains with periodic attractors organized as regular filamentous structures. These periodic attractors seem to be organized according to Stern-Brocot arithmetics. Finally, it appears that toroidal (quasiperiodic) attractors develop into first wrinkled and then fractal tori before they break down to chaotic attractors.
Collapse
Affiliation(s)
- Lars Folke Olsen
- PhyLife, Institute of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|
9
|
Jiang Y, Ding P. Calcium signaling in plant immunity: a spatiotemporally controlled symphony. TRENDS IN PLANT SCIENCE 2023; 28:74-89. [PMID: 36504136 DOI: 10.1016/j.tplants.2022.11.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
Calcium ions (Ca2+) are prominent intracellular messengers in all eukaryotic cells. Recent studies have emphasized the crucial roles of Ca2+ in plant immunity. Here, we review the latest progress on the spatiotemporal control of Ca2+ function in plant immunity. We discuss discoveries of how Ca2+ influx is triggered upon the activation of immune receptors, how Ca2+-permeable channels are activated, how Ca2+ signals are decoded inside plant cells, and how these signals are switched off. Despite recent advances, many open questions remain and we highlight the existing toolkit and the new technologies to address the outstanding questions of Ca2+ signaling in plant immunity.
Collapse
Affiliation(s)
- Yuxiang Jiang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Pingtao Ding
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, Leiden 2333, BE, The Netherlands.
| |
Collapse
|
10
|
Michailidis M, Titeli VS, Karagiannis E, Feidaki K, Ganopoulos I, Tanou G, Argiriou A, Molassiotis A. Tissue-specific transcriptional analysis outlines calcium-induced core metabolic changes in sweet cherry fruit. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 189:139-152. [PMID: 36087439 DOI: 10.1016/j.plaphy.2022.08.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/15/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
The role of calcium in fruit ripening has been established, however knowledge regarding the molecular analysis at fruit tissue-level is still lacking. To address this, we examined the impact of foliar-applied calcium (0.5% CaCl2) in the ripening metabolism in skin and flesh tissues of the sweet cherry 'Tragana Edessis' fruit at the harvest stage. Exogenously applied calcium increased endogenous calcium level in flesh tissue and reduced fruit respiration rate and cracking traits. Fruit metabolomic along with transcriptomic analysis unraveled common and tissue-specific metabolic pathways associated with calcium feeding. Treatment with calcium diminished several alcohols (arabitol, sorbitol), sugars (fructose, maltose), acids (glyceric acid, threonic acid) and increased ribose and proline in both fruit tissues. Moreover, numerous primary metabolites, such as proline and galacturonic acid, were differentially accumulated in calcium-exposed tissues. Calcium-affected genes that involved in ubiquitin/ubl conjugation and cell wall biogenesis/degradation were differentially expressed between skin and flesh samples. Notably, skin and flesh tissues shared common calcium-responsive genes and exhibited substantial similarity in their expression patterns. In both tissues, calcium activated gene expression, most strongly those involved in plant-pathogen interaction, plant hormone signaling and MAPK signaling pathway, thus affecting related metabolic processes. By contrast, calcium depressed the expression of genes related to TCA cycle, oxidative phosphorylation, and starch/sucrose metabolism in both tissues. This work established both calcium-driven common and specialized metabolic suites in skin and flesh cherry tissues, demonstrating the utility of this approach to characterize fundamental aspects of calcium in fruit physiology.
Collapse
Affiliation(s)
- Michail Michailidis
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, Thessaloniki, Thermi, 57001, Greece
| | - Vaia Styliani Titeli
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, Thessaloniki, Thermi, 57001, Greece
| | - Evangelos Karagiannis
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, Thessaloniki, Thermi, 57001, Greece
| | - Kyriaki Feidaki
- Center for Research and Technology Hellas, Institute of Applied Biosciences, P.O. Box 60361, Thessaloniki, GR, 57001, Greece
| | - Ioannis Ganopoulos
- Institute of Plant Breeding and Genetic Resources, ELGO-DEMETER, Thessaloniki, Thermi, 57001, Greece; Joint Laboratory of Horticulture, ELGO-DEMETER, Thessaloniki, Thermi, 57001, Greece
| | - Georgia Tanou
- Joint Laboratory of Horticulture, ELGO-DEMETER, Thessaloniki, Thermi, 57001, Greece; Institute of Soil and Water Resources, ELGO-DEMETER, Thessaloniki, Thermi, 57001, Greece
| | - Anagnostis Argiriou
- Center for Research and Technology Hellas, Institute of Applied Biosciences, P.O. Box 60361, Thessaloniki, GR, 57001, Greece
| | - Athanassios Molassiotis
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, Thessaloniki, Thermi, 57001, Greece.
| |
Collapse
|
11
|
Matthus E, Wilkins KA, Mohammad-Sidik A, Ning Y, Davies JM. Spatial origin of the extracellular ATP-induced cytosolic calcium signature in Arabidopsis thaliana roots: wave formation and variation with phosphate nutrition. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:863-873. [PMID: 35395136 DOI: 10.1111/plb.13427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Extracellular ATP (eATP) increases cytosolic free calcium ([Ca2+ ]cyt ) as a specific second messenger 'signature' through the plasma membrane DORN1/P2K1 receptor. Previous studies revealed a biphasic signature in Arabidopsis thaliana roots that is altered by inorganic phosphate (Pi) deprivation. The relationship between the two phases of the signature and possible wave formation have been tested as a function of Pi nutrition. The bioluminescent aequorin and intensiometric GCaMP3 reporters were used to resolve the spatial origin of the eATP [Ca2+ ]cyt signature in Arabidopsis root tips. Application of eATP only to the root apex allowed [Ca2+ ]cyt wave resolution without the confounding effects of eATP delivery by superfusion. The first apical millimetre of the root generates the first [Ca2+ ]cyt increase by eATP, regardless of nutritional status. The second increase occurs sub-apically in the root hair zone, has some autonomy and is significantly reduced in Pi-starved roots. A significant component of the Pi-replete signature does not require DORN1/P2K1, but Pi-starved roots appear to have an absolute requirement for that receptor. Application of eATP specifically to the root apex provides evidence for cell-to-cell propagation of a [Ca2+ ]cyt wave that diminishes sub-apically. The apex maintains a robust [Ca2+ ]cyt increase (even under Pi starvation) that is the basis of a propagative wave, with implications for the ability of the root's eATP signalling systems to signal systemically. Partial autonomy of the sub-apical region may be relevant to the perception of eATP from microbes. eATP-induced [Ca2+ ]cyt increase may not have always have an obligate requirement for DORN1/P2K1.
Collapse
Affiliation(s)
- E Matthus
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - K A Wilkins
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - A Mohammad-Sidik
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Y Ning
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - J M Davies
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
12
|
Allan C, Morris RJ, Meisrimler CN. Encoding, transmission, decoding, and specificity of calcium signals in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3372-3385. [PMID: 35298633 PMCID: PMC9162177 DOI: 10.1093/jxb/erac105] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Calcium acts as a signal and transmits information in all eukaryotes. Encoding machinery consisting of calcium channels, stores, buffers, and pumps can generate a variety of calcium transients in response to external stimuli, thus shaping the calcium signature. Mechanisms for the transmission of calcium signals have been described, and a large repertoire of calcium binding proteins exist that can decode calcium signatures into specific responses. Whilst straightforward as a concept, mysteries remain as to exactly how such information processing is biochemically implemented. Novel developments in imaging technology and genetically encoded sensors (such as calcium indicators), in particular for multi-signal detection, are delivering exciting new insights into intra- and intercellular calcium signaling. Here, we review recent advances in characterizing the encoding, transmission, and decoding mechanisms, with a focus on long-distance calcium signaling. We present technological advances and computational frameworks for studying the specificity of calcium signaling, highlight current gaps in our understanding and propose techniques and approaches for unravelling the underlying mechanisms.
Collapse
Affiliation(s)
- Claudia Allan
- University of Canterbury, School of Biological Science, Christchurch, New Zealand
| | - Richard J Morris
- Computational and Systems Biology, John Innes Centre, Norwich, UK
| | | |
Collapse
|
13
|
Xu G, Moeder W, Yoshioka K, Shan L. A tale of many families: calcium channels in plant immunity. THE PLANT CELL 2022; 34:1551-1567. [PMID: 35134212 PMCID: PMC9048905 DOI: 10.1093/plcell/koac033] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/26/2022] [Indexed: 05/24/2023]
Abstract
Plants launch a concerted immune response to dampen potential infections upon sensing microbial pathogen and insect invasions. The transient and rapid elevation of the cytosolic calcium concentration [Ca2+]cyt is among the essential early cellular responses in plant immunity. The free Ca2+ concentration in the apoplast is far higher than that in the resting cytoplasm. Thus, the precise regulation of calcium channel activities upon infection is the key for an immediate and dynamic Ca2+ influx to trigger downstream signaling. Specific Ca2+ signatures in different branches of the plant immune system vary in timing, amplitude, duration, kinetics, and sources of Ca2+. Recent breakthroughs in the studies of diverse groups of classical calcium channels highlight the instrumental role of Ca2+ homeostasis in plant immunity and cell survival. Additionally, the identification of some immune receptors as noncanonical Ca2+-permeable channels opens a new view of how immune receptors initiate cell death and signaling. This review aims to provide an overview of different Ca2+-conducting channels in plant immunity and highlight their molecular and genetic mode-of-actions in facilitating immune signaling. We also discuss the regulatory mechanisms that control the stability and activity of these channels.
Collapse
Affiliation(s)
- Guangyuan Xu
- MOA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wolfgang Moeder
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2
| | - Keiko Yoshioka
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2
- Center for the Analysis of Genome Evolution and Function (CAGEF), University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2
| | - Libo Shan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
14
|
|
15
|
Marcec MJ, Tanaka K. Crosstalk between Calcium and ROS Signaling during Flg22-Triggered Immune Response in Arabidopsis Leaves. PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010014. [PMID: 35009017 PMCID: PMC8747291 DOI: 10.3390/plants11010014] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 05/27/2023]
Abstract
Calcium and reactive oxygen species (ROS) are two of the earliest second messengers in response to environmental stresses in plants. The rise and sequestration of these messengers in the cytosol and apoplast are formed by various channels, transporters, and enzymes that are required for proper defense responses. It remains unclear how calcium and ROS signals regulate each other during pattern-triggered immunity (PTI). In the present study, we examined the effects of perturbing one signal on the other in Arabidopsis leaves upon the addition of flg22, a well-studied microbe-associated molecular pattern (MAMP). To this end, a variety of pharmacological agents were used to suppress either calcium or ROS signaling. Our data suggest that cytosolic calcium elevation is required to initiate and regulate apoplastic ROS production generated by respiratory burst oxidase homologs (RBOHs). In contrast, ROS has no effect on the initiation of the calcium signal, but is required for forming a sufficient amplitude of the calcium signal. This finding using pharmacological agents is corroborated by the result of using a genetic double mutant, rbohd rbohf. Our study provides an insight into the mutual interplay of calcium and ROS signals during the MAMP-induced PTI response in plants.
Collapse
Affiliation(s)
- Matthew J. Marcec
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA;
- Molecular Plant Sciences Program, Washington State University, Pullman, WA 99164, USA
| | - Kiwamu Tanaka
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA;
- Molecular Plant Sciences Program, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
16
|
Resentini F, Ruberti C, Grenzi M, Bonza MC, Costa A. The signatures of organellar calcium. PLANT PHYSIOLOGY 2021; 187:1985-2004. [PMID: 33905517 PMCID: PMC8644629 DOI: 10.1093/plphys/kiab189] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/10/2021] [Indexed: 05/23/2023]
Abstract
Recent insights about the transport mechanisms involved in the in and out of calcium ions in plant organelles, and their role in the regulation of cytosolic calcium homeostasis in different signaling pathways.
Collapse
Affiliation(s)
| | - Cristina Ruberti
- Department of Biosciences, University of Milan, Milano 20133, Italy
| | - Matteo Grenzi
- Department of Biosciences, University of Milan, Milano 20133, Italy
| | | | - Alex Costa
- Department of Biosciences, University of Milan, Milano 20133, Italy
- Institute of Biophysics, National Research Council of Italy (CNR), Milano 20133, Italy
| |
Collapse
|
17
|
Electrical Signaling of Plants under Abiotic Stressors: Transmission of Stimulus-Specific Information. Int J Mol Sci 2021; 22:ijms221910715. [PMID: 34639056 PMCID: PMC8509212 DOI: 10.3390/ijms221910715] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/16/2022] Open
Abstract
Plants have developed complex systems of perception and signaling to adapt to changing environmental conditions. Electrical signaling is one of the most promising candidates for the regulatory mechanisms of the systemic functional response under the local action of various stimuli. Long-distance electrical signals of plants, such as action potential (AP), variation potential (VP), and systemic potential (SP), show specificities to types of inducing stimuli. The systemic response induced by a long-distance electrical signal, representing a change in the activity of a complex of molecular-physiological processes, includes a nonspecific component and a stimulus-specific component. This review discusses possible mechanisms for transmitting information about the nature of the stimulus and the formation of a specific systemic response with the participation of electrical signals induced by various abiotic factors.
Collapse
|
18
|
Yuan P, Tanaka K, Poovaiah BW. Calmodulin-binding transcription activator AtSR1/CAMTA3 fine-tunes plant immune response by transcriptional regulation of the salicylate receptor NPR1. PLANT, CELL & ENVIRONMENT 2021; 44:3140-3154. [PMID: 34096631 DOI: 10.1111/pce.14123] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/26/2021] [Accepted: 05/30/2021] [Indexed: 05/27/2023]
Abstract
Calcium (Ca2+ ) signalling regulates salicylic acid (SA)-mediated immune response through calmodulin-meditated transcriptional activators, AtSRs/CAMTAs, but its mechanism is not fully understood. Here, we report an AtSR1/CAMTA3-mediated regulatory mechanism involving the expression of the SA receptor, NPR1. Results indicate that the transcriptional expression of NPR1 was regulated by AtSR1 binding to a CGCG box in the NPR1 promotor. The atsr1 mutant exhibited resistance to the virulent strain of Pseudomonas syringae pv. tomato (Pst), however, was susceptible to an avirulent Pst strain carrying avrRpt2, due to the failure of the induction of hypersensitive responses. These resistant/susceptible phenotypes in the atsr1 mutant were reversed in the npr1 mutant background, suggesting that AtSR1 regulates NPR1 as a downstream target during plant immune response. The virulent Pst strain triggered a transient elevation in intracellular Ca2+ concentration, whereas the avirulent Pst strain triggered a prolonged change. The distinct Ca2+ signatures were decoded into the regulation of NPR1 expression through AtSR1's IQ motif binding with Ca2+ -free-CaM2, while AtSR1's calmodulin-binding domain with Ca2+ -bound-CaM2. These observations reveal a role for AtSR1 as a Ca2+ -mediated transcription regulator in controlling the NPR1-mediated plant immune response.
Collapse
Affiliation(s)
- Peiguo Yuan
- Department of Horticulture, Washington State University, Pullman, Washington, USA
| | - Kiwamu Tanaka
- Department of Plant Pathology, Washington State University, Pullman, Washington, USA
| | - B W Poovaiah
- Department of Horticulture, Washington State University, Pullman, Washington, USA
| |
Collapse
|
19
|
Lee HJ, Seo PJ. Ca 2+talyzing Initial Responses to Environmental Stresses. TRENDS IN PLANT SCIENCE 2021; 26:849-870. [PMID: 33706981 DOI: 10.1016/j.tplants.2021.02.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 05/24/2023]
Abstract
Plants have evolved stress-sensing machineries that initiate rapid adaptive environmental stress responses. Cytosolic calcium ion (Ca2+) is the most prominent second messenger that couples extracellular signals with specific intracellular responses. Essential early events that generate a cytosolic Ca2+ spike in response to environmental stress are starting to emerge. We review sensory machineries, including ion channels and transporters, which perceive various stress stimuli and allow cytosolic Ca2+ influx. We highlight integrative roles of Ca2+ channels in plant responses to various environmental stresses, as well as possible interplay of Ca2+ with other early signaling components, which facilitates signal propagation for systemic spread and spatiotemporal variations in respect to external cues. The early Ca2+ signaling schemes inspire the identification of additional stress sensors.
Collapse
Affiliation(s)
- Hyo-Jun Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul 08826, Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
20
|
Klejchova M, Silva-Alvim FAL, Blatt MR, Alvim JC. Membrane voltage as a dynamic platform for spatiotemporal signaling, physiological, and developmental regulation. PLANT PHYSIOLOGY 2021; 185:1523-1541. [PMID: 33598675 PMCID: PMC8133626 DOI: 10.1093/plphys/kiab032] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/11/2021] [Indexed: 05/10/2023]
Abstract
Membrane voltage arises from the transport of ions through ion-translocating ATPases, ion-coupled transport of solutes, and ion channels, and is an integral part of the bioenergetic "currency" of the membrane. The dynamics of membrane voltage-so-called action, systemic, and variation potentials-have also led to a recognition of their contributions to signal transduction, both within cells and across tissues. Here, we review the origins of our understanding of membrane voltage and its place as a central element in regulating transport and signal transmission. We stress the importance of understanding voltage as a common intermediate that acts both as a driving force for transport-an electrical "substrate"-and as a product of charge flux across the membrane, thereby interconnecting all charge-carrying transport across the membrane. The voltage interconnection is vital to signaling via second messengers that rely on ion flux, including cytosolic free Ca2+, H+, and the synthesis of reactive oxygen species generated by integral membrane, respiratory burst oxidases. These characteristics inform on the ways in which long-distance voltage signals and voltage oscillations give rise to unique gene expression patterns and influence physiological, developmental, and adaptive responses such as systemic acquired resistance to pathogens and to insect herbivory.
Collapse
Affiliation(s)
- Martina Klejchova
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Fernanda A L Silva-Alvim
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
- Author for communication:
| | - Jonas Chaves Alvim
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
21
|
Iqbal Z, Shariq Iqbal M, Singh SP, Buaboocha T. Ca 2+/Calmodulin Complex Triggers CAMTA Transcriptional Machinery Under Stress in Plants: Signaling Cascade and Molecular Regulation. FRONTIERS IN PLANT SCIENCE 2020; 11:598327. [PMID: 33343600 PMCID: PMC7744605 DOI: 10.3389/fpls.2020.598327] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/30/2020] [Indexed: 05/21/2023]
Abstract
Calcium (Ca2+) ion is a critical ubiquitous intracellular second messenger, acting as a lead currency for several distinct signal transduction pathways. Transient perturbations in free cytosolic Ca2+ ([Ca2+]cyt) concentrations are indispensable for the translation of signals into adaptive biological responses. The transient increase in [Ca2+]cyt levels is sensed by an array of Ca2+ sensor relay proteins such as calmodulin (CaM), eventually leading to conformational changes and activation of CaM. CaM, in a Ca2+-dependent manner, regulates several transcription factors (TFs) that are implicated in various molecular, physiological, and biochemical functions in cells. CAMTA (calmodulin-binding transcription activator) is one such member of the Ca2+-loaded CaM-dependent family of TFs. The present review focuses on Ca2+ as a second messenger, its interaction with CaM, and Ca2+/CaM-mediated CAMTA transcriptional regulation in plants. The review recapitulates the molecular and physiological functions of CAMTA in model plants and various crops, confirming its probable involvement in stress signaling pathways and overall plant development. Studying Ca2+/CaM-mediated CAMTA TF will help in answering key questions concerning signaling cascades and molecular regulation under stress conditions and plant growth, thus improving our knowledge for crop improvement.
Collapse
Affiliation(s)
- Zahra Iqbal
- Molecular Crop Research Unit, Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand
| | - Mohammed Shariq Iqbal
- Amity Institute of Biotechnology, Amity University, Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Surendra Pratap Singh
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, India
| | - Teerapong Buaboocha
- Molecular Crop Research Unit, Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
22
|
Distinct Molecular Pattern-Induced Calcium Signatures Lead to Different Downstream Transcriptional Regulations via AtSR1/CAMTA3. Int J Mol Sci 2020; 21:ijms21218163. [PMID: 33142885 PMCID: PMC7662696 DOI: 10.3390/ijms21218163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/24/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022] Open
Abstract
Plants encrypt the perception of different pathogenic stimuli into specific intracellular calcium (Ca2+) signatures and subsequently decrypt the signatures into appropriate downstream responses through various Ca2+ sensors. Two microbe-associated molecular patterns (MAMPs), bacterial flg22 and fungal chitin, and one damage-associated molecular pattern (DAMP), AtPep1, were used to study the differential Ca2+ signatures in Arabidopsis leaves. The results revealed that flg22, chitin, and AtPep1 induced distinct changes in Ca2+ dynamics in both the cytosol and nucleus. In addition, Flg22 and chitin upregulated the expression of salicylic acid-related genes, ICS1 and EDS1, whereas AtPep1 upregulated the expression of jasmonic acid-related genes, JAZ1 and PDF1.2, in addition to ICS1 and EDS1. These data demonstrated that distinct Ca2+ signatures caused by different molecular patterns in leaf cells lead to specific downstream events. Furthermore, these changes in the expression of defense-related genes were disrupted in a knockout mutant of the AtSR1/CAMTA3 gene, encoding a calmodulin-binding transcription factor, in which a calmodulin-binding domain on AtSR1 was required for deciphering the Ca2+ signatures into downstream transcription events. These observations extend our knowledge regarding unique and intrinsic roles for Ca2+ signaling in launching and fine-tuning plant immune response, which are mediated by the AtSR1/CAMTA3 transcription factor.
Collapse
|
23
|
Hilleary R, Paez-Valencia J, Vens CS, Toyota M, Palmgren M, Gilroy S. Tonoplast-localized Ca 2+ pumps regulate Ca 2+ signals during pattern-triggered immunity in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2020; 117:18849-18857. [PMID: 32690691 PMCID: PMC7414185 DOI: 10.1073/pnas.2004183117] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
One of the major events of early plant immune responses is a rapid influx of Ca2+ into the cytosol following pathogen recognition. Indeed, changes in cytosolic Ca2+ are recognized as ubiquitous elements of cellular signaling networks and are thought to encode stimulus-specific information in their duration, amplitude, and frequency. Despite the wealth of observations showing that the bacterial elicitor peptide flg22 triggers Ca2+ transients, there remain limited data defining the molecular identities of Ca2+ transporters involved in shaping the cellular Ca2+ dynamics during the triggering of the defense response network. However, the autoinhibited Ca2+-ATPase (ACA) pumps that act to expel Ca2+ from the cytosol have been linked to these events, with knockouts in the vacuolar members of this family showing hypersensitive lesion-mimic phenotypes. We have therefore explored how the two tonoplast-localized pumps, ACA4 and ACA11, impact flg22-dependent Ca2+ signaling and related defense responses. The double-knockout aca4/11 exhibited increased basal Ca2+ levels and Ca2+ signals of higher amplitude than wild-type plants. Both the aberrant Ca2+ dynamics and associated defense-related phenotypes could be suppressed by growing the aca4/11 seedlings at elevated temperatures. Relocalization of ACA8 from its normal cellular locale of the plasma membrane to the tonoplast also suppressed the aca4/11 phenotypes but not when a catalytically inactive mutant was used. These observations indicate that regulation of vacuolar Ca2+ sequestration is an integral component of plant immune signaling, but also that the action of tonoplast-localized Ca2+ pumps does not require specific regulatory elements not found in plasma membrane-localized pumps.
Collapse
Affiliation(s)
- Richard Hilleary
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Julio Paez-Valencia
- Laboratory of Cell and Molecular Biology, Department of Botany and Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Cullen S Vens
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706
| | - Masatsugu Toyota
- Department of Biochemistry and Molecular Biology, Saitama University, Sakura-ku, 338-8570 Saitama, Japan
| | - Michael Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Simon Gilroy
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706;
| |
Collapse
|
24
|
Matthus E, Sun J, Wang L, Bhat MG, Mohammad-Sidik AB, Wilkins KA, Leblanc-Fournier N, Legué V, Moulia B, Stacey G, Davies JM. DORN1/P2K1 and purino-calcium signalling in plants: making waves with extracellular ATP. ANNALS OF BOTANY 2020; 124:1227-1242. [PMID: 31904093 PMCID: PMC6943698 DOI: 10.1093/aob/mcz135] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND AIMS Extracellular ATP governs a range of plant functions, including cell viability, adaptation and cross-kingdom interactions. Key functions of extracellular ATP in leaves and roots may involve an increase in cytosolic free calcium as a second messenger ('calcium signature'). The main aim here was to determine to what extent leaf and root calcium responses require the DORN1/P2K1 extracellular ATP receptor in Arabidopsis thaliana. The second aim was to test whether extracellular ATP can generate a calcium wave in the root. METHODS Leaf and root responses to extracellular ATP were reviewed for their possible links to calcium signalling and DORN1/P2K1. Leaves and roots of wild type and dorn1 plants were tested for cytosolic calcium increase in response to ATP, using aequorin. The spatial abundance of DORN1/P2K1 in the root was estimated using green fluorescent protein. Wild type roots expressing GCaMP3 were used to determine the spatial variation of cytosolic calcium increase in response to extracellular ATP. KEY RESULTS Leaf and root ATP-induced calcium signatures differed markedly. The leaf signature was only partially dependent on DORN1/P2K1, while the root signature was fully dependent. The distribution of DORN1/P2K1 in the root supports a key role in the generation of the apical calcium signature. Root apical and sub-apical calcium signatures may operate independently of each other but an apical calcium increase can drive a sub-apical increase, consistent with a calcium wave. CONCLUSION DORN1 could underpin several calcium-related responses but it may not be the only receptor for extracellular ATP in Arabidopsis. The root has the capacity for a calcium wave, triggered by extracellular ATP at the apex.
Collapse
Affiliation(s)
- Elsa Matthus
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Jian Sun
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Limin Wang
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Madhura G Bhat
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | | | - Katie A Wilkins
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | | | - Valérie Legué
- Université Clermont Auvergne, INRA, PIAF, Clermont-Ferrand, France
| | - Bruno Moulia
- Université Clermont Auvergne, INRA, PIAF, Clermont-Ferrand, France
| | - Gary Stacey
- Divisions of Plant Science and Biochemistry, University of Missouri, Columbia, MO, USA
| | - Julia M Davies
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
- For correspondence. E-mail
| |
Collapse
|
25
|
Li P, Lu YJ, Chen H, Day B. The Lifecycle of the Plant Immune System. CRITICAL REVIEWS IN PLANT SCIENCES 2020; 39:72-100. [PMID: 33343063 PMCID: PMC7748258 DOI: 10.1080/07352689.2020.1757829] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Throughout their life span, plants confront an endless barrage of pathogens and pests. To successfully defend against biotic threats, plants have evolved a complex immune system responsible for surveillance, perception, and the activation of defense. Plant immunity requires multiple signaling processes, the outcome of which vary according to the lifestyle of the invading pathogen(s). In short, these processes require the activation of host perception, the regulation of numerous signaling cascades, and transcriptome reprograming, all of which are highly dynamic in terms of temporal and spatial scales. At the same time, the development of a single immune event is subjective to the development of plant immune system, which is co-regulated by numerous processes, including plant ontogenesis and the host microbiome. In total, insight into each of these processes provides a fuller understanding of the mechanisms that govern plant-pathogen interactions. In this review, we will discuss the "lifecycle" of plant immunity: the development of individual events of defense, including both local and distal processes, as well as the development and regulation of the overall immune system by ontogenesis regulatory genes and environmental microbiota. In total, we will integrate the output of recent discoveries and theories, together with several hypothetical models, to present a dynamic portrait of plant immunity.
Collapse
Affiliation(s)
- Pai Li
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Yi-Ju Lu
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Huan Chen
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
- Graduate Program in Genetics and Genome Sciences, Michigan State University, East Lansing, MI, USA
| | - Brad Day
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
- Graduate Program in Genetics and Genome Sciences, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
26
|
Marcec MJ, Gilroy S, Poovaiah BW, Tanaka K. Mutual interplay of Ca 2+ and ROS signaling in plant immune response. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:343-354. [PMID: 31128705 DOI: 10.1016/j.plantsci.2019.03.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 05/20/2023]
Abstract
Second messengers are cellular chemicals that act as "language codes", allowing cells to pass outside information to the cell interior. The cells then respond through triggering downstream reactions, including transcriptional reprograming to affect appropriate adaptive responses. The spatiotemporal patterning of these stimuli-induced signal changes has been referred to as a "signature", which is detected, decoded, and transmitted to elicit these downstream cellular responses. Recent studies have suggested that dynamic changes in second messengers, such as calcium (Ca2+), reactive oxygen species (ROS), and nitric oxide (NO), serve as signatures for both intracellular signaling and cell-to-cell communications. These second messenger signatures work in concert with physical signal signatures (such as electrical and hydraulic waves) to create a "lock and key" mechanism that triggers appropriate response to highly varied stresses. In plants, detailed information of how these signatures deploy their downstream signaling networks remains to be elucidated. Recent evidence suggests a mutual interplay between Ca2+ and ROS signaling has important implications for fine-tuning cellular signaling networks in plant immunity. These two signaling mechanisms amplify each other and this interaction may be a critical element of their roles in information processing for plant defense responses.
Collapse
Affiliation(s)
- Matthew J Marcec
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA; Molecular Plant Sciences Program, Washington State University, Pullman, WA, 99164, USA
| | - Simon Gilroy
- Department of Botany, University of Wisconsin, Madison, WI, 53706, USA
| | - B W Poovaiah
- Molecular Plant Sciences Program, Washington State University, Pullman, WA, 99164, USA; Department of Horticulture, Washington State University, Pullman, WA, 99164, USA
| | - Kiwamu Tanaka
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA; Molecular Plant Sciences Program, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
27
|
Sabetta W, Vandelle E, Locato V, Costa A, Cimini S, Bittencourt Moura A, Luoni L, Graf A, Viggiano L, De Gara L, Bellin D, Blanco E, de Pinto MC. Genetic buffering of cyclic AMP in Arabidopsis thaliana compromises the plant immune response triggered by an avirulent strain of Pseudomonas syringae pv. tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:590-606. [PMID: 30735606 DOI: 10.1111/tpj.14275] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/23/2018] [Accepted: 01/24/2019] [Indexed: 05/21/2023]
Abstract
Cyclic AMP plays important roles in different physiological processes, including plant defence responses. However, as little information is known on plant enzymes responsible for cAMP production/degradation, studies of cAMP functions have relied, to date, on non-specific pharmacological approaches. We therefore developed a more reliable approach, producing transgenic Arabidopsis thaliana lines overexpressing the 'cAMP-sponge' (cAS), a genetic tool that specifically buffers cAMP levels. In response to an avirulent strain of Pseudomonas syringae pv. tomato (PstAvrB), cAS plants showed a higher bacterial growth and a reduced hypersensitive cell death in comparison with wild-type (WT) plants. The low cAMP availability after pathogen infection delayed cytosolic calcium elevation, as well as hydrogen peroxide increase and induction of redox systems. The proteomic analysis, performed 24 h post-infection, indicated that a core of 49 proteins was modulated in both genotypes, while 16 and 42 proteins were uniquely modulated in WT and cAS lines, respectively. The involvement of these proteins in the impairment of defence response in cAS plants is discussed in this paper. Moreover, in silico analysis revealed that the promoter regions of the genes coding for proteins uniquely accumulating in WT plants shared the CGCG motif, a target of the calcium-calmodulin-binding transcription factor AtSR1 (Arabidopsis thaliana signal responsive1). Therefore, following pathogen perception, the low free cAMP content, altering timing and levels of defence signals, and likely acting in part through the mis-regulation of AtSR1 activity, affected the speed and strength of the immune response.
Collapse
Affiliation(s)
- Wilma Sabetta
- Institute of Biosciences and Bioresources, CNR, Research Division Bari, Via Amendola 165/A, 70126, Bari, Italy
| | - Elodie Vandelle
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Vittoria Locato
- Unit of Food Science and Human Nutrition, University Camps Bio-Medico of Rome, via Alvaro del Portillo, 21, 00128, Rome, Italy
| | - Alex Costa
- Department of Biosciences, University of Milan, Via G. Celoria 26, 20133, Milano, Italy
| | - Sara Cimini
- Unit of Food Science and Human Nutrition, University Camps Bio-Medico of Rome, via Alvaro del Portillo, 21, 00128, Rome, Italy
| | | | - Laura Luoni
- Department of Biosciences, University of Milan, Via G. Celoria 26, 20133, Milano, Italy
| | - Alexander Graf
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Luigi Viggiano
- Department of Biology, University of Bari "Aldo Moro", Via Orabona 4, 70125, Bari, Italy
| | - Laura De Gara
- Unit of Food Science and Human Nutrition, University Camps Bio-Medico of Rome, via Alvaro del Portillo, 21, 00128, Rome, Italy
| | - Diana Bellin
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Emanuela Blanco
- Institute of Biosciences and Bioresources, CNR, Research Division Bari, Via Amendola 165/A, 70126, Bari, Italy
| | - Maria C de Pinto
- Department of Biology, University of Bari "Aldo Moro", Via Orabona 4, 70125, Bari, Italy
| |
Collapse
|
28
|
Wang Y, Wei F, Zhou H, Liu N, Niu X, Yan C, Zhang L, Han S, Hou C, Wang D. TaCAMTA4, a Calmodulin-Interacting Protein, Involved in Defense Response of Wheat to Puccinia triticina. Sci Rep 2019; 9:641. [PMID: 30679453 PMCID: PMC6345913 DOI: 10.1038/s41598-018-36385-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 11/15/2018] [Indexed: 11/09/2022] Open
Abstract
Leaf rust caused by Puccinia triticina is one of the main diseases affecting wheat (Triticum aestivum) production worldwide. Calmodulin (CaM) was found involved in the early stage of signal transduction pathway in response to P. triticina in wheat. To study the function and molecular mechanism of calmodulin (CaM) in signal transduction of wheat against P. triticina, we cloned a putative calmodulin-binding transcription activator (TaCAMTA4), and characterized its molecular structure and functions by using the CaM-encoding gene (TaCaM4-1) as a bait to screen the cDNA library from P. triticina infected wheat leaves. The open reading frame of TaCAMTA4 was 2505 bp encoding a protein of 834 aa, which contained all the four conserved domains of family (CG-1 domain, TIG domain, ANK repeats and CaM-binding domain). TaCaM4-1 bound to TaCAMTA4 by the C-terminal CaM-binding domain in Ca2+-dependent manner in the electrophoretic mobility shift assay (EMSA). Bimolecular fluorescence complementation (BiFC) analysis indicated that the interaction of TaCAMTA4 and TaCaM4-1 took place in the cytoplasm and nucleus of epidermal leaf cells in N. benthamiana. The expression level of TaCAMTA4 genes was down-regulated in incompatible combination after P. triticina infection. Furthermore, virus-induced gene silencing (VIGS)-based knockdown of TaCAMTA4 and disease assays verified that silencing of TaCAMTA4 resulted in enhanced resistance to P. triticina race 165. These results suggested that TaCAMTA4 function as negative regulator of defense response against P. triticina.
Collapse
Affiliation(s)
- Yuelin Wang
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agriculture University, Baoding, 071001, China
| | - Fengju Wei
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agriculture University, Baoding, 071001, China.
| | - Hui Zhou
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agriculture University, Baoding, 071001, China
| | - Na Liu
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agriculture University, Baoding, 071001, China
| | - Xiaonan Niu
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agriculture University, Baoding, 071001, China
| | - Chao Yan
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agriculture University, Baoding, 071001, China
| | - Lifeng Zhang
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agriculture University, Baoding, 071001, China
| | - Shengfang Han
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agriculture University, Baoding, 071001, China
| | - Chunyan Hou
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agriculture University, Baoding, 071001, China.
| | - Dongmei Wang
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agriculture University, Baoding, 071001, China.
| |
Collapse
|
29
|
Li Y, Fei X, Dai H, Li J, Zhu W, Deng X. Genome-Wide Identification of Calcium-Dependent Protein Kinases in Chlamydomonas reinhardtii and Functional Analyses in Nitrogen Deficiency-Induced Oil Accumulation. FRONTIERS IN PLANT SCIENCE 2019; 10:1147. [PMID: 31695707 PMCID: PMC6818280 DOI: 10.3389/fpls.2019.01147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 08/22/2019] [Indexed: 05/15/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) are recognized as important calcium (Ca2+) sensors in signal transduction and play multiple roles in plant growth and developmental processes, as well as in response to various environmental stresses. However, little information is available about the CDPK family in the green microalga Chlamydomonas reinhardtii. In this study, 15 CrCDPK genes were identified in C. reinhardtii genome, and their functions in nitrogen (N) deficiency-induced oil accumulation were analyzed. Our results showed that all CrCDPK proteins harbored the typical elongation factor (EF)-hand Ca2+-binding and protein kinase domains. Phylogenetic analysis revealed that these CrCDPKs were clustered into one group together with a subclade of several CPKs from Arabidopsis and rice, clearly separating from the remaining AtCPKs and OsCPKs. These genes were located in 10 chromosomes and one scaffold of C. reinhardtii and contained 6-17 exons. RNA sequencing and quantitative reverse transcription (qRT)-PCR assays indicated that most of these CrCDPKs were significantly induced by N deficiency and salt stress. Lanthanum chloride (LaCl3), a plasma membrane Ca2+ channel blocker, limited oil accumulation in C. reinhardtii under N-deficient conditions, suggesting that Ca2+ was involved in N deficiency-induced oil accumulation. Furthermore, RNA interference (RNAi) silencing analyses demonstrated that six CrCDPKs played positive roles and three CrCDPKs played negative roles in N deficiency-induced oil accumulation in C. reinhardtii.
Collapse
Affiliation(s)
- Yajun Li
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xiaowen Fei
- Biochemistry and Molecular Biology Department, Hainan Medical College, Haikou, China
| | - Haofu Dai
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jiangyue Li
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Weiju Zhu
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xiaodong Deng
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- *Correspondence: Xiaodong Deng,
| |
Collapse
|
30
|
Martins TV, Hammelman J, Marinova S, Ding CO, Morris RJ. An Information-Theoretical Approach for Calcium Signaling Specificity. IEEE Trans Nanobioscience 2018; 18:93-100. [PMID: 30561348 DOI: 10.1109/tnb.2018.2882223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Calcium is a key signaling agent in animals and plants. Its involvement in the regulation of a wide range of processes has led to the question of how calcium signals can activate stimulus-specific responses. We introduce a computational framework for studying intracellular calcium signaling using elements of information theory. We use mutual information to quantify the differential activation of proteins in response to different calcium signals to provide an operational definition of specificity. Using optimization procedures this framework allows us to explore the biochemical determinants of calcium decoding. We explore simple toy models and general binding kinetics approaches to demonstrate the utility and limitations of the proposed framework. Unravelling signaling specificity is key for understanding information processing within cells and for the future design of synthetic nanodevices for molecular communications.
Collapse
|
31
|
De Vriese K, Costa A, Beeckman T, Vanneste S. Pharmacological Strategies for Manipulating Plant Ca 2+ Signalling. Int J Mol Sci 2018; 19:E1506. [PMID: 29783646 PMCID: PMC5983822 DOI: 10.3390/ijms19051506] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/10/2018] [Accepted: 05/12/2018] [Indexed: 11/20/2022] Open
Abstract
Calcium is one of the most pleiotropic second messengers in all living organisms. However, signalling specificity is encoded via spatio-temporally regulated signatures that act with surgical precision to elicit highly specific cellular responses. How this is brought about remains a big challenge in the plant field, in part due to a lack of specific tools to manipulate/interrogate the plant Ca2+ toolkit. In many cases, researchers resort to tools that were optimized in animal cells. However, the obviously large evolutionary distance between plants and animals implies that there is a good chance observed effects may not be specific to the intended plant target. Here, we provide an overview of pharmacological strategies that are commonly used to activate or inhibit plant Ca2+ signalling. We focus on highlighting modes of action where possible, and warn for potential pitfalls. Together, this review aims at guiding plant researchers through the Ca2+ pharmacology swamp.
Collapse
Affiliation(s)
- Kjell De Vriese
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium.
- VIB Center for Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium.
| | - Alex Costa
- Department of Biosciences, University of Milan, 20133 Milan, Italy.
- Instititute of Biophysics, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy.
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium.
- VIB Center for Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium.
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium.
- VIB Center for Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium.
- Lab of Plant Growth Analysis, Ghent University Global Campus, Songdomunhwa-Ro, 119, Yeonsu-gu, Incheon 21985, Korea.
| |
Collapse
|
32
|
Costa A, Navazio L, Szabo I. The contribution of organelles to plant intracellular Calcium signalling. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4996169. [PMID: 29767757 DOI: 10.1093/jxb/ery185] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Indexed: 05/18/2023]
Abstract
Calcium (Ca2+) is among the most important intracellular messengers in living organisms. Understanding of the players and dynamics of Ca2+ signalling pathways in plants may help to unravel the molecular basis of their exceptional flexibility to respond and to adapt to different stimuli. In the present review we focus on new tools that have recently revolutionized our view of organellar Ca2+ signalling as well as on the current knowledge regarding the pathways mediating Ca2+ fluxes across intracellular membranes. The contribution of organelles and cellular subcompartments to the orchestrated response via Ca2+ signalling within a cell is also discussed, underlining the fact that one of the greatest challenges in the field is the elucidation of how influx and efflux Ca2+ transporters/channels are regulated in a concerted manner to translate specific information into a Ca2+ signature.
Collapse
Affiliation(s)
- Alex Costa
- Department of Biosciences, University of Milan, Via G. Celoria, Milan, Italy
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, Via G. Celoria, Milan, Italy
| | - Lorella Navazio
- Department of Biology, University of Padova, Via U. Bassi, Padova, Italy
- Botanical Garden, University of Padova, Via Orto Botanico, Padova, Italy
| | - Ildiko Szabo
- Department of Biology, University of Padova, Via U. Bassi, Padova, Italy
- Botanical Garden, University of Padova, Via Orto Botanico, Padova, Italy
- Institute of Neurosciences, Consiglio Nazionale delle Ricerche, Via U. Bassi, Padova, Italy
| |
Collapse
|
33
|
Charpentier M. Calcium Signals in the Plant Nucleus: Origin and Function. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4986421. [PMID: 29718301 DOI: 10.1093/jxb/ery160] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Indexed: 06/08/2023]
Abstract
The universality of calcium as an intracellular messenger depends on the dynamics of its spatial and temporal release from calcium stores. Accumulating evidence over the past two decades supports an essential role for nuclear calcium signalling in the transduction of specific stimuli into cellular responses. This review focusses on mechanisms underpinning changes in nuclear calcium concentrations and discusses what is known so far, about the origin of the nuclear calcium signals identified, primarily in the context of microbial symbioses and abiotic stresses.
Collapse
Affiliation(s)
- Myriam Charpentier
- John Innes Centre, Department of Cell and developmental Biology, Colney Lane, Norwich, UK
| |
Collapse
|
34
|
Poovaiah BW, Du L. Calcium signaling: decoding mechanism of calcium signatures. THE NEW PHYTOLOGIST 2018; 217:1394-1396. [PMID: 29405360 DOI: 10.1111/nph.15003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Affiliation(s)
- B W Poovaiah
- Laboratory of Molecular Plant Science, Department of Horticulture, Washington State University, Pullman, WA, 99164-6414, USA
| | - Liqun Du
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| |
Collapse
|
35
|
Aldon D, Mbengue M, Mazars C, Galaud JP. Calcium Signalling in Plant Biotic Interactions. Int J Mol Sci 2018; 19:E665. [PMID: 29495448 PMCID: PMC5877526 DOI: 10.3390/ijms19030665] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 12/31/2022] Open
Abstract
Calcium (Ca2+) is a universal second messenger involved in various cellular processes, leading to plant development and to biotic and abiotic stress responses. Intracellular variation in free Ca2+ concentration is among the earliest events following the plant perception of environmental change. These Ca2+ variations differ in their spatio-temporal properties according to the nature, strength and duration of the stimulus. However, their conversion into biological responses requires Ca2+ sensors for decoding and relaying. The occurrence in plants of calmodulin (CaM) but also of other sets of plant-specific Ca2+ sensors such as calmodulin-like proteins (CMLs), Ca2+-dependent protein kinases (CDPKs) and calcineurin B-like proteins (CBLs) indicate that plants possess specific tools and machineries to convert Ca2+ signals into appropriate responses. Here, we focus on recent progress made in monitoring the generation of Ca2+ signals at the whole plant or cell level and their long distance propagation during biotic interactions. The contribution of CaM/CMLs and CDPKs in plant immune responses mounted against bacteria, fungi, viruses and insects are also presented.
Collapse
Affiliation(s)
- Didier Aldon
- Laboratoire de Recherche en Sciences Vegetales, Universite de Toulouse, CNRS, UPS, 24, Chemin de Borde-Rouge, Auzeville, BP 42617, 31326 Castanet-Tolosan, France.
| | - Malick Mbengue
- Laboratoire de Recherche en Sciences Vegetales, Universite de Toulouse, CNRS, UPS, 24, Chemin de Borde-Rouge, Auzeville, BP 42617, 31326 Castanet-Tolosan, France.
| | - Christian Mazars
- Laboratoire de Recherche en Sciences Vegetales, Universite de Toulouse, CNRS, UPS, 24, Chemin de Borde-Rouge, Auzeville, BP 42617, 31326 Castanet-Tolosan, France.
| | - Jean-Philippe Galaud
- Laboratoire de Recherche en Sciences Vegetales, Universite de Toulouse, CNRS, UPS, 24, Chemin de Borde-Rouge, Auzeville, BP 42617, 31326 Castanet-Tolosan, France.
| |
Collapse
|