1
|
Yuan S, Jiang Y, Cui M, Shi D, Wang S, Kang M. Age-specific response to climate factors and extreme drought events in radial growth of Picea likiangensis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174257. [PMID: 38936721 DOI: 10.1016/j.scitotenv.2024.174257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/10/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
The influence of tree age on the growth response of Picea likiangensis, a predominant timber species in southwestern China, to climatic factors has been under-researched. In this study, we examined the relationships between tree age and the response of P. likiangensis to climatic factors and extreme drought events using tree-ring samples procured from the southeastern edge of the Tibetan Plateau. The results revealed differential responses of the radial growth of P. likiangensis trees of varying ages to climatic factors and extreme drought events. Specifically, deficient water availability during the early growing season emerged as the principal factor constraining radial growth across all age classes. Young and middle-aged trees (<100 years) demonstrated greater responsiveness to water availability than did mature trees (>100 years). Mature trees, in contrast, demonstrated markedly greater resistance to extreme drought events than young and middle-aged trees. Comparative studies of individual trees across different ages revealed negligible differences in the response of young and middle-aged trees to climatic factors and extreme drought events. Given these responses, future forest management practices should prioritize young and middle-aged trees that are more affected by drought to maximize the ecological value of the species. According to the specific research objectives, sample collection processes should classify mature trees and young and middle-aged trees, to minimize the influence of tree age on the final findings of the study.
Collapse
Affiliation(s)
- Shuai Yuan
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Yuan Jiang
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China.
| | - Minghao Cui
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Dandan Shi
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Shengjie Wang
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Muyi Kang
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
2
|
Chen S, Stark SC, Nobre AD, Cuartas LA, de Jesus Amore D, Restrepo-Coupe N, Smith MN, Chitra-Tarak R, Ko H, Nelson BW, Saleska SR. Amazon forest biogeography predicts resilience and vulnerability to drought. Nature 2024; 631:111-117. [PMID: 38898277 DOI: 10.1038/s41586-024-07568-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/15/2024] [Indexed: 06/21/2024]
Abstract
Amazonia contains the most extensive tropical forests on Earth, but Amazon carbon sinks of atmospheric CO2 are declining, as deforestation and climate-change-associated droughts1-4 threaten to push these forests past a tipping point towards collapse5-8. Forests exhibit complex drought responses, indicating both resilience (photosynthetic greening) and vulnerability (browning and tree mortality), that are difficult to explain by climate variation alone9-17. Here we combine remotely sensed photosynthetic indices with ground-measured tree demography to identify mechanisms underlying drought resilience/vulnerability in different intact forest ecotopes18,19 (defined by water-table depth, soil fertility and texture, and vegetation characteristics). In higher-fertility southern Amazonia, drought response was structured by water-table depth, with resilient greening in shallow-water-table forests (where greater water availability heightened response to excess sunlight), contrasting with vulnerability (browning and excess tree mortality) over deeper water tables. Notably, the resilience of shallow-water-table forest weakened as drought lengthened. By contrast, lower-fertility northern Amazonia, with slower-growing but hardier trees (or, alternatively, tall forests, with deep-rooted water access), supported more-drought-resilient forests independent of water-table depth. This functional biogeography of drought response provides a framework for conservation decisions and improved predictions of heterogeneous forest responses to future climate changes, warning that Amazonia's most productive forests are also at greatest risk, and that longer/more frequent droughts are undermining multiple ecohydrological strategies and capacities for Amazon forest resilience.
Collapse
Affiliation(s)
- Shuli Chen
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA.
| | - Scott C Stark
- Department of Forestry, Michigan State University, East Lansing, MI, USA
| | | | - Luz Adriana Cuartas
- National Center for Monitoring and Early Warning of Natural Disasters (CEMADEN), São José dos Campos, Brazil
| | - Diogo de Jesus Amore
- National Center for Monitoring and Early Warning of Natural Disasters (CEMADEN), São José dos Campos, Brazil
| | - Natalia Restrepo-Coupe
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
- Cupoazu LLC, Etobicoke, Ontario, Canada
| | - Marielle N Smith
- Department of Forestry, Michigan State University, East Lansing, MI, USA
- School of Environmental and Natural Sciences, College of Science and Engineering, Bangor University, Bangor, UK
| | - Rutuja Chitra-Tarak
- Los Alamos National Laboratory, Earth and Environmental Sciences, Los Alamos, NM, USA
| | - Hongseok Ko
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Bruce W Nelson
- Brazil's National Institute for Amazon Research (INPA), Manaus, Brazil
| | - Scott R Saleska
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA.
- Department of Environmental Sciences, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
3
|
Van Passel J, Bernardino PN, Lhermitte S, Rius BF, Hirota M, Conradi T, de Keersmaecker W, Van Meerbeek K, Somers B. Critical slowing down of the Amazon forest after increased drought occurrence. Proc Natl Acad Sci U S A 2024; 121:e2316924121. [PMID: 38768350 PMCID: PMC11145287 DOI: 10.1073/pnas.2316924121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/05/2024] [Indexed: 05/22/2024] Open
Abstract
Dynamic ecosystems, such as the Amazon forest, are expected to show critical slowing down behavior, or slower recovery from recurrent small perturbations, as they approach an ecological threshold to a different ecosystem state. Drought occurrences are becoming more prevalent across the Amazon, with known negative effects on forest health and functioning, but their actual role in the critical slowing down patterns still remains elusive. In this study, we evaluate the effect of trends in extreme drought occurrences on temporal autocorrelation (TAC) patterns of satellite-derived indices of vegetation activity, an indicator of slowing down, between 2001 and 2019. Differentiating between extreme drought frequency, intensity, and duration, we investigate their respective effects on the slowing down response. Our results indicate that the intensity of extreme droughts is a more important driver of slowing down than their duration, although their impacts vary across the different Amazon regions. In addition, areas with more variable precipitation are already less ecologically stable and need fewer droughts to induce slowing down. We present findings indicating that most of the Amazon region does not show an increasing trend in TAC. However, the predicted increase in extreme drought intensity and frequency could potentially transition significant portions of this ecosystem into a state with altered functionality.
Collapse
Affiliation(s)
- Johanna Van Passel
- Division Forest, Nature and Landscape, KU Leuven, Leuven 3001, Belgium
- KU Leuven Plant Institute, KU Leuven, Leuven 3001, Belgium
| | - Paulo N Bernardino
- Division Forest, Nature and Landscape, KU Leuven, Leuven 3001, Belgium
- Department of Plant Biology, University of Campinas, Campinas-SP 13083-970, Brazil
| | - Stef Lhermitte
- Division Forest, Nature and Landscape, KU Leuven, Leuven 3001, Belgium
- Department Geoscience & Remote Sensing, Delft University of Technology, Delft 2600, The Netherlands
| | - Bianca F Rius
- Center for Meteorological and Climatic Research Applied to Agriculture, University of Campinas, Campinas-SP 13083-970, Brazil
- Interdisciplinary Environmental Studies Laboratory, Department of Physics, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Marina Hirota
- Department of Plant Biology, University of Campinas, Campinas-SP 13083-970, Brazil
- Interdisciplinary Environmental Studies Laboratory, Department of Physics, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Timo Conradi
- Plant Ecology, University of Bayreuth, Bayreuth 95447, Germany
| | | | - Koenraad Van Meerbeek
- Division Forest, Nature and Landscape, KU Leuven, Leuven 3001, Belgium
- KU Leuven Plant Institute, KU Leuven, Leuven 3001, Belgium
| | - Ben Somers
- Division Forest, Nature and Landscape, KU Leuven, Leuven 3001, Belgium
- KU Leuven Plant Institute, KU Leuven, Leuven 3001, Belgium
| |
Collapse
|
4
|
Flores BM, Montoya E, Sakschewski B, Nascimento N, Staal A, Betts RA, Levis C, Lapola DM, Esquível-Muelbert A, Jakovac C, Nobre CA, Oliveira RS, Borma LS, Nian D, Boers N, Hecht SB, Ter Steege H, Arieira J, Lucas IL, Berenguer E, Marengo JA, Gatti LV, Mattos CRC, Hirota M. Critical transitions in the Amazon forest system. Nature 2024; 626:555-564. [PMID: 38356065 PMCID: PMC10866695 DOI: 10.1038/s41586-023-06970-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/13/2023] [Indexed: 02/16/2024]
Abstract
The possibility that the Amazon forest system could soon reach a tipping point, inducing large-scale collapse, has raised global concern1-3. For 65 million years, Amazonian forests remained relatively resilient to climatic variability. Now, the region is increasingly exposed to unprecedented stress from warming temperatures, extreme droughts, deforestation and fires, even in central and remote parts of the system1. Long existing feedbacks between the forest and environmental conditions are being replaced by novel feedbacks that modify ecosystem resilience, increasing the risk of critical transition. Here we analyse existing evidence for five major drivers of water stress on Amazonian forests, as well as potential critical thresholds of those drivers that, if crossed, could trigger local, regional or even biome-wide forest collapse. By combining spatial information on various disturbances, we estimate that by 2050, 10% to 47% of Amazonian forests will be exposed to compounding disturbances that may trigger unexpected ecosystem transitions and potentially exacerbate regional climate change. Using examples of disturbed forests across the Amazon, we identify the three most plausible ecosystem trajectories, involving different feedbacks and environmental conditions. We discuss how the inherent complexity of the Amazon adds uncertainty about future dynamics, but also reveals opportunities for action. Keeping the Amazon forest resilient in the Anthropocene will depend on a combination of local efforts to end deforestation and degradation and to expand restoration, with global efforts to stop greenhouse gas emissions.
Collapse
Affiliation(s)
- Bernardo M Flores
- Graduate Program in Ecology, Federal University of Santa Catarina, Florianopolis, Brazil.
| | - Encarni Montoya
- Geosciences Barcelona, Spanish National Research Council, Barcelona, Spain
| | - Boris Sakschewski
- Potsdam Institute for Climate Impact Research, Member of the Leibniz Association, Potsdam, Germany
| | | | - Arie Staal
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands
| | - Richard A Betts
- Met Office Hadley Centre, Exeter, UK
- Global Systems Institute, University of Exeter, Exeter, UK
| | - Carolina Levis
- Graduate Program in Ecology, Federal University of Santa Catarina, Florianopolis, Brazil
| | - David M Lapola
- Center for Meteorological and Climatic Research Applied to Agriculture, University of Campinas, Campinas, Brazil
| | - Adriane Esquível-Muelbert
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
- Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK
| | - Catarina Jakovac
- Department of Plant Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Carlos A Nobre
- Institute of Advanced Studies, University of São Paulo, São Paulo, Brazil
| | - Rafael S Oliveira
- Department of Plant Biology, University of Campinas, Campinas, Brazil
| | - Laura S Borma
- Division of Impacts, Adaptation and Vulnerabilities (DIIAV), National Institute for Space Research, São José dos Campos, Brazil
| | - Da Nian
- Potsdam Institute for Climate Impact Research, Member of the Leibniz Association, Potsdam, Germany
| | - Niklas Boers
- Potsdam Institute for Climate Impact Research, Member of the Leibniz Association, Potsdam, Germany
- Earth System Modelling, School of Engineering and Design, Technical University of Munich, Munich, Germany
| | - Susanna B Hecht
- Luskin School for Public Affairs and Institute of the Environment, University of California, Los Angeles, CA, USA
| | - Hans Ter Steege
- Naturalis Biodiversity Center, Leiden, The Netherlands
- Quantitative Biodiversity Dynamics, Utrecht University, Utrecht, The Netherlands
| | - Julia Arieira
- Science Panel for the Amazon (SPA), São José dos Campos, Brazil
| | | | - Erika Berenguer
- Environmental Change Institute, University of Oxford, Oxford, UK
| | - José A Marengo
- Centro Nacional de Monitoramento e Alerta de Desastres Naturais, São José dos Campos, Brazil
- Graduate Program in Natural Disasters, UNESP/CEMADEN, São José dos Campos, Brazil
- Graduate School of International Studies, Korea University, Seoul, Korea
| | - Luciana V Gatti
- Division of Impacts, Adaptation and Vulnerabilities (DIIAV), National Institute for Space Research, São José dos Campos, Brazil
| | - Caio R C Mattos
- Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ, USA
| | - Marina Hirota
- Graduate Program in Ecology, Federal University of Santa Catarina, Florianopolis, Brazil.
- Department of Plant Biology, University of Campinas, Campinas, Brazil.
- Group IpES, Department of Physics, Federal University of Santa Catarina, Florianopolis, Brazil.
| |
Collapse
|
5
|
Rius BF, Filho JPD, Fleischer K, Hofhansl F, Blanco CC, Rammig A, Domingues TF, Lapola DM. Higher functional diversity improves modeling of Amazon forest carbon storage. Ecol Modell 2023. [DOI: 10.1016/j.ecolmodel.2023.110323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
6
|
Rosenfield MF, Jakovac CC, Vieira DLM, Poorter L, Brancalion PHS, Vieira ICG, de Almeida DRA, Massoca P, Schietti J, Albernaz ALM, Ferreira MJ, Mesquita RCG. Ecological integrity of tropical secondary forests: concepts and indicators. Biol Rev Camb Philos Soc 2023; 98:662-676. [PMID: 36453621 DOI: 10.1111/brv.12924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022]
Abstract
Naturally regenerating forests or secondary forests (SFs) are a promising strategy for restoring large expanses of tropical forests at low cost and with high environmental benefits. This expectation is supported by the high resilience of tropical forests after natural disturbances, yet this resilience can be severely reduced by human impacts. Assessing the characteristics of SFs and their ecological integrity (EI) is essential to evaluating their role for conservation, restoration, and provisioning of ecosystem services. In this study, we aim to propose a concept and indicators that allow the assessment and classification of the EI of SFs. To this end, we review the literature to assess how EI has been addressed in different ecosystems and which indicators of EI are most commonly used for tropical forests. Building upon this knowledge we propose a modification of the concept of EI to embrace SFs and suggest indicators of EI that can be applied to different successional stages or stand ages. Additionally, we relate these indicators to ecosystem service provision in order to support the practical application of the theory. EI is generally defined as the ability of ecosystems to support and maintain composition, structure and function similar to the reference conditions of an undisturbed ecosystem. This definition does not consider the temporal dynamics of recovering ecosystems, such as SFs. Therefore, we suggest incorporation of an optimal successional trajectory as a reference in addition to the old-growth forest reference. The optimal successional trajectory represents the maximum EI that can be attained at each successional stage in a given region and enables the evaluation of EI at any given age class. We further suggest a list of indicators, the main ones being: compositional indicators (species diversity/richness and indicator species); structural indicators (basal area, heterogeneity of basal area and canopy cover); function indicators (tree growth and mortality); and landscape proxies (landscape heterogeneity, landscape connectivity). Finally, we discuss how this approach can assist in defining the value of SF patches to provide ecosystem services, restore forests and contribute to ecosystem conservation.
Collapse
Affiliation(s)
- Milena F Rosenfield
- Instituto Nacional de Pesquisas da Amazônia (INPA), Av. André Araújo, 2936, Manaus, AM, 69083-000, Brazil
| | - Catarina C Jakovac
- Forest Ecology and Forest Management Group, Wageningen University & Research, PO Box 47, 6700 AA, Wageningen, The Netherlands
- Centro de Ciências Agrárias, Universidade Federal de Santa Catarina (UFSC), Rod. Admar Gonzaga, 1346, Itacorubi, Florianópolis, SC, 88034-000, Brazil
| | - Daniel L M Vieira
- Embrapa Recursos Genéticos e Biotecnologia, Empresa Brasileira de Pesquisa Agropecuária (Embrapa), Av. W5 Norte (final), Brasília, DF, 70770917, Brazil
| | - Lourens Poorter
- Forest Ecology and Forest Management Group, Wageningen University & Research, PO Box 47, 6700 AA, Wageningen, The Netherlands
| | - Pedro H S Brancalion
- Departamento de Ciências Florestais, Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Universidade de São Paulo (USP), Av. Pádua Dias, 11, Piracicaba, SP, 13418-900, Brazil
| | - Ima C G Vieira
- Coordenação de Botânica, Museu Paraense Emílio Goeldi, Av. Magalhães Barata, 376, Belém, PA, 66040-170, Brazil
| | - Danilo R A de Almeida
- Departamento de Ciências Florestais, Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Universidade de São Paulo (USP), Av. Pádua Dias, 11, Piracicaba, SP, 13418-900, Brazil
| | - Paulo Massoca
- Center for the Analysis of Social-Ecological Landscapes (CASEL), Indiana University, Student Building 331, 701 E. Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Juliana Schietti
- Departamento de Biologia, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Av. General Rodrigo Octavio Jordão Ramos, 1200, Coroado I, Manaus, AM, 69067-005, Brazil
| | - Ana Luisa M Albernaz
- Coordenação de Ciências da Terra e Ecologia, Museu Paraense Emílio Goeldi, Av. Magalhães Barata, 376, Belém, PA, 66040-170, Brazil
| | - Marciel J Ferreira
- Departamento de Ciências Florestais, Universidade Federal do Amazonas (UFAM), Av. General Rodrigo Octávio Jordão Ramos, 3000, Manaus, AM, 69080-900, Brazil
| | - Rita C G Mesquita
- Instituto Nacional de Pesquisas da Amazônia (INPA), Av. André Araújo, 2936, Manaus, AM, 69083-000, Brazil
| |
Collapse
|
7
|
Liu Z, Wu T, Dong F. Quantitative evaluation method of species diversity index in beach area of coastal tourism characteristic town. Trop Ecol 2023. [DOI: 10.1007/s42965-022-00261-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
8
|
Costa FRC, Schietti J, Stark SC, Smith MN. The other side of tropical forest drought: do shallow water table regions of Amazonia act as large-scale hydrological refugia from drought? THE NEW PHYTOLOGIST 2023; 237:714-733. [PMID: 35037253 DOI: 10.1111/nph.17914] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/05/2021] [Indexed: 06/14/2023]
Abstract
Tropical forest function is of global significance to climate change responses, and critically determined by water availability patterns. Groundwater is tightly related to soil water through the water table depth (WT), but historically neglected in ecological studies. Shallow WT forests (WT < 5 m) are underrepresented in forest research networks and absent in eddy flux measurements, although they represent c. 50% of the Amazon and are expected to respond differently to global-change-related droughts. We review WT patterns and consequences for plants, emerging results, and advance a conceptual model integrating environment and trait distributions to predict climate change effects. Shallow WT forests have a distinct species composition, with more resource-acquisitive and hydrologically vulnerable trees, shorter canopies and lower biomass than deep WT forests. During 'normal' climatic years, shallow WT forests have higher mortality and lower productivity than deep WT forests, but during moderate droughts mortality is buffered and productivity increases. However, during severe drought, shallow WT forests may be more sensitive due to shallow roots and drought-intolerant traits. Our evidence supports the hypothesis of neglected shallow WT forests being resilient to moderate drought, challenging the prevailing view of widespread negative effects of climate change on Amazonian forests that ignores WT gradients, but predicts they could collapse under very strong droughts.
Collapse
Affiliation(s)
- Flavia R C Costa
- Coordenação de Pesquisas em Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Av André Araújo 2223, Manaus, AM, 69067-375, Brazil
| | - Juliana Schietti
- Departmento de Biologia, Universidade Federal do Amazonas, Manaus, AM, 69067-005, Brazil
| | - Scott C Stark
- Department of Forestry, Michigan State University, East Lansing, MI, 48824, USA
| | - Marielle N Smith
- Department of Forestry, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
9
|
Das A, Das M, Houqe R, Pereira P. Mapping ecosystem services for ecological planning and management: a case from a tropical planning region, Eastern India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:7543-7560. [PMID: 36040701 DOI: 10.1007/s11356-022-22732-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Burdwan City experienced an important urbanization trend inducing dramatic land use/land cover (LULC) changes over the past 28 years. However, their effects on ecosystem services value (ESV) remain unknown. The prime objective of this study is to analyze the spatial heterogeneity of ESV in the Burdwan Planning Area (BPA) from 1990 to 2018. Ecosystem service value (ESV) was estimated using the benefits transfer method, and the contribution of LULC was also computed using contribution rate (CR). The dynamics of LULC were also calculated from the change intensity index and single LULC dynamics. The sensitivity of ESVs to LULC using an elasticity indicator between 1990 and 2018 was performed. The results showed that during the entire study period, built-up are and open lands or sand bars increased 362.34% and 42.40%; water bodies, vegetation, and agricultural lands decreased by 33.24%, 7.20%, and 13.66%, respectively, from 1990 to 2018. In case of ESV, total ESVs were US $95.26 (1990), US $95.85 (2000), US $95.42 (2010), and US $91.38 (2018) million. There was a reduction of the total ESV of US $3.88 million between 1990 and 2018. A substantial spatial heterogeneity of ESV between rural and urban landscapes was reported due to variations of ecological landscapes. The main driver of ESs value loss was a rapid conversion of natural land cover (vegetation, water bodies) into semi-natural or artificial landscapes, i.e., urban settlement. Being a planning region, assessing the impact of LULC dynamics on the ESVs is necessary for sustainable urban development and effective urban environmental management.
Collapse
Affiliation(s)
- Arijit Das
- Department of Geography, University of Gour Banga, Malda, West Bengal, India
| | - Manob Das
- Department of Geography, University of Gour Banga, Malda, West Bengal, India.
| | - Rejaul Houqe
- Department of Geography, University of Gour Banga, Malda, West Bengal, India
| | - Paulo Pereira
- Environmental Management Laboratory, Mykolas Romeris University, Vilnius, Lithuania
| |
Collapse
|
10
|
Van Passel J, de Keersmaecker W, Bernardino PN, Jing X, Umlauf N, Van Meerbeek K, Somers B. Climatic legacy effects on the drought response of the Amazon rainforest. GLOBAL CHANGE BIOLOGY 2022; 28:5808-5819. [PMID: 35808855 DOI: 10.1111/gcb.16336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Extreme precipitation and drought events are predicted to become more intense and more frequent over the Amazon rainforest. Because changes in forest dynamics could prompt strong feedback loops to the global climate, it is of crucial importance to gain insight into the response of tropical forests to these recurring extreme climatic events. Here, we evaluated the Amazon forest stability (resistance and resilience) to drought in the context of past dry and wet climatic events using MODIS EVI satellite imagery and cumulative water deficit anomalies. We observed large spatial differences in the occurrence of extreme climatic events from 1980 to 2019, with an increase in drought frequency in the central and northern Amazon and drought intensity in the southern Amazon basin. An increasing trend in the occurrence of wet events was found in the western, southern, and eastern Amazon. Furthermore, we found significant legacy effects of previous climatic events on the forest drought response. An extreme drought closely preceding another drought decreased forest resilience, whereas the occurrence of a recent drier-than-usual event also decreased the forest resistance to later droughts. Both wetter-than-usual and extreme wet events preceding an extreme drought increased the resistance of the forest, and with similar effects sizes as dry events, indicating that wet and dry events have similarly sized legacy effects on the drought response of tropical forests. Our results indicate that the predicted increase in drought frequency and intensity can have negative consequences for the functioning of the Amazon forest. However, more frequent wet periods in combination with these droughts could counteract their negative impact. Finally, we also found that more stable forests according to the alternative stable states theory are also more resistant and resilient to individual droughts, showing a positive relationship between the equilibrium and non-equilibrium stability dynamics.
Collapse
Affiliation(s)
- Johanna Van Passel
- Division of Forest, Nature and Landscape, KU Leuven, Leuven, Belgium
- KU Leuven Plant Institute, KU Leuven, Leuven, Belgium
| | - Wanda de Keersmaecker
- Vlaamse Instelling Voor Technologisch Onderzoek (VITO) Research Organisation, Mol, Belgium
| | - Paulo N Bernardino
- Division of Forest, Nature and Landscape, KU Leuven, Leuven, Belgium
- KU Leuven Plant Institute, KU Leuven, Leuven, Belgium
| | - Xin Jing
- State Key Laboratory of Grassland Agro-Ecosystems, and College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Nikolaus Umlauf
- Department of Statistics, Faculty of Economics and Statistics, Universität Innsbruck, Innsbruck, Austria
| | - Koenraad Van Meerbeek
- Division of Forest, Nature and Landscape, KU Leuven, Leuven, Belgium
- KU Leuven Plant Institute, KU Leuven, Leuven, Belgium
| | - Ben Somers
- Division of Forest, Nature and Landscape, KU Leuven, Leuven, Belgium
- KU Leuven Plant Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Bugmann H, Seidl R. The evolution, complexity and diversity of models of long-term forest dynamics. THE JOURNAL OF ECOLOGY 2022; 110:2288-2307. [PMID: 36632361 PMCID: PMC9826524 DOI: 10.1111/1365-2745.13989] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 08/01/2022] [Indexed: 06/17/2023]
Abstract
To assess the impacts of climate change on vegetation from stand to global scales, models of forest dynamics that include tree demography are needed. Such models are now available for 50 years, but the currently existing diversity of model formulations and its evolution over time are poorly documented. This hampers systematic assessments of structural uncertainties in model-based studies.We conducted a meta-analysis of 28 models, focusing on models that were used in the past five years for climate change studies. We defined 52 model attributes in five groups (basic assumptions, growth, regeneration, mortality and soil moisture) and characterized each model according to these attributes. Analyses of model complexity and diversity included hierarchical cluster analysis and redundancy analysis.Model complexity evolved considerably over the past 50 years. Increases in complexity were largest for growth processes, while complexity of modelled establishment processes increased only moderately. Model diversity was lowest at the global scale, and highest at the landscape scale. We identified five distinct clusters of models, ranging from very simple models to models where specific attribute groups are rendered in a complex manner and models that feature high complexity across all attributes.Most models in use today are not balanced in the level of complexity with which they represent different processes. This is the result of different model purposes, but also reflects legacies in model code, modelers' preferences, and the 'prevailing spirit of the epoch'. The lack of firm theories, laws and 'first principles' in ecology provides high degrees of freedom in model development, but also results in high responsibilities for model developers and the need for rigorous model evaluation. Synthesis. The currently available model diversity is beneficial: convergence in simulations of structurally different models indicates robust projections, while convergence of similar models may convey a false sense of certainty. The existing model diversity-with the exception of global models-can be exploited for improved projections based on multiple models. We strongly recommend balanced further developments of forest models that should particularly focus on establishment and mortality processes, in order to provide robust information for decisions in ecosystem management and policymaking.
Collapse
Affiliation(s)
- Harald Bugmann
- Forest Ecology, Institute of Terrestrial Ecosystems, Department of Environmental Systems ScienceETH ZurichZürichSwitzerland
- Ecosystem Dynamics and Forest ManagementTechnical University of MunichFreisingGermany
| | - Rupert Seidl
- Ecosystem Dynamics and Forest ManagementTechnical University of MunichFreisingGermany
- Berchtesgaden National ParkBerchtesgadenGermany
| |
Collapse
|
12
|
Effect of tree demography and flexible root water uptake for modeling the carbon and water cycles of Amazonia. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2022.109969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Coelho FEA, Camurugi F, Marques R, Magalhães FDM, Werneck FP, Garda AA. Historical connections between Atlantic Forest and Amazonia drove genetic and ecological diversity in Lithobates palmipes (Anura, Ranidae). SYST BIODIVERS 2022. [DOI: 10.1080/14772000.2022.2046657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Felipe Eduardo Alves Coelho
- Programa de Pós-Graduação em Ecologia, Universidade Federal do Rio Grande do Norte, Centro de Biociências, Avenida Senador Salgado Filho, S/N, Lagoa Nova, Natal 59078-900, RN, Brazil
| | - Felipe Camurugi
- Departamento de Botânica e Zoologia, Universidade Federal do Rio Grande do Norte, Centro de Biociências, Avenida Senador Salgado Filho, S/N, Lagoa Nova, Natal 59078-900, RN, Brazil
| | - Ricardo Marques
- Programa de Pós-Graduação em Ciências Biológicas (Zoologia, Universidade Federal da Paraíba, Centro de Ciências Exatas e da Natureza, Departamento de Sistemática e Ecologia, Campus I – Cidade Universitaria, S/N, Cidade Universitária, João Pessoa 58051-900, Paraíba, Brasil
| | - Felipe De Medeiros Magalhães
- Programa de Pós-Graduação em Ciências Biológicas (Zoologia, Universidade Federal da Paraíba, Centro de Ciências Exatas e da Natureza, Departamento de Sistemática e Ecologia, Campus I – Cidade Universitaria, S/N, Cidade Universitária, João Pessoa 58051-900, Paraíba, Brasil
- Earth and Environmental Sciences, Ecology and Evolution, Rutgers University-Newark, 195 University Ave, Newark 07102, New Jersey NJ, USA
| | - Fernanda P. Werneck
- Programa de Coleções Científicas Biológicas, Instituto Nacional de Pesquisas da Amazônia, Avenida André Araújo 2936, Aleixo, Manaus 69067-375, Amazonas, Brazil
| | - Adrian Antonio Garda
- Departamento de Botânica e Zoologia, Universidade Federal do Rio Grande do Norte, Centro de Biociências, Avenida Senador Salgado Filho, S/N, Lagoa Nova, Natal 59078-900, RN, Brazil
| |
Collapse
|
14
|
Wu D, Vargas G G, Powers JS, McDowell NG, Becknell JM, Pérez-Aviles D, Medvigy D, Liu Y, Katul GG, Calvo-Alvarado JC, Calvo-Obando A, Sanchez-Azofeifa A, Xu X. Reduced ecosystem resilience quantifies fine-scale heterogeneity in tropical forest mortality responses to drought. GLOBAL CHANGE BIOLOGY 2022; 28:2081-2094. [PMID: 34921474 DOI: 10.1111/gcb.16046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Sensitivity of forest mortality to drought in carbon-dense tropical forests remains fraught with uncertainty, while extreme droughts are predicted to be more frequent and intense. Here, the potential of temporal autocorrelation of high-frequency variability in Landsat Enhanced Vegetation Index (EVI), an indicator of ecosystem resilience, to predict spatial and temporal variations of forest biomass mortality is evaluated against in situ census observations for 64 site-year combinations in Costa Rican tropical dry forests during the 2015 ENSO drought. Temporal autocorrelation, within the optimal moving window of 24 months, demonstrated robust predictive power for in situ mortality (leave-one-out cross-validation R2 = 0.54), which allows for estimates of annual biomass mortality patterns at 30 m resolution. Subsequent spatial analysis showed substantial fine-scale heterogeneity of forest mortality patterns, largely driven by drought intensity and ecosystem properties related to plant water use such as forest deciduousness and topography. Highly deciduous forest patches demonstrated much lower mortality sensitivity to drought stress than less deciduous forest patches after elevation was controlled. Our results highlight the potential of high-resolution remote sensing to "fingerprint" forest mortality and the significant role of ecosystem heterogeneity in forest biomass resistance to drought.
Collapse
Affiliation(s)
- Donghai Wu
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - German Vargas G
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Jennifer S Powers
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, USA
| | - Nate G McDowell
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Lab, Richland, Washington, USA
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | - Justin M Becknell
- Environmental Studies Program, Colby College, Waterville, Maine, USA
| | - Daniel Pérez-Aviles
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, USA
| | - David Medvigy
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Yanlan Liu
- School of Earth Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Gabriel G Katul
- Department of Civil and Environmental Engineering and the Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | | | - Ana Calvo-Obando
- Escuela de Ing. Forestal, Instituto Tecnológico de Costa Rica, Barrio Los Ángeles, Cartago, Costa Rica
| | | | - Xiangtao Xu
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
15
|
Jiao T, Williams CA, De Kauwe MG, Schwalm CR, Medlyn BE. Patterns of post-drought recovery are strongly influenced by drought duration, frequency, post-drought wetness, and bioclimatic setting. GLOBAL CHANGE BIOLOGY 2021; 27:4630-4643. [PMID: 34228866 DOI: 10.1111/gcb.15788] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Understanding vegetation recovery after drought is critical for projecting vegetation dynamics in future climates. From 1997 to 2009, Australia experienced a long-lasting drought known as the Millennium Drought (MD), which led to widespread reductions in vegetation productivity. However, vegetation recovery post-drought and its determinants remain unclear. This study leverages remote sensing products from different sources-fraction of absorbed photosynthetically active radiation (FPAR), based on optical data, and canopy density, derived from microwave data-and random forest algorithms to assess drought recovery over Australian natural vegetation during a 20-year period centered on the MD. Post-drought recovery was prevalent across the continent, with 6 out of 10 drought events seeing full recovery within about 6 months. Canopy density was slower to recover than leaf area seen in FPAR. The probability of full recovery was most strongly controlled by drought return interval, post-drought hydrological condition, and drought length. Full recovery was seldom observed when drought events occurred at intervals of 3 months or less, and moderately dry (standardized water balance anomaly [SWBA] within [-1, -0.76]) post-drought conditions resulted in less complete recovery than wet (SWBA > 0.3) post-drought conditions. Press droughts, which are long term but not extreme, delayed recovery more than pulse droughts (short term but extreme) and led to a higher frequency of persistent decline. Following press droughts, the frequency of persistent decline differed little among biome types but peaked in semi-arid regions across aridity levels. Forests and savanna required the longest recovery times for press drought, while grasslands were the slowest to recover for pulse drought. This study provides quantitative thresholds that could be used to improve the modeling of ecosystem dynamics post-drought.
Collapse
Affiliation(s)
- Tong Jiao
- Graduate School of Geography, Clark University, Worcester, MA, USA
| | | | - Martin G De Kauwe
- ARC Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, NSW, Australia
- Climate Change Research Centre, University of New South Wales, Sydney, NSW, Australia
- Evolution & Ecology Research Centre, University of New South Wales, Sydney, NSW, Australia
| | | | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
16
|
Restrepo-Coupe N, Albert LP, Longo M, Baker I, Levine NM, Mercado LM, da Araujo AC, Christoffersen BO, Costa MH, Fitzjarrald DR, Galbraith D, Imbuzeiro H, Malhi Y, von Randow C, Zeng X, Moorcroft P, Saleska SR. Understanding water and energy fluxes in the Amazonia: Lessons from an observation-model intercomparison. GLOBAL CHANGE BIOLOGY 2021; 27:1802-1819. [PMID: 33565692 DOI: 10.1111/gcb.15555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 01/18/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Tropical forests are an important part of global water and energy cycles, but the mechanisms that drive seasonality of their land-atmosphere exchanges have proven challenging to capture in models. Here, we (1) report the seasonality of fluxes of latent heat (LE), sensible heat (H), and outgoing short and longwave radiation at four diverse tropical forest sites across Amazonia-along the equator from the Caxiuanã and Tapajós National Forests in the eastern Amazon to a forest near Manaus, and from the equatorial zone to the southern forest in Reserva Jaru; (2) investigate how vegetation and climate influence these fluxes; and (3) evaluate land surface model performance by comparing simulations to observations. We found that previously identified failure of models to capture observed dry-season increases in evapotranspiration (ET) was associated with model overestimations of (1) magnitude and seasonality of Bowen ratios (relative to aseasonal observations in which sensible was only 20%-30% of the latent heat flux) indicating model exaggerated water limitation, (2) canopy emissivity and reflectance (albedo was only 10%-15% of incoming solar radiation, compared to 0.15%-0.22% simulated), and (3) vegetation temperatures (due to underestimation of dry-season ET and associated cooling). These partially compensating model-observation discrepancies (e.g., higher temperatures expected from excess Bowen ratios were partially ameliorated by brighter leaves and more interception/evaporation) significantly biased seasonal model estimates of net radiation (Rn ), the key driver of water and energy fluxes (LE ~ 0.6 Rn and H ~ 0.15 Rn ), though these biases varied among sites and models. A better representation of energy-related parameters associated with dynamic phenology (e.g., leaf optical properties, canopy interception, and skin temperature) could improve simulations and benchmarking of current vegetation-atmosphere exchange and reduce uncertainty of regional and global biogeochemical models.
Collapse
Affiliation(s)
- Natalia Restrepo-Coupe
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Loren P Albert
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
- Biology Department, West Virginia University, Morgantown, WV, USA
| | - Marcos Longo
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Ian Baker
- Colorado State University, Atmospheric Science, Fort Collins, CO, USA
| | - Naomi M Levine
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- College of Letters, Arts, and Science, University of Southern California, Los Angeles, CA, USA
| | - Lina M Mercado
- University of Exeter, College of Life and Environmental Sciences, Exeter, Devon, UK
- Centre for Ecology and Hydrology, Wallingford, Oxfordshire, UK
| | - Alessandro C da Araujo
- Embrapa Amazônia Oriental, Belém, Pará, Brazil
- Programa LBA, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brazil
| | - Bradley O'Donnell Christoffersen
- Department of Biology, University of Texas Rio Grande Valley, Edinburg, TX, USA
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Marcos H Costa
- Department of Agricultural Engineering, Federal University of Vicosa, Vicosa, Mato Grosso, Brazil
| | | | | | - Hewlley Imbuzeiro
- Department of Agricultural Engineering, Federal University of Vicosa, Vicosa, Mato Grosso, Brazil
| | - Yadvinder Malhi
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Celso von Randow
- National Institute for Space Research (INPE), Center for Earth Systems Science, São José dos Campos, São Pablo, Brazil
| | - Xubin Zeng
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA
| | - Paul Moorcroft
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Scott R Saleska
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
17
|
Albrich K, Rammer W, Turner MG, Ratajczak Z, Braziunas KH, Hansen WD, Seidl R. Simulating forest resilience: A review. GLOBAL ECOLOGY AND BIOGEOGRAPHY : A JOURNAL OF MACROECOLOGY 2020; 29:2082-2096. [PMID: 33380902 PMCID: PMC7756463 DOI: 10.1111/geb.13197] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/18/2020] [Accepted: 09/10/2020] [Indexed: 06/02/2023]
Abstract
AIM Simulation models are important tools for quantifying the resilience (i.e., persistence under changed environmental conditions) of forest ecosystems to global change. We synthesized the modelling literature on forest resilience, summarizing common models and applications in resilience research, and scrutinizing the implementation of important resilience mechanisms in these models. Models applied to assess resilience are highly diverse, and our goal was to assess how well they account for important resilience mechanisms identified in experimental and empirical research. LOCATION Global. TIME PERIOD 1994 to 2019. MAJOR TAXA STUDIED Trees. METHODS We reviewed the forest resilience literature using online databases, selecting 119 simulation modelling studies for further analysis. We identified a set of resilience mechanisms from the general resilience literature and analysed models for their representation of these mechanisms. Analyses were grouped by investigated drivers (resilience to what) and responses (resilience of what), as well as by the type of model being used. RESULTS Models used to study forest resilience varied widely, from analytical approaches to complex landscape simulators. The most commonly addressed questions were associated with resilience of forest cover to fire. Important resilience mechanisms pertaining to regeneration, soil processes, and disturbance legacies were explicitly simulated in only 34 to 46% of the model applications. MAIN CONCLUSIONS We found a large gap between processes identified as underpinning forest resilience in the theoretical and empirical literature, and those represented in models used to assess forest resilience. Contemporary forest models developed for other goals may be poorly suited for studying forest resilience during an era of accelerating change. Our results highlight the need for a new wave of model development to enhance understanding of and management for resilient forests.
Collapse
Affiliation(s)
- Katharina Albrich
- Institute of SilvicultureUniversity of Natural Resources and Life Sciences (BOKU) ViennaWienAustria
- Ecosystem Dynamics and Forest Management GroupTechnical University of MunichFreisingGermany
| | - Werner Rammer
- Institute of SilvicultureUniversity of Natural Resources and Life Sciences (BOKU) ViennaWienAustria
- Ecosystem Dynamics and Forest Management GroupTechnical University of MunichFreisingGermany
| | - Monica G. Turner
- Department of Integrative BiologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Zak Ratajczak
- Department of Integrative BiologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Kristin H. Braziunas
- Department of Integrative BiologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | | | - Rupert Seidl
- Institute of SilvicultureUniversity of Natural Resources and Life Sciences (BOKU) ViennaWienAustria
- Ecosystem Dynamics and Forest Management GroupTechnical University of MunichFreisingGermany
| |
Collapse
|
18
|
Smith MN, Taylor TC, van Haren J, Rosolem R, Restrepo-Coupe N, Adams J, Wu J, de Oliveira RC, da Silva R, de Araujo AC, de Camargo PB, Huxman TE, Saleska SR. Empirical evidence for resilience of tropical forest photosynthesis in a warmer world. NATURE PLANTS 2020; 6:1225-1230. [PMID: 33051618 DOI: 10.1038/s41477-020-00780-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/03/2020] [Indexed: 06/11/2023]
Abstract
Tropical forests may be vulnerable to climate change1-3 if photosynthetic carbon uptake currently operates near a high temperature limit4-6. Predicting tropical forest function requires understanding the relative contributions of two mechanisms of high-temperature photosynthetic declines: stomatal limitation (H1), an indirect response due to temperature-associated changes in atmospheric vapour pressure deficit (VPD)7, and biochemical restrictions (H2), a direct temperature response8,9. Their relative control predicts different outcomes-H1 is expected to diminish with stomatal responses to future co-occurring elevated atmospheric [CO2], whereas H2 portends declining photosynthesis with increasing temperatures. Distinguishing the two mechanisms at high temperatures is therefore critical, but difficult because VPD is highly correlated with temperature in natural settings. We used a forest mesocosm to quantify the sensitivity of tropical gross ecosystem productivity (GEP) to future temperature regimes while constraining VPD by controlling humidity. We then analytically decoupled temperature and VPD effects under current climate with flux-tower-derived GEP trends in situ from four tropical forest sites. Both approaches showed consistent, negative sensitivity of GEP to VPD but little direct response to temperature. Importantly, in the mesocosm at low VPD, GEP persisted up to 38 °C, a temperature exceeding projections for tropical forests in 2100 (ref. 10). If elevated [CO2] mitigates VPD-induced stomatal limitation through enhanced water-use efficiency as hypothesized9,11, tropical forest photosynthesis may have a margin of resilience to future warming.
Collapse
Affiliation(s)
- Marielle N Smith
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA.
- Department of Forestry, Michigan State University, East Lansing, MI, USA.
| | - Tyeen C Taylor
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | - Rafael Rosolem
- Department of Civil Engineering, University of Bristol, Bristol, UK
- Cabot Institute, University of Bristol, Bristol, UK
| | - Natalia Restrepo-Coupe
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - John Adams
- Biosphere 2, University of Arizona, Oracle, AZ, USA
| | - Jin Wu
- School of Biological Sciences, The University of Hong Kong, Pokfulam, China
| | | | - Rodrigo da Silva
- Department of Environmental Physics, University of Western Pará (UFOPA), Santarém, Brazil
| | - Alessandro C de Araujo
- Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Brazil
- Embrapa Amazônia Oriental, Belém, Brazil
| | - Plinio B de Camargo
- Laboratório de Ecologia Isotópica, Centro de Energia Nuclear na Agricultura (CENA), Universidade de São Paulo, Piracicaba, Brazil
| | - Travis E Huxman
- Ecology and Evolutionary Biology & Center for Environmental Biology, University of California, Irvine, CA, USA
| | - Scott R Saleska
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
19
|
Ferraz A, Saatchi SS, Longo M, Clark DB. Tropical tree size-frequency distributions from airborne lidar. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02154. [PMID: 32347996 DOI: 10.1002/eap.2154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
In tropical rainforests, tree size and number density are influenced by disturbance history, soil, topography, climate, and biological factors that are difficult to predict without detailed and widespread forest inventory data. Here, we quantify tree size-frequency distributions over an old-growth wet tropical forest at the La Selva Biological Station in Costa Rica by using an individual tree crown (ITC) algorithm on airborne lidar measurements. The ITC provided tree height, crown area, the number of trees >10 m height and, predicted tree diameter, and aboveground biomass from field allometry. The number density showed strong agreement with field observations at the plot- (97.4%; 3% bias) and tree-height-classes level (97.4%; 3% bias). The lidar trees size spectra of tree diameter and height closely follow the distributions measured on the ground but showed less agreement with crown area observations. The model to convert lidar-derived tree height and crown area to tree diameter produced unbiased (0.8%) estimates of plot-level basal area and with low uncertainty (6%). Predictions on basal area for tree height classes were also unbiased (1.3%) but with larger uncertainties (22%). The biomass estimates had no significant bias at the plot- and tree-height-classes level (-5.2% and 2.1%). Our ITC method provides a powerful tool for tree- to landscape-level tropical forest inventory and biomass estimation by overcoming the limitations of lidar area-based approaches that require local calibration using a large number of inventory plots.
Collapse
Affiliation(s)
- António Ferraz
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, 91109, USA
- Institute of Environment and Sustainability, University of California, Los Angeles, California, 90024, USA
| | - Sassan S Saatchi
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, 91109, USA
- Institute of Environment and Sustainability, University of California, Los Angeles, California, 90024, USA
| | - Marcos Longo
- NASA Postdoctoral fellow, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, 91109, USA
| | - David B Clark
- Department of Biology, University of Missouri-St. Louis, St. Louis, Missouri, 63121, USA
| |
Collapse
|
20
|
Zhang B, DeAngelis DL. An overview of agent-based models in plant biology and ecology. ANNALS OF BOTANY 2020; 126:539-557. [PMID: 32173742 PMCID: PMC7489105 DOI: 10.1093/aob/mcaa043] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 03/12/2020] [Indexed: 05/22/2023]
Abstract
Agent-based modelling (ABM) has become an established methodology in many areas of biology, ranging from the cellular to the ecological population and community levels. In plant science, two different scales have predominated in their use of ABM. One is the scale of populations and communities, through the modelling of collections of agents representing individual plants, interacting with each other and with the environment. The other is the scale of the individual plant, through the modelling, by functional-structural plant models (FSPMs), of agents representing plant building blocks, or metamers, to describe the development of plant architecture and functions within individual plants. The purpose of this review is to show key results and parallels in ABM for growth, mortality, carbon allocation, competition and reproduction across the scales from the plant organ to populations and communities on a range of spatial scales to the whole landscape. Several areas of application of ABMs are reviewed, showing that some issues are addressed by both population-level ABMs and FSPMs. Continued increase in the relevance of ABM to environmental science and management will be helped by greater integration of ABMs across these two scales.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Environmental Science and Policy, University of California, Davis, CA, USA
| | - Donald L DeAngelis
- U. S. Geological Survey, Wetland and Aquatic Research Center, Davie, FL, USA
| |
Collapse
|
21
|
Longo M, Saatchi S, Keller M, Bowman K, Ferraz A, Moorcroft PR, Morton DC, Bonal D, Brando P, Burban B, Derroire G, dos‐Santos MN, Meyer V, Saleska S, Trumbore S, Vincent G. Impacts of Degradation on Water, Energy, and Carbon Cycling of the Amazon Tropical Forests. JOURNAL OF GEOPHYSICAL RESEARCH. BIOGEOSCIENCES 2020; 125:e2020JG005677. [PMID: 32999796 PMCID: PMC7507752 DOI: 10.1029/2020jg005677] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 05/31/2023]
Abstract
Selective logging, fragmentation, and understory fires directly degrade forest structure and composition. However, studies addressing the effects of forest degradation on carbon, water, and energy cycles are scarce. Here, we integrate field observations and high-resolution remote sensing from airborne lidar to provide realistic initial conditions to the Ecosystem Demography Model (ED-2.2) and investigate how disturbances from forest degradation affect gross primary production (GPP), evapotranspiration (ET), and sensible heat flux (H). We used forest structural information retrieved from airborne lidar samples (13,500 ha) and calibrated with 817 inventory plots (0.25 ha) across precipitation and degradation gradients in the eastern Amazon as initial conditions to ED-2.2 model. Our results show that the magnitude and seasonality of fluxes were modulated by changes in forest structure caused by degradation. During the dry season and under typical conditions, severely degraded forests (biomass loss ≥66%) experienced water stress with declines in ET (up to 34%) and GPP (up to 35%) and increases of H (up to 43%) and daily mean ground temperatures (up to 6.5°C) relative to intact forests. In contrast, the relative impact of forest degradation on energy, water, and carbon cycles markedly diminishes under extreme, multiyear droughts, as a consequence of severe stress experienced by intact forests. Our results highlight that the water and energy cycles in the Amazon are driven by not only climate and deforestation but also the past disturbance and changes of forest structure from degradation, suggesting a much broader influence of human land use activities on the tropical ecosystems.
Collapse
Affiliation(s)
- Marcos Longo
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - Sassan Saatchi
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
- Institute of Environment and SustainabilityUniversity of CaliforniaLos AngelesCAUSA
| | - Michael Keller
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
- International Institute of Tropical ForestryUSDA Forest ServiceRio PiedrasPuerto Rico
- Embrapa Informática AgropecuáriaCampinasBrazil
| | - Kevin Bowman
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - António Ferraz
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
- Institute of Environment and SustainabilityUniversity of CaliforniaLos AngelesCAUSA
| | - Paul R. Moorcroft
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMAUSA
| | | | - Damien Bonal
- Université de Lorraine, INRAE, AgroParisTech, UMR SilvaNancyFrance
| | - Paulo Brando
- Department of Earth System ScienceUniversity of CaliforniaIrvineCAUSA
- Woods Hole Research CenterWoods HoleMAUSA
- Instituto de Pesquisa Ambiental da AmazôniaBrasíliaBrazil
| | - Benoît Burban
- Institut National de Recherche en Agriculture, Alimentation et Environnement (INRAE), UMR 0745 EcoFoG, Campus AgronomiqueKourouFrance
| | - Géraldine Derroire
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR EcoFoG (Agroparistech, CNRS, INRAE, Université des Antilles, Université de Guyane), Campus AgronomiqueKourouFrance
| | | | - Victoria Meyer
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - Scott Saleska
- Ecology and Evolutionary BiologyUniversity of ArizonaTucsonAZUSA
| | | | - Grégoire Vincent
- AMAP, Univ Montpellier, IRD, CIRAD, CNRS, INRAEMontpellierFrance
| |
Collapse
|
22
|
Tropical carbon sink accelerated by symbiotic dinitrogen fixation. Nat Commun 2019; 10:5637. [PMID: 31822758 PMCID: PMC6904724 DOI: 10.1038/s41467-019-13656-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 11/18/2019] [Indexed: 11/30/2022] Open
Abstract
A major uncertainty in the land carbon cycle is whether symbiotic nitrogen fixation acts to enhance the tropical forest carbon sink. Nitrogen-fixing trees can supply vital quantities of the growth-limiting nutrient nitrogen, but the extent to which the resulting carbon–nitrogen feedback safeguards ecosystem carbon sequestration remains unclear. We combine (i) field observations from 112 plots spanning 300 years of succession in Panamanian tropical forests, and (ii) a new model that resolves nitrogen and light competition at the scale of individual trees. Fixation doubled carbon accumulation in early succession and enhanced total carbon in mature forests by ~10% (~12MgC ha−1) through two mechanisms: (i) a direct fixation effect on tree growth, and (ii) an indirect effect on the successional sequence of non-fixing trees. We estimate that including nitrogen-fixing trees in Neotropical reforestation projects could safeguard the sequestration of 6.7 Gt CO2 over the next 20 years. Our results highlight the connection between functional diversity of plant communities and the critical ecosystem service of carbon sequestration for mitigating climate change. The contribution of symbiotic dinitrogen fixation to the forest carbon sink could change throughout forest succession. Here the authors model nitrogen cycling and light competition between trees based on data from Panamanian forest plots, showing that fixation contributes substantially to the carbon sink in early successional stages.
Collapse
|
23
|
Medvigy D, Wang G, Zhu Q, Riley WJ, Trierweiler AM, Waring BG, Xu X, Powers JS. Observed variation in soil properties can drive large variation in modelled forest functioning and composition during tropical forest secondary succession. THE NEW PHYTOLOGIST 2019; 223:1820-1833. [PMID: 30980535 DOI: 10.1111/nph.15848] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 04/08/2019] [Indexed: 05/21/2023]
Abstract
Censuses of tropical forest plots reveal large variation in biomass and plant composition. This paper evaluates whether such variation can emerge solely from realistic variation in a set of commonly measured soil chemical and physical properties. Controlled simulations were performed using a mechanistic model that includes forest dynamics, microbe-mediated biogeochemistry, and competition for nitrogen and phosphorus. Observations from 18 forest inventory plots in Guanacaste, Costa Rica were used to determine realistic variation in soil properties. In simulations of secondary succession, the across-plot range in plant biomass reached 30% of the mean and was attributable primarily to nutrient limitation and secondarily to soil texture differences that affected water availability. The contributions of different plant functional types to total biomass varied widely across plots and depended on soil nutrient status. In Central America, soil-induced variation in plant biomass increased with mean annual precipitation because of changes in nutrient limitation. In Central America, large variation in plant biomass and ecosystem composition arises mechanistically from realistic variation in soil properties. The degree of biomass and compositional variation is climate sensitive. In general, model predictions can be improved through better representation of soil nutrient processes, including their spatial variation.
Collapse
Affiliation(s)
- David Medvigy
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Gangsheng Wang
- Institute for Environmental Genomics and Department of Microbiology & Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
- Climate Change Science Institute and Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Qing Zhu
- Climate and Ecosystem Sciences Division, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - William J Riley
- Climate and Ecosystem Sciences Division, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Annette M Trierweiler
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Bonnie G Waring
- Biology Department and Ecology Center, Utah State University, Logan, UT, 84322, USA
| | - Xiangtao Xu
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Jennifer S Powers
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St Paul, MN, 55108, USA
| |
Collapse
|
24
|
Reduced Carbon Dioxide Sink and Methane Source under Extreme Drought Condition in an Alpine Peatland. SUSTAINABILITY 2018. [DOI: 10.3390/su10114285] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Potential changes in both the intensity and frequency of extreme drought events are vital aspects of regional climate change that can alter the distribution and dynamics of water availability and subsequently affect carbon cycles at the ecosystem level. The effects of extreme drought events on the carbon budget of peatland in the Zoige plateau and its response mechanisms were studied using an in-field controlled experimental method. The results indicated that the peatland ecosystem of the Zoige plateau functioned as a carbon sink while under the control (CK) or extreme drought (D) treatment throughout the entire growing season. Maximum fluxes of methane (CH4) emissions and the weakest carbon sink activity from this ecosystem were in the early growth stage, the most powerful carbon sink activity was during the peak growth stage, while the absorption sink activity of carbon dioxide (CO2) and CH4 was present during the senescence stage. Extreme drought reduced the gross primary productivity (GPP) and ecosystem respiration (Re) of the peatland ecosystem by 14.5% and 12.6%, respectively (p < 0.05) and the net ability to store carbon was reduced by 11.3%. Overall, the GPP was highly sensitive to extreme drought. Moreover, extreme drought significantly reduced the CH4 fluxes of the ecosystem and even changed the peatland from a CH4 emission source to a CH4 sink. Subsequent to drought treatment, extreme drought was also shown to have a carry-over effect on the carbon budget of this ecosystem. Soil water content and soil temperature were the main driving factors of carbon budget change in the peatland of the Zoige plateau, but with the increase in soil depth, these driving forces were decreased. The findings indicated that frequent extreme drought events in the future might reduce the net carbon sink function of peatland areas, with an especially strong influence on CO2.
Collapse
|
25
|
Lapola DM. Bytes and boots to understand the future of the Amazon forest. THE NEW PHYTOLOGIST 2018; 219:845-847. [PMID: 29998533 DOI: 10.1111/nph.15342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- David M Lapola
- Center for Meteorological and Climatic Research Applied to Agriculture, University of Campinas, Campinas, SP, 13083-970, Brazil
| |
Collapse
|
26
|
McDowell NG. Deriving pattern from complexity in the processes underlying tropical forest drought impacts. THE NEW PHYTOLOGIST 2018; 219:841-844. [PMID: 29998534 DOI: 10.1111/nph.15341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- Nate G McDowell
- Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| |
Collapse
|