1
|
Van Nuland ME, Qin C, Pellitier PT, Zhu K, Peay KG. Climate mismatches with ectomycorrhizal fungi contribute to migration lag in North American tree range shifts. Proc Natl Acad Sci U S A 2024; 121:e2308811121. [PMID: 38805274 PMCID: PMC11161776 DOI: 10.1073/pnas.2308811121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 04/05/2024] [Indexed: 05/30/2024] Open
Abstract
Climate change will likely shift plant and microbial distributions, creating geographic mismatches between plant hosts and essential microbial symbionts (e.g., ectomycorrhizal fungi, EMF). The loss of historical interactions, or the gain of novel associations, can have important consequences for biodiversity, ecosystem processes, and plant migration potential, yet few analyses exist that measure where mycorrhizal symbioses could be lost or gained across landscapes. Here, we examine climate change impacts on tree-EMF codistributions at the continent scale. We built species distribution models for 400 EMF species and 50 tree species, integrating fungal sequencing data from North American forest ecosystems with tree species occurrence records and long-term forest inventory data. Our results show the following: 1) tree and EMF climate suitability to shift toward higher latitudes; 2) climate shifts increase the size of shared tree-EMF habitat overall, but 35% of tree-EMF pairs are at risk of declining habitat overlap; 3) climate mismatches between trees and EMF are projected to be greater at northern vs. southern boundaries; and 4) tree migration lag is correlated with lower richness of climatically suitable EMF partners. This work represents a concentrated effort to quantify the spatial extent and location of tree-EMF climate envelope mismatches. Our findings also support a biotic mechanism partially explaining the failure of northward tree species migrations with climate change: reduced diversity of co-occurring and climate-compatible EMF symbionts at higher latitudes. We highlight the conservation implications for identifying areas where tree and EMF responses to climate change may be highly divergent.
Collapse
Affiliation(s)
- Michael E. Van Nuland
- Department of Biology, Stanford University, Stanford, CA94305
- Society for the Protection of Underground Networks, Dover, DE19901
| | - Clara Qin
- Society for the Protection of Underground Networks, Dover, DE19901
- Department of Environmental Studies, University of California Santa Cruz, Santa Cruz, CA95064
| | | | - Kai Zhu
- Department of Environmental Studies, University of California Santa Cruz, Santa Cruz, CA95064
- Institute for Global Change Biology, School for Environment and Sustainability, University of Michigan, Ann Arbor, MI48109
| | - Kabir G. Peay
- Department of Biology, Stanford University, Stanford, CA94305
- Department of Earth System Science, Stanford University, Stanford, CA94305
| |
Collapse
|
2
|
McPolin MC, Kranabetter JM, Philpott TJ, Hawkins BJ. Sporocarp nutrition of ectomycorrhizal fungi indicates an important role for endemic species in a high productivity temperate rainforest. THE NEW PHYTOLOGIST 2024; 242:1603-1613. [PMID: 37771241 DOI: 10.1111/nph.19280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/04/2023] [Indexed: 09/30/2023]
Abstract
Endemic species of ectomycorrhizal fungi (EMF) are found throughout many biomes, but it is unclear whether their localized distribution is dictated by habitat filtering or geographical barriers to dispersal. We examined community composition (via long-read metabarcoding) and differences in sporocarp nutrition between endemic and cosmopolitan EMF species across perhumid temperate rainforests of British Columbia, characterized by soils with high nitrogen (N) supply alongside low phosphorus (P) and cation availability. Endemic EMF species, representing almost half of the community, had significantly greater sporocarp N (24% higher), potassium (+16%), and magnesium (+17%) concentrations than cosmopolitan species. Sporocarp P concentrations were comparatively low and did not differ by fungal range. However, sporocarp N% and P% were well correlated, supporting evidence for linkages in N and P acquisition. Endemics were more likely to occur on Tsuga heterophylla (a disjunct host genus) than Picea sitchensis (a circumpolar genus). The Inocybaceae and Thelephoraceae families had high proportions of endemic taxa, while species in Cortinariaceae were largely cosmopolitan, indicating some niche conservatism among genera. We conclude that superior adaptive traits in relation to perhumid soils were skewed toward the endemic community, underscoring the potentially important contribution of these localized fungi to rainforest nutrition and productivity.
Collapse
Affiliation(s)
- M Claire McPolin
- Centre for Forest Biology, University of Victoria, PO Box 3020, STN CSC, Victoria, BC, V8W 3N5, Canada
| | - J Marty Kranabetter
- British Columbia Ministry of Forests, PO Box 9536, Stn Prov Govt, Victoria, BC, V8W 9C4, Canada
| | - Tim J Philpott
- British Columbia Ministry of Forests, 200-640 Borland St., Williams Lake, BC, V2G 4T1, Canada
| | - Barbara J Hawkins
- Centre for Forest Biology, University of Victoria, PO Box 3020, STN CSC, Victoria, BC, V8W 3N5, Canada
| |
Collapse
|
3
|
Zobel M, Koorem K, Moora M, Semchenko M, Davison J. Symbiont plasticity as a driver of plant success. THE NEW PHYTOLOGIST 2024; 241:2340-2352. [PMID: 38308116 DOI: 10.1111/nph.19566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/12/2024] [Indexed: 02/04/2024]
Abstract
We discuss which plant species are likely to become winners, that is achieve the highest global abundance, in changing landscapes, and whether plant-associated microbes play a determining role. Reduction and fragmentation of natural habitats in historic landscapes have led to the emergence of patchy, hybrid landscapes, and novel landscapes where anthropogenic ecosystems prevail. In patchy landscapes, species with broad niches are favoured. Plasticity in the degree of association with symbiotic microbes may contribute to broader plant niches and optimization of symbiosis costs and benefits, by downregulating symbiosis when it is unnecessary and upregulating it when it is beneficial. Plasticity can also be expressed as the switch from one type of mutualism to another, for example from nutritive to defensive mutualism with increasing soil fertility and the associated increase in parasite load. Upon dispersal, wide mutualistic partner receptivity is another facet of symbiont plasticity that becomes beneficial, because plants are not limited by the availability of specialist partners when arriving at new locations. Thus, under conditions of global change, symbiont plasticity allows plants to optimize the activity of mutualistic relationships, potentially allowing them to become winners by maximizing geographic occupancy and local abundance.
Collapse
Affiliation(s)
- Martin Zobel
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, Tartu, 50409, Estonia
| | - Kadri Koorem
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, Tartu, 50409, Estonia
| | - Mari Moora
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, Tartu, 50409, Estonia
| | - Marina Semchenko
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, Tartu, 50409, Estonia
| | - John Davison
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, Tartu, 50409, Estonia
| |
Collapse
|
4
|
Wu Y, Brown A, Ricklefs RE. Host-specific soil microbes contribute to habitat restriction of closely related oaks ( Quercus spp.). Ecol Evol 2022; 12:e9614. [PMID: 36523531 PMCID: PMC9745265 DOI: 10.1002/ece3.9614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
Habitat divergence among close relatives is a common phenomenon. Studying the mechanisms behind habitat divergence is fundamental to understanding niche partitioning, species diversification, and other evolutionary processes. Recent studies found that soil microbes regulate the abundance and diversity of plant species. However, it remains unclear whether soil microbes can affect the habitat distributions of plants and drive habitat divergence. To fill in this knowledge gap, we investigated whether soil microbes might restrict habitat distributions of closely related oaks (Quercus spp.) in eastern North America. We performed a soil inoculum experiment using two pairs of sister species (i.e., the most closely related species) that show habitat divergence: Quercus alba (local species) vs. Q. michauxii (foreign), and Q. shumardii (local) vs. Q. acerifolia (foreign). To test whether host-specific soil microbes are responsible for habitat restriction, we investigated the impact of local sister live soil (containing soil microbes associated with local sister species) on the survival and growth of local and foreign species. Second, to test whether habitat-specific soil microbes are responsible for habitat restriction, we examined the effect of local habitat live soil (containing soil microbes within local sister's habitats, but not directly associated with local sister species) on the seedlings of local and foreign species. We found that local sister live soil decreased the survival and biomass of foreign species' seedlings while increasing those of local species, suggesting that host-specific soil microbes could potentially mediate habitat exclusion. In contrast, local habitat live soil did not differentially affect the survival or biomass of the local vs. foreign species. Our study indicates that soil microbes associated with one sister species can suppress the recruitment of the other host species, contributing to the habitat partitioning of close relatives. Considering the complex interactions with soil microbes is essential for understanding the habitat distributions of closely related plants.
Collapse
Affiliation(s)
- Yingtong Wu
- Department of BiologyUniversity of Missouri–St. LouisSt. LouisMissouriUSA
- Whitney R. Harris World Ecology CenterUniversity of Missouri–St. LouisSt. LouisMissouriUSA
| | - Alicia Brown
- Department of BiologyUniversity of Missouri–St. LouisSt. LouisMissouriUSA
- Whitney R. Harris World Ecology CenterUniversity of Missouri–St. LouisSt. LouisMissouriUSA
| | - Robert E. Ricklefs
- Department of BiologyUniversity of Missouri–St. LouisSt. LouisMissouriUSA
- Whitney R. Harris World Ecology CenterUniversity of Missouri–St. LouisSt. LouisMissouriUSA
| |
Collapse
|
5
|
Guy P, Sibly R, Smart SM, Tibbett M, Pickles BJ. Mycorrhizal type of woody plants influences understory species richness in British broadleaved woodlands. THE NEW PHYTOLOGIST 2022; 235:2046-2053. [PMID: 35622460 PMCID: PMC9543792 DOI: 10.1111/nph.18274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Mature temperate woodlands are commonly dominated by ectomycorrhizal trees, whereas understory plants predominantly form arbuscular mycorrhizal associations. Due to differences in plant-fungus compatibility between canopy and ground layer vegetation the 'mycorrhizal mediation hypothesis' predicts that herbaceous plant establishment may be limited by a lack of suitable mycorrhizal fungal inoculum. We examined plant species data for 103 woodlands across Great Britain recorded in 1971 and in 2000 to test whether herbaceous plant species richness was related to the proportion of arbuscular mycorrhizal woody plants. We compared the effect of mycorrhizal type with other important drivers of woodland plant species richness. We found a positive effect of the relative abundance of arbuscular mycorrhizal woody plants on herbaceous plant species richness. The size of the observed effect was smaller than that of pH. Moreover, the effect persisted over time, despite many woodlands undergoing marked successional change and increased understorey shading. This work supports the mycorrhizal mediation hypothesis in British woodlands and suggests that increased abundance of arbuscular mycorrhizal woody plants is associated with greater understory plant species richness.
Collapse
Affiliation(s)
- Petra Guy
- School of Biological SciencesUniversity of Reading, Health and Life Sciences BuildingWhiteknightsReadingRG6 6EXUK
- School of Agriculture, Policy, and DevelopmentUniversity of ReadingWhiteknightsReadingRG6 6BZUK
| | - Richard Sibly
- School of Biological SciencesUniversity of Reading, Health and Life Sciences BuildingWhiteknightsReadingRG6 6EXUK
| | - Simon M. Smart
- UK Centre for Ecology & HydrologyLibrary Avenue, BailriggLancasterLA1 4APUK
| | - Mark Tibbett
- School of Agriculture, Policy, and DevelopmentUniversity of ReadingWhiteknightsReadingRG6 6BZUK
| | - Brian J. Pickles
- School of Biological SciencesUniversity of Reading, Health and Life Sciences BuildingWhiteknightsReadingRG6 6EXUK
| |
Collapse
|
6
|
Dawson-Glass E, Hargreaves AL. Does pollen limitation limit plant ranges? Evidence and implications. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210014. [PMID: 35067093 PMCID: PMC8784924 DOI: 10.1098/rstb.2021.0014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 10/23/2021] [Indexed: 11/12/2022] Open
Abstract
Sexual reproduction often declines towards range edges, reducing fitness, dispersal and adaptive potential. For plants, sexual reproduction is frequently limited by inadequate pollination. While case studies show that pollen limitation can limit plant distributions, the extent to which pollination commonly declines towards plant range edges is unknown. Here, we use global databases of pollen-supplementation experiments and plant occurrence data to test whether pollen limitation increases towards plant range edges, using a phylogenetically controlled meta-analysis. While there was significant pollen limitation across studies, we found little evidence that pollen limitation increases towards plant range edges. Pollen limitation was not stronger towards the tropics, nor at species' equatorward versus poleward range limits. Meta-analysis results are consistent with results from targeted experiments, in which pollen limitation increased significantly towards only 14% of 14 plant range edges, suggesting that pollination contributes to range limits less often than do other interactions. Together, these results suggest pollination is one of the rich variety of potential ecological factors that can contribute to range limits, rather than a generally important constraint on plant distributions. This article is part of the theme issue 'Species' ranges in the face of changing environments (part I)'.
Collapse
Affiliation(s)
- Emma Dawson-Glass
- Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montreal H3A 1B1, Canada
| | - Anna L. Hargreaves
- Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montreal H3A 1B1, Canada
| |
Collapse
|
7
|
Delavaux CS, Weigelt P, Dawson W, Essl F, van Kleunen M, König C, Pergl J, Pyšek P, Stein A, Winter M, Taylor A, Schultz PA, Whittaker RJ, Kreft H, Bever JD. Mycorrhizal types influence island biogeography of plants. Commun Biol 2021; 4:1128. [PMID: 34561537 PMCID: PMC8463580 DOI: 10.1038/s42003-021-02649-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 09/07/2021] [Indexed: 11/09/2022] Open
Abstract
Plant colonization of islands may be limited by the availability of symbionts, particularly arbuscular mycorrhizal (AM) fungi, which have limited dispersal ability compared to ectomycorrhizal and ericoid (EEM) as well as orchid mycorrhizal (ORC) fungi. We tested for such differential island colonization within contemporary angiosperm floras worldwide. We found evidence that AM plants experience a stronger mycorrhizal filter than other mycorrhizal or non-mycorrhizal (NM) plant species, with decreased proportions of native AM plant species on islands relative to mainlands. This effect intensified with island isolation, particularly for non-endemic plant species. The proportion of endemic AM plant species increased with island isolation, consistent with diversification filling niches left open by the mycorrhizal filter. We further found evidence of humans overcoming the initial mycorrhizal filter. Naturalized floras showed higher proportions of AM plant species than native floras, a pattern that increased with increasing isolation and land-use intensity. This work provides evidence that mycorrhizal fungal symbionts shape plant colonization of islands and subsequent diversification.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jan Pergl
- Czech Academy of Sciences, Průhonice, Czech Republic
| | - Petr Pyšek
- Czech Academy of Sciences, Průhonice, Czech Republic
| | - Anke Stein
- University of Konstanz, Konstanz, Germany
| | - Marten Winter
- German Centre for Integrative Biodiversity Research, Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
8
|
Paquette A, Hargreaves AL. Biotic interactions are more often important at species' warm versus cool range edges. Ecol Lett 2021; 24:2427-2438. [PMID: 34453406 DOI: 10.1111/ele.13864] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 12/11/2022]
Abstract
Predicting which ecological factors constrain species distributions is a fundamental ecological question and critical to forecasting geographic responses to global change. Darwin hypothesised that abiotic factors generally impose species' high-latitude and high-elevation (typically cool) range limits, whereas biotic interactions more often impose species' low-latitude/low-elevation (typically warm) limits, but empirical support has been mixed. Here, we clarify three predictions arising from Darwin's hypothesis and show that previously mixed support is partially due to researchers testing different predictions. Using a comprehensive literature review (885 range limits), we find that biotic interactions, including competition, predation and parasitism, contributed to >60% of range limits and influenced species' warm limits more often than cool limits. Abiotic factors contributed more often than biotic interactions to cool range limits, but temperature contributed frequently to both cool and warm limits. Our results suggest that most range limits will be sensitive to climate warming, but warm-limit responses in particular will depend strongly on biotic interactions.
Collapse
|
9
|
Neuenkamp L, Zobel M, Koorem K, Jairus T, Davison J, Öpik M, Vasar M, Moora M. Light availability and light demand of plants shape the arbuscular mycorrhizal fungal communities in their roots. Ecol Lett 2020; 24:426-437. [PMID: 33319429 DOI: 10.1111/ele.13656] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 01/01/2023]
Abstract
Plants involved in the arbuscular mycorrhizal (AM) symbiosis trade photosynthetically derived carbon for fungal-provided soil nutrients. However, little is known about how plant light demand and ambient light conditions influence root-associating AM fungal communities. We conducted a manipulative field experiment to test whether plants' shade-tolerance influences their root AM fungal communities in open and shaded grassland sites. We found similar light-dependent shifts in AM fungal community structure for experimental bait plant roots and the surrounding soil. Yet, deviation from the surrounding soil towards lower AM fungal beta-diversity in the roots of shade-intolerant plants in shade suggested preferential carbon allocation to specific AM fungi in conditions where plant-assimilated carbon available to fungi was limited. We conclude that favourable environmental conditions widen the plant biotic niche, as demonstrated here with optimal light availability reducing plants' selectivity for specific AM fungi, and promote compatibility with a larger number of AM fungal taxa.
Collapse
Affiliation(s)
- Lena Neuenkamp
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia.,Institute of Plant Sciences, University of Bern, Altenbergrain 21, Bern, 3013, Switzerland
| | - Martin Zobel
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Kadri Koorem
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Teele Jairus
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - John Davison
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Maarja Öpik
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Martti Vasar
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Mari Moora
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| |
Collapse
|
10
|
A unifying framework for studying and managing climate-driven rates of ecological change. Nat Ecol Evol 2020; 5:17-26. [PMID: 33288870 DOI: 10.1038/s41559-020-01344-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 10/12/2020] [Indexed: 01/22/2023]
Abstract
During the Anthropocene and other eras of rapidly changing climates, rates of change of ecological systems can be described as fast, slow or abrupt. Fast ecological responses closely track climate change, slow responses substantively lag climate forcing, causing disequilibria and reduced fitness, and abrupt responses are characterized by nonlinear, threshold-type responses at rates that are large relative to background variability and forcing. All three kinds of climate-driven ecological dynamics are well documented in contemporary studies, palaeoecology and invasion biology. This fast-slow-abrupt conceptual framework helps unify a bifurcated climate-change literature, which tends to separately consider the ecological risks posed by slow or abrupt ecological dynamics. Given the prospect of ongoing climate change for the next several decades to centuries of the Anthropocene and wide variations in ecological rates of change, the theory and practice of managing ecological systems should shift attention from target states to target rates. A rates-focused framework broadens the strategic menu for managers to include options to both slow and accelerate ecological rates of change, seeks to reduce mismatch among climate and ecological rates of change, and provides a unified conceptual framework for tackling the distinct risks associated with fast, slow and abrupt ecological rates of change.
Collapse
|
11
|
Blaus A, Reitalu T, Gerhold P, Hiiesalu I, Massante JC, Veski S. Modern Pollen–Plant Diversity Relationships Inform Palaeoecological Reconstructions of Functional and Phylogenetic Diversity in Calcareous Fens. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00207] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
12
|
Tedersoo L, Bahram M, Zobel M. How mycorrhizal associations drive plant population and community biology. Science 2020; 367:367/6480/eaba1223. [PMID: 32079744 DOI: 10.1126/science.aba1223] [Citation(s) in RCA: 331] [Impact Index Per Article: 66.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mycorrhizal fungi provide plants with a range of benefits, including mineral nutrients and protection from stress and pathogens. Here we synthesize current information about how the presence and type of mycorrhizal association affect plant communities. We argue that mycorrhizal fungi regulate seedling establishment and species coexistence through stabilizing and equalizing mechanisms such as soil nutrient partitioning, feedback to soil antagonists, differential mycorrhizal benefits, and nutrient trade. Mycorrhizal fungi have strong effects on plant population and community biology, with mycorrhizal type-specific effects on seed dispersal, seedling establishment, and soil niche differentiation, as well as interspecific and intraspecific competition and hence plant diversity.
Collapse
Affiliation(s)
- Leho Tedersoo
- Natural History Museum of Estonia, Tallinn, Estonia.
| | - Mohammad Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Martin Zobel
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
13
|
Rolshausen G, Hallman U, Grande FD, Otte J, Knudsen K, Schmitt I. Expanding the mutualistic niche: parallel symbiont turnover along climatic gradients. Proc Biol Sci 2020; 287:20192311. [PMID: 32228406 DOI: 10.1098/rspb.2019.2311] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Keystone mutualisms, such as corals, lichens or mycorrhizae, sustain fundamental ecosystem functions. Range dynamics of these symbioses are, however, inherently difficult to predict because host species may switch between different symbiont partners in different environments, thereby altering the range of the mutualism as a functional unit. Biogeographic models of mutualisms thus have to consider both the ecological amplitudes of various symbiont partners and the abiotic conditions that trigger symbiont replacement. To address this challenge, we here investigate 'symbiont turnover zones'--defined as demarcated regions where symbiont replacement is most likely to occur, as indicated by overlapping abundances of symbiont ecotypes. Mapping the distribution of algal symbionts from two species of lichen-forming fungi along four independent altitudinal gradients, we detected an abrupt and consistent β-diversity turnover suggesting parallel niche partitioning. Modelling contrasting environmental response functions obtained from latitudinal distributions of algal ecotypes consistently predicted a confined altitudinal turnover zone. In all gradients this symbiont turnover zone is characterized by approximately 12°C average annual temperature and approximately 5°C mean temperature of the coldest quarter, marking the transition from Mediterranean to cool temperate bioregions. Integrating the conditions of symbiont turnover into biogeographic models of mutualisms is an important step towards a comprehensive understanding of biodiversity dynamics under ongoing environmental change.
Collapse
Affiliation(s)
- Gregor Rolshausen
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
| | - Uwe Hallman
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
| | - Francesco Dal Grande
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
| | - Jürgen Otte
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
| | - Kerry Knudsen
- Department of Ecology, Czech University of Life Sciences Prague
- CULS, Prague, Czech Republic
| | - Imke Schmitt
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany.,Departement of Biological Sciences, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
14
|
Zanne AE, Abarenkov K, Afkhami ME, Aguilar-Trigueros CA, Bates S, Bhatnagar JM, Busby PE, Christian N, Cornwell WK, Crowther TW, Flores-Moreno H, Floudas D, Gazis R, Hibbett D, Kennedy P, Lindner DL, Maynard DS, Milo AM, Nilsson RH, Powell J, Schildhauer M, Schilling J, Treseder KK. Fungal functional ecology: bringing a trait-based approach to plant-associated fungi. Biol Rev Camb Philos Soc 2019; 95:409-433. [PMID: 31763752 DOI: 10.1111/brv.12570] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 10/27/2019] [Accepted: 10/31/2019] [Indexed: 12/21/2022]
Abstract
Fungi play many essential roles in ecosystems. They facilitate plant access to nutrients and water, serve as decay agents that cycle carbon and nutrients through the soil, water and atmosphere, and are major regulators of macro-organismal populations. Although technological advances are improving the detection and identification of fungi, there still exist key gaps in our ecological knowledge of this kingdom, especially related to function. Trait-based approaches have been instrumental in strengthening our understanding of plant functional ecology and, as such, provide excellent models for deepening our understanding of fungal functional ecology in ways that complement insights gained from traditional and -omics-based techniques. In this review, we synthesize current knowledge of fungal functional ecology, taxonomy and systematics and introduce a novel database of fungal functional traits (FunFun ). FunFun is built to interface with other databases to explore and predict how fungal functional diversity varies by taxonomy, guild, and other evolutionary or ecological grouping variables. To highlight how a quantitative trait-based approach can provide new insights, we describe multiple targeted examples and end by suggesting next steps in the rapidly growing field of fungal functional ecology.
Collapse
Affiliation(s)
- Amy E Zanne
- Department of Biological Sciences, George Washington University, Washington, DC, 20052, U.S.A
| | - Kessy Abarenkov
- Natural History Museum, University of Tartu, Vanemuise 46, Tartu, 51014, Estonia
| | - Michelle E Afkhami
- Department of Biology, University of Miami, Coral Gables, FL, 33146, U.S.A
| | - Carlos A Aguilar-Trigueros
- Freie Universität-Berlin, Berlin-Brandenburg Institute of Advanced Biodiversity Research, 14195, Berlin, Germany
| | - Scott Bates
- Department of Biological Sciences, Purdue University Northwest, Westville, IN, 46391, U.S.A
| | | | - Posy E Busby
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97330, U.S.A
| | - Natalie Christian
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, U.S.A.,Department of Biology, University of Louisville, Louisville, KY 40208, U.S.A
| | - William K Cornwell
- Evolution & Ecology Research Centre, School of Biological Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Thomas W Crowther
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, 8092, Zürich, Switzerland
| | - Habacuc Flores-Moreno
- Department of Ecology, Evolution, and Behavior, and Department of Forest Resources, University of Minnesota, St. Paul, MN, 55108, U.S.A
| | - Dimitrios Floudas
- Microbial Ecology Group, Department of Biology, Lund University, Lund, Sweden
| | - Romina Gazis
- Department of Plant Pathology, Tropical Research & Education Center, University of Florida, Homestead, FL, 33031, U.S.A
| | - David Hibbett
- Biology Department, Clark University, Worcester, MA, 01610, U.S.A
| | - Peter Kennedy
- Plant & Microbial Biology, University of Minnesota, St. Paul, MN, 55108, U.S.A
| | - Daniel L Lindner
- US Forest Service, Northern Research Station, Center for Forest Mycology Research, Madison, Wisconsin, WI, 53726, U.S.A
| | - Daniel S Maynard
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, 8092, Zürich, Switzerland
| | - Amy M Milo
- Department of Biological Sciences, George Washington University, Washington, DC, 20052, U.S.A
| | - Rolf Henrik Nilsson
- University of Gothenburg, Department of Biological and Environmental Sciences, Gothenburg Global Biodiversity Centre, Box 461, 405 30, Göteborg, Sweden
| | - Jeff Powell
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, 2751, Australia
| | - Mark Schildhauer
- National Center for Ecological Analysis and Synthesis, 735 State Street, Suite 300, Santa Barbara, CA, 93101, U.S.A
| | - Jonathan Schilling
- Plant & Microbial Biology, University of Minnesota, St. Paul, MN, 55108, U.S.A
| | - Kathleen K Treseder
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, 92697, U.S.A
| |
Collapse
|
15
|
Burke KD, Williams JW, Brewer S, Finsinger W, Giesecke T, Lorenz DJ, Ordonez A. Differing climatic mechanisms control transient and accumulated vegetation novelty in Europe and eastern North America. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190218. [PMID: 31679485 DOI: 10.1098/rstb.2019.0218] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Understanding the mechanisms of climate that produce novel ecosystems is of joint interest to conservation biologists and palaeoecologists. Here, we define and differentiate transient from accumulated novelty and evaluate four climatic mechanisms proposed to cause species to reshuffle into novel assemblages: high climatic novelty, high spatial rates of change (displacement), high variance among displacement rates for individual climate variables, and divergence among displacement vector bearings. We use climate simulations to quantify climate novelty, displacement and divergence across Europe and eastern North America from the last glacial maximum to the present, and fossil pollen records to quantify vegetation novelty. Transient climate novelty is consistently the strongest predictor of transient vegetation novelty, while displacement rates (mean and variance) are equally important in Europe. However, transient vegetation novelty is lower in Europe and its relationship to climatic predictors is the opposite of expectation. For both continents, accumulated novelty is greater than transient novelty, and climate novelty is the strongest predictor of accumulated ecological novelty. These results suggest that controls on novel ecosystems vary with timescale and among continents, and that the twenty-first century emergence of novelty will be driven by both rapid rates of climate change and the emergence of novel climate states. This article is part of a discussion meeting issue 'The past is a foreign country: how much can the fossil record actually inform conservation?'
Collapse
Affiliation(s)
- Kevin D Burke
- Nelson Institute for Environmental Studies, University of Wisconsin-Madison, 550 N. Park Street, Madison, WI 53706, USA
| | - John W Williams
- Department of Geography, University of Wisconsin-Madison, 550 N. Park Street, Madison, WI 53706, USA.,Center for Climatic Research, University of Wisconsin-Madison, 550 N. Park Street, Madison, WI 53706, USA
| | - Simon Brewer
- Department of Geography, University of Utah, 260 S. Central Campus Drive, Salt Lake City, UT 84119, USA
| | - Walter Finsinger
- Palaeoecology, ISEM (UMR 5554 CNRS/UM/EPHE), Place E. Bataillon, 34095 Montpellier, France
| | - Thomas Giesecke
- Department of Palynology and Climate Dynamics, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany.,Department of Physical Geography, Faculty Geoscience, Utrecht University, PO Box 80115, 3508 TC Utrecht, The Netherlands
| | - David J Lorenz
- Center for Climatic Research, University of Wisconsin-Madison, 550 N. Park Street, Madison, WI 53706, USA
| | - Alejandro Ordonez
- Center for Biodiversity Dynamics in a Changing World and Ecoinformatics and Biodiversity, Department of Bioscience, Aarhus University, Ny Munkegade 116, 8000 Aarhus C, Denmark
| |
Collapse
|
16
|
Maarja Öpik. THE NEW PHYTOLOGIST 2019; 223:50-51. [PMID: 31155746 DOI: 10.1111/nph.15827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
|
17
|
Defrenne CE, Philpott TJ, Guichon SHA, Roach WJ, Pickles BJ, Simard SW. Shifts in Ectomycorrhizal Fungal Communities and Exploration Types Relate to the Environment and Fine-Root Traits Across Interior Douglas-Fir Forests of Western Canada. FRONTIERS IN PLANT SCIENCE 2019; 10:643. [PMID: 31191571 PMCID: PMC6547044 DOI: 10.3389/fpls.2019.00643] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/29/2019] [Indexed: 05/20/2023]
Abstract
Large-scale studies that examine the responses of ectomycorrhizal fungi across biogeographic gradients are necessary to assess their role in mediating current and predicted future alterations in forest ecosystem processes. We assessed the extent of environmental filtering on interior Douglas-fir (Pseudotsuga menziesii var. glauca (Beissn.) Franco) ectomycorrhizal fungal communities across regional gradients in precipitation, temperature, and soil fertility in interior Douglas-fir dominated forests of western Canada. We also examined relationships between fine-root traits and mycorrhizal fungal exploration types by combining root and fungal trait measurements with next-generation sequencing. Temperature, precipitation, and soil C:N ratio affected fungal community dissimilarity and exploration type abundance but had no effect on α-diversity. Fungi with rhizomorphs (e.g., Piloderma sp.) or proteolytic abilities (e.g., Cortinarius sp.) dominated communities in warmer and less fertile environments. Ascomycetes (e.g., Cenococcum geophilum) or shorter distance explorers, which potentially cost the plant less C, were favored in colder/drier climates where soils were richer in total nitrogen. Environmental filtering of ectomycorrhizal fungal communities is potentially related to co-evolutionary history between Douglas-fir populations and fungal symbionts, suggesting success of interior Douglas-fir as climate changes may be dependent on maintaining strong associations with local communities of mycorrhizal fungi. No evidence for a link between root and fungal resource foraging strategies was found at the regional scale. This lack of evidence further supports the need for a mycorrhizal symbiosis framework that is independent of root trait frameworks, to aid in understanding belowground plant uptake strategies across environments.
Collapse
Affiliation(s)
- Camille E. Defrenne
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, BC, Canada
| | - Timothy J. Philpott
- Ministry of Forests, Lands, Natural Resource Operations and Rural Development, Cariboo-Chilcotin Natural Resource District, Williams Lake, BC, Canada
| | - Shannon H. A. Guichon
- Stable Isotope Facility, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada
| | - W. Jean Roach
- Skyline Forestry Consultants Ltd., Kamloops, BC, Canada
| | - Brian J. Pickles
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Suzanne W. Simard
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
18
|
Zobel M. Eltonian niche width determines range expansion success in ectomycorrhizal conifers. THE NEW PHYTOLOGIST 2018; 220:947-949. [PMID: 30408216 DOI: 10.1111/nph.15300] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- Martin Zobel
- Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai Street, 51005, Tartu, Estonia
| |
Collapse
|
19
|
Martin FM, Harrison MJ, Lennon S, Lindahl B, Öpik M, Polle A, Requena N, Selosse MA. Cross-scale integration of mycorrhizal function. THE NEW PHYTOLOGIST 2018; 220:941-946. [PMID: 30408219 DOI: 10.1111/nph.15493] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- Francis M Martin
- INRA, Université de Lorraine, UMR Interactions Arbres/Micro-Organismes, INRA-Centre Grand Est, Champenoux, 54280, France
| | | | - Sarah Lennon
- New Phytologist Central Office, Bailrigg House, Lancaster University, Lancaster, LA1 4YE, UK
| | - Björn Lindahl
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, Uppsala, SE-750 07, Sweden
| | - Maarja Öpik
- Department of Botany, Institute of Ecology and Earth Sciences, 40 Lai St., Tartu, 51005, Estonia
| | - Andrea Polle
- Forest Botany and Tree Physiology, University of Goettingen, Goettingen, 37077, Germany
| | - Natalia Requena
- Molecular Phytopathology Department, Karlsruhe Institute of Technology, Fritz Haber-Weg 4, Geb. 30.43, 2. OG, Karlsruhe, D-76131, Germany
| | - Marc-André Selosse
- Département Systématique et Evolution, Muséum national d'Histoire naturelle, UMR 7205 ISYEB, CP 50, 45 rue Buffon, Paris, 75005, France
- Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308, Gdańsk, Poland
| |
Collapse
|