1
|
Gu L, Grodzinski B, Han J, Marie T, Zhang Y, Song Y, Sun Y. Regulatory Coordination of Photophysical, Photochemical, and Biochemical Reactions in the Photosynthesis of Land Plants. PLANT DIRECT 2025; 9:e70080. [PMID: 40420918 PMCID: PMC12105917 DOI: 10.1002/pld3.70080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/07/2025] [Accepted: 05/06/2025] [Indexed: 05/28/2025]
Abstract
Balance among the sequential photophysical, photochemical, and biochemical reactions of photosynthesis is needed for converting fleeting energy in light to stable energy in chemical bonds. Any imbalance acts as either a bottleneck for limiting photosynthetic efficiency or an agent for inducing structural and functional damage to photosynthetic apparatus. Not only must each reaction be carefully regulated, but regulatory processes must also be coordinated across the reactions. However, regulations of different stages of photosynthesis have rarely been studied jointly. Non-photochemical quenching (NPQ) and stomatal conductance (g s) are key regulators of photophysical and biochemical reactions, respectively. Existing evidence suggests that the redox state of plastoquinone regulates g s and that the photochemical reactions are partially regulated by the ultrastructural dynamics of thylakoids induced by osmotic water fluxes in chloroplasts of land plants. To examine how these regulations are coordinated and feedback to each other, we simultaneously measured NPQ and g s and inferred the redox state of plastoquinone and the light-induced thylakoid swelling/shrinking on numerous C3 and C4 species. For all species measured, NPQ and g s covary with the redox states of the electron transport chain, particularly plastoquinone, and increase as thylakoid swelling is inferred. NPQ has the maximal sensitivity at the light intensity at which thylakoid is inferred to be fully swollen. Our findings suggest that plant energy and water use strategies are intimately linked by evolution, and studying the regulations of different photosynthetic stages as a whole can lead to new insights of the functioning of photosynthetic machinery in dynamic environments.
Collapse
Affiliation(s)
- Lianhong Gu
- Environmental Sciences Division and Climate Change Science InstituteOak Ridge National LaboratoryOak RidgeTennesseeUSA
| | | | - Jimei Han
- School of Integrative Plant ScienceCornell UniversityIthacaNew YorkUSA
| | - Telesphore Marie
- Department of Plant AgricultureUniversity of GuelphGuelphOntarioCanada
| | | | - Yang C. Song
- Department of Hydrology and Atmospheric SciencesUniversity of ArizonaTucsonArizonaUSA
| | - Ying Sun
- School of Integrative Plant ScienceCornell UniversityIthacaNew YorkUSA
| |
Collapse
|
2
|
Chen M, Yang J, Xue C, Tu T, Su Z, Feng H, Shi M, Zeng G, Zhang D, Qian X. Community composition of phytopathogenic fungi significantly influences ectomycorrhizal fungal communities during subtropical forest succession. Appl Microbiol Biotechnol 2024; 108:99. [PMID: 38204135 PMCID: PMC10781812 DOI: 10.1007/s00253-023-12992-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 11/21/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024]
Abstract
Ectomycorrhizal fungi (EMF) can form symbiotic relationships with plants, aiding in plant growth by providing access to nutrients and defense against phytopathogenic fungi. In this context, factors such as plant assemblages and soil properties can impact the interaction between EMF and phytopathogenic fungi in forest soil. However, there is little understanding of how these fungal interactions evolve as forests move through succession stages. In this study, we used high-throughput sequencing to investigate fungal communities in young, intermediate, and old subtropical forests. At the genus level, EMF communities were dominated by Sebacina, Russula, and Lactarius, while Mycena was the most abundant genus in pathogenic fungal communities. The relative abundances of EMF and phytopathogenic fungi in different stages showed no significant difference with the regulation of different factors. We discovered that interactions between phytopathogenic fungi and EMF maintained a dynamic balance under the influence of the differences in soil quality attributed to each forest successional stage. The community composition of phytopathogenic fungi is one of the strong drivers in shaping EMF communities over successions. In addition, the EMF diversity was significantly related to plant diversity, and these relationships varied among successional stages. Despite the regulation of various factors, the positive relationship between the diversity of phytopathogenic fungi and EMF remained unchanged. However, there is no significant difference in the ratio of the abundance of EMF and phytopathogenic fungi over the course of successions. These results will advance our understanding of the biodiversity-ecosystem functioning during forest succession. KEY POINTS: •Community composition of both EMF and phytopathogenic fungi changed significantly over forest succession. •Phytopathogenic fungi is a key driver in shaping EMF community. •The effect of plant Shannon's diversity on EMF communities changed during the forest aging process.
Collapse
Affiliation(s)
- Meirong Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiazhi Yang
- Guangdong Forestry Survey and Planning Institute, Guangzhou, China
| | - Chunquan Xue
- Guangdong Forestry Survey and Planning Institute, Guangzhou, China.
| | - Tieyao Tu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Zhiyao Su
- South China Agriculture University, Guangzhou, China
| | - Hanhua Feng
- Guangdong Forestry Survey and Planning Institute, Guangzhou, China
| | - Miaomiao Shi
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Gui Zeng
- College of Life Sciences, China West Normal University, Nanchong, China
| | - Dianxiang Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
| | - Xin Qian
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| |
Collapse
|
3
|
Xiong Y, Ishara MS, Hyde KD, Taylor JE, Phillips A, Pereira DS, Lu L, Zhang SN, Mapook A, Xu B. Introducing palmfungi.org, an integrated fungal-host data platform. Biodivers Data J 2024; 12:e126553. [PMID: 39391555 PMCID: PMC11464899 DOI: 10.3897/bdj.12.e126553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/20/2024] [Indexed: 10/12/2024] Open
Abstract
Palm fungi are a diverse and unique group mostly found on Arecaceae hosts. They have been studied for approximately 200 years resulting in a large number of known fungal species representing over 700 genera. The timeline of palm fungal studies could be roughly divided into three phases, based on the methods and frequency of reports. They are the "Historical palm fungi era", "Classical palm fungi era" and "Molecular palm fungi era". In the first two periods, the identification of palm fungi was based on morphology, which resulted in a considerable number of morphological species scattered across the data in books, monographs and papers. With the advancement of molecular techniques, studies on palm fungi accelerated. A large number of new species were introduced in the molecular era, especially from Asia, including China and Thailand. However, there is a necessity to link these three generations of studies into a single platform combining data related to host factors, geography and utilisation. Herein, we introduce the palm fungi website: https://palmfungi.org, an integrated data platform for interactive retrieval, based on palm and fungal species. This website is not only a portal for the latest, comprehensive species information on palm fungi, but also provides a new platform for fungal researchers to explore the host-specificity of palm fungi. Additionally, this study uses palmfungi.org and related data to briefly discuss the current status of research on the distribution of palm fungi populations, showing how palmfungi.org links fungi with their palm hosts. Furthermore, the website will act as a platform for collaboration amongst taxonomists, plant pathologists, botanists, ecologists and those who are interested in palms and their relationship with ecological sustainability.
Collapse
Affiliation(s)
- Yinru Xiong
- Center of Excellence in Fungal Research, Chiang Rai, ThailandCenter of Excellence in Fungal ResearchChiang RaiThailand
- School of Science, Mae Fah Luang University, Chiang Rai, ThailandSchool of Science, Mae Fah Luang UniversityChiang RaiThailand
- Innovative Institute for Plant Health, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, ChinaInnovative Institute for Plant Health, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and EngineeringGuangzhouChina
| | - Manawasinghe S. Ishara
- Innovative Institute for Plant Health, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, ChinaInnovative Institute for Plant Health, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and EngineeringGuangzhouChina
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Chiang Rai, ThailandCenter of Excellence in Fungal ResearchChiang RaiThailand
- School of Science, Mae Fah Luang University, Chiang Rai, ThailandSchool of Science, Mae Fah Luang UniversityChiang RaiThailand
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, ChinaCAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of ScienceKunmingChina
- Department of Botany and Microbiology, College of Science, Riyadh, Saudi ArabiaDepartment of Botany and Microbiology, College of ScienceRiyadhSaudi Arabia
| | - Joanne E. Taylor
- Royal Botanic Garden Edinburgh, Edinburgh EH3 5LR, United KingdomRoyal Botanic Garden EdinburghEdinburgh EH3 5LRUnited Kingdom
| | - Alan Phillips
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, Lisbon, PortugalBiosystems and Integrative Sciences Institute, Faculdade de Ciências da Universidade de LisboaLisbonPortugal
| | - Diana Santos Pereira
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, Lisbon, PortugalBiosystems and Integrative Sciences Institute, Faculdade de Ciências da Universidade de LisboaLisbonPortugal
| | - Li Lu
- Center of Excellence in Fungal Research, Chiang Rai, ThailandCenter of Excellence in Fungal ResearchChiang RaiThailand
- School of Science, Mae Fah Luang University, Chiang Rai, ThailandSchool of Science, Mae Fah Luang UniversityChiang RaiThailand
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, ChinaCenter for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal UniversityQujingChina
| | - Sheng-Nan Zhang
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, ChinaSchool of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of ChinaChengduChina
| | - Ausana Mapook
- Center of Excellence in Fungal Research, Chiang Rai, ThailandCenter of Excellence in Fungal ResearchChiang RaiThailand
| | - Biao Xu
- Innovative Institute for Plant Health, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, ChinaInnovative Institute for Plant Health, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and EngineeringGuangzhouChina
| |
Collapse
|
4
|
Punsung Y, Pachit P, Kijpornyongpan T, Paliyavuth C, Imwattana K, Piapukiew J. Optimizing conditions of mycelial inoculum immobilized in Ca-alginate beads: a case study in ectomycorrhizal fungus Astraeus odoratus. World J Microbiol Biotechnol 2024; 40:238. [PMID: 38858319 DOI: 10.1007/s11274-024-03962-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/19/2024] [Indexed: 06/12/2024]
Abstract
Ectomycorrhizal inoculum has emerged as a critical tool for forest restoration, especially under challenging climate change conditions. The inoculation of selective ectomycorrhizal fungi can enhance seedling survival and subsequent growth in the field. This study optimized the liquid media for mycelial growth of Astraeus odoratus strain K1 and the sodium alginate solution composition for enhanced mycelial viability after entrapment. Using Modified Melin-Norkrans as the optimal media for mycelial cultivation and 2% sodium alginate supplemented with Czapek medium, 0.25% activated charcoal, 5% sucrose, and 5% sorbitol in the alginate solution yielded the highest viability of A. odoratus mycelia. Preservation in distilled water and 10% glycerol at 25 °C for 60 days proved to be the most effective storage condition for the alginate beads. Both fresh and preserved alginate beads were tested for colonizing on Hopea odorata Roxb. seedlings, showing successful colonization and ectomycorrhizal root formation, with over 49% colonization. This study fills a crucial gap in biotechnology and ectomycorrhizal inoculum, paving the way for more effective and sustainable forest restoration practices.
Collapse
Affiliation(s)
- Yanisa Punsung
- Biotechnological Sciences Program, Faculty of Science, Chulalongkorn University, Pathum Wan, Bangkok, 10330, Thailand
| | - Pawara Pachit
- Biological Sciences Program, Faculty of Science, Chulalongkorn University, Pathum Wan, Bangkok, 10330, Thailand
| | | | - Chanita Paliyavuth
- Department of Botany, Faculty of Science, Chulalongkorn University, Pathum Wan, Bangkok, 10330, Thailand
| | - Karn Imwattana
- Department of Botany, Faculty of Science, Chulalongkorn University, Pathum Wan, Bangkok, 10330, Thailand
| | - Jittra Piapukiew
- Department of Botany, Faculty of Science, Chulalongkorn University, Pathum Wan, Bangkok, 10330, Thailand.
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Faculty of Science, Chulalongkorn University, Pathum Wan, Bangkok, 10330, Thailand.
| |
Collapse
|
5
|
Singavarapu B, Ul Haq H, Darnstaedt F, Nawaz A, Beugnon R, Cesarz S, Eisenhauer N, Du J, Xue K, Wang Y, Bruelheide H, Wubet T. Influence of tree mycorrhizal type, tree species identity, and diversity on forest root-associated mycobiomes. THE NEW PHYTOLOGIST 2024; 242:1691-1703. [PMID: 38659111 DOI: 10.1111/nph.19722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 02/20/2024] [Indexed: 04/26/2024]
Abstract
Understanding the complex interactions between trees and fungi is crucial for forest ecosystem management, yet the influence of tree mycorrhizal types, species identity, and diversity on tree-tree interactions and their root-associated fungal communities remains poorly understood. Our study addresses this gap by investigating root-associated fungal communities of different arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) tree species pairs (TSPs) in a subtropical tree diversity experiment, spanning monospecific, two-species, and multi-species mixtures, utilizing Illumina sequencing of the ITS2 region. The study reveals that tree mycorrhizal type significantly impacts the alpha diversity of root-associated fungi in monospecific stands. Meanwhile, tree species identity's influence is modulated by overall tree diversity. Tree-related variables and spatial distance emerged as major drivers of variations in fungal community composition. Notably, in multi-species mixtures, compositional differences between root fungal communities of AM and EcM trees diminish, indicating a convergence of fungal communities irrespective of mycorrhizal type. Interestingly, dual mycorrhizal fungal communities were observed in these multi-species mixtures. This research underscores the pivotal role of mycorrhizal partnerships and the interplay of biotic and abiotic factors in shaping root fungal communities, particularly in varied tree diversity settings, and its implications for effective forest management and biodiversity conservation.
Collapse
Affiliation(s)
- Bala Singavarapu
- Department of Community Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120, Halle (Saale), Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
| | - Hafeez Ul Haq
- Department of Community Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120, Halle (Saale), Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
| | - Friedrich Darnstaedt
- Department of Community Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120, Halle (Saale), Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108, Halle, Germany
| | - Ali Nawaz
- Department of Community Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120, Halle (Saale), Germany
- Department of Digital Health Sciences and Biomedicine, School of Life Sciences, University of Siegen, Am Eichenhang 50, 57076, Siegen, Germany
| | - Rémy Beugnon
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, 1919, route de Mende, F-34293, Montpellier Cedex 5, France
- Leipzig Institute for Meteorology, Universität Leipzig, Stephanstraße 3, 04103, Leipzig, Germany
| | - Simone Cesarz
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
- Institute of Biology, Leipzig University, Puschstrasse 4, 04103, Leipzig, Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
- Institute of Biology, Leipzig University, Puschstrasse 4, 04103, Leipzig, Germany
| | - Jianqing Du
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Yanshan Earth Critical Zone National Research Station, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Kai Xue
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Yanshan Earth Critical Zone National Research Station, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Yanfen Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Yanshan Earth Critical Zone National Research Station, University of Chinese Academy of Sciences, Beijing, 101408, China
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources, Chinese Academy of Sciences, 100101, Beijing, China
| | - Helge Bruelheide
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
| | - Tesfaye Wubet
- Department of Community Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
| |
Collapse
|
6
|
Xing H, Chen W, Liu Y, Cahill JF. Local Community Assembly Mechanisms and the Size of Species Pool Jointly Explain the Beta Diversity of Soil Fungi. MICROBIAL ECOLOGY 2024; 87:58. [PMID: 38602532 PMCID: PMC11008070 DOI: 10.1007/s00248-024-02374-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Fungi play vital regulatory roles in terrestrial ecosystems. Local community assembly mechanisms, including deterministic and stochastic processes, as well as the size of regional species pools (gamma diversity), typically influence overall soil microbial community beta diversity patterns. However, there is limited evidence supporting their direct and indirect effects on beta diversity of different soil fungal functional groups in forest ecosystems. To address this gap, we collected 1606 soil samples from a 25-ha subtropical forest plot in southern China. Our goal was to determine the direct effects and indirect effects of regional species pools on the beta diversity of soil fungi, specifically arbuscular mycorrhizal (AM), ectomycorrhizal (EcM), plant-pathogenic, and saprotrophic fungi. We quantified the effects of soil properties, mycorrhizal tree abundances, and topographical factors on soil fungal diversity. The beta diversity of plant-pathogenic fungi was predominantly influenced by the size of the species pool. In contrast, the beta diversity of EcM fungi was primarily driven indirectly through community assembly processes. Neither of them had significant effects on the beta diversity of AM and saprotrophic fungi. Our results highlight that the direct and indirect effects of species pools on the beta diversity of soil functional groups of fungi can significantly differ even within a relatively small area. They also demonstrate the independent and combined effects of various factors in regulating the diversities of soil functional groups of fungi. Consequently, it is crucial to study the fungal community not only as a whole but also by considering different functional groups within the community.
Collapse
Affiliation(s)
- Hua Xing
- ECNU-Alberta Joint Lab for Biodiversity Study, Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Road, Minhuang District, 200241, Shanghai, China
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Wuwei Chen
- Qingyuan Bureau Natural Resources and Planning, Qingyuan, 323800, China
| | - Yu Liu
- ECNU-Alberta Joint Lab for Biodiversity Study, Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Road, Minhuang District, 200241, Shanghai, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200082, China.
| | - James F Cahill
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| |
Collapse
|
7
|
Wang Z, Jiang Y, Zhang M, Chu C, Chen Y, Fang S, Jin G, Jiang M, Lian JY, Li Y, Liu Y, Ma K, Mi X, Qiao X, Wang X, Wang X, Xu H, Ye W, Zhu L, Zhu Y, He F, Kembel SW. Diversity and biogeography of plant phyllosphere bacteria are governed by latitude-dependent mechanisms. THE NEW PHYTOLOGIST 2023; 240:1534-1547. [PMID: 37649282 DOI: 10.1111/nph.19235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/03/2023] [Indexed: 09/01/2023]
Abstract
Predicting and managing the structure and function of plant microbiomes requires quantitative understanding of community assembly and predictive models of spatial distributions at broad geographic scales. Here, we quantified the relative contribution of abiotic and biotic factors to the assembly of phyllosphere bacterial communities, and developed spatial distribution models for keystone bacterial taxa along a latitudinal gradient, by analyzing 16S rRNA gene sequences from 1453 leaf samples taken from 329 plant species in China. We demonstrated a latitudinal gradient in phyllosphere bacterial diversity and community composition, which was mostly explained by climate and host plant factors. We found that host-related factors were increasingly important in explaining bacterial assembly at higher latitudes while nonhost factors including abiotic environments, spatial proximity and plant neighbors were more important at lower latitudes. We further showed that local plant-bacteria associations were interconnected by hub bacteria taxa to form metacommunity-level networks, and the spatial distribution of these hub taxa was controlled by hosts and spatial factors with varying importance across latitudes. For the first time, we documented a latitude-dependent importance in the driving factors of phyllosphere bacteria assembly and distribution, serving as a baseline for predicting future changes in plant phyllosphere microbiomes under global change and human activities.
Collapse
Affiliation(s)
- Zihui Wang
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Québec, H2X 1Y4, Canada
- ECNU-Alberta Joint Lab for Biodiversity Study, Tiantong Forest Ecosystem National Observation and Research Station, School of Ecology and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Yuan Jiang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Minhua Zhang
- ECNU-Alberta Joint Lab for Biodiversity Study, Tiantong Forest Ecosystem National Observation and Research Station, School of Ecology and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Chengjin Chu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yongfa Chen
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shuai Fang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Guangze Jin
- Center for Ecological Research, Northeast Forestry University, Harbin, 150040, China
| | - Mingxi Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Ju-Yu Lian
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Yanpeng Li
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China
| | - Yu Liu
- ECNU-Alberta Joint Lab for Biodiversity Study, Tiantong Forest Ecosystem National Observation and Research Station, School of Ecology and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Keping Ma
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xiangcheng Mi
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xiujuan Qiao
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Xihua Wang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecology and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Xugao Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Han Xu
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China
| | - Wanhui Ye
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Li Zhu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yan Zhu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Fangliang He
- ECNU-Alberta Joint Lab for Biodiversity Study, Tiantong Forest Ecosystem National Observation and Research Station, School of Ecology and Environmental Sciences, East China Normal University, Shanghai, 200241, China
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2H1, Canada
| | - Steven W Kembel
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Québec, H2X 1Y4, Canada
- ECNU-Alberta Joint Lab for Biodiversity Study, Tiantong Forest Ecosystem National Observation and Research Station, School of Ecology and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
8
|
Li Y, Xie Y, Liu Z, Shi L, Liu X, Liang M, Yu S. Plant species identity and mycorrhizal type explain the root-associated fungal pathogen community assembly of seedlings based on functional traits in a subtropical forest. FRONTIERS IN PLANT SCIENCE 2023; 14:1251934. [PMID: 37965023 PMCID: PMC10641815 DOI: 10.3389/fpls.2023.1251934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023]
Abstract
Introduction As a crucial factor in determining ecosystem functioning, interaction between plants and soil-borne fungal pathogens deserves considerable attention. However, little attention has been paid into the determinants of root-associated fungal pathogens in subtropical seedlings, especially the influence of different mycorrhizal plants. Methods Using high-throughput sequencing techniques, we analyzed the root-associated fungal pathogen community for 19 subtropical forest species, including 10 ectomycorrhizal plants and 9 arbuscular mycorrhizal plants. We identified the roles of different factors in determining the root-associated fungal pathogen community. Further, we identified the community assembly process at species and mycorrhizal level and managed to reveal the drivers underlying the community assembly. Results We found that plant species identity, plant habitat, and plant mycorrhizal type accounted for the variations in fungal pathogen community composition, with species identity and mycorrhizal type showing dominant effects. The relative importance of different community assembly processes, mainly, homogeneous selection and drift, varied with plant species identity. Interestingly, functional traits associated with acquisitive resource-use strategy tended to promote the relative importance of homogeneous selection, while traits associated with conservative resource-use strategy showed converse effect. Drift showed the opposite relationships with functional traits compared with homogeneous selection. Notably, the relative importance of different community assembly processes was not structured by plant phylogeny. Drift was stronger in the pathogen community for ectomycorrhizal plants with more conservative traits, suggesting the predominant role of stochastic gain and loss in the community assembly. Discussion Our work demonstrates the determinants of root-associated fungal pathogens, addressing the important roles of plant species identity and plant mycorrhizal type. Furthermore, we explored the community assembly mechanisms of root-associated pathogens and stressed the determinant roles of functional traits, especially leaf phosphorus content (LP), root nitrogen content (RN) and root tissue density (RTD), at species and mycorrhizal type levels, offering new perspectives on the microbial dynamics underlying ecosystem functioning.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shixiao Yu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
Li W, Lu Q, Alharbi SA, Soromotin AV, Kuzyakov Y, Lei Y. Plant-soil-microbial interactions mediate vegetation succession in retreating glacial forefields. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162393. [PMID: 36841408 DOI: 10.1016/j.scitotenv.2023.162393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/11/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Global warming is accelerating glacial retreat and leaving open areas for vegetation succession on young developing soils. Soil microbial communities interact with plants affecting vegetation succession, but the specific microbial groups controlling these interactions are unclear. We tested whether plant-soil-microbial interactions explain plant primary succession in the Gongga Mountain glacial retreat chronosequence. The direction and intensity of plant-soil-microbial interactions were quantified by comparing the biomass of one early-, two mid- and two late-succession plant species under sterilized vs. live, and inter- vs. intra-specific competition. The performance of most plant species was negatively affected by soil biota from early habitats (5-10 yr), but positively by soil biota from mid- (30-40) and late-succession (80-100) habitats. Two species of Salicaceae from middle habitats, which are strong competitors, developed well on the soils of all successional stages and limited the establishment of later serial plant species. The strongest microbial drivers of plant-microbial interactions changed from i) saprophytic fungal specialists during the early stage, to ii) generalists bacteria and arbuscular mycorrhizal fungi in the middle stage, and finally to iii) ectomycorrhizal fungal specialists in the late stage. Microbial turnover intensified plant-soil-microbial interactions and accelerated primary succession in the young soils of the glacial retreat area.
Collapse
Affiliation(s)
- Weitao Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Biodiversity Conservation Key Laboratory of Sichuan Province & China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Qi Lu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Biodiversity Conservation Key Laboratory of Sichuan Province & China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Sulaiman Almwarai Alharbi
- Department of Botany & Microbiology, College of Science, King Saud University, P.O Box 2455, Riyadh 11451, Saudi Arabia
| | - Andrey V Soromotin
- Research Institute of Ecology and Natural Resources Management, Tyumen State University, 6 Volodarskogo Street, 625003 Tyumen, Russia
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Göttingen, Göttingen 37077, Germany; Institute of Environmental Sciences, Kazan Federal University, 420049 Kazan, Russia; Peoples Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - Yanbao Lei
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Biodiversity Conservation Key Laboratory of Sichuan Province & China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
10
|
Duell EB, Bever JD, Wilson GWT. Role of plant relatedness in plant-soil feedback dynamics of sympatric Asclepias species. Ecol Evol 2023; 13:e9763. [PMID: 36713479 PMCID: PMC9873585 DOI: 10.1002/ece3.9763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/10/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
Plants affect associated biotic and abiotic edaphic factors, with reciprocal feedbacks from soil characteristics affecting plants. These two-way interactions between plants and soils are collectively known as plant-soil feedbacks (PSFs). The role of phylogenetic relatedness and evolutionary histories have recently emerged as a potential driver of PSFs, although the strength and direction of feedbacks among sympatric congeners are not well-understood. We examined plant-soil feedback responses of Asclepias syriaca, a common clonal milkweed species, with several sympatric congeners across a gradient of increasing phylogenetic distances (A. tuberosa, A. viridis, A. sullivantii, and A. verticillata, respectively). Plant-soil feedbacks were measured through productivity and colonization by arbuscular mycorrhizal (AM) fungi. Asclepias syriaca produced less biomass in soils conditioned by the most phylogenetically distant species (A. verticillata), relative to conspecific-conditioned soils. Similarly, arbuscular mycorrhizal (AM) fungal colonization of A. syriaca roots was reduced when grown in soils conditioned by A. verticillata, compared with colonization in plants grown in soil conditioned by any of the other three Asclepias species, indicating mycorrhizal associations are a potential mechanism of observed positive PSFs. This display of differences between the most phylogenetically distant, but not close or intermediate, paring(s) suggests a potential phylogenetic threshold, although other exogenous factors cannot be ruled out. Overall, these results highlight the potential role of phylogenetic distance in influencing positive PSFs through mutualists. The role of phylogenetic relatedness and evolutionary histories have recently emerged as a potential driver of plant-soil feedbacks (PSFs), although the strength and direction of feedbacks among sympatric congeners are not well-understood. Congeneric, sympatric milkweeds typically generated positive PSFs in terms of productivity and AM fungal colonization, suggesting the low likelihood of coexistence among tested pairs, with a strength of feedback increasing as the phylogenetic distance increases.
Collapse
Affiliation(s)
- Eric B. Duell
- Kansas Biological Survey & Center for Ecological ResearchLawrenceKansasUSA
| | - James D. Bever
- Kansas Biological Survey & Center for Ecological ResearchLawrenceKansasUSA
- Department of Ecology & Evolutionary BiologyUniversity of KansasLawrenceKansasUSA
| | - Gail W. T. Wilson
- Department of Natural Resource Ecology & ManagementOklahoma State UniversityStillwaterOklahomaUSA
| |
Collapse
|
11
|
Wang Y, Xu Y, Maitra P, Babalola BJ, Zhao Y. Temporal variations in root-associated fungal communities of Potaninia mongolica, an endangered relict shrub species in the semi-arid desert of Northwest China. FRONTIERS IN PLANT SCIENCE 2022; 13:975369. [PMID: 36311128 PMCID: PMC9597089 DOI: 10.3389/fpls.2022.975369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The semi-arid region of the Western Ordos plateau in Inner Mongolia, China, is home to a critically endangered shrub species, Potaninia mongolica, which originates from ancient Mediterranean regions. Root-associated microbiomes play important roles in plant nutrition, productivity, and resistance to environmental stress particularly in the harsh desert environment; however, the succession of root-associated fungi during the growth stages of P. mongolica is still unclear. This study aimed to examine root-associated fungal communities of this relict plant species across three seasons (spring, summer and autumn) using root sampling and Illumina Miseq sequencing of internal transcribed spacer 2 (ITS 2) region to target fungi. The analysis detected 698 fungal OTUs in association with P. mongolica roots, and the fungal richness increased significantly from spring to summer and autumn. Eurotiales, Hypocreales, Chaetothyriales, Pleosporales, Helotiales, Agaricales and Xylariales were the dominant fungal orders. Fungal community composition was significantly different between the three seasons, and the fungal taxa at various levels showed biased distribution and preferences. Stochastic processes predominantly drove community assembly of fungi in spring while deterministic processes acted more in the later seasons. The findings revealed the temporal dynamics of root-associated fungal communities of P. mongolica, which may enhance our understanding of biodiversity and changes along with seasonal alteration in the desert, and predict the response of fungal community to future global changes.
Collapse
Affiliation(s)
- Yonglong Wang
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, China
| | - Ying Xu
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, China
| | - Pulak Maitra
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | - Busayo Joshua Babalola
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yanling Zhao
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, China
| |
Collapse
|
12
|
Zhang G, Wei F, Chen Z, Wang Y, Jiao S, Yang J, Chen Y, Liu C, Huang Z, Dong L, Chen S. Evidence for saponin diversity-mycobiome links and conservatism of plant-fungi interaction patterns across Holarctic disjunct Panax species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154583. [PMID: 35304141 DOI: 10.1016/j.scitotenv.2022.154583] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/25/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Although interplays between plant and coevolved microorganisms are believed to drive landscape formation and ecosystem services, the relationships between the mycobiome and phytochemical evolution and the evolutionary characteristics of plant-mycobiome interaction patterns are still unclear. The present study explored fungal communities from 405 multiniche samples of three Holarctic disjunct Panax species. The overall mycobiomes showed compartment-dominated variations and dynamic universality. Neutral models were fitted for each compartment at the Panax genus (I) and species (II) levels to infer the community assembly mechanism and identify fungal subgroups potentially representing different plant-fungi interaction results, i.e., the potentially selected, opposed, and neutral taxa. Selection contributed more to the endosphere than to external compartments. The nonneutral taxa showed significant phylogenetic clustering. In Model I, the opposed subgroups could best reflect Panax saponin diversities (r = 0.69), and genera with highly positive correlations to specific saponins were identified using machine learning. Although mycobiomes in the three species differed significantly, subgroups in Model II were phylogenetically clustered based on potential interaction type rather than plant species, indicating potentially conservative plant-fungi interactions. In summary, the finding of strong links between invaders and saponin diversity can help explore the underlying mechanisms of saponin biosynthesis evolution from microbial insights, which is important to understanding the formation of the current landscape. The potential conservatism of plant-fungi interaction patterns suggests that the related genetic modules and selection pressures were convergent across Panax species, advancing our understanding of plant interplay with biotic environments.
Collapse
Affiliation(s)
- Guozhuang Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Fugang Wei
- Wenshan Miaoxiang Notoginseng Technology, Co, Ltd., Wenshan 663000, China
| | - Zhongjian Chen
- Institute of Sanqi Research, Wenshan University, Wenshan 663000, China
| | - Yong Wang
- Institute of Sanqi Research, Wenshan University, Wenshan 663000, China
| | - Shuo Jiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A & F University, Yangling 712100, China.
| | - JiaYing Yang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yongzhong Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Congsheng Liu
- Zhangzhou Pianzihuang Pharmaceutical Co., Ltd., Fujian 363099, China
| | - Zhixin Huang
- Zhangzhou Pianzihuang Pharmaceutical Co., Ltd., Fujian 363099, China
| | - Linlin Dong
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
13
|
Li J, Li C, Tsuruta M, Matsushita N, Goto S, Shen Z, Tsugama D, Zhang S, Lian C. Physiological and transcriptional responses of the ectomycorrhizal fungus Cenococcum geophilum to salt stress. MYCORRHIZA 2022; 32:327-340. [PMID: 35546369 DOI: 10.1007/s00572-022-01078-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Ectomycorrhizal (ECM) fungi improve the host plant's tolerance to abiotic and biotic stresses. Cenococcum geophilum (Cg) is among the most common ECM fungi worldwide and often grows in saline environments. However, the physiological and molecular mechanisms of salt tolerance in this fungus are largely unknown. In the present study, 12 isolates collected from different ecogeographic regions were used to investigate the mechanism of salt tolerance of Cg. The isolates were classified into four groups (salt-sensitive, moderately salt-tolerant, salt-tolerant, and halophilic) based on their in vitro mycelial growth under 0, 50, 125, 250, and 500 mM NaCl concentrations. Hence, the Na, Ca, P, and K concentrations of mycelia and the pH of the culture solution were determined. Compared with salt-tolerant isolates, treatment with 250 mM NaCl significantly increased the sodium concentration and decreased the potassium concentration of salt-sensitive isolates. RNA-sequencing and qRT-PCR analysis were conducted to identify differentially expressed genes (DEGs) involved in transmembrane transport and oxidoreductase activity pathways. The hydrogen peroxide concentration and activities of peroxidase and superoxide dismutase in mycelia were determined, and the accumulation and scavenging of reactive oxygen species in the salt-sensitive isolates were more active than those in the salt-tolerant isolates. The results supply functional validations to RNA-seq and qRT-PCR analysis. This study provides novel insights into the salt-stress response of Cg isolates and provides a foundation for elucidation of the salt-tolerance mechanism of ECM fungi.
Collapse
Affiliation(s)
- Jiali Li
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo, Tokyo, 188-0002, Japan
| | - Chaofeng Li
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo, Tokyo, 188-0002, Japan.
| | - Momi Tsuruta
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo, Tokyo, 188-0002, Japan
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba, Ibaraki, 305-8687, Japan
| | - Norihisa Matsushita
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Susumu Goto
- The University of Tokyo Forests, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Daisuke Tsugama
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo, Tokyo, 188-0002, Japan
| | - Shijie Zhang
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo, Tokyo, 188-0002, Japan
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Chunlan Lian
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo, Tokyo, 188-0002, Japan.
| |
Collapse
|
14
|
Holík J, Janík D. Seed and seedling predation by vertebrates mediates the effects of adult trees in two temperate tree species. Oecologia 2022; 199:625-636. [PMID: 35661249 DOI: 10.1007/s00442-022-05203-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022]
Abstract
Specialised natural enemies can locally suppress seeds and seedlings near conspecific adults more than far from them. Whilst this is thought to facilitate species coexistence, the relative contribution of multiple enemies to whether heterospecific seeds and seedlings rather than conspecifics perform better beneath a particular adult species remains less clear, especially in regions with spatially extensive monodominant stands. We designed a field exclusion experiment to separate the effects of fungi, insects and vertebrates on the seedling establishment and early survival of two temperate tree species, Fagus sylvatica and Picea abies, in the adult tree monocultures of these species. Our experiment demonstrates the key role of vertebrates in mediating the effects of adult trees on seeds and seedlings. Due to vertebrates and partly insects, Fagus sylvatica seedlings survived worse beneath conspecific than heterospecific adults and were also outperformed by Picea abies seedlings beneath their own adults. Picea abies seedling establishment was higher beneath conspecific than heterospecific adults, but Fagus sylvatica seedlings outperformed them beneath their own adults. The impact of enemies on Picea abies establishment beneath conspecific adults was less clear. Fungi did not influence seedling establishment and survival. Our findings highlight the need to compare enemy impacts on each seedling species beneath conspecific and heterospecific adults with their impacts on conspecific and heterospecific seedlings beneath a particular adult species. Such evaluations can shed more light on the role of enemies in tree communities by identifying the plant-enemy interactions that facilitate species coexistence and those that promote species monodominance.
Collapse
Affiliation(s)
- Jan Holík
- Department of Forest Ecology, The Silva Tarouca Research Institute for Landscape and Ornamental Gardening, Lidická 25/27, 602 00, Brno, Czech Republic.
- Department of Silviculture, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00, Brno, Czech Republic.
| | - David Janík
- Department of Forest Ecology, The Silva Tarouca Research Institute for Landscape and Ornamental Gardening, Lidická 25/27, 602 00, Brno, Czech Republic
| |
Collapse
|
15
|
Kennedy AH, Schoch CL, Marrero G, Brover V, Robbertse B. Publicly Available and Validated DNA Reference Sequences Are Critical to Fungal Identification and Global Plant Protection Efforts: A Use-Case in Colletotrichum. PLANT DISEASE 2022; 106:1573-1596. [PMID: 35538602 PMCID: PMC9196201 DOI: 10.1094/pdis-09-21-2083-sr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Publicly available and validated DNA reference sequences useful for phylogeny estimation and identification of fungal pathogens are an increasingly important resource in the efforts of plant protection organizations to facilitate safe international trade of agricultural commodities. Colletotrichum species are among the most frequently encountered and regulated plant pathogens at U.S. ports-of-entry. The RefSeq Targeted Loci (RTL) project at NCBI (BioProject no. PRJNA177353) contains a database of curated fungal internal transcribed spacer (ITS) sequences that interact extensively with NCBI Taxonomy, resulting in verified name-strain-sequence type associations for >12,000 species. We present a publicly available dataset of verified and curated name-type strain-sequence associations for all available Colletotrichum species. This includes an updated GenBank Taxonomy for 238 species associated with up to 11 protein coding loci and an updated RTL ITS dataset for 226 species. We demonstrate that several marker loci are well suited for phylogenetic inference and identification. We improve understanding of phylogenetic relationships among verified species, verify or improve phylogenetic circumscriptions of 14 species complexes, and reveal that determining relationships among these major clades will require additional data. We present detailed comparisons between phylogenetic and similarity-based approaches to species identification, revealing complex patterns among single marker loci that often lead to misidentification when based on single-locus similarity approaches. We also demonstrate that species-level identification is elusive for a subset of samples regardless of analytical approach, which may be explained by novel species diversity in our dataset and incomplete lineage sorting and lack of accumulated synapomorphies at these loci.
Collapse
Affiliation(s)
- Aaron H. Kennedy
- National Identification Services, Plant Protection and Quarantine, Animal and Plant Health Inspection Service, U.S. Department of Agriculture, Beltsville, MD 20705
| | - Conrad L. Schoch
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
| | - Glorimar Marrero
- National Identification Services, Plant Protection and Quarantine, Animal and Plant Health Inspection Service, U.S. Department of Agriculture, Beltsville, MD 20705
| | - Vyacheslav Brover
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
| | - Barbara Robbertse
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
| |
Collapse
|
16
|
Semchenko M, Barry KE, de Vries FT, Mommer L, Moora M, Maciá-Vicente JG. Deciphering the role of specialist and generalist plant-microbial interactions as drivers of plant-soil feedback. THE NEW PHYTOLOGIST 2022; 234:1929-1944. [PMID: 35338649 DOI: 10.1111/nph.18118] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Feedback between plants and soil microbial communities can be a powerful driver of vegetation dynamics. Plants elicit changes in the soil microbiome that either promote or suppress conspecifics at the same location, thereby regulating population density-dependence and species co-existence. Such effects are often attributed to the accumulation of host-specific antagonistic or beneficial microbiota in the rhizosphere. However, the identity and host-specificity of the microbial taxa involved are rarely empirically assessed. Here we review the evidence for host-specificity in plant-associated microbes and propose that specific plant-soil feedbacks can also be driven by generalists. We outline the potential mechanisms by which generalist microbial pathogens, mutualists and decomposers can generate differential effects on plant hosts and synthesize existing evidence to predict these effects as a function of plant investments into defence, microbial mutualists and dispersal. Importantly, the capacity of generalist microbiota to drive plant-soil feedbacks depends not only on the traits of individual plants but also on the phylogenetic and functional diversity of plant communities. Identifying factors that promote specialization or generalism in plant-microbial interactions and thereby modulate the impact of microbiota on plant performance will advance our understanding of the mechanisms underlying plant-soil feedback and the ways it contributes to plant co-existence.
Collapse
Affiliation(s)
- Marina Semchenko
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409, Tartu, Estonia
- Department of Earth and Environmental Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Kathryn E Barry
- Ecology and Biodiversity, Department of Biology, Institute of Science, Utrecht University, Padualaan 8, Utrecht, the Netherlands
| | - Franciska T de Vries
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, 1090 GE, Amsterdam, the Netherlands
| | - Liesje Mommer
- Plant Ecology and Nature Conservation, Wageningen University & Research, PO Box 47, 6700 AA, Wageningen, the Netherlands
| | - Mari Moora
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409, Tartu, Estonia
| | - Jose G Maciá-Vicente
- Plant Ecology and Nature Conservation, Wageningen University & Research, PO Box 47, 6700 AA, Wageningen, the Netherlands
| |
Collapse
|
17
|
Zhu C, Wang Z, Deane DC, Luo W, Chen Y, Cao Y, Lin Y, Zhang M. The Effects of Species Abundance, Spatial Distribution, and Phylogeny on a Plant-Ectomycorrhizal Fungal Network. FRONTIERS IN PLANT SCIENCE 2022; 13:784778. [PMID: 35665141 PMCID: PMC9158544 DOI: 10.3389/fpls.2022.784778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Plant and root fungal interactions are among the most important belowground ecological interactions, however, the mechanisms underlying pairwise interactions and network patterns of rhizosphere fungi and host plants remain unknown. We tested whether neutral process or spatial constraints individually or jointly best explained quantitative plant-ectomycorrhizal fungal network assembly in a subtropical forest in southern China. Results showed that the observed plant-ectomycorrhizal fungal network had low connectivity, high interaction evenness, and an intermediate level of specialization, with nestedness and modularity both greater than random expectation. Incorporating information on the relative abundance and spatial overlap of plants and fungi well predicted network nestedness and connectance, but not necessarily explained other network metrics such as specificity. Spatial overlap better predicted pairwise species interactions of plants and ectomycorrhizal fungi than species abundance or a combination of species abundance and spatial overlap. There was a significant phylogenetic signal on species degree and interaction strength for ectomycorrhizal fungal but not for plant species. Our study suggests that neutral processes (species abundance matching) and niche/dispersal-related processes (implied by spatial overlap and phylogeny) jointly drive the shaping of a plant-ectomycorrhizal fungal network.
Collapse
Affiliation(s)
- Chunchao Zhu
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Zihui Wang
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| | - David C. Deane
- Centre for Future Landscapes and Department of Environment and Genetics, La Trobe University, Bundoora, VIC, Australia
| | - Wenqi Luo
- Department of Ecology, Sun Yat-sen University, Guangzhou, China
| | - Yongfa Chen
- Department of Ecology, Sun Yat-sen University, Guangzhou, China
| | - Yongjun Cao
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Yumiao Lin
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Minhua Zhang
- ECNU-Alberta Joint Lab for Biodiversity Study, Zhejiang Tiantong National Station for Forest Ecosystems, East China Normal University, Shanghai, China
| |
Collapse
|
18
|
Zhu C, Wang Z, Luo W, Feng J, Chen Y, He D, Ellwood MDF, Chu C, Li Y. Fungal phylogeny and plant functional traits structure plant–rhizosphere fungi networks in a subtropical forest. OIKOS 2022. [DOI: 10.1111/oik.08992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chuchao Zhu
- Dept of Bioengineering, Zhuhai Campus of Zunyi Medical Univ. Zhuhai China
- State Key Laboratory of Biocontrol, School of Ecology and School of Life Sciences, Sun Yat‐sen Univ. Guangzhou China
| | - Zihui Wang
- State Key Laboratory of Biocontrol, School of Ecology and School of Life Sciences, Sun Yat‐sen Univ. Guangzhou China
| | - Wenqi Luo
- State Key Laboratory of Biocontrol, School of Ecology and School of Life Sciences, Sun Yat‐sen Univ. Guangzhou China
| | - Jiayi Feng
- State Key Laboratory of Biocontrol, School of Ecology and School of Life Sciences, Sun Yat‐sen Univ. Guangzhou China
| | - Yongfa Chen
- State Key Laboratory of Biocontrol, School of Ecology and School of Life Sciences, Sun Yat‐sen Univ. Guangzhou China
| | - Dong He
- State Key Laboratory of Biocontrol, School of Ecology and School of Life Sciences, Sun Yat‐sen Univ. Guangzhou China
| | | | - Chengjin Chu
- State Key Laboratory of Biocontrol, School of Ecology and School of Life Sciences, Sun Yat‐sen Univ. Guangzhou China
| | - Yuanzhi Li
- State Key Laboratory of Biocontrol, School of Ecology and School of Life Sciences, Sun Yat‐sen Univ. Guangzhou China
| |
Collapse
|
19
|
Liu Y, Wang H, Peng Z, Li D, Chen W, Jiao S, Wei G. Regulation of root secondary metabolites by partial root-associated microbiotas under the shaping of licorice ecotypic differentiation in northwest China. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:2093-2109. [PMID: 34655272 DOI: 10.1111/jipb.13179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Interactions between plant hosts and their microbiotas are becoming increasingly evident, while the effects of plant communities on microbial communities in different geographic environments are poorly understood. Here, the differentiation of licorice plant ecotypes and the distribution of root-associated microbiotas were investigated across five sampling sites in northwest China. The interactions between the environment, plant and microbial communities, and their effects on licorice root secondary metabolites, were elucidated. The plant community was clearly differentiated into distinct ecotypes based on genotyping-by-sequencing and was primarily driven by geographic distance and available soil nitrogen. The bulk soil and root-associated microbiotas (rhizosphere soil and root endosphere) partially correlated with plant community, but all were significantly discriminated by plant clade. Moreover, these microbiotas were explained to different extents by distinct combinations of environment, geography, and plant community. Similarly, three structural equation models showed that licorice root secondary metabolites were complicatedly modulated by multiple abiotic and biotic factors, and were mostly explained by these factors in the rhizosphere model. Collectively, the results provide novel insights into the role of environment-plant-microbiota interactions in regulating root secondary metabolites. That should be accounted for when selecting appropriate licorice planting sites and management measures.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, 712100, China
| | - Hao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, 712100, China
| | - Ziheng Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, 712100, China
| | - Da Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, 712100, China
| | - Weimin Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, 712100, China
| | - Shuo Jiao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, 712100, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
20
|
Cowan JA, Gehring CA, Ilstedt U, Grady KC. Host identity and neighborhood trees affect belowground microbial communities in a tropical rainforest. Trop Ecol 2021. [DOI: 10.1007/s42965-021-00203-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Kuang J, Han S, Chen Y, Bates CT, Wang P, Shu W. Root-associated fungal community reflects host spatial co-occurrence patterns in a subtropical forest. ISME COMMUNICATIONS 2021; 1:65. [PMID: 36755184 PMCID: PMC9723750 DOI: 10.1038/s43705-021-00072-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 11/09/2022]
Abstract
Plant roots harbor and interact with diverse fungal species. By changing these belowground fungal communities, focal plants can affect the performance of surrounding individuals and the outcome of coexistence. Although highly host related, the roles of these root-associated fungal communities per se in host plant spatial co-occurrence is largely unknown. Here, we evaluated the host dependency of root-associated communities for 39-plant species spatially mapped throughout a 50-ha subtropical forest plot with relevant environmental properties. In addition, we explored whether the differentiation in root fungal associations among plant species can reflect their observed co-occurrence patterns. We demonstrated a strong host-dependency by discriminating the differentiation of root-associated fungal communities regardless of background soil heterogeneity. Furthermore, Random Forest modeling indicated that these nonrandom root fungal associations significantly increased our ability to explain spatial co-occurrence patterns, and to a greater degree than the relative abundance, phylogenetic relatedness, and functional traits of the host plants. Our results further suggested that plants harbor more abundant shared, "generalist" pathogens are likely segregated, while hosting more abundant unique, "specialist" ectomycorrhizal fungi might be an important strategy for promoting spatial aggregation, particularly between early established trees and the heterospecific adults. Together, we provide a conceptual and testable approach to integrate this host-dependent root fungal "fingerprinting" into the plant diversity patterns. We highlight that this approach is complementary to the classic cultivation-based scheme and can deepen our understanding of the community-level effect from overall fungi and its contribution to the pairwise plant dynamics in local species-rich communities.
Collapse
Affiliation(s)
- Jialiang Kuang
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA.
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources and Conservation of Guangdong Higher Education Institutes, College of Ecology and Evolution, Sun Yat-sen University, Guangzhou, China.
| | - Shun Han
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Yongjian Chen
- Department of Environmental Science, University of Arizona, Tucson, AZ, USA
| | - Colin T Bates
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Pandeng Wang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources and Conservation of Guangdong Higher Education Institutes, College of Ecology and Evolution, Sun Yat-sen University, Guangzhou, China
| | - Wensheng Shu
- School of Life Sciences, South China Normal University, Guangzhou, China.
| |
Collapse
|
22
|
Kuyper TW. Networks of friends and foes and the fate of tree seedlings. THE NEW PHYTOLOGIST 2021; 230:1688-1689. [PMID: 33843064 DOI: 10.1111/nph.17337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Thomas W Kuyper
- Soil Biology Group, Wageningen University & Research, PO Box 47, Wageningen, 6700 AA, the Netherlands
| |
Collapse
|
23
|
Li T, Wu S, Yang W, Selosse MA, Gao J. How Mycorrhizal Associations Influence Orchid Distribution and Population Dynamics. FRONTIERS IN PLANT SCIENCE 2021; 12:647114. [PMID: 34025695 PMCID: PMC8138319 DOI: 10.3389/fpls.2021.647114] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/13/2021] [Indexed: 05/04/2023]
Abstract
Orchid distribution and population dynamics are influenced by a variety of ecological factors and the formation of holobionts, which play key roles in colonization and ecological community construction. Seed germination, seedling establishment, reproduction, and survival of orchid species are strongly dependent on orchid mycorrhizal fungi (OMF), with mycorrhizal cheating increasingly observed in photosynthetic orchids. Therefore, changes in the composition and abundance of OMF can have profound effects on orchid distribution and fitness. Network analysis is an important tool for the study of interactions between plants, microbes, and the environment, because of the insights that it can provide into the interactions and coexistence patterns among species. Here, we provide a comprehensive overview, systematically describing the current research status of the effects of OMF on orchid distribution and dynamics, phylogenetic signals in orchid-OMF interactions, and OMF networks. We argue that orchid-OMF associations exhibit complementary and specific effects that are highly adapted to their environment. Such specificity of associations may affect the niche breadth of orchid species and act as a stabilizing force in plant-microbe coevolution. We postulate that network analysis is required to elucidate the functions of fungal partners beyond their effects on germination and growth. Such studies may lend insight into the microbial ecology of orchids and provide a scientific basis for the protection of orchids under natural conditions in an efficient and cost-effective manner.
Collapse
Affiliation(s)
- Taiqiang Li
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| | - Shimao Wu
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| | - Wenke Yang
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| | - Marc-André Selosse
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
- Institut de Systématique, Évolution, Biodiversité, UMR 7205, CNRS, MNHN, UPMC, EPHE, Muséum National d’Histoire Naturelle, Sorbonne Universités, Paris, France
- Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Jiangyun Gao
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| |
Collapse
|
24
|
Wang Y, Zhao Y, Xu Y, Ma J, Babalola BJ, Fan Y. Ectomycorrhizal fungal communities associated with Larix gemelinii Rupr. in the Great Khingan Mountains, China. PeerJ 2021; 9:e11230. [PMID: 33959418 PMCID: PMC8053382 DOI: 10.7717/peerj.11230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 03/16/2021] [Indexed: 11/20/2022] Open
Abstract
Larix gemelinii is an important tree species in the Great Khingan Mountains in Northeast China with a high economic and ecological value for its role in carbon sequestration and as a source of lumber and nuts. However, the ectomycorrhizal (EM) fungal diversity and community composition of this tree remain largely undefined. We examined EM fungal communities associated with L. gemelinii from three sites in the Great Khingan Mountains using Illumina Miseq to sequence the rDNA ITS2 region and evaluated the impact of spatial, soil, and climatic variables on the EM fungal community. A total of 122 EM fungal operational taxonomic units (OTUs) were identified from 21 pooled-root samples, and the dominant EM fungal lineages were /tricholoma, /tomentella-thelephora, /suillus-rhizopogon, and /piloderma. A high proportion of unique EM fungal OTUs were present; some abundant OTUs largely restricted to specific sites. EM fungal richness and community assembly were significantly correlated with spatial distance and climatic and soil variables, with mean annual temperature being the most important predictor for fungal richness and geographic distance as the largest determinant for community turnover. Our findings indicate that L. gemelinii has a rich and distinctive EM fungal community contributing to our understanding of the montane EM fungal community structure from the perspective of a single host plant that has not been previously reported.
Collapse
Affiliation(s)
- Yonglong Wang
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, Inner Mongolia, China
| | - Yanling Zhao
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, Inner Mongolia, China
| | - Ying Xu
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, Inner Mongolia, China
| | - Jianjun Ma
- College of Life Science, Langfang Normal University, Langfang, Hebei, China
| | - Busayo Joshua Babalola
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, Beijing, China
| | - Yongjun Fan
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, Inner Mongolia, China
| |
Collapse
|
25
|
Wang YL, Zhang X, Xu Y, Babalola BJ, Xiang SM, Zhao YL, Fan YJ. Fungal Diversity and Community Assembly of Ectomycorrhizal Fungi Associated With Five Pine Species in Inner Mongolia, China. Front Microbiol 2021; 12:646821. [PMID: 33796093 PMCID: PMC8008119 DOI: 10.3389/fmicb.2021.646821] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/19/2021] [Indexed: 11/13/2022] Open
Abstract
Ectomycorrhizal (EM) fungi play vital roles in ensuring host plants' health, plant diversity, and the functionality of the ecosystem. However, EM fungal diversity, community composition, and underlying assembly processes in Inner Mongolia, China, where forests are typically semiarid and cold-temperate zones, attract less attention. In this study, we investigated EM fungal communities from 63 root samples of five common pine plants in Inner Mongolia across 1,900 km using Illumina Miseq sequencing of the fungal internal transcribed spacer 2 region. We evaluated the impact of host plant phylogeny, soil, climatic, and spatial variables on EM fungal diversity and community turnover. Deterministic vs. stochastic processes for EM fungal community assembly were quantified using β-nearest taxon index scores. In total, we identified 288 EM fungal operational taxonomic units (OTUs) belonging to 31 lineages, of which the most abundant lineages were Tomentella-Thelephora, Wilcoxina, Tricholoma, and Suillus-Rhizopogon. Variations in EM fungal OTU richness and community composition were significantly predicted by host phylogeny, soil (total nitrogen, phosphorus, nitrogen-phosphorus ratio, and magnesium), climate, and spatial distance, with the host plant being the most important factor. β-nearest taxon index demonstrated that both deterministic and stochastic processes jointly determined the community assembly of EM fungi, with the predominance of stochastic processes. At the Saihanwula site selected for preference analysis, all plant species (100%) presented significant preferences for EM fungi, 54% of abundant EM fungal OTUs showed significant preferences for host plants, and 26% of pairs of plant species and abundant fungal OTUs exhibited remarkably strong preferences. Overall, we inferred that the high diversity and distinctive community composition of EM fungi associated with natural pine species in Inner Mongolia and the stochastic processes prevailed in determining the community assembly of EM fungi. Our study shed light on the diversity and community assembly of EM fungi associated with common pine species in semiarid and cold temperate forests in Inner Mongolia, China, for the first time and provided a better understanding of the ecological processes underlying the community assembly of mutualistic fungi.
Collapse
Affiliation(s)
- Yong-Long Wang
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, China
| | - Xuan Zhang
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, China
| | - Ying Xu
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, China
| | - Busayo Joshua Babalola
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Si-Min Xiang
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, China
| | - Yan-Ling Zhao
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, China
| | - Yong-Jun Fan
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, China
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| |
Collapse
|
26
|
Luo W, Lan R, Chen D, Zhang B, Xi N, Li Y, Fang S, Valverde-Barrantes OJ, Eissenstat DM, Chu C, Wang Y. Limiting similarity shapes the functional and phylogenetic structure of root neighborhoods in a subtropical forest. THE NEW PHYTOLOGIST 2021; 229:1078-1090. [PMID: 32924174 DOI: 10.1111/nph.16920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
Environmental filtering and limiting similarity mechanisms can simultaneously structure community assemblages. However, how they shape the functional and phylogenetic structure of root neighborhoods remains unclear, hindering the understanding of belowground community assembly processes and diversity maintenance. In a 50-ha plot in a subtropical forest, China, we randomly sampled > 2700 root clusters from 625 soil samples. Focusing on 10 root functional traits measured on 76 woody species, we examined the functional and phylogenetic structure of root neighborhoods and linked their distributions with environmental cues. Functional overdispersion was pervasive among individual root traits (50% of the traits) and accentuated when different traits were combined. Functional clustering (20% of the traits) seemed to be associated with a soil nutrient gradient with thick roots dominating fertile areas whereas thin roots dominated infertile soils. Nevertheless, such traits also were sorted along other environmental cues, showing multidimensional adaptive trait syndromes. Species relatedness also was an important factor defining root neighborhoods, resulting in significant phylogenetic overdispersion. These results suggest that limiting similarity may drive niche differentiation of coexisting species to reduce competition, and that alternative root strategies could be crucial in promoting root neighborhood resource use and species coexistence.
Collapse
Affiliation(s)
- Wenqi Luo
- Department of Ecology, State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Runxuan Lan
- Department of Ecology, State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Dongxia Chen
- Department of Ecology, State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Bingwei Zhang
- Department of Ecology, State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Nianxun Xi
- Department of Ecology, State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yuanzhi Li
- Department of Ecology, State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Suqing Fang
- Department of Ecology, State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Oscar J Valverde-Barrantes
- International Center for Tropical Biodiversity, Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
| | - David M Eissenstat
- Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Chengjin Chu
- Department of Ecology, State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Youshi Wang
- Department of Ecology, State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
27
|
Francioli D, van Ruijven J, Bakker L, Mommer L. Drivers of total and pathogenic soil-borne fungal communities in grassland plant species. FUNGAL ECOL 2020. [DOI: 10.1016/j.funeco.2020.100987] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Qin J, Zhang W, Zhang SB, Wang JH. Similar mycorrhizal fungal communities associated with epiphytic and lithophytic orchids of Coelogyne corymbosa. PLANT DIVERSITY 2020; 42:362-369. [PMID: 33134620 PMCID: PMC7584797 DOI: 10.1016/j.pld.2020.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 05/04/2023]
Abstract
Mycorrhizal fungi are essential for the growth and development of both epiphytic (growing on trees) and lithophytic (growing on rocks) orchids. Previous studies indicate that in lowland tropical areas, orchid mycorrhizal fungal compositions are correlated with the life form (i.e., epiphytic, lithophytic, or terrestrial) of their host plants. We therefore tested if a similar correlation exists in an orchid distributed at higher elevations. Coelogyne corymbosa is an endangered ornamental orchid species that can be found as a lithophyte and epiphyte in subtropical to subalpine areas. Based on high-throughput sequencing of the fungal internal transcribed spacer 2 (ITS2)-rDNA region of mycorrhizae of C. corymbosa, we detected 73 putative mycorrhizal fungal Operational Taxonomic Units (OTUs). The OTUs of two dominant lineages (Cantharellales and Sebacinales) detected from C. corymbosa are phylogenetically different from those of other species within the genus Coelogyne, indicating that different orchid species prefer specific mycorrhizal fungi. We also found that the Non-metric multidimensional scaling (NMDS) plots of orchid mycorrhizal fungi were not clustered with life form, the variations among orchid mycorrhizal fungal communities of different life forms were not significant, and most of the OTUs detected from epiphytic individuals were shared by the lithophytic plants, suggesting that orchid mycorrhizal associations of C. corymbosa were not affected by life form. These findings provide novel insights into mycorrhizal associations with endangered ornamental orchids.
Collapse
Affiliation(s)
- Jiao Qin
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Yunnan Key Laboratory for Wild Plant Resources, Kunming, Yunnan, China
| | - Wei Zhang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| | - Shi-Bao Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Yunnan Key Laboratory for Wild Plant Resources, Kunming, Yunnan, China
| | - Ji-Hua Wang
- Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650205, China
- Corresponding author.
| |
Collapse
|
29
|
Tedersoo L, Anslan S, Bahram M, Drenkhan R, Pritsch K, Buegger F, Padari A, Hagh-Doust N, Mikryukov V, Gohar D, Amiri R, Hiiesalu I, Lutter R, Rosenvald R, Rähn E, Adamson K, Drenkhan T, Tullus H, Jürimaa K, Sibul I, Otsing E, Põlme S, Metslaid M, Loit K, Agan A, Puusepp R, Varik I, Kõljalg U, Abarenkov K. Regional-Scale In-Depth Analysis of Soil Fungal Diversity Reveals Strong pH and Plant Species Effects in Northern Europe. Front Microbiol 2020; 11:1953. [PMID: 33013735 PMCID: PMC7510051 DOI: 10.3389/fmicb.2020.01953] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/31/2020] [Indexed: 01/16/2023] Open
Abstract
Soil microbiome has a pivotal role in ecosystem functioning, yet little is known about its build-up from local to regional scales. In a multi-year regional-scale survey involving 1251 plots and long-read third-generation sequencing, we found that soil pH has the strongest effect on the diversity of fungi and its multiple taxonomic and functional groups. The pH effects were typically unimodal, usually both direct and indirect through tree species, soil nutrients or mold abundance. Individual tree species, particularly Pinus sylvestris, Picea abies, and Populus x wettsteinii, and overall ectomycorrhizal plant proportion had relatively stronger effects on the diversity of biotrophic fungi than saprotrophic fungi. We found strong temporal sampling and investigator biases for the abundance of molds, but generally all spatial, temporal and microclimatic effects were weak. Richness of fungi and several functional groups was highest in woodlands and around ruins of buildings but lowest in bogs, with marked group-specific trends. In contrast to our expectations, diversity of soil fungi tended to be higher in forest island habitats potentially due to the edge effect, but fungal richness declined with island distance and in response to forest fragmentation. Virgin forests supported somewhat higher fungal diversity than old non-pristine forests, but there were no differences in richness between natural and anthropogenic habitats such as parks and coppiced gardens. Diversity of most fungal groups suffered from management of seminatural woodlands and parks and thinning of forests, but especially for forests the results depended on fungal group and time since partial harvesting. We conclude that the positive effects of tree diversity on overall fungal richness represent a combined niche effect of soil properties and intimate associations.
Collapse
Affiliation(s)
- Leho Tedersoo
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Sten Anslan
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia.,Zoological Institute, Technische Universität Braunschweig, Brunswick, Germany
| | - Mohammad Bahram
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia.,Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Rein Drenkhan
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Karin Pritsch
- Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Franz Buegger
- Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Allar Padari
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Niloufar Hagh-Doust
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Vladimir Mikryukov
- Chair of Forest Management Planning and Wood Processing Technologies, Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
| | - Daniyal Gohar
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Rasekh Amiri
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Indrek Hiiesalu
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Reimo Lutter
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Raul Rosenvald
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Elisabeth Rähn
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Kalev Adamson
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Tiia Drenkhan
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, Estonia.,Forest Health and Biodiversity, Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Hardi Tullus
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Katrin Jürimaa
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Ivar Sibul
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Eveli Otsing
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Sergei Põlme
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Marek Metslaid
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Kaire Loit
- Chair of Plant Health, Estonian University of Life Sciences, Tartu, Estonia
| | - Ahto Agan
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Rasmus Puusepp
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Inge Varik
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Urmas Kõljalg
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia.,Natural History Museum and Botanical Garden, University of Tartu, Tartu, Estonia
| | - Kessy Abarenkov
- Natural History Museum and Botanical Garden, University of Tartu, Tartu, Estonia
| |
Collapse
|
30
|
Shen Z, Li Y, Chen Z, Xi N, Luo W, He Q, Liu S, Lin W, Zhu X, Fang S, Wang Y, Li B, Chu C. Species Identity and Initial Size Rather Than Neighborhood Interactions Influence Survival in a Response-Surface Examination of Competition. FRONTIERS IN PLANT SCIENCE 2020; 11:1212. [PMID: 32903341 PMCID: PMC7434863 DOI: 10.3389/fpls.2020.01212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
To measure intraspecific and interspecific interaction coefficients among tree species is the key to explore the underlying mechanisms for species coexistence and biodiversity maintenance in forests. Through the response surface experimental design, we established a long-term field experiment by planting 27,300 seedlings of four tree species (Erythrophleum fordii, Pinus massoniana, Castanopsis fissa, and Castanopsis carlesii) in 504 plots in different species combinations (six pairwise combinations of four species), abundance proportions (five abundance proportions of two species, i.e. A: B = 1:0, 3:1, 1:1, 1:3, 0:1), and stand densities (25, 36, 64, and 100 seedlings per plot). In this initial report, we aimed to quantify the relative importance of biotic and abiotic factors on seedling survival at the early stage of growth, which is a critical period for seedling establishment. We found that plot-level seedling survival rate was determined by species combination and their abundance proportion rather than stand density. At the individual level, individual survival probability was mainly explained by species identity, initial seedling size, and soil conditions rather than neighborhood competition. Our study highlights that the seedling intrinsic properties may be the key factors in determining seedling survival rate, while neighborhood effects were not yet prominent at the seedling life stage.
Collapse
|
31
|
Koga W, Suzuki A, Masaka K, Seiwa K. Conspecific distance-dependent seedling performance, and replacement of conspecific seedlings by heterospecifics in five hardwood, temperate forest species. Oecologia 2020; 193:937-947. [PMID: 32783114 DOI: 10.1007/s00442-020-04725-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/29/2020] [Indexed: 12/01/2022]
Abstract
The mechanisms driving species diversity in the context of Janzen-Connell model are best understood by evaluating not only conspecific distance-dependent (CDD) seedling performance, but also replacement of conspecific seedlings by heterospecific seedlings beneath adult trees. We evaluated CDD and replacement as a log response ratio of seedling performance (height, age) directly beneath and at a distance from adult plants in a temperate forest, and examined the log response ratio of that between conspecifics and heterospecifics beneath adults for five hardwood species with different ecological traits (e.g., seed size, mycorrhizal type, relative abundance). CDD was greater in three small-seeded species with arbuscular mycorrhizae (AM) associations than it was in two large-seeded species with ectomycorrhizae (EM) associations. Replacement was also higher for small-seeded AM species compared to large-seeded EM species, resulting in a strong, positive relationship between CDD and replacement. The traits suggest that small-seeded AM seedlings are more likely to be replaced by heterologous seedlings beneath the adults than large-seeded EM seedlings, probably due to that the small-seeded AM species are more susceptible to attack by plant natural enemies (e.g., soil pathogens, leaf diseases). As a result, small-seeded AM species had lower relative abundances compared to large-seeded EM species. This study suggests that either seed size or associations with microorganisms play an important role in driving forest diversity by regulating replacement and CDD, although relative importance of the two traits (i.e., seed size, mycorrhizal type) remains unclear, because of the autocorrelation between the two traits for the five species studied.
Collapse
Affiliation(s)
- Wataru Koga
- Graduate School of Agricultural Science, Tohoku University, Naruko-onsen, Osaki, Miyagi, 989-6711, Japan
| | - Aya Suzuki
- Graduate School of Agricultural Science, Tohoku University, Naruko-onsen, Osaki, Miyagi, 989-6711, Japan
| | - Kazuhiko Masaka
- Faculty of Agriculture, Iwate University, Morioka, Iwate, 020-8550, Japan
| | - Kenji Seiwa
- Graduate School of Agricultural Science, Tohoku University, Naruko-onsen, Osaki, Miyagi, 989-6711, Japan.
| |
Collapse
|
32
|
Matsuoka S, Sugiyama Y, Tateno R, Imamura S, Kawaguchi E, Osono T. Evaluation of host effects on ectomycorrhizal fungal community compositions in a forested landscape in northern Japan. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191952. [PMID: 32257347 PMCID: PMC7062096 DOI: 10.1098/rsos.191952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/27/2020] [Indexed: 05/05/2023]
Abstract
Community compositions of ectomycorrhizal (ECM) fungi are similar within the same host taxa. However, careful interpretation is required to determine whether the combination of ECM fungi and plants is explained by the host preference for ECM fungi, or by the influence of neighbouring heterospecific hosts. In the present study, we aimed to evaluate the effects of host species on the ECM community compositions in a forested landscape (approx. 10 km) where monodominant forest stands of six ECM host species belonging to three families were patchily distributed. A total of 180 ECM operational taxonomic units (OTUs) were detected with DNA metabarcoding. Quantitative multivariate analyses revealed that the ECM community compositions were primarily structured by host species and families, regardless of the soil environments and spatial arrangements of the sampling plots. In addition, 38 ECM OTUs were only detected from particular host tree species. Furthermore, the neighbouring plots harboured similar fungal compositions, although the host species were different. The relative effect of the spatial factors on the ECM compositions was weaker than that of host species. Our results suggest that the host preference for ECM fungi is the primary determinant of ECM fungal compositions in the forested landscape.
Collapse
Affiliation(s)
- Shunsuke Matsuoka
- Graduate School of Simulation Studies, University of Hyogo 7-1-28 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
- Author for correspondence: Shunsuke Matsuoka e-mail:
| | - Yoriko Sugiyama
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Ryunosuke Tateno
- Field Science Education and Research Center, Kyoto University, Kyoto 606-8502, Japan
| | - Shihomi Imamura
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Eri Kawaguchi
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Takashi Osono
- Department of Environmental Systems Science, Faculty of Science and Engineering, Doshisha University, Kyoto 610-0394, Japan
| |
Collapse
|
33
|
Wang YL, Gao C, Chen L, Ji NN, Wu BW, Lü PP, Li XC, Qian X, Maitra P, Babalola BJ, Zheng Y, Guo LD. Community Assembly of Endophytic Fungi in Ectomycorrhizae of Betulaceae Plants at a Regional Scale. Front Microbiol 2020; 10:3105. [PMID: 32038548 PMCID: PMC6986194 DOI: 10.3389/fmicb.2019.03105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 12/23/2019] [Indexed: 11/13/2022] Open
Abstract
The interaction between aboveground and belowground biotic communities drives community assembly of plants and soil microbiota. As an important component of belowground microorganisms, root-associated fungi play pivotal roles in biodiversity maintenance and community assembly of host plants. The Betulaceae plants form ectomycorrhizae with soil fungi and widely distribute in various ecosystems. However, the community assembly of endophytic fungi in ectomycorrhizae is less investigated at a large spatial scale. Here, we examined the endophytic fungal communities in ectomycorrhizae of 22 species in four genera belonging to Betulaceae in Chinese forest ecosystems, using Illumina Miseq sequencing of internal transcribed spacer 2 amplicons. The relative contribution of host phylogeny, climate and soil (environmental filtering) and geographic distance (dispersal limitation) on endophytic fungal community was disentangled. In total, 2,106 endophytic fungal operational taxonomic units (OTUs) were obtained at a 97% sequence similarity level, dominated by Leotiomycetes, Agaricomycetes, Eurotiomycetes, and Sordariomycetes. The endophytic fungal OTU richness was significantly related with host phylogeny, geographic distance, soil and climate. The endophytic fungal community composition was significantly affected by host phylogeny (19.5% of variation explained in fungal community), geographic distance (11.2%), soil (6.1%), and climate (1.4%). This finding suggests that environmental filtering by plant and abiotic variables coupled with dispersal limitation linked to geographic distance determines endophytic fungal community assembly in ectomycorrhizae of Betulaceae plants, with host phylogeny being a stronger determinant than other predictor variables at the regional scale.
Collapse
Affiliation(s)
- Yong-Long Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Liang Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Niu-Niu Ji
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bin-Wei Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Peng-Peng Lü
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xing-Chun Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xin Qian
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Pulak Maitra
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Busayo Joshua Babalola
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yong Zheng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Geographical Science, Fujian Normal University, Fuzhou, China
| | - Liang-Dong Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|