1
|
Sanders SKD, van Kleunen M, Allan E, Thakur MP. Effects of extreme drought on the invasion dynamics of non-native plants. TRENDS IN PLANT SCIENCE 2025; 30:291-300. [PMID: 39523141 DOI: 10.1016/j.tplants.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
The increasing frequency of extreme droughts poses significant challenges for predicting the invasion success (or failure) of non-native plant species. While current frameworks are primarily based on moderate droughts, the unique characteristics of extreme droughts necessitate re-evaluating our understanding of plant invasion during and after extreme droughts. Here, using core principles of community assembly and invasion biology, we discuss how the invasibility of non-native plants during and after extreme droughts differs due to: (i) differences in the ecological response of the native community, (ii) barriers at different invasion stages, and (iii) the traits of non-native plants. We incorporate ideas from current ecological theories of invasive success and suggest how drought-mediated invasion is influenced by biotic interactions in the native community.
Collapse
Affiliation(s)
- Shareen K D Sanders
- Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland.
| | - Mark van Kleunen
- Ecology, Department of Biology, University of Konstanz, 78464, Konstanz, Germany; Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China
| | - Eric Allan
- Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland; Centre for Development and Environment, University of Bern, 3012 Bern, Switzerland
| | - Madhav P Thakur
- Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
2
|
Oduor AMO, Yu H, Liu Y. Invasive plant species support each other's growth in low-nutrient conditions but compete when nutrients are abundant. Ecology 2024; 105:e4401. [PMID: 39219103 DOI: 10.1002/ecy.4401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 06/27/2024] [Indexed: 09/04/2024]
Abstract
Globally, numerous ecosystems have been co-invaded by multiple exotic plant species that can have competitive or facilitative interactions with each other and with native plants. Invaded ecosystems often exhibit spatial heterogeneity in soil moisture and nutrient levels, with some habitats having more nutrient-rich and moist soils than others. The stress-gradient hypothesis predicts that plants are likely to engage in facilitative interactions when growing in stressful environments, such as nutrient-deficient or water-deficient soils. In contrast, when resources are abundant, competitive interactions between plants should prevail. The invasional meltdown hypothesis proposes that facilitative interactions between invasive species can enhance their establishment and amplify their ecological impact. Considering both hypotheses can offer insights into the complex interactions among invasive and native plants across environmental gradients. However, experimental tests of the effects of soil moisture and nutrient co-limitation on interactions between invasive and native plants at both interspecific and intraspecific levels in light of these hypotheses are lacking. We performed a greenhouse pot experiment in which we cultivated individual focal plants from five congeneric pairs of invasive and native species. Each focal plant was subjected to one of three levels of plant-plant interactions: (1) intraspecific, in which the focal plant was grown with another individual of the same species; (2) interspecific, involving a native and an invasive plant; and (3) interspecific, involving two native or invasive individuals. These plant-plant interaction treatments were fully crossed with two levels of water availability (drought vs. well-watered) and two levels of nutrient supply (low vs. high). Consistent with the stress-gradient and invasional meltdown hypotheses, our findings show that under low-nutrient conditions, the biomass production of invasive focal plants was facilitated by invasive interspecific neighbors. However, under high-nutrient conditions, the biomass production of invasive focal plants was suppressed by invasive interspecific neighbors. When competing with native interspecific neighbors, high-nutrient conditions similarly enhanced the biomass production of both invasive and native focal plants. Invasive and native focal plants were neither competitively suppressed nor facilitated by conspecific neighbors. Taken together, these results suggest that co-occurring invasive exotic plant species may facilitate each other in low-nutrient habitats but compete in high-nutrient habitats.
Collapse
Affiliation(s)
- Ayub M O Oduor
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- Department of Applied Biology, Technical University of Kenya, Nairobi, Kenya
- Shandong Key Laboratory of Eco-Environmental Science for Yellow River Delta, Shandong University of Aeronautics, Binzhou, Shandong, China
| | - Han Yu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Yanjie Liu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
3
|
Holden CA, McAinsh M, Taylor JE, Beckett P, Martin FL. Attenuated total reflection Fourier-transform infrared spectroscopy reveals environment specific phenotypes in clonal Japanese knotweed. BMC PLANT BIOLOGY 2024; 24:769. [PMID: 39135189 PMCID: PMC11321083 DOI: 10.1186/s12870-024-05200-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/24/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Japanese knotweed (Reynoutria japonica var. japonica), a problematic invasive species, has a wide geographical distribution. We have previously shown the potential for attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy and chemometrics to segregate regional differentiation between Japanese knotweed plants. However, the contribution of environment to spectral differences remains unclear. Herein, the response of Japanese knotweed to varied environmental habitats has been studied. Eight unique growth environments were created by manipulation of the red: far-red light ratio (R: FR), water availability, nitrogen, and micronutrients. Their impacts on plant growth, photosynthetic parameters, and ATR-FTIR spectral profiles, were explored using chemometric techniques, including principal component analysis (PCA), linear discriminant analysis, support vector machines (SVM) and partial least squares regression. Key wavenumbers responsible for spectral differences were identified with PCA loadings, and molecular biomarkers were assigned. Partial least squared regression (PLSR) of spectral absorbance and root water potential (RWP) data was used to create a predictive model for RWP. RESULTS Spectra from plants grown in different environments were differentiated using ATR-FTIR spectroscopy coupled with SVM. Biomarkers highlighted through PCA loadings corresponded to several molecules, most commonly cell wall carbohydrates, suggesting that these wavenumbers could be consistent indicators of plant stress across species. R: FR most affected the ATR-FTIR spectra of intact dried leaf material. PLSR prediction of root water potential achieved an R2 of 0.8, supporting the potential use of ATR-FTIR spectrometers as sensors for prediction of plant physiological parameters. CONCLUSIONS Japanese knotweed exhibits environmentally induced phenotypes, indicated by measurable differences in their ATR-FTIR spectra. This high environmental plasticity reflected by key biomolecular changes may contribute to its success as an invasive species. Light quality (R: FR) appears critical in defining the growth and spectral response to environment. Cross-species conservation of biomarkers suggest that they could function as indicators of plant-environment interactions including abiotic stress responses and plant health.
Collapse
Affiliation(s)
- Claire A Holden
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK.
| | - Martin McAinsh
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Jane E Taylor
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | | | - Francis L Martin
- Biocel Ltd, Hull, HU10 7TS, UK
- Department of Cellular Pathology, Blackpool Teaching Hospitals NHS Foundation Trust, Whinney Heys Road, Blackpool, FY3 8NR, UK
| |
Collapse
|
4
|
Qin W, Sun Y, Müller-Schärer H, Huang W. Responses of non-native and native plant species to fluctuations of water availability in a greenhouse experiment. Ecol Evol 2024; 14:e11692. [PMID: 38983706 PMCID: PMC11232050 DOI: 10.1002/ece3.11692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/05/2024] [Accepted: 06/20/2024] [Indexed: 07/11/2024] Open
Abstract
Water availability strongly influences the survival, growth, and reproduction of most terrestrial plant species. Experimental evidence has well documented the effect of changes in total amount of water availability on non-native vs. native plants. However, little is known about how fluctuations in water availability affect these two groups, although more extreme fluctuations in water availability increasingly occur with prolonged drought and extreme precipitation events. Here, we grew seven non-native and seven native plant species individually in the greenhouse. Then, we exposed them to four watering treatments, each treatment with the same total amount of water, but with different divisions: W1 (added water 16 times with 125 mL per time), W2 (8 times, 250 mL per time), W3 (4 times, 500 mL per time), and W4 (2 times, 1000 mL per time). We found that both non-native and native plants produced the most biomass under medium frequency/magnitude watering treatments (W2 and W3). Interestingly, non-native plants produced 34% more biomass with the infrequent, substantial watering treatment (W4) than with frequent, minor watering treatment (W1), whereas native plants showed opposite patterns, producing 26% more biomass with W1 than with W4. Differences in the ratio of root to shoot under few/large and many/small watering treatments of non-native vs. native species probably contributed to their different responses in biomass production. Our results advance the current understanding of the effect of water availability on non-native plants, which are affected not only by changes in amount of water availability but also by fluctuations in water availability. Furthermore, our results indicate that an increased few/large precipitation pattern expected under climate change conditions might further promote non-native plant invasions. Future field experiments with multiple phylogenetically controlled pairs of non-native and native species will be required to enhance our understanding of how water availability fluctuations impact on non-native invasions.
Collapse
Affiliation(s)
- Wenchao Qin
- Wuhan Botanical Garden Chinese Academy of Sciences Wuhan China
- University of Chinese Academy of Sciences Beijing China
| | - Yan Sun
- College of Resources and Environment Huazhong Agricultural University Wuhan China
| | - Heinz Müller-Schärer
- College of Resources and Environment Huazhong Agricultural University Wuhan China
- Department of Biology University of Fribourg Fribourg Switzerland
| | - Wei Huang
- Wuhan Botanical Garden Chinese Academy of Sciences Wuhan China
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden Chinese Academy of Sciences Wuhan China
| |
Collapse
|
5
|
Ratcliffe H, Kendig A, Vacek S, Carlson D, Ahlering M, Dee LE. Extreme precipitation promotes invasion in managed grasslands. Ecology 2024; 105:e4190. [PMID: 37877294 DOI: 10.1002/ecy.4190] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/15/2023] [Accepted: 07/19/2023] [Indexed: 10/26/2023]
Abstract
Climate change is increasing the frequency and intensity of extreme events like drought and flooding, which threaten to amplify other global change drivers such as species invasion. We investigate the effect of wet and dry extreme precipitation regimes on invasive species' abundances in northern tallgrass prairies. Because soil moisture is a key determinant of prairie composition, theory and evidence suggest drought conditions will hinder invasion, whereas wetter conditions will enhance invasion. To test this hypothesis, we explored the effect of precipitation on invasive plant species abundance from 2010 to 2019 in 25 managed prairies using observations from 267 transects comprising 6675 plots throughout western Minnesota, USA. We estimated how increases in the number of extremely wet or dry months in a year altered overall invasive species abundance and the abundance of the highly invasive grasses Poa pratensis and Bromus inermis. We found that a greater occurrence of abnormally wet months increased invasive species abundance but found mixed evidence that abnormally dry conditions hindered invasion. Further, more moderately wet and dry months reduced native grass abundance. Together, these results suggest that more frequent extremely wet months may intensify invasive dominance and that dry months may not counterbalance these trends. Given the considerable uncertainty still surrounding the interactive effects of climate change and invasion on native plant communities, this research represents an important step toward quantifying the complex influence of precipitation extremes on invasion dynamics in managed ecosystems of critical conservation concern.
Collapse
Affiliation(s)
- Hugh Ratcliffe
- Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Amy Kendig
- Minnesota Department of Natural Resources, St. Paul, Minnesota, USA
| | - Sara Vacek
- US Fish and Wildlife Service, Morris, Minnesota, USA
| | - Daren Carlson
- Minnesota Department of Natural Resources, St. Paul, Minnesota, USA
| | | | - Laura E Dee
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
| |
Collapse
|
6
|
Otieno EO, Shen C, Zhang K, Wan J, He M, Tao Z, Huang W, Siemann E. Effects of nutrient pulses on exotic species shift from positive to neutral with decreasing water availability. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2805. [PMID: 36583667 DOI: 10.1002/eap.2805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/07/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Temporal fluctuation in nutrient availability generally promotes the growth of exotic plant species and has been recognized as an important driver of exotic plant invasions. However, little is known about how the impact of fluctuating nutrients on exotic species is dependent on the availability of other resources, although most ecosystems are experiencing dramatic variations in a wide variety of resources due to global change and human disturbance. Here, we explored how water availability mediates the effect of nutrient pulses on the growth of six exotic and six native plant species. We subjected individual plants of exotic and native species to well watered or water stressed conditions. For each level of water availability, we added equivalent amounts of nutrients at a constant rate, as a single large pulse, or in multiple small pulses. Under well watered conditions, nutrient pulses promoted exotic plant growth relative to nutrients supplied constantly, while they had no significant effect on natives. In contrast, under water stressed conditions, water deficiency inhibited the growth of all exotic and native species. More importantly, nutrient pulses did not increase plant growth relative to nutrients supplied constantly and these phenomena were observed for both exotic and native species. Taken together, our study shows that the impact of fluctuating nutrient availability on the growth of exotic plant species strongly depends on the variation of other resources, and that the positive effect of nutrient pulses under well watered conditions disappears under water stressed conditions. Our findings suggest that the variation in multiple resources may have complex feedback on exotic plant invasions and, therefore, it is critical to encompass multiple resources for the evaluation of fluctuating resource availability effects on exotic plant species. This will allow us to project the invasive trajectory of exotic plant species more accurately under future global change and human disturbance.
Collapse
Affiliation(s)
- Evans O Otieno
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Changchao Shen
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kaoping Zhang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Jinlong Wan
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Minyan He
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Zhibin Tao
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Wei Huang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Evan Siemann
- Department of Biosciences, Rice University, Houston, Texas, USA
| |
Collapse
|
7
|
Lau JA, Funk JL. How ecological and evolutionary theory expanded the 'ideal weed' concept. Oecologia 2023; 203:251-266. [PMID: 37340279 PMCID: PMC10684629 DOI: 10.1007/s00442-023-05397-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/29/2023] [Indexed: 06/22/2023]
Abstract
Since Baker's attempt to characterize the 'ideal weed' over 50 years ago, ecologists have sought to identify features of species that predict invasiveness. Several of Baker's 'ideal weed' traits are well studied, and we now understand that many traits can facilitate different components of the invasion process, such as dispersal traits promoting transport or selfing enabling establishment. However, the effects of traits on invasion are context dependent. The traits promoting invasion in one community or at one invasion stage may inhibit invasion of other communities or success at other invasion stages, and the benefits of any given trait may depend on the other traits possessed by the species. Furthermore, variation in traits among populations or species is the result of evolution. Accordingly, evolution both prior to and after invasion may determine invasion outcomes. Here, we review how our understanding of the ecology and evolution of traits in invasive plants has developed since Baker's original efforts, resulting from empirical studies and the emergence of new frameworks and ideas such as community assembly theory, functional ecology, and rapid adaptation. Looking forward, we consider how trait-based approaches might inform our understanding of less-explored aspects of invasion biology ranging from invasive species responses to climate change to coevolution of invaded communities.
Collapse
Affiliation(s)
- Jennifer A Lau
- Department of Biology and the Environmental Resilience Institute, Indiana University, Bloomington, IN, 47405, USA
| | - Jennifer L Funk
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
8
|
Rembelski M, Fraterrigo J. Drought reduces invasive grass performance by disrupting plant-microbe interactions that enhance plant nitrogen supply. Oecologia 2023; 201:549-564. [PMID: 36598562 DOI: 10.1007/s00442-022-05307-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023]
Abstract
Non-native invasive plants can promote their dominance in novel ecosystems by accelerating soil nutrient cycling via interactions with decomposer microbes. Changes in abiotic conditions associated with frequent or prolonged drought may disrupt these interactions, but the effects of disruption on invasive plant performance and the underpinning mechanisms are poorly understood. Here, we used rainout shelters in an experimental field setting to test the hypothesis that drought reduces invasive plant performance by reducing microbial metabolic activity, resulting in decreased nitrogen flow to plants. We imposed growing season drought on populations of the exotic grass Microstegium vimineum, a widespread invasive plant in eastern deciduous forests, and quantified effects on aboveground and belowground biomass, and carbon (C) and nitrogen (N) cycling among plants, decomposers, and soil. Drought resulted in a 24% decrease in soil respiration, a 16% decrease in phenol oxidase enzyme activity, a 12% decrease in dissolved organic N concentration, and a decrease in the C:N ratio of particulate organic matter, suggesting reduced microbial metabolic activity and nutrient mining of soil organic matter. Drought also reduced aboveground Microstegium biomass 33% and increased Microstegium leaf C:N ratio, consistent with a decline in plant N uptake. We conclude that drought can reduce the performance of existing invasive species populations by suppressing plant-microbe interactions that increase nitrogen supply to plants, which may have consequences for the persistence of invasive plants under hydrologic change.
Collapse
Affiliation(s)
- Mara Rembelski
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, IL, 61801, USA
| | - Jennifer Fraterrigo
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, IL, 61801, USA. .,Program in Ecology, Evolution and Conservation Biology, University of Illinois, Urbana, IL, 61801, USA.
| |
Collapse
|
9
|
Santamarina S, Montesinos D, Alfaro‐Saiz E, Acedo C. Drought affects the performance of native oak seedlings more strongly than competition with invasive crested wattle seedlings. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:1297-1305. [PMID: 35344631 PMCID: PMC10078637 DOI: 10.1111/plb.13416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Two of the most important processes threatening vulnerable plant species are competitive displacement by invasive alien species and water stress due to global warming. Quercus lusitanica, an oak shrub species with remarkable conservation interest, could be threatened by the expansion of the invasive alien tree Paraserianthes lophantha. However, it is unclear how competition would interact with predicted reductions in water availability due to global climate change. We set up a full factorial experiment to examine the direct interspecific competition between P. lophantha and Q. lusitanica seedlings under control and water-limited conditions. We measured seed biomass, germination, seedling emergence, leaf relative growth rate, biomass, root/shoot ratio, predawn shoot water potential and mortality to assess the individual and combined effects of water stress and interspecific competition on both species. Our results indicate that, at seedling stage, both species experience competitive effects and responses. However, water stress exhibited a stronger overall effect than competition. Although both species responded strongly to water stress, the invasive P. lophantha exhibited significantly less drought stress than the native Q. lusitanica based on predawn shoot water potential measurements. The findings of this study suggest that the competition with invasive P. lophantha in the short term must not be dismissed, but that the long-term conservation of the native shrub Q. lusitanica could be compromised by increased drought as a result of global change. Our work sheds light on the combined effects of biological invasions and climate change that can negatively affect vulnerable plant species.
Collapse
Affiliation(s)
- S. Santamarina
- Research Team Taxonomy and Biodiversity Conservation TaCoBiDepartment of Biodiversity and Environmental ManagementUniversity of LeónLeónSpain
- Centre for Functional EcologyDepartment of Life SciencesUniversity of CoimbraCoimbraPortugal
- Present address:
Department of Biodiversity and Environmental ManagementFaculty of Biological and Environmental SciencesUniversity of LeónCampus de VegazanaLeón24071Spain
| | - D. Montesinos
- Centre for Functional EcologyDepartment of Life SciencesUniversity of CoimbraCoimbraPortugal
- Australian Tropical HerbariumJames Cook UniversitySmithfieldQueenslandAustralia
| | - E. Alfaro‐Saiz
- Research Team Taxonomy and Biodiversity Conservation TaCoBiDepartment of Biodiversity and Environmental ManagementUniversity of LeónLeónSpain
- Herbarium LEB Jaime Andrés RodríguezCRAI ExperimentalUniversity of LeónLeónSpain
| | - C. Acedo
- Research Team Taxonomy and Biodiversity Conservation TaCoBiDepartment of Biodiversity and Environmental ManagementUniversity of LeónLeónSpain
| |
Collapse
|
10
|
Zhang L, Chen A, Li Y, Li D, Cheng S, Cheng L, Liu Y. Differences in Phenotypic Plasticity between Invasive and Native Plants Responding to Three Environmental Factors. LIFE (BASEL, SWITZERLAND) 2022; 12:life12121970. [PMID: 36556335 PMCID: PMC9781723 DOI: 10.3390/life12121970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022]
Abstract
The phenotypic plasticity hypothesis suggests that exotic plants may have greater phenotypic plasticity than native plants. However, whether phenotypic changes vary according to different environmental factors has not been well studied. We conducted a multi-species greenhouse experiment to study the responses of six different phenotypic traits, namely height, leaf number, specific leaf area, total biomass, root mass fraction, and leaf mass fraction, of native and invasive species to nutrients, water, and light. Each treatment was divided into two levels: high and low. In the nutrient addition experiment, only the leaf mass fraction and root mass fraction of the plants supported the phenotypic plasticity hypothesis. Then, none of the six traits supported the phenotypic plasticity hypothesis in the water or light treatment experiments. The results show that, for different environmental factors and phenotypes, the phenotypic plasticity hypothesis of plant invasion is inconsistent. When using the phenotypic plasticity hypothesis to explain plant invasion, variations in environmental factors and phenotypes should be considered.
Collapse
Affiliation(s)
- Luna Zhang
- International Joint Research Laboratory for Global Change Ecology, Laboratory of Biodiversity Conservation and Ecological Restoration, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Anqun Chen
- International Joint Research Laboratory for Global Change Ecology, Laboratory of Biodiversity Conservation and Ecological Restoration, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yanjiao Li
- Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-Economic Woody Plant, Key Laboratory for Value Realization of Ecological Products of Mountains-Rivers-Forests-Farmlands-Lakes-Grasslands in Pingdingshan City, Pingdingshan University, Pingdingshan 467000, China
- Correspondence: (Y.L.); (Y.L.)
| | - Duohui Li
- Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-Economic Woody Plant, Key Laboratory for Value Realization of Ecological Products of Mountains-Rivers-Forests-Farmlands-Lakes-Grasslands in Pingdingshan City, Pingdingshan University, Pingdingshan 467000, China
| | - Shiping Cheng
- Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-Economic Woody Plant, Key Laboratory for Value Realization of Ecological Products of Mountains-Rivers-Forests-Farmlands-Lakes-Grasslands in Pingdingshan City, Pingdingshan University, Pingdingshan 467000, China
| | - Liping Cheng
- Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-Economic Woody Plant, Key Laboratory for Value Realization of Ecological Products of Mountains-Rivers-Forests-Farmlands-Lakes-Grasslands in Pingdingshan City, Pingdingshan University, Pingdingshan 467000, China
| | - Yinzhan Liu
- International Joint Research Laboratory for Global Change Ecology, Laboratory of Biodiversity Conservation and Ecological Restoration, School of Life Sciences, Henan University, Kaifeng 475004, China
- Correspondence: (Y.L.); (Y.L.)
| |
Collapse
|
11
|
Müller LM, Bahn M. Drought legacies and ecosystem responses to subsequent drought. GLOBAL CHANGE BIOLOGY 2022; 28:5086-5103. [PMID: 35607942 PMCID: PMC9542112 DOI: 10.1111/gcb.16270] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 05/19/2023]
Abstract
Climate change is expected to increase the frequency and severity of droughts. These events, which can cause significant perturbations of terrestrial ecosystems and potentially long-term impacts on ecosystem structure and functioning after the drought has subsided are often called 'drought legacies'. While the immediate effects of drought on ecosystems have been comparatively well characterized, our broader understanding of drought legacies is just emerging. Drought legacies can relate to all aspects of ecosystem structure and functioning, involving changes at the species and the community scale as well as alterations of soil properties. This has consequences for ecosystem responses to subsequent drought. Here, we synthesize current knowledge on drought legacies and the underlying mechanisms. We highlight the relevance of legacy duration to different ecosystem processes using examples of carbon cycling and community composition. We present hypotheses characterizing how intrinsic (i.e. biotic and abiotic properties and processes) and extrinsic (i.e. drought timing, severity, and frequency) factors could alter resilience trajectories under scenarios of recurrent drought events. We propose ways for improving our understanding of drought legacies and their implications for subsequent drought events, needed to assess the longer-term consequences of droughts on ecosystem structure and functioning.
Collapse
Affiliation(s)
- Lena M. Müller
- Department of EcologyUniversity of InnsbruckInnsbruckAustria
| | - Michael Bahn
- Department of EcologyUniversity of InnsbruckInnsbruckAustria
| |
Collapse
|
12
|
Valliere JM, Flores RG, Cason BJ, Hernández MJ. Phenological and physiological advantages of invasive annuals are strengthened by nitrogen enrichment. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Justin M. Valliere
- Department of Biology California State University Dominguez Hills Carson
- La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California Los Angeles Los Angeles
| | - Rhay G. Flores
- Department of Biology California State University Dominguez Hills Carson
- La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California Los Angeles Los Angeles
| | - Branden J. Cason
- La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California Los Angeles Los Angeles
| | - Mayra J. Hernández
- Department of Biology California State University Dominguez Hills Carson
| |
Collapse
|
13
|
Wang X, Wang J, Hu B, Zheng W, Li M, Shen Z, Yu F, Schmid B, Li M. Richness, not evenness, of invasive plant species promotes invasion success into native plant communities via selection effects. OIKOS 2022. [DOI: 10.1111/oik.08966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Xue Wang
- Inst. of Wetland Ecology&Clone Ecology, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Univ. Taizhou China
| | - Jiang Wang
- Inst. of Wetland Ecology&Clone Ecology, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Univ. Taizhou China
| | - Bing Hu
- Inst. of Wetland Ecology&Clone Ecology, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Univ. Taizhou China
| | - Wei‐Long Zheng
- Inst. of Wetland Ecology&Clone Ecology, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Univ. Taizhou China
| | - Meng Li
- Inst. of Wetland Ecology&Clone Ecology, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Univ. Taizhou China
| | - Zhi‐Xiang Shen
- Inst. of Wetland Ecology&Clone Ecology, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Univ. Taizhou China
| | - Fei‐Hai Yu
- Inst. of Wetland Ecology&Clone Ecology, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Univ. Taizhou China
| | - Bernhard Schmid
- Dept of Geography, Remote Sensing Laboratories, Univ. of Zürich Zürich Switzerland
| | - Mai‐He Li
- Forest Dynamics, Swiss Federal Research Inst. WSL Birmensdorf Switzerland
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal Univ. Changchun China
| |
Collapse
|
14
|
Luong JC, Loik ME. Adjustments in physiological and morphological traits suggest drought-induced competitive release of some California plants. Ecol Evol 2022; 12:e8773. [PMID: 35386876 PMCID: PMC8975776 DOI: 10.1002/ece3.8773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/14/2022] [Indexed: 11/11/2022] Open
Abstract
Drought and competition affect how morphological and physiological traits are expressed in plants. California plants were previously found to respond less negatively to resource limitation compared to invasive counterparts. In a glasshouse in Santa Cruz, CA, USA, we exposed five native California C3 grassland species to episodic drought and competition (via five locally invasive species). We hypothesized that leaf morphology would be more affected by competition, and leaf photosynthetic gas exchange more so by drought, consistent with optimal partitioning and environmental filter theories. We expected that traits would exhibit trade-offs along a spectrum for resource conservatism versus acquisition. Bromus carinatus had greater photosynthetic recovery, while Diplacus aurantiacus had lower percent loss of net assimilation (PLA) and intrinsic water-use efficiency (iWUE) during drought and competition simultaneously compared to just drought. Stipa pulchra and Sidalcea malviflora gas exchange was unaffected by drought, and leaf morphology exhibited drought-related adjustments. Lupinus nanus exhibited trait adjustments for competition but not drought. Functional traits sorted onto two principal components related to trade-offs for resource conservatism versus acquisition, and for above- versus belowground allocation. In summary, morphological traits were affected by competition and drought, whereas physiological traits, like leaf gas exchange, were primarily affected by drought. The grassland plants we studied showed diverse responses to drought and competition with trait trade-offs related to resource conservatism versus acquisition, and for above- versus belowground allocation consistent with optimal partitioning and environmental filter theories. Diplacus aurantiacus experienced competitive release based on greater iWUE and lower PLA when facing drought and competition.
Collapse
Affiliation(s)
- Justin C. Luong
- Environmental Studies DepartmentUniversity of California, Santa CruzSanta CruzCaliforniaUSA
| | - Michael E. Loik
- Environmental Studies DepartmentUniversity of California, Santa CruzSanta CruzCaliforniaUSA
| |
Collapse
|
15
|
Ravaglioli C, Benedetti-Cecchi L, Bertocci I, Maggi E, Uyà M, Bulleri F. The role of environmental conditions in regulating long-term dynamics of an invasive seaweed. Biol Invasions 2022. [DOI: 10.1007/s10530-021-02680-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractThe mechanisms underpinning long-term dynamics and viability of invader populations in the receiving environment remain largely unknown. We tested the hypothesis that temporal variations in the abundance of a well-established invasive seaweed, Caulerpa cylindracea, in the NW Mediterranean, could be regulated by inter-annual fluctuations in environmental conditions. Abundance data of C. cylindracea, sampled repeatedly between 2005 and 2020 at the peak of its growing season (late summer/early fall), were related to interannual variations in seasonal seawater temperature, wind speed and rainfall recorded during different growth phases of the alga, in both subtidal and intertidal habitats. In both habitats, higher peak of C. cylindracea cover was associated with lower seawater temperature in spring and summer, when the seaweed exits the winter resting phase and starts a period of active growth. In addition, the peak abundance of subtidal C. cylindracea was positively associated with higher autumn wind speed intensity and spring daily total precipitation. Our study reveals the importance of seasonal and interannual variation of abiotic factors in shaping temporal patterns of abundance of C. cylindracea, in both subtidal and intertidal habitats. Identifying the factors underpinning invasive population temporal dynamics and viability is essential to predict the time and conditions under which an invader can thrive, and thus guide management strategies aimed to containing invasions under current and future climates.
Collapse
|
16
|
Ravi S, Law DJ, Caplan JS, Barron-Gafford GA, Dontsova KM, Espeleta JF, Villegas JC, Okin GS, Breshears DD, Huxman TE. Biological invasions and climate change amplify each other's effects on dryland degradation. GLOBAL CHANGE BIOLOGY 2022; 28:285-295. [PMID: 34614285 DOI: 10.1111/gcb.15919] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Climate models predict that, in the coming decades, many arid regions will experience increasingly hot conditions and will be affected more frequently by drought. These regions are also experiencing rapid vegetation change, notably invasion by exotic grasses. Invasive grasses spread rapidly into native desert ecosystems due, in particular, to interannual variability in precipitation and periodic fires. The resultant destruction of non-fire-adapted native shrub and grass communities and of the inherent soil resource heterogeneity can yield invader-dominated grasslands. Moreover, recurrent droughts are expected to cause widespread physiological stress and mortality of both invasive and native plants, as well as the loss of soil resources. However, the magnitude of these effects may differ between invasive and native grasses, especially under warmer conditions, rendering the trajectory of vegetated communities uncertain. Using the Biosphere 2 facility in the Sonoran Desert, we evaluated the viability of these hypothesized relationships by simulating combinations of drought and elevated temperature (+5°C) and assessing the ecophysiological and mortality responses of both a dominant invasive grass (Pennisetum ciliare or buffelgrass) and a dominant native grass (Heteropogan contortus or tanglehead). While both grasses survived protracted drought at ambient temperatures by inducing dormancy, drought under warmed conditions exceeded the tolerance limits of the native species, resulting in greater and more rapid mortality than exhibited by the invasive. Thus, two major drivers of global environmental change, biological invasion and climate change, can be expected to synergistically accelerate ecosystem degradation unless large-scale interventions are enacted.
Collapse
Affiliation(s)
- Sujith Ravi
- Department of Earth & Environmental Science, Temple University, Philadelphia, Pennsylvania, USA
| | - Darin J Law
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, USA
| | - Joshua S Caplan
- Department of Architecture & Environmental Design, Temple University, Ambler, Pennsylvania, USA
| | - Greg A Barron-Gafford
- School of Geography, Development & Environment, University of Arizona, Tucson, Arizona, USA
| | - Katerina M Dontsova
- Department of Environmental Science, University of Arizona, Tucson, Arizona, USA
| | | | - Juan C Villegas
- Grupo de Investigación en Ecología Aplicada, Facultad de Ingeniería, Universidad de Antioquia, Medellín, Colombia
| | - Gregory S Okin
- Department of Geography, University of California, Los Angeles, California, USA
| | - David D Breshears
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, USA
| | - Travis E Huxman
- Department of Ecology & Evolutionary Biology, University of California, Irvine, California, USA
| |
Collapse
|
17
|
Oduor AMO. Native plant species show evolutionary responses to invasion by Parthenium hysterophorus in an African savanna. THE NEW PHYTOLOGIST 2022; 233:983-994. [PMID: 34170513 DOI: 10.1111/nph.17574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Invasive plant species often competitively displace native plant species but some populations of native plant species can evolve adaptation to competition from invasive plants and persist in invaded habitats. However, studies are lacking that examine how variation in abiotic conditions in invaded landscapes may affect fitness of native plants that have adapted to compete with invasive plants. I tested whether invasion by Parthenium hysterophorus in Nairobi National Park - Kenya may have selected for native plant individuals with greater competitive ability than conspecific naïve natives in nutrient-rich and mesic soil conditions. I compared vegetative growth and seed yields of invader-experienced and conspecific naïve individuals of seven native species. Invader-experienced natives grew shorter than naïve natives regardless of growth conditions. Nevertheless, the two groups of native plants also exhibited treatment-specific differences in competitive ability against P. hysterophorus. Invader-experienced natives displayed plasticity in seed yield under drought treatment, while naïve natives did not. Moreover, drought treatment enhanced competitive effects of invader-experienced natives on P. hysterophorus, while nutrient enrichment relaxed competitive effects of invader-experienced natives on the invader. The results suggest that P. hysterophorus may have selected for shorter native plant genotypes that also exhibit plasticity in competitive ability under drought conditions.
Collapse
Affiliation(s)
- Ayub M O Oduor
- Department of Applied Biology, Technical University of Kenya, PO Box 52428 - 00200, Nairobi, Kenya
| |
Collapse
|
18
|
Wang S, Chen JX, Liu MC, Arnold PA, Wang WB, Feng YL. Phenotypic plasticity and exotic plant invasions: Effects of soil nutrients, species nutrient requirements, and types of traits. PHYSIOLOGIA PLANTARUM 2022; 174:e13637. [PMID: 35092017 DOI: 10.1111/ppl.13637] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/12/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
High-phenotypic plasticity has long been considered as a characteristic promoting exotic plant invasions. However, the results of the studies testing this hypothesis are still inconsistent. Overlooking the effects of species resource requirements and environmental resource availability may be the main reasons for the ambiguous conclusions. Here, we compared phenotypic plasticity between five noxious invasive species with different nutrient requirements (evaluated using the soil nutrient status of their natural distribution ranges) and their phylogenetically related natives under five nutrient levels. We found that species with high-nutrient requirements showed greater plasticity of total biomass than species with low-nutrient requirements, regardless of their status (invasive or native). Invasives with high-nutrient requirements had greater growth plasticity than their related natives, which may contribute to their invasiveness under high-nutrient environments. However, compared with the related natives, a higher growth plasticity may not help exotic species with low-nutrient requirements to invade nutrient-rich habitats, and exotic species with high-nutrient requirements to invade nutrient-limited habitats. In contrast, invasives with low-nutrient requirements exhibited lower growth plasticity than their related natives, contributing to their invasiveness under nutrient-limited habitats. Functional traits showed growth-related plasticity in only 10 cases (3.8%), and there was no functional trait whose plastic response to soil nutrients was beneficial to exotic plant invasions. Our study indicates that low-growth plasticity could also promote exotic plant invasions, high plasticity may not necessarily lead to invasiveness. We must test the adaptive significance of plasticity of functional traits when studying its biological roles.
Collapse
Affiliation(s)
- Shuo Wang
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Ji-Xin Chen
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Ming-Chao Liu
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Pieter A Arnold
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australia
| | - Wei-Bin Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yu-Long Feng
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
19
|
Cheng H, Wang S, Wei M, Yu Y, Wang C. Alien invasive plant Amaranthus spinosus mainly altered the community structure instead of the α diversity of soil N-fixing bacteria under drought. ACTA OECOLOGICA 2021. [DOI: 10.1016/j.actao.2021.103788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
|
21
|
Zhang B, Yuan Y, Shu L, Grosholz E, Guo Y, Hastings A, Cuda JP, Zhang J, Zhai L, Qiu J. Scaling up experimental stress responses of grass invasion to predictions of continental-level range suitability. Ecology 2021; 102:e03417. [PMID: 34043815 DOI: 10.1002/ecy.3417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/03/2021] [Accepted: 03/15/2021] [Indexed: 11/10/2022]
Abstract
Understanding how the biological invasion is driven by environmental factors will improve model prediction and advance early detection, especially in the context of accelerating anthropogenic ecological changes. Although a large body of studies has examined how favorable environments promote biological invasions, a more comprehensive and mechanistic understanding of invasive species response to unfavorable/stressful conditions is still developing. Grass invasion has been problematic across the globe; in particular, C4 grass invaders, with high drought tolerance, adaptations to high temperatures, and high water use efficiency, could become more severe. Here, we conducted a rigorous microcosm experiment, with one of the most damaging invasive C4 grass, cogongrass (Imperata cylindrica), to explore how cogongrass responds to soil water and nutrient stress. We further integrated the results of the microcosm study with a species distribution model to (1) corroborate greenhouse results with field observations and (2) validate the robustness of our findings at subcontinental scales. Both the microcosm experiments and species distribution model agreed that soil water stress had a stronger impact on cogongrass than the nutrient one. New vegetative growth of cogongrass continued to be inhibited by the prior water stress. The significant water effect on cogongrass total biomass was supported by the finding that both allometric and biochemical traits of cogongrass did not show significant responses to the changes in water treatment. Different to the conventional wisdom that nutrient enrichment plays a bigger role in facilitating biological invasions, this study highlighted the possibility that water conditions may have a more substantial effect on some aggressive invaders. Therefore, an important implication of this study on biological conservation is that field managers might take advantage of the negative effect of global drought on some invasive species to increase the efficiency of their controlling efforts because invasive species may become more vulnerable under drought effect.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Natural Resource Ecology and Management, Oklahoma State University, 008C Agriculture Hall, Stillwater, Oklahoma, 74078, USA.,Department of Environmental Science and Policy, University of California, Davis, 1 Shields Avenue, Davis, California, 95616, USA
| | - Yingdan Yuan
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu, 210037, China.,Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, No. 88, Daxue South Road, Yangzhou, Jiangsu, 225127, China
| | - Lele Shu
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Donggang West Road 320, Lanzhou, Gansu, 730000, China.,Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Chinese Academy of Sciences, 320 Donggang West Road, Lanzhou, Guansu, 730000, China
| | - Edwin Grosholz
- Department of Environmental Science and Policy, University of California, Davis, 1 Shields Avenue, Davis, California, 95616, USA
| | - Yuxi Guo
- School of Forest Resources and Conservation, Fort Lauderdale Research and Education Center, University of Florida, 3205 College Avenue, Davie, Florida, 33314, USA
| | - Alan Hastings
- Department of Environmental Science and Policy, University of California, Davis, 1 Shields Avenue, Davis, California, 95616, USA.,Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico, 87501, USA
| | - James P Cuda
- Entomology & Nematology Department, University of Florida, Gainesville, Florida, 32611, USA
| | - Jinchi Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu, 210037, China
| | - Lu Zhai
- Department of Natural Resource Ecology and Management, Oklahoma State University, 008C Agriculture Hall, Stillwater, Oklahoma, 74078, USA
| | - Jiangxiao Qiu
- School of Forest Resources and Conservation, Fort Lauderdale Research and Education Center, University of Florida, 3205 College Avenue, Davie, Florida, 33314, USA
| |
Collapse
|
22
|
Luong JC, Holl KD, Loik ME. Leaf traits and phylogeny explain plant survival and community dynamics in response to extreme drought in a restored coastal grassland. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.13909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Justin C. Luong
- Department of Environmental Studies University of California Santa Cruz CA USA
| | - Karen D. Holl
- Department of Environmental Studies University of California Santa Cruz CA USA
| | - Michael E. Loik
- Department of Environmental Studies University of California Santa Cruz CA USA
| |
Collapse
|
23
|
Wang S, Wei M, Cheng H, Wu B, Du D, Wang C. Indigenous plant species and invasive alien species tend to diverge functionally under heavy metal pollution and drought stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111160. [PMID: 32853864 DOI: 10.1016/j.ecoenv.2020.111160] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
The functional similarity between indigenous plant species (IPS) and invasive alien species (IAS) governs the invasion process of successful IAS because IPS and coexisting IAS suffer alike or even same ecological selection pressures. The aggravated condition created by heavy metal pollution (HMP) and drought stress may generate a noticeable impact on the invasive competitiveness and invasion process of IAS possibly via the variations in the functional similarity between IPS and IAS. Consequently, it is necessary to illumine the functional similarity between IPS and IAS under HMP and drought stress to clarify the mechanisms underlying the successful invasion of IAS. This study aims to estimate the functional similarity between IPS Amaranthus tricolor L. and IAS A. retroflexus L. under the condition with the alone and combined effects of HMP with different kinds (e.g., Cu and Pb) and drought stress [simulated by polyethylene glycol-6000 (PEG) solution]. HMP notably declines A. tricolor growth but has no remarkable effect on A. retroflexus growth. A. retroflexus displays a strong competitive intensity than A. tricolor under HMP. Further, HMP makes a greater stress intensity on A. tricolor growth than A. retroflexus growth. Therefore, HMP can accelerate A. retroflexus invasion. A. retroflexus displays a poor competitive intensity under drought stress. Thus, drought stress can hinder A. retroflexus invasion. However, drought stress causes a greater stress intensity on A. tricolor growth than A. retroflexus growth. Thus, the continued drought stress may converse the adverse effects of drought stress on A. retroflexus invasion potentially. The two Amaranthus species tend to diverge functionally under the combined HMP and drought stress. Further, A. retroflexus shows a strong competitive intensity than A. tricolor under the combined HMP and drought stress. Moreover, the combined HMP and drought stress induces a greater stress intensity on A. tricolor growth than A. retroflexus growth. Thus, the combined HMP and drought stress can facilitate A. retroflexus invasion. Meanwhile, the competitiveness for sunlight acquisition and leaf photosynthetic capacity may play a key role in the successful invasion of A. retroflexus under the combined HMP and drought stress.
Collapse
Affiliation(s)
- Shu Wang
- Institute of Environment and Ecology & School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Mei Wei
- Institute of Environment and Ecology & School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Huiyuan Cheng
- Institute of Environment and Ecology & School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Bingde Wu
- Institute of Environment and Ecology & School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Daolin Du
- Institute of Environment and Ecology & School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Congyan Wang
- Institute of Environment and Ecology & School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
24
|
Zhou XH, He WM. Climate Warming Facilitates Seed Germination in Native but Not Invasive Solidago canadensis Populations. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.595214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Plant performance is commonly temperature-dependent so that this performance could vary with climate warming. Seeds are among the most important propagules of plants, and seed traits strongly influence plant invasion success. Therefore, understanding seed traits under climate warming is useful for predicting invasion risks. To this end, we conducted a warming experiment with an infrared radiator and examined the effects of 5 years warming (approximately 2°C above ambient) on the seed quality and subsequent germination of Solidago canadensis from North America, where it is native (24 native populations), and from China, where it is invasive (29 invasive populations). Temperature regimes (i.e., ambient vs. warming) interacted with population sources (i.e., native vs. invasive) to significantly influence seed germination, but not thousand-seed mass. Warming significantly advanced the seed germination timing of native S. canadensis populations and increased their seed germination rate; warming did not influence the germination timing but decreased the germination rate of invasive S. canadensis populations. Across two temperature regimes combined, 24 native S. canadensis populations had smaller seeds, later germination timing, and lower germination rate than 29 invasive S. canadensis populations. These findings suggest that climate warming could facilitate the seed germination of native but not invasive populations. Our data also highlight that invasive populations might be more successful than native populations due to better seed quality and faster and higher seed germination.
Collapse
|
25
|
Phenotypic plasticity in diaspore production of a amphi-basicarpic cold desert annual that produces polymorphic diaspores. Sci Rep 2020; 10:11142. [PMID: 32636397 PMCID: PMC7341796 DOI: 10.1038/s41598-020-67380-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 06/08/2020] [Indexed: 11/16/2022] Open
Abstract
Phenotypic plasticity has been studied in diaspore-dimorphic species, but no such study has been done on a diaspore-polymorphic species. Our aim was to determine the effects of abiotic and biotic factors on phenotypic plasticity of the diaspore-polymorphic cold desert annual Ceratocarpus arenarius. Plants produced from dispersal units near the soil surface (a, basicarps) and at the middle (c) and upper (f) parts of the plant canopy were subjected to different levels of soil moisture, nutrient supply and intramorph and intermorph densities. Different levels of these biotic and abiotic factors resulted in significant variation in total plant mass, diaspore mass, mass allocation to stem and reproductive organs and total number and proportion of morphs a, c and f on an individual. The effect of stress on number and mass of a dispersal unit morph varied by treatment, with dispersal unit f having the highest CV and dispersal unit a the lowest. The success of this diaspore polymorphic species in its rainfall-unpredictable environment likely is enhanced by plasticity in production of the different types of diaspores.
Collapse
|
26
|
LaForgia ML, Harrison SP, Latimer AM. Invasive species interact with climatic variability to reduce success of natives. Ecology 2020; 101:e03022. [PMID: 32083742 DOI: 10.1002/ecy.3022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/16/2019] [Accepted: 01/23/2020] [Indexed: 11/11/2022]
Abstract
Plants have evolved resource-conservative and resource-acquisitive strategies to deal with variability in rainfall, but interactions with dominant invasive species may undermine these adaptations. To investigate the relative effect of invaders on species with these two strategies, we manipulated rainfall and invasive grass presence and measured demographic rates in three resource-acquisitive and three resource-conservative native annual forbs. We found that invasive grasses were harmful to all of the target species, but especially the resource-acquisitive ones, and that these effects were stronger under experimental drought. Invasive grass presence under drought lowered per capita population growth rates of acquisitive natives through increased mortality and decreased seed set. While invasive grasses also decreased per capita growth rates of resource-conservative natives, they did so by increasing mortality under experimental watering and by limiting the production of seed under experimental drought. Invasive species can thus interact with climatic fluctuations to make bad years worse for resource-acquisitive natives and good years less good for resource-conservative natives, and they may generally tend to undermine the acquisitive strategy more than the conservative one.
Collapse
Affiliation(s)
- Marina L LaForgia
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, California, USA
| | - Susan P Harrison
- Department of Environmental Science and Policy, University of California, Davis, One Shields Avenue, Davis, California, USA
| | - Andrew M Latimer
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, California, USA
| |
Collapse
|