1
|
Tang X, Yang J, Lin D, Lin H, Xiao X, Chen S, Huang Y, Qian X. Community assembly of ectomycorrhizal fungal communities in pure and mixed Pinus massoniana forests. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 362:121312. [PMID: 38824888 DOI: 10.1016/j.jenvman.2024.121312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/18/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Ectomycorrhizal (EcM) fungi play an important role in nutrient cycling and community ecological dynamics and are widely acknowledged as important components of forest ecosystems. However, little information is available regarding EcM fungal community structure or the possible relationship between EcM fungi, soil properties, and forestry activities in Pinus massoniana forests. In this study, we evaluated soil properties, extracellular enzyme activities, and fungal diversity and community composition in root and soil samples from pure Pinus massoniana natural forests, pure P. massoniana plantations, and P. massoniana and Liquidambar gracilipes mixed forests. The mixed forest showed the highest EcM fungal diversity in both root and bulk soil samples. Community composition and co-occurrence network structures differed significantly between forest types. Variation in the EcM fungal community was significantly correlated with the activities of β-glucuronidase and β-1,4-N-acetylglucosaminidase, whereas non-EcM fungal community characteristics were significantly correlated with β-1,4-glucosidase and β-glucuronidase activities. Furthermore, stochastic processes predominantly drove the assembly of both EcM and non-EcM fungal communities, while deterministic processes exerted greater influence on soil fungal communities in mixed forests compared to pure forests. Our findings may inform a deeper understanding of how the assembly processes and environmental roles of subterranean fungal communities differ between mixed and pure plantations and may provide insights for how to promote forest sustainability in subtropical areas.
Collapse
Affiliation(s)
- Xinghao Tang
- Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Academy of Forestry Sciences, Fuzhou, 350012, China
| | - Juanjuan Yang
- Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Danhua Lin
- Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huazhang Lin
- Fujian Datian Taoyuan State-owned Forest Farm, Sanming, 366199, China
| | - Xiangxi Xiao
- Fujian Academy of Forestry Sciences, Fuzhou, 350012, China
| | - Sensen Chen
- Fujian Datian Taoyuan State-owned Forest Farm, Sanming, 366199, China
| | - Yunpeng Huang
- Fujian Academy of Forestry Sciences, Fuzhou, 350012, China
| | - Xin Qian
- Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
2
|
Buck R, Ortega-Del Vecchyo D, Gehring C, Michelson R, Flores-Rentería D, Klein B, Whipple AV, Flores-Rentería L. Sequential hybridization may have facilitated ecological transitions in the Southwestern pinyon pine syngameon. THE NEW PHYTOLOGIST 2023; 237:2435-2449. [PMID: 36251538 DOI: 10.1111/nph.18543] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Multispecies interbreeding networks, or syngameons, have been increasingly reported in natural systems. However, the formation, structure, and maintenance of syngameons have received little attention. Through gene flow, syngameons can increase genetic diversity, facilitate the colonization of new environments, and contribute to hybrid speciation. In this study, we evaluated the history, patterns, and consequences of hybridization in a pinyon pine syngameon using morphological and genomic data to assess genetic structure, demographic history, and geographic and climatic data to determine niche differentiation. We demonstrated that Pinus edulis, a dominant species in the Southwestern US and a barometer of climate change, is a core participant in the syngameon, involved in the formation of two drought-adapted hybrid lineages including the parapatric and taxonomically controversial fallax-type. We found that species remain morphologically and genetically distinct at range cores, maintaining species boundaries while undergoing extensive gene flow in areas of sympatry at range peripheries. Our study shows that sequential hybridization may have caused relatively rapid speciation and facilitated the colonization of different niches, resulting in the rapid formation of two new lineages. Participation in the syngameon may allow adaptive traits to be introgressed across species barriers and provide the changes needed to survive future climate scenarios.
Collapse
Affiliation(s)
- Ryan Buck
- Department of Biology, San Diego State University, San Diego, CA, 92182, USA
| | - Diego Ortega-Del Vecchyo
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, Querétaro, 76230, Mexico
| | - Catherine Gehring
- Department of Biological Sciences and Center for Adaptive Western Landscapes, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Rhett Michelson
- Department of Biological Sciences, College of Southern Nevada, Las Vegas, NV, 89146, USA
| | - Dulce Flores-Rentería
- CONACYT-CINVESTAV Unidad Saltillo, Grupo de Sustentabilidad de los Recursos Naturales y Energía, Av. Industria Metalúrgica 1062, Parque Industrial Ramos Arizpe, 25900, Ramos Arizpe, Coahuila, Mexico
| | - Barbara Klein
- Diné College, School of Science, Technology, Engineering and Mathematics, Tsaile, AZ, 86556, USA
| | - Amy V Whipple
- Department of Biological Sciences and Center for Adaptive Western Landscapes, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | | |
Collapse
|
3
|
Vilonen L, Ross M, Smith MD. What happens after drought ends: synthesizing terms and definitions. THE NEW PHYTOLOGIST 2022; 235:420-431. [PMID: 35377474 PMCID: PMC9322664 DOI: 10.1111/nph.18137] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/18/2022] [Indexed: 05/22/2023]
Abstract
Drought is intensifying globally with climate change, creating an urgency to understand ecosystem response to drought both during and after these events end to limit loss of ecosystem functioning. The literature is replete with studies of how ecosystems respond during drought, yet there are far fewer studies focused on ecosystem dynamics after drought ends. Furthermore, while the terms used to describe drought can be variable and inconsistent, so can those that describe ecosystem responses following drought. With this review, we sought to evaluate and create clear definitions of the terms that ecologists use to describe post-drought responses. We found that legacy effects, resilience and recovery were used most commonly with respect to post-drought ecosystem responses, but the definitions used to describe these terms were variable. Based on our review of the literature, we propose a framework for generalizing ecosystem responses after drought ends, which we refer to as 'the post-drought period'. We suggest that future papers need to clearly describe characteristics of the imposed drought, and we encourage authors to use the term post-drought period as a general term that encompasses responses after drought ends and use other terms as more specific descriptors of responses during the post-drought period.
Collapse
Affiliation(s)
- Leena Vilonen
- Department of BiologyColorado State UniversityFort CollinsCO80521USA
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsCO80521USA
| | - Maggie Ross
- Department of BiologyColorado State UniversityFort CollinsCO80521USA
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsCO80521USA
| | - Melinda D. Smith
- Department of BiologyColorado State UniversityFort CollinsCO80521USA
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsCO80521USA
| |
Collapse
|
4
|
Anthony MA, Crowther TW, van der Linde S, Suz LM, Bidartondo MI, Cox F, Schaub M, Rautio P, Ferretti M, Vesterdal L, De Vos B, Dettwiler M, Eickenscheidt N, Schmitz A, Meesenburg H, Andreae H, Jacob F, Dietrich HP, Waldner P, Gessler A, Frey B, Schramm O, van den Bulk P, Hensen A, Averill C. Forest tree growth is linked to mycorrhizal fungal composition and function across Europe. THE ISME JOURNAL 2022; 16:1327-1336. [PMID: 35001085 PMCID: PMC9038731 DOI: 10.1038/s41396-021-01159-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 11/08/2022]
Abstract
Most trees form symbioses with ectomycorrhizal fungi (EMF) which influence access to growth-limiting soil resources. Mesocosm experiments repeatedly show that EMF species differentially affect plant development, yet whether these effects ripple up to influence the growth of entire forests remains unknown. Here we tested the effects of EMF composition and functional genes relative to variation in well-known drivers of tree growth by combining paired molecular EMF surveys with high-resolution forest inventory data across 15 European countries. We show that EMF composition was linked to a three-fold difference in tree growth rate even when controlling for the primary abiotic drivers of tree growth. Fast tree growth was associated with EMF communities harboring high inorganic but low organic nitrogen acquisition gene proportions and EMF which form contact versus medium-distance fringe exploration types. These findings suggest that EMF composition is a strong bio-indicator of underlying drivers of tree growth and/or that variation of forest EMF communities causes differences in tree growth. While it may be too early to assign causality or directionality, our study is one of the first to link fine-scale variation within a key component of the forest microbiome to ecosystem functioning at a continental scale.
Collapse
Affiliation(s)
- Mark A Anthony
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland.
| | - Thomas W Crowther
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Sietse van der Linde
- Netherlands Food and Consumer Product Safety Authority, National Reference Centre, Wageningen, The Netherlands
| | | | - Martin I Bidartondo
- Royal Botanic Gardens, Kew, TW9 3DS, UK
- Department of Life Sciences, Imperial College London, Ascot, SL5 7PY, UK
| | - Filipa Cox
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | - Marcus Schaub
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Pasi Rautio
- Natural Resources Institute Finland, Rovaniemi, Finland
| | - Marco Ferretti
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Lars Vesterdal
- Department of Geosciences and Natural Resource Management, University of Copenhagen, DK-1958, Frederiksberg C, Denmark
| | - Bruno De Vos
- Environment & Climate Unit, Research Institute for Nature and Forest, Geraardsbergen, Belgium
| | - Mike Dettwiler
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Nadine Eickenscheidt
- State Agency for Nature, Environment and Consumer Protection of North Rhine-Westphalia, 45657, Recklinghausen, Germany
| | - Andreas Schmitz
- State Agency for Nature, Environment and Consumer Protection of North Rhine-Westphalia, 45657, Recklinghausen, Germany
- Thuenen Institut of Forest Ecosystems, 16225, Eberswalde, Germany
| | | | | | - Frank Jacob
- Sachsenforst State Forest, 01796, Pirna OT Graupa, Germany
| | | | - Peter Waldner
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Arthur Gessler
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Beat Frey
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Oliver Schramm
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Pim van den Bulk
- The Netherlands Organization for Applied Scientific Research at Petten, 1755LE, Petten, The Netherlands
| | - Arjan Hensen
- The Netherlands Organization for Applied Scientific Research at Petten, 1755LE, Petten, The Netherlands
| | - Colin Averill
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
5
|
Senior JK, Gundale MJ, Iason GR, Whitham TG, Axelsson EP. Progeny selection for enhanced forest growth alters soil communities and processes. Ecosphere 2022. [DOI: 10.1002/ecs2.3943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- John K. Senior
- Department of Wildlife, Fish and Environmental Studies Swedish University of Agricultural Sciences Umeå Sweden
| | - Michael J. Gundale
- Department of Forest Ecology and Management Swedish University of Agricultural Sciences Umeå Sweden
| | | | - Thomas G. Whitham
- Center for Adaptable Western Landscapes Northern Arizona University Flagstaff Arizona USA
| | - E. Petter Axelsson
- Department of Wildlife, Fish and Environmental Studies Swedish University of Agricultural Sciences Umeå Sweden
| |
Collapse
|
6
|
Querejeta JI, Schlaeppi K, López-García Á, Ondoño S, Prieto I, van der Heijden MGA, Del Mar Alguacil M. Lower relative abundance of ectomycorrhizal fungi under a warmer and drier climate is linked to enhanced soil organic matter decomposition. THE NEW PHYTOLOGIST 2021; 232:1399-1413. [PMID: 34342894 DOI: 10.1111/nph.17661] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
The aboveground impacts of climate change receive extensive research attention, but climate change could also alter belowground processes such as the delicate balance between free-living fungal decomposers and nutrient-scavenging mycorrhizal fungi that can inhibit decomposition through a mechanism called the Gadgil effect. We investigated how climate change-induced reductions in plant survival, photosynthesis and productivity alter soil fungal community composition in a mixed arbuscular/ectomycorrhizal (AM/EM) semiarid shrubland exposed to experimental warming (W) and/or rainfall reduction (RR). We hypothesised that increased EM host plant mortality under a warmer and drier climate might decrease ectomycorrhizal fungal (EMF) abundance, thereby favouring the proliferation and activity of fungal saprotrophs. The relative abundance of EMF sequences decreased by 57.5% under W+RR, which was accompanied by reductions in the activity of hydrolytic enzymes involved in the acquisition of organic-bound nutrients by EMF and their host plants. W+RR thereby created an enhanced potential for soil organic matter (SOM) breakdown and nitrogen mineralisation by decomposers, as revealed by 127-190% increases in dissolved organic carbon and nitrogen, respectively, and decreasing SOM content in soil. Climate aridification impacts on vegetation can cascade belowground through shifts in fungal guild structure that alter ecosystem biogeochemistry and accelerate SOM decomposition by reducing the Gadgil effect.
Collapse
Affiliation(s)
- José Ignacio Querejeta
- Department of Soil and Water Conservation (CEBAS-CSIC), CSIC-Centro de Edafología y Biología Aplicada del Segura, PO Box 164, Campus de Espinardo, 30100, Murcia, Spain
| | - Klaus Schlaeppi
- Plant-Soil-Interactions, Institute for Sustainability Sciences, Agroscope, Reckenholzstrasse 191, 8046, Zürich, Switzerland
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013, Bern, Switzerland
- Department of Environmental Sciences, University of Basel, Bernoullistrasse 32, 4056, Basel, Switzerland
| | - Álvaro López-García
- Soil Microbiology and Symbiotic Systems Department, Estación Experimental del Zaidín (EEZ-CSIC), Profesor Albareda 1, Granada, 18008, Spain
| | - Sara Ondoño
- Department of Soil and Water Conservation (CEBAS-CSIC), CSIC-Centro de Edafología y Biología Aplicada del Segura, PO Box 164, Campus de Espinardo, 30100, Murcia, Spain
| | - Iván Prieto
- Department of Soil and Water Conservation (CEBAS-CSIC), CSIC-Centro de Edafología y Biología Aplicada del Segura, PO Box 164, Campus de Espinardo, 30100, Murcia, Spain
| | - Marcel G A van der Heijden
- Plant-Soil-Interactions, Institute for Sustainability Sciences, Agroscope, Reckenholzstrasse 191, 8046, Zürich, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
- Plant-Microbe-Interactions, Department of Biology, Utrecht University, 3508TB, Utrecht, the Netherlands
| | - María Del Mar Alguacil
- Soil Microbiology and Symbiotic Systems Department, Estación Experimental del Zaidín (EEZ-CSIC), Profesor Albareda 1, Granada, 18008, Spain
| |
Collapse
|
7
|
Masaki T, Kitagawa R, Nakashizuka T, Shibata M, Tanaka H. Interspecific variation in mortality and growth and changes in their relationship with size class in an old-growth temperate forest. Ecol Evol 2021; 11:8869-8881. [PMID: 34257933 PMCID: PMC8258222 DOI: 10.1002/ece3.7720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 11/09/2022] Open
Abstract
Understanding trade-offs between demographic parameters is crucial when investigating community assembly rules in high-diversity forests. To this end, we estimated mortality and growth parameters, and correlations among them, across entire size classes for 17 tree species (Betula, Carpinus, Fagus, Quercus, Castanea, Acer, Cerasus, Swida, Kalopanax, and Styrax) using a dataset over 18 years obtained from an old-growth forest in Japan.Size classes were represented by 12 categories determined by age, height, and diameter at breast height (DBH) from new seedlings to stems of DBH >85 cm. We derived the annual mortality and growth for each species and class using estimates of transition probabilities between classes. Trade-offs or synergies in growth and survival among species per size class were analyzed with and without the inclusion of phylogenetic relationships.Annual mortality showed U-shaped patterns across size classes for species that could potentially reach a DBH ≥55 cm: 0.2-0.98 for seedlings, 0.002-0.01 at DBH 35-45 cm, and ca. 0.01 at DBH ≥55 cm. Other species demonstrated monotonically decreasing mortality toward specific maximum size classes. When phylogenetic information was included in analyses, the correlations between survival and growth changed across size classes were significant for some classes: As an overall tendency, synergy was observed in growth and survival for seedling to sapling classes, trade-offs for juvenile to DBH 15-25 cm classes, and synergy again for larger classes. When phylogenetic information was not included, a significant trade-off was observed only at DBH 5-15 cm. Synthesis. Trade-offs at intermediate classes imply differentiation in demographic characteristics related to life history strategies. However, evolutionarily obtained demographic characteristics are not substantial drivers of niche differentiation in the study area. The polylemma of mortality, growth, and other parameters such as the onset of reproduction may also be important factors driving species-specific demographic traits.
Collapse
Affiliation(s)
- Takashi Masaki
- Forestry and Forest Products Research InstituteTsukubaJapan
| | - Ryo Kitagawa
- Kansai Research CenterForestry and Forest Products Research InstituteKyotoJapan
| | | | - Mitsue Shibata
- Forestry and Forest Products Research InstituteTsukubaJapan
| | | |
Collapse
|
8
|
Hughes AR, Moore AFP, Gehring C. Plant response to fungal root endophytes varies by host genotype in the foundation species Spartina alterniflora. AMERICAN JOURNAL OF BOTANY 2020; 107:1645-1653. [PMID: 33252780 DOI: 10.1002/ajb2.1573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/03/2020] [Indexed: 06/12/2023]
Abstract
PREMISE Root-associated fungi provide a wide range of functions for their host plants, including nutrient provisioning, pathogen protection, and stress alleviation. In so doing, they can markedly influence host-plant structural and physiological traits, although the degree to which these effects vary within particular plant host species is not well understood. METHODS We conducted a 7-month common-garden inoculation experiment to test the potential effects of a marine fungus (Lulwoana sp.) on the phenotypic traits of different genotypes of the host, the salt marsh plant species Spartina alterniflora. Lulwoana belongs to the dark septate endophytes (DSE), a polyphyletic group of fungi that are commonly found colonizing healthy plant roots, though their ecological role remains unclear. RESULTS We documented significant impacts of Lulwoana on S. alterniflora morphology, biomass, and biomass allocation. For most traits in our study, these impacts varied significantly in direction and/or magnitude across S. alterniflora genotypes. Effects that were consistent across genotype were generally negative. Plant response was not predicted by the percentage of roots colonized, consistent with findings that dark septate endophytes do not necessarily influence plant growth responses through direct contact with roots. CONCLUSIONS The observed changes in stem height, biomass, and biomass allocation have important effects on plant competitive ability, growth, and fitness, suggesting that plant-fungal interactions have community and ecosystem level effects in salt marshes.
Collapse
Affiliation(s)
- A Randall Hughes
- Northeastern University Marine Science Center, 430 Nahant Rd., Nahant, MA, 01908, USA
| | - Althea F P Moore
- Northeastern University Marine Science Center, 430 Nahant Rd., Nahant, MA, 01908, USA
| | - Catherine Gehring
- Northern Arizona University Department of Biological Sciences, P.O. Box 5640, Flagstaff, AZ, 86011, USA
| |
Collapse
|
9
|
Gehring C, Sevanto S, Patterson A, Ulrich DEM, Kuske CR. Ectomycorrhizal and Dark Septate Fungal Associations of Pinyon Pine Are Differentially Affected by Experimental Drought and Warming. FRONTIERS IN PLANT SCIENCE 2020; 11:582574. [PMID: 33193530 PMCID: PMC7606852 DOI: 10.3389/fpls.2020.582574] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Changing climates can cause shifts in temperature and precipitation, resulting in warming and drought in some regions. Although each of these factors has been shown to detrimentally affect forest ecosystems worldwide, information on the impacts of the combined effects of warming and drought is lacking. Forest trees rely on mutualistic root-associated fungi that contribute significantly to plant health and protection against climate stresses. We used a six-year, ecosystem-scale temperature and precipitation manipulation experiment targeted to simulate the climate in 2100 in the Southwestern United States to quantify the effects of drought, warming and combined drought and warming on the root colonization (abundance), species composition and diversity of ectomycorrhizal fungi (EMF), and dark septate fungal endophytes in a widespread woodland tree, pinyon pine (Pinus edulis E.). Our results show that pinyon shoot growth after 6 years of these treatments was reduced more by drought than warming. The combined drought and warming treatment reduced the abundance and diversity of EMF more than either treatment alone. Individual ectomycorrhizal fungal taxa, including the drought tolerant Cenococcum geophilum, were present in all treatments but the combined drought and warming treatment. The combined drought and warming treatment also reduced the abundance of dark septate endophytes (DSE), but did not affect their diversity or species composition. The current year shoot growth of the trees correlated positively with ectomycorrhizal fungal diversity, highlighting the importance of diversity in mutualistic relationships to plant growth. Our results suggest that EMF may be more important than DSE to aboveground growth in P. edulis, but also more susceptible to the negative effects of combined climate stressors.
Collapse
Affiliation(s)
- Catherine Gehring
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ, United States
| | - Sanna Sevanto
- Earth and Environmental Science Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Adair Patterson
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ, United States
| | | | - Cheryl R. Kuske
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| |
Collapse
|
10
|
Hawkes CV, Bull JJ, Lau JA. Symbiosis and stress: how plant microbiomes affect host evolution. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190590. [PMID: 32772675 DOI: 10.1098/rstb.2019.0590] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Existing paradigms for plant microevolution rarely acknowledge the potential impacts of diverse microbiomes on evolutionary processes. Many plant-associated microorganisms benefit the host via access to resources, protection from pathogens, or amelioration of abiotic stress. In doing so, they alter the plant's perception of the environment, potentially reducing the strength of selection acting on plant stress tolerance or defence traits or altering the traits that are the target of selection. We posit that the microbiome can affect plant microevolution via (1) manipulation of plant phenotypes in ways that increase plant fitness under stress and (2) direct microbial responses to the environment that benefit the plant. Both mechanisms might favour plant genotypes that attract or stimulate growth of the most responsive microbial populations or communities. We provide support for these scenarios using infectious disease and quantitative genetics models. Finally, we discuss how beneficial plant-microbiome associations can evolve if traditional mechanisms maintaining cooperation in pairwise symbioses, namely partner fidelity, partner choice and fitness alignment, also apply to the interactions between plants and diverse foliar and soil microbiomes. To understand the role of the plant microbiome in host evolution will require a broad ecological understanding of plant-microbe interactions across both space and time. This article is part of the theme issue 'The role of the microbiome in host evolution'.
Collapse
Affiliation(s)
- Christine V Hawkes
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27607, USA
| | - James J Bull
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Jennifer A Lau
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
11
|
Pickles BJ, Truong C, Watts-Williams SJ, Bueno CG. Mycorrhizas for a sustainable world. THE NEW PHYTOLOGIST 2020; 225:1065-1069. [PMID: 31894588 DOI: 10.1111/nph.16307] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Brian J Pickles
- School of Biological Sciences, University of Reading, Whiteknights, Harborne Building, Reading, RG6 6AS, UK
| | - Camille Truong
- Instituto de Biología, Universidad Nacional Autónoma de México, Circuito Zona Deportiva s.n., Ciudad Universitaria, Apartado Postal 70-367, Ciudad de México, C.P. 04510, Mexico
| | | | - C Guillermo Bueno
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai Street, 51005, Tartu, Estonia
| |
Collapse
|