1
|
Ringelmann VE, Wagner ND. Rapid loss of plastid ndh genes in slipper orchids (Cypripedioideae, Orchidaceae). FRONTIERS IN PLANT SCIENCE 2025; 16:1507415. [PMID: 40330132 PMCID: PMC12053501 DOI: 10.3389/fpls.2025.1507415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/31/2025] [Indexed: 05/08/2025]
Abstract
Introduction The eleven plastid ndh genes encode for subunits of the ndh (NAD(P)H dehydrogenase-like) complex, which mediates electron flow in photosystem I. The loss of ndh genes in plants was observed in many different lineages of Viridiplantae. In lineages of Orchidaceae, the loss of ndh genes was often associated with myco-heterotrophy. However, in previous studies on this topic only a few slipper orchids were included. Our study aimed to analyze the loss of ndh genes within Cypripedioideae, a subfamily that is assumed to be fully autotroph. Methods Based on a comprehensive sampling of 100 published plastomes representing 60% of Cypripedioideae species, the phylogenetic relationships were revealed on three levels. For family and subfamily levels, 57 and 66 plastid genes, respectively, were extracted and concatenated in Geneious, while for the genus-level phylogeny, complete plastomes were used to calculate a maximum likelihood tree. Additionally, divergence time estimates were performed to illuminate the evolutionary timeframe of the gene loss. The prevalence, pseudogenization and loss of ndh genes were assessed and visualized along the phylogenetic trees. Results The results confirmed the four analyzed genera of Cypripedioideae to be monophyletic and could increase the resolution within the genera compared to previous studies. The diversification of the subfamily started at about 30 Ma with genus Paphiopedilum displaying the most recent diversification starting at about 11 Ma and showing most speciation events around 4 Ma. The rapid loss of plastid ndh genes within the subfamily Cypripedioideae, particularly in the genera Mexipedium, Phragmipedium and Paphiopedilum could be illustrated. Furthermore, the results illustrated that Cypripedioideae are in an early stage of plastid degradation. Discussion and conclusions Recent studies showed that partial myco-heterotrophy (mixotrophy) is far more common in plant lineages than originally assumed. Based on our findings, we suggest that the possibility of a mixotrophic lifestyle within (sub-)tropical slipper orchids should be reevaluated. Further research regarding the reasons behind plastid gene loss in slipper orchids could provide a better understanding of the ecological evolution of Cypripedioideae.
Collapse
|
2
|
Suetsugu K, Okada H. Subterranean morphology underpins the degree of mycoheterotrophy, mycorrhizal associations, and plant vigor in a green orchid Oreorchis patens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70045. [PMID: 39969432 PMCID: PMC11837900 DOI: 10.1111/tpj.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 02/20/2025]
Abstract
The evolution of full heterotrophy is a fascinating topic in plant evolution, with recent studies suggesting that partial mycoheterotrophy (mixotrophy) serves as a transitional stage toward full mycoheterotrophy in orchids. However, the adaptive significance of fungal-derived carbon in mixotrophic plants remains largely unexplored. In this study, we investigated the photosynthetic orchid Oreorchis patens, a species related to the leafless genus Corallorhiza within the subtribe Calypsoinae. Using high-throughput DNA sequencing, 13C and 15N isotopic analyses, and phenotypic evaluations, we explored the role of coralloid rhizomes - a feature common in fully mycoheterotrophic orchids - in fungal partnerships, the degree of mycoheterotrophy, and plant vigor. Our findings reveal that O. patens plants with coralloid rhizomes predominantly associate with saprotrophic Psathyrellaceae fungi, whereas those without coralloid rhizomes also partner with rhizoctonias and other potentially orchid mycorrhizal fungi. Notably, plants with coralloid rhizomes exhibited enriched 13C signatures, indicating a greater reliance on fungal-derived carbon. These plants also demonstrated more vigorous flowering scapes and produced a higher number of flowers, suggesting that mycoheterotrophy significantly enhances plant vigor. This study provides rare insights into the adaptive significance of mycoheterotrophy. Recent research suggests that some partially mycoheterotrophic orchids can adjust their heterotrophic status to optimize carbon resource use under specific conditions, such as low-light environments. However, an increased proportion of fungal-derived carbon may sometimes merely reflect reduced photosynthesis in such conditions, thereby amplifying the apparent contribution of fungal-derived carbon. Our findings offer more direct evidence that carbon acquisition via mycoheterotrophy is beneficial for partially mycoheterotrophic orchids.
Collapse
Affiliation(s)
- Kenji Suetsugu
- Department of Biology, Graduate School of ScienceKobe UniversityKobeJapan
- Institute for Advanced ResearchKobe UniversityKobeJapan
| | - Hidehito Okada
- Department of Biology, Graduate School of ScienceKobe UniversityKobeJapan
| |
Collapse
|
3
|
Figura T, Tylová E, Suetsugu K, Kikuchi SABI, Merckx V, Gredová A, Makoto K, Ponert J, Selosse MA. Japonolirion osense, a close relative of the mycoheterotrophic genus Petrosavia, exhibits complete autotrophic capabilities. BMC PLANT BIOLOGY 2024; 24:1058. [PMID: 39516734 PMCID: PMC11546523 DOI: 10.1186/s12870-024-05721-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
The plant kingdom exhibits a diversity of nutritional strategies, extending beyond complete autotrophy. In addition to full mycoheterotrophs and holoparasites, it is now recognized that a greater number of green plants than previously assumed use partly of fungal carbon. These are termed partial mycoheterotrophs or mixotrophs. Notably, some species exhibit a dependency on fungi exclusively during early ontogenetic stages, referred to as initial mycoheterotrophy. Japonolirion osense, a rare plant thriving in serpentinite soils, emerges as a potential candidate for initial mycoheterotrophy or mixotrophy. Several factors support this hypothesis, including its diminutive sizes of shoot and and seeds, the establishment of Paris-type arbuscular mycorrhizal associations, its placement within the Petrosaviales-largely composed of fully mycoheterotrophic species-and its ability to face the challenging conditions of its environment. To explore these possibilities, our study adopts a multidisciplinary approach, encompassing stable isotope abundance analyses, in vitro experiments, anatomical analyses, and comparative plastome analyses. Our study aims to (1) determine whether J. osense relies on fungal carbon during germination, indicating initial mycoheterotrophy, (2) determine if it employs a dual carbon acquisition strategy as an adult, and (3) investigate potential genomic reductions in photosynthetic capabilities. Contrary to expectations, our comprehensive findings strongly indicate that J. osense maintains complete autotrophy throughout its life cycle. This underscores the contrasting nutritional strategies evolved by species within the Petrosaviales.
Collapse
Affiliation(s)
- Tomáš Figura
- Naturalis Biodiversity Center, Darwinweg 2, Leiden, 2333 CR, The Netherlands.
- Department of Mycorrhizal Symbioses, Institute of Botany, Czech Academy of Sciences, Lesní 322, Průhonice, 25243, Czech Republic.
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, 57 Rue Cuvier, CP39, Paris, 75005, France.
| | - Edita Tylová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, Prague, 12844, Czech Republic
| | - Kenji Suetsugu
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada- ku, Kobe, 657-8501, Japan
| | - Sabino Alberto Bruno Izai Kikuchi
- Naturalis Biodiversity Center, Darwinweg 2, Leiden, 2333 CR, The Netherlands
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Vsft Merckx
- Naturalis Biodiversity Center, Darwinweg 2, Leiden, 2333 CR, The Netherlands
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, 1098 XH, The Netherlands
| | - Alexandra Gredová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, Praha Dejvice, 160 00, Czechia
| | - Kobayashi Makoto
- Field Science Center for Northern Biosphere, Hokkaido University Forests, Hokkaido University, Sapporo, Hokkaido, 060-0811, Japan
| | - Jan Ponert
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, Prague, 12844, Czech Republic
- Prague Botanical Garden, Trojská 800/196, Prague, 17100, Czech Republic
| | - Marc-André Selosse
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, 57 Rue Cuvier, CP39, Paris, 75005, France
- Institut Universitaire de France, Paris, France
- Department of Plant Taxonomy and Nature Conservation, University of Gdansk, Wita Stwosza 59, Gdansk, 80-308, Poland
| |
Collapse
|
4
|
Yagi R, Haraguchi TF, Tayasu I, Suetsugu K. Do exchangeable hydrogens affect the evaluation of partial mycoheterotrophy in orchids? Insights from δ 2H analysis in bulk, α-cellulose, and cellulose nitrate samples. THE NEW PHYTOLOGIST 2024; 243:2430-2441. [PMID: 39081019 DOI: 10.1111/nph.19998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/03/2024] [Indexed: 08/23/2024]
Abstract
To evaluate the nutritional modes of orchids associated with 'rhizoctonia' fungi, analyses of hydrogen (δ2H), carbon (δ13C), and nitrogen (δ15N) stable isotope ratios are usually adopted. However, previous studies have not fully accounted for exchangeable hydrogens, which could affect these evaluations. Here, we performed standard δ13C, δ15N, and δ2H analyses on bulk samples. Additionally, we conducted δ2H analysis on α-cellulose and cellulose nitrate samples to investigate whether the heterogeneity of exchangeable hydrogens among plant species influences the assessment of nutritional modes. The δ2H of orchids were consistently higher than those of surrounding autotrophic plants, irrespective of the three pretreatments. Although the rhizoctonia-associated orchid exhibited lower δ13C, its δ2H was higher than those of the autotrophs. Notably, among all response variables, δ15N and δ2H exhibited high abilities for discriminating the nutritional modes of rhizoctonia-associated orchids. These results indicate that a time-efficient bulk sample analysis is an effective method for evaluating plant nutritional modes, as the heterogeneity of exchangeable hydrogens does not significantly impact the estimation. Using δ15N and δ2H benefits the assessment of partial mycoheterotrophy among rhizoctonia-associated orchids.
Collapse
Affiliation(s)
- Ryuta Yagi
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Takashi F Haraguchi
- Biodiversity Research Center, Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture, 10-4 Koyamotomachi, Neyagawa, Osaka, 572-0088, Japan
| | - Ichiro Tayasu
- Research Institute of Humanity and Nature, 457-4, Motoyama, Kamigamo, Kyoto, 603-8047, Japan
| | - Kenji Suetsugu
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo, 657-8501, Japan
- Institute for Advanced Research, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| |
Collapse
|
5
|
Perotto S, Balestrini R. At the core of the endomycorrhizal symbioses: intracellular fungal structures in orchid and arbuscular mycorrhiza. THE NEW PHYTOLOGIST 2024; 242:1408-1416. [PMID: 37884478 DOI: 10.1111/nph.19338] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023]
Abstract
Arbuscular (AM) and orchid (OrM) mycorrhiza are the most widespread mycorrhizal symbioses among flowering plants, formed by distinct fungal and plant species. They are both endosymbioses because the fungal hyphae can enter inside the plant cell to develop intracellular fungal structures that are surrounded by the plant membrane. The symbiotic plant-fungus interface is considered to be the major site of nutrient transfer to the host plant. We summarize recent data on nutrient transfer in OrM and compare the development and function of the arbuscules formed in AM and the pelotons formed in OrM in order to outline differences and conserved traits. We further describe the unexpected similarities in the form and function of the intracellular mycorrhizal fungal structures observed in orchids and in the roots of mycoheterotrophic plants forming AM. We speculate that these similarities may be the result of convergent evolution of mycorrhizal types in mycoheterotrophic plants and highlight knowledge gaps and new research directions to explore this scenario.
Collapse
Affiliation(s)
- Silvia Perotto
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, Viale Mattioli 25, Torino, 10125, Italy
| | - Raffaella Balestrini
- Consiglio Nazionale delle Ricerche-Istituto per la Protezione Sostenibile delle Piante (IPSP), Strada delle Cacce 73, 10135, Torino, Italy
| |
Collapse
|
6
|
Merckx VSFT, Gomes SIF, Wang D, Verbeek C, Jacquemyn H, Zahn FE, Gebauer G, Bidartondo MI. Mycoheterotrophy in the wood-wide web. NATURE PLANTS 2024; 10:710-718. [PMID: 38641664 DOI: 10.1038/s41477-024-01677-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/25/2024] [Indexed: 04/21/2024]
Abstract
The prevalence and potential functions of common mycorrhizal networks, or the 'wood-wide web', resulting from the simultaneous interaction of mycorrhizal fungi and roots of different neighbouring plants have been increasingly capturing the interest of science and society, sometimes leading to hyperbole and misinterpretation. Several recent reviews conclude that popular claims regarding the widespread nature of these networks in forests and their role in the transfer of resources and information between plants lack evidence. Here we argue that mycoheterotrophic plants associated with ectomycorrhizal or arbuscular mycorrhizal fungi require resource transfer through common mycorrhizal networks and thus are natural evidence for the occurrence and function of these networks, offering a largely overlooked window into this methodologically challenging underground phenomenon. The wide evolutionary and geographic distribution of mycoheterotrophs and their interactions with a broad phylogenetic range of mycorrhizal fungi indicate that common mycorrhizal networks are prevalent, particularly in forests, and result in net carbon transfer among diverse plants through shared mycorrhizal fungi. On the basis of the available scientific evidence, we propose a continuum of carbon transfer options within common mycorrhizal networks, and we discuss how knowledge on the biology of mycoheterotrophic plants can be instrumental for the study of mycorrhizal-mediated transfers between plants.
Collapse
Affiliation(s)
- Vincent S F T Merckx
- Understanding Evolution, Naturalis Biodiversity Center, Leiden, the Netherlands.
- Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands.
| | - Sofia I F Gomes
- Above-belowground Interactions, Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | - Deyi Wang
- Understanding Evolution, Naturalis Biodiversity Center, Leiden, the Netherlands
| | - Cas Verbeek
- Understanding Evolution, Naturalis Biodiversity Center, Leiden, the Netherlands
- Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Hans Jacquemyn
- Plant Population Biology and Conservation, Department of Biology, Plant Conservation and Population Biology, KU Leuven, Leuven, Belgium
| | - Franziska E Zahn
- Laboratory of Isotope Biogeochemistry, Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, Bayreuth, Germany
| | - Gerhard Gebauer
- Laboratory of Isotope Biogeochemistry, Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, Bayreuth, Germany
| | | |
Collapse
|
7
|
Yamato M, Yagita M, Kusakabe R, Shimabukuro K, Yamana K, Suetsugu K. Impact of mycoheterotrophy on the growth of Gentiana zollingeri (Gentianaceae), as suggested by size variation, morphology, and 13C abundance of flowering shoots. JOURNAL OF PLANT RESEARCH 2023; 136:853-863. [PMID: 37713005 DOI: 10.1007/s10265-023-01496-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/03/2023] [Indexed: 09/16/2023]
Abstract
Gentiana zollingeri is an annual photosynthetic plant that employs a mycoheterotrophic growth strategy during its underground seedling stage (initial mycoheterotrophy). Notably, the morphological characteristics of its flowering shoots, such as shoot size, leaf size, and leaf color, are highly variable, and it was hypothesized that these variations may be linked to nutritional mode. The morphological characteristics of G. zollingeri individuals were thus investigated alongside environmental factors, 13C abundance, and diversity of colonizing arbuscular mycorrhizal (AM) fungi. The majority of G. zollingeri flowering individuals were found to exhibit a high affinity for the specific AM fungi that exclusively colonize roots of the mycoheterotrophic seedlings, while other phylogenetically diverse AM fungi could also be detected. The leaves to shoot dry weight ratio (leaf ratio) was negatively correlated with the canopy openness in the habitat, suggesting that leaf development is impeded in sunny conditions. Furthermore, the shoot weight of G. zollingeri was positively correlated with leaf 13C abundance. Given that 13C enrichment can provide indirect evidence of mycoheterotrophy in AM plants, the results suggest that the utilization of carbon obtained through mycoheterotrophy, at least during the underground seedling stage, is crucial for G. zollingeri.
Collapse
Affiliation(s)
- Masahide Yamato
- Faculty of Education, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.
| | - Mai Yagita
- Faculty of Education, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Ryota Kusakabe
- Graduate School of Horticulture, Chiba University, 648, Matsudo, Chiba, 271-8510, Japan
| | - Keito Shimabukuro
- Faculty of Education, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Kohei Yamana
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Kenji Suetsugu
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| |
Collapse
|
8
|
Neubauer C, Kantnerová K, Lamothe A, Savarino J, Hilkert A, Juchelka D, Hinrichs KU, Elvert M, Heuer V, Elsner M, Bakkour R, Julien M, Öztoprak M, Schouten S, Hattori S, Dittmar T. Discovering Nature's Fingerprints: Isotope Ratio Analysis on Bioanalytical Mass Spectrometers. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:525-537. [PMID: 36971362 DOI: 10.1021/jasms.2c00363] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
For a generation or more, the mass spectrometry that developed at the frontier of molecular biology was worlds apart from isotope ratio mass spectrometry, a label-free approach done on optimized gas-source magnetic sector instruments. Recent studies show that electrospray-ionization Orbitraps and other mass spectrometers widely used in the life sciences can be fine-tuned for high-precision isotope ratio analysis. Since isotope patterns form everywhere in nature based on well-understood principles, intramolecular isotope measurements allow unique insights into a fascinating range of research topics. This Perspective introduces a wider readership to current topics in stable isotope research with the aim of discussing how soft-ionization mass spectrometry coupled with ultrahigh mass resolution can enable long-envisioned progress. We highlight novel prospects of observing isotopes in intact polar compounds and speculate on future directions of this adventure into the overlapping realms of biology, chemistry, and geology.
Collapse
Affiliation(s)
- Cajetan Neubauer
- University of Colorado Boulder & Institute for Arctic and Alpine Research (INSTAAR), Boulder, Colorado 80303, United States
| | - Kristýna Kantnerová
- University of Colorado Boulder & Institute for Arctic and Alpine Research (INSTAAR), Boulder, Colorado 80303, United States
| | - Alexis Lamothe
- University Grenoble Alpes, CNRS, IRD, INRAE, Grenoble-INP, IGE, Grenoble 38400, France
| | - Joel Savarino
- University Grenoble Alpes, CNRS, IRD, INRAE, Grenoble-INP, IGE, Grenoble 38400, France
| | | | | | - Kai-Uwe Hinrichs
- MARUM Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany
| | - Marcus Elvert
- MARUM Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany
| | - Verena Heuer
- MARUM Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany
| | - Martin Elsner
- Department of Chemistry, Technical University of Munich, D-85748 Garching, Germany
| | - Rani Bakkour
- Department of Chemistry, Technical University of Munich, D-85748 Garching, Germany
| | - Maxime Julien
- GFZ German Research Center for Geosciences, 14473 Potsdam, Germany
| | - Merve Öztoprak
- NIOZ Royal Netherlands Institute for Sea Research, Texel 1797 SZ, Netherlands
| | - Stefan Schouten
- NIOZ Royal Netherlands Institute for Sea Research, Texel 1797 SZ, Netherlands
| | - Shohei Hattori
- International Center for Isotope Effects Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210093, China
| | - Thorsten Dittmar
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
9
|
Feller B, Dančák M, Hroneš M, Sochor M, Suetsugu K, Imhof S. Mycorrhizal structures in mycoheterotrophic Thismia spp. (Thismiaceae): functional and evolutionary interpretations. MYCORRHIZA 2022; 32:269-280. [PMID: 35419710 PMCID: PMC9184416 DOI: 10.1007/s00572-022-01076-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Achlorophyllous, mycoheterotrophic plants often have an elaborate mycorrhizal colonization pattern, allowing a sustained benefit from external fungal root penetrations. The present study reveals the root anatomy and mycorrhizal pattern of eight mycoheterotrophic Thismia spp. (Thismiaceae), all of which show separate tissue compartments segregating different hyphal shapes of the mycorrhizal colonization, as there are intact straight, coiled and peculiarly knotted hyphae as well as degenerated clumps of hyphal material. Those tissue compartments in Thismia roots potentially comprise exo-, meso- and endoepidermae, and exo-, meso- and endocortices, although not all species develop all these root layers. Differences in details among species according to anatomy (number of root layers, cell sizes and shapes) and colonization pattern (hyphal shapes within cells) are striking and can be discussed as an evolutionary series towards increasing mycorrhizal complexity which roughly parallels the recently established phylogeny of Thismia. We suggest functional explanations for why the distinct elements of the associations can contribute to the mycorrhizal advantage for the plants and, thus, we emphasize the relevance of structural traits for mycorrhizae.
Collapse
Affiliation(s)
- Benjamin Feller
- Fachbereich Biologie, Biodiversität der Pflanzen, Philipps-Universität, 35032, Marburg, Germany
| | - Martin Dančák
- Department of Ecology and Environmental Sciences, Faculty of Science, Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Michal Hroneš
- Department of Botany, Faculty of Science, Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Michal Sochor
- Centre of the Region Haná for Biotechnological and Agricultural Research, Crop Research Institute, Šlechtitelů 29, 78371, Olomouc, Czech Republic
| | - Kenji Suetsugu
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Hyogo, 657-8501, Japan
| | - Stephan Imhof
- Fachbereich Biologie, Biodiversität der Pflanzen, Philipps-Universität, 35032, Marburg, Germany.
| |
Collapse
|
10
|
Giesemann P, Gebauer G. Distinguishing carbon gains from photosynthesis and heterotrophy in C3-hemiparasite-C3-host pairs. ANNALS OF BOTANY 2022; 129:647-656. [PMID: 34928345 PMCID: PMC9113100 DOI: 10.1093/aob/mcab153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/16/2021] [Indexed: 05/31/2023]
Abstract
BACKGROUND AND AIMS Previous carbon stable isotope (13C) analyses have shown for very few C3-hemiparasites utilizing C4- or CAM-hosts the use of two carbon sources, autotrophy and heterotrophy. This 13C approach, however, failed for the frequently occurring C3-C3 parasite-host pairs. Thus, we used hydrogen stable isotope (2H) natural abundances as a substitute for 13C within a C3-Orobanchaceae sequence graded by haustoria complexity and C3-Santalaceae. METHODS Parasitic plants and their real or potential host plants as references were collected in Central European lowland and alpine mountain meadows and forests. Parasitic plants included the xylem-feeding holoparasite Lathraea squamaria parasitizing on the same carbon nutrient source (xylem-transported organic carbon compounds) as potentially Pedicularis, Rhinanthus, Bartsia, Melampyrum and Euphrasia hemiparasites. Reference plants were used for an autotrophy-only isotope baseline. A multi-element stable isotope natural abundance approach was applied. KEY RESULTS Species-specific heterotrophic carbon gain ranging from 0 to 51 % was estimated by a 2H mixing-model. The sequence in heterotrophic carbon gain mostly met the morphological grading by haustoria complexity: Melampyrum- < Rhinanthus- < Pedicularis-type. CONCLUSION Due to higher transpiration and lower water-use efficiency, depletion in 13C, 18O and 2H compared to C3-host plants should be expected for tissues of C3-hemiparasites. However, 2H is counterbalanced by transpiration (2H-depletion) and heterotrophy (2H-enrichment). Progressive 2H-enrichment can be used as a proxy to evaluate carbon gains from hosts.
Collapse
Affiliation(s)
- Philipp Giesemann
- University of Bayreuth, Laboratory of Isotope Biogeochemistry, Bayreuth Center of Ecology and Environmental Research (BayCEER), 95440 Bayreuth, Germany
| | - Gerhard Gebauer
- University of Bayreuth, Laboratory of Isotope Biogeochemistry, Bayreuth Center of Ecology and Environmental Research (BayCEER), 95440 Bayreuth, Germany
| |
Collapse
|
11
|
Murata-Kato S, Sato R, Abe S, Hashimoto Y, Yamagishi H, Yokoyama J, Tomimatsu H. Partial mycoheterotrophy in green plants forming Paris-type arbuscular mycorrhiza requires a thorough investigation. THE NEW PHYTOLOGIST 2022; 234:1112-1118. [PMID: 35262951 DOI: 10.1111/nph.18049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Satoe Murata-Kato
- Graduate School of Science and Engineering, Yamagata University, Yamagata, 990-8560, Japan
| | - Risa Sato
- Graduate School of Science and Engineering, Yamagata University, Yamagata, 990-8560, Japan
| | - Shigeki Abe
- Faculty of Science, Yamagata University, Yamagata, 990-8560, Japan
| | - Yasushi Hashimoto
- Department of Agro-environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Japan
| | - Hiroki Yamagishi
- The Shirakami Institute for Environmental Sciences, Hirosaki University, Hirosaki, 036-8561, Japan
| | - Jun Yokoyama
- Faculty of Science, Yamagata University, Yamagata, 990-8560, Japan
| | | |
Collapse
|
12
|
Huo L, Gao R, Hou X, Yu X, Yang X. Arbuscular mycorrhizal and dark septate endophyte colonization in Artemisia roots responds differently to environmental gradients in eastern and central China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148808. [PMID: 34252763 DOI: 10.1016/j.scitotenv.2021.148808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) and dark septate endophytes (DSE) are two types of root symbiotic fungi that enhance nutrient uptake by host plants and their resistance to biotic and abiotic stresses. However, it remains unclear whether AMF and DSE are synergistic or antagonistic in the presence of host plants to environmental gradients, especially on large geographical scales. To determine the relationships between AMF and DSE and their adaptability on a regional scale, we measured AMF and DSE colonization in the roots of 1023 plants of different species within the Artemisia genus collected from 81 sites across central and eastern China. We used general linear mixed models to analyze the relationships between colonization, and temperature and precipitation conditions. We found no significant correlation between AMF and DSE. The AMF colonization rate followed a significant longitudinal trend, but there was no latitudinal pattern. DSE colonization did not follow any geographical pattern. The AMF colonization rate was positively correlated with temperature and precipitation, whereas it was not significantly correlated with soil. There was no significant correlation between DSE colonization and climate or soil. Our results suggest that AMF and DSE play independent roles in the response of Artemisia to the regional environment. Therefore, studies on mycorrhizal symbiosis should discern the differential responses between AMF and DSE to climate and soil when evaluating the adaptability of the two types of symbiosis on large geographical scales.
Collapse
Affiliation(s)
- Liping Huo
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; The School of Life Sciences, Shanxi Normal University, Shanxi, Linfen 041000, China
| | - Ruiru Gao
- The School of Life Sciences, Shanxi Normal University, Shanxi, Linfen 041000, China.
| | - Xinyu Hou
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; The School of Life Sciences, Shanxi Normal University, Shanxi, Linfen 041000, China
| | - Xiaoxia Yu
- The School of Life Sciences, Shanxi Normal University, Shanxi, Linfen 041000, China
| | - Xuejun Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
13
|
Ray P, Guo Y, Chi MH, Krom N, Boschiero C, Watson B, Huhman D, Zhao P, Singan VR, Lindquist EA, Yan J, Adam C, Craven KD. Serendipita Fungi Modulate the Switchgrass Root Transcriptome to Circumvent Host Defenses and Establish a Symbiotic Relationship. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1128-1142. [PMID: 34260261 DOI: 10.1094/mpmi-04-21-0084-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The fungal family Serendipitaceae encompasses root-associated lineages with endophytic, ericoid, orchid, and ectomycorrhizal lifestyles. Switchgrass is an important bioenergy crop for cellulosic ethanol production owing to high biomass production on marginal soils otherwise unfit for food crop cultivation. The aim of this study was to investigate the host plant responses to Serendipita spp. colonization by characterizing the switchgrass root transcriptome during different stages of symbiosis in vitro. For this, we included a native switchgrass strain, Serendipita bescii, and a related strain, S. vermifera, isolated from Australian orchids. Serendipita colonization progresses from thin hyphae that grow between root cells to, finally, the production of large, bulbous hyphae that fill root cells during the later stages of colonization. We report that switchgrass seems to perceive both fungi prior to physical contact, leading to the activation of chemical and structural defense responses and putative host disease resistance genes. Subsequently, the host defense system appears to be quenched and carbohydrate metabolism adjusted, potentially to accommodate the fungal symbiont. In addition, prior to contact, switchgrass exhibited significant increases in root hair density and root surface area. Furthermore, genes involved in phytohormone metabolism such as gibberellin, jasmonic acid, and salicylic acid were activated during different stages of colonization. Both fungal strains induced plant gene expression in a similar manner, indicating a conserved plant response to members of this fungal order. Understanding plant responsiveness to Serendipita spp. will inform our efforts to integrate them into forages and row crops for optimal plant-microbe functioning, thus facilitating low-input, sustainable agricultural practices.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Prasun Ray
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
| | - Yingqing Guo
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
| | | | - Nick Krom
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
| | | | - Bonnie Watson
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
| | - David Huhman
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
| | - Patrick Zhao
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
| | - Vasanth R Singan
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, U.S.A
| | - Erika A Lindquist
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, U.S.A
| | - Juying Yan
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, U.S.A
| | - Catherine Adam
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, U.S.A
| | | |
Collapse
|
14
|
Jamoteau F, Balesdent J, Basile-Doeslch I, Tillard E, Versini A. Can stable isotopes quantify soil carbon build-up from organic fertilizers? ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 2021; 57:470-491. [PMID: 34314268 DOI: 10.1080/10256016.2021.1946532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
The application of organic fertilizers (OF) can supply carbon (C) to the soil in crop fields. OF-derived C (OF-C) is often estimated using the differential method that can be biased due to indirect effects of OF on soil C. This study tested three methods to quantify OF-C: (i) the widespread differential method, (ii) the synchronic isotope method comparing plots with and without OF and (iii) the asynchronic isotope method mimicking a trial without a control plot. These methods were implemented on an Arenosol and an Andosol supplied during 13 years with slurry or compost. The results highlighted the relevance of using the synchronic isotope method, which focuses on the direct effect of OFs on the soil organic matter (without bias of vegetation change) and considers control soil's evolution. The higher the isotopic difference between soil and OF, the shorter the method implementation time needed: for an initial difference of 7.5 ‰ and 3.5 ‰, quantification is suitable after 4 and 9 years of fertilization respectively. Attention should be paid to OF-δ13C variability to guarantee the method validity. The method proved to be suitable to study the factors controlling the OF-C fate in tropical soils.
Collapse
Affiliation(s)
- Floriane Jamoteau
- CIRAD, Internal Research Unit (UPR) Recycling and Risk, Station de La Bretagne, Réunion, France
- Internal Research Unit (UPR) Recycling and Risk, Université de Montpellier, CIRAD, Montpellier, France
- Aix Marseille University, CNRS, IRD, INRAE, CEREGE, Aix-en-Provence, France
| | - Jérôme Balesdent
- Aix Marseille University, CNRS, IRD, INRAE, CEREGE, Aix-en-Provence, France
| | | | - Emmanuel Tillard
- CIRAD, Joint Research Unit (UMR) Mediterranean and Tropical Livestock Systems, Réunion, France
- Joint Research Unit (UMR) Mediterranean and Tropical Livestock Systems, Université de Montpellier, CIRAD, Montpellier, France
| | - Antoine Versini
- CIRAD, Internal Research Unit (UPR) Recycling and Risk, Station de La Bretagne, Réunion, France
- Internal Research Unit (UPR) Recycling and Risk, Université de Montpellier, CIRAD, Montpellier, France
| |
Collapse
|
15
|
Yamato M, Suzuki T, Matsumoto M, Shiraishi T, Yukawa T. Mycoheterotrophic seedling growth of Gentiana zollingeri, a photosynthetic Gentianaceae plant species, in symbioses with arbuscular mycorrhizal fungi. JOURNAL OF PLANT RESEARCH 2021; 134:921-931. [PMID: 33993398 DOI: 10.1007/s10265-021-01311-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
We found mycoheterotrophic seedling growth (initial mycoheterotrophy) of Gentiana zollingeri, a spring-flowering photosynthetic species of Gentianaceae family. Small seeds (about 300 µm in length) were buried in a habitat by using seed packets, and development of the subterranean seedlings to form shoots, more than 3 cm in length, was observed in symbiosis with arbuscular mycorrhizal (AM) fungi in the dark (i.e., underground of a field). Hyphal coils and their degenerations were observed in the root cortical cells of the subterranean seedlings as well as those of adult plants. Among the mycobionts identified on the basis of partial small subunit rDNA sequences, it was found that AM fungi of a lineage in Glomeraceae dominantly colonized, and the AM fungi were also dominant in adult individuals of G. zollingeri in three habitats separated one another by 17.2, 34.7, and 49.6 km. Though initial mycoheterotrophy in symbioses with AM fungi has been observed in some pteridophytes, this is the first study to demonstrate this type of symbiosis in a photosynthetic seed plant. The mycoheterotrophy means that an energy distribution occurs through the hyphal bridges of AM fungi among different photosynthetic seed plants, which may be important in constructing plant species diversity in some ecosystems.
Collapse
Affiliation(s)
- Masahide Yamato
- Faculty of Education, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.
| | - Takako Suzuki
- Graduate School of Education, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Mayu Matsumoto
- Faculty of Education, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Toshimi Shiraishi
- Faculty of Education, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Tomohisa Yukawa
- Tsukuba Botanical Garden, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, Ibaraki, 305-0005, Japan
| |
Collapse
|
16
|
Sørensen M, Møller BL. Metabolic Engineering of Photosynthetic Cells – in Collaboration with Nature. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Giesemann P, Rasmussen HN, Gebauer G. Partial mycoheterotrophy is common among chlorophyllous plants with Paris-type arbuscular mycorrhiza. ANNALS OF BOTANY 2021; 127:645-653. [PMID: 33547798 PMCID: PMC8052919 DOI: 10.1093/aob/mcab003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/08/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND AND AIMS An arbuscular mycorrhiza is a mutualistic symbiosis with plants as carbon providers for fungi. However, achlorophyllous arbuscular mycorrhizal species are known to obtain carbon from fungi, i.e. they are mycoheterotrophic. These species all have the Paris type of arbuscular mycorrhiza. Recently, two chlorophyllous Paris-type species proved to be partially mycoheterotrophic. In this study, we explore the frequency of this condition and its association with Paris-type arbuscular mycorrhiza. METHODS We searched for evidence of mycoheterotrophy in all currently published 13C, 2H and 15N stable isotope abundance patterns suited for calculations of enrichment factors, i.e. isotopic differences between neighbouring Paris- and Arum-type species. We found suitable data for 135 plant species classified into the two arbuscular mycorrhizal morphotypes. KEY RESULTS About half of the chlorophyllous Paris-type species tested were significantly enriched in 13C and often also enriched in 2H and 15N, compared with co-occurring Arum-type species. Based on a two-source linear mixing model, the carbon gain from the fungal source ranged between 7 and 93 % with ferns > horsetails > seed plants. The seed plants represented 13 families, many without a previous record of mycoheterotrophy. The 13C-enriched chlorophyllous Paris-type species were exclusively herbaceous perennials, with a majority of them thriving on shady forest ground. CONCLUSIONS Significant carbon acquisition from fungi appears quite common and widespread among Paris-type species, this arbuscular mycorrhizal morphotype probably being a pre-condition for developing varying degrees of mycoheterotrophy.
Collapse
Affiliation(s)
- Philipp Giesemann
- University of Bayreuth, Laboratory of Isotope Biogeochemistry, Bayreuth Center of Ecology and Environmental Research (BayCEER), Bayreuth, Germany
| | - Hanne N Rasmussen
- University of Copenhagen, Institute of Geosciences and Natural Resources, Rolighedsvej, Frederiksberg C, Denmark
| | - Gerhard Gebauer
- University of Bayreuth, Laboratory of Isotope Biogeochemistry, Bayreuth Center of Ecology and Environmental Research (BayCEER), Bayreuth, Germany
| |
Collapse
|
18
|
Ray P, Lakshmanan V, Labbé JL, Craven KD. Microbe to Microbiome: A Paradigm Shift in the Application of Microorganisms for Sustainable Agriculture. Front Microbiol 2020; 11:622926. [PMID: 33408712 PMCID: PMC7779556 DOI: 10.3389/fmicb.2020.622926] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022] Open
Abstract
Light, water and healthy soil are three essential natural resources required for agricultural productivity. Industrialization of agriculture has resulted in intensification of cropping practices using enormous amounts of chemical pesticides and fertilizers that damage these natural resources. Therefore, there is a need to embrace agriculture practices that do not depend on greater use of fertilizers and water to meet the growing demand of global food requirements. Plants and soil harbor millions of microorganisms, which collectively form a microbial community known as the microbiome. An effective microbiome can offer benefits to its host, including plant growth promotion, nutrient use efficiency, and control of pests and phytopathogens. Therefore, there is an immediate need to bring functional potential of plant-associated microbiome and its innovation into crop production. In addition to that, new scientific methodologies that can track the nutrient flux through the plant, its resident microbiome and surrounding soil, will offer new opportunities for the design of more efficient microbial consortia design. It is now increasingly acknowledged that the diversity of a microbial inoculum is as important as its plant growth promoting ability. Not surprisingly, outcomes from such plant and soil microbiome studies have resulted in a paradigm shift away from single, specific soil microbes to a more holistic microbiome approach for enhancing crop productivity and the restoration of soil health. Herein, we have reviewed this paradigm shift and discussed various aspects of benign microbiome-based approaches for sustainable agriculture.
Collapse
Affiliation(s)
- Prasun Ray
- Noble Research Institute, LLC, Ardmore, OK, United States
| | | | - Jessy L. Labbé
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | | |
Collapse
|
19
|
Neuenkamp L, Zobel M, Koorem K, Jairus T, Davison J, Öpik M, Vasar M, Moora M. Light availability and light demand of plants shape the arbuscular mycorrhizal fungal communities in their roots. Ecol Lett 2020; 24:426-437. [PMID: 33319429 DOI: 10.1111/ele.13656] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 01/01/2023]
Abstract
Plants involved in the arbuscular mycorrhizal (AM) symbiosis trade photosynthetically derived carbon for fungal-provided soil nutrients. However, little is known about how plant light demand and ambient light conditions influence root-associating AM fungal communities. We conducted a manipulative field experiment to test whether plants' shade-tolerance influences their root AM fungal communities in open and shaded grassland sites. We found similar light-dependent shifts in AM fungal community structure for experimental bait plant roots and the surrounding soil. Yet, deviation from the surrounding soil towards lower AM fungal beta-diversity in the roots of shade-intolerant plants in shade suggested preferential carbon allocation to specific AM fungi in conditions where plant-assimilated carbon available to fungi was limited. We conclude that favourable environmental conditions widen the plant biotic niche, as demonstrated here with optimal light availability reducing plants' selectivity for specific AM fungi, and promote compatibility with a larger number of AM fungal taxa.
Collapse
Affiliation(s)
- Lena Neuenkamp
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia.,Institute of Plant Sciences, University of Bern, Altenbergrain 21, Bern, 3013, Switzerland
| | - Martin Zobel
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Kadri Koorem
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Teele Jairus
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - John Davison
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Maarja Öpik
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Martti Vasar
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Mari Moora
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| |
Collapse
|
20
|
Klink S, Giesemann P, Hubmann T, Pausch J. Stable C and N isotope natural abundances of intraradical hyphae of arbuscular mycorrhizal fungi. MYCORRHIZA 2020; 30:773-780. [PMID: 32840665 PMCID: PMC7591432 DOI: 10.1007/s00572-020-00981-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/11/2020] [Indexed: 05/29/2023]
Abstract
Data for stable C and N isotope natural abundances of arbuscular mycorrhizal (AM) fungi are currently sparse, as fungal material is difficult to access for analysis. So far, isotope analyses have been limited to lipid compounds associated with fungal membranes or storage structures (biomarkers), fungal spores and soil hyphae. However, it remains unclear whether any of these components are an ideal substitute for intraradical AM hyphae as the functional nutrient trading organ. Thus, we isolated intraradical hyphae of the AM fungus Rhizophagus irregularis from roots of the grass Festuca ovina and the legume Medicago sativa via an enzymatic and a mechanical approach. In addition, extraradical hyphae were isolated from a sand-soil mix associated with each plant. All three approaches revealed comparable isotope signatures of R. irregularis hyphae. The hyphae were 13C- and 15N-enriched relative to leaves and roots irrespective of the plant partner, while they were enriched only in 15N compared with soil. The 13C enrichment of AM hyphae implies a plant carbohydrate source, whereby the enrichment was likely reduced by an additional plant lipid source. The 15N enrichment indicates the potential of AM fungi to gain nitrogen from an organic source. Our isotope signatures of the investigated AM fungus support recent findings for mycoheterotrophic plants which are suggested to mirror the associated AM fungi isotope composition. Stable isotope natural abundances of intraradical AM hyphae as the functional trading organ for bi-directional carbon-for-mineral nutrient exchanges complement data on spores and membrane biomarkers.
Collapse
Affiliation(s)
- Saskia Klink
- Department of Agroecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440, Bayreuth, Germany
| | - Philipp Giesemann
- Laboratory of Isotope Biogeochemistry, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440, Bayreuth, Germany
| | - Timo Hubmann
- Department of Agroecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440, Bayreuth, Germany
| | - Johanna Pausch
- Department of Agroecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440, Bayreuth, Germany.
| |
Collapse
|
21
|
Giesemann P, Eichenberg D, Stöckel M, Seifert LF, Gomes SIF, Merckx VSFT, Gebauer G. Dark septate endophytes and arbuscular mycorrhizal fungi (
Paris
‐morphotype) affect the stable isotope composition of ‘classically’ non‐mycorrhizal plants. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13673] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Philipp Giesemann
- Laboratory of Isotope Biogeochemistry Bayreuth Center of Ecology and Environmental Research (BayCEER) University of Bayreuth Bayreuth Germany
| | - David Eichenberg
- Laboratory of Isotope Biogeochemistry Bayreuth Center of Ecology and Environmental Research (BayCEER) University of Bayreuth Bayreuth Germany
| | - Marcus Stöckel
- Laboratory of Isotope Biogeochemistry Bayreuth Center of Ecology and Environmental Research (BayCEER) University of Bayreuth Bayreuth Germany
| | - Lukas F. Seifert
- Laboratory of Isotope Biogeochemistry Bayreuth Center of Ecology and Environmental Research (BayCEER) University of Bayreuth Bayreuth Germany
| | - Sofia I. F. Gomes
- Laboratory of Isotope Biogeochemistry Bayreuth Center of Ecology and Environmental Research (BayCEER) University of Bayreuth Bayreuth Germany
- Naturalis Biodiversity Center Leiden The Netherlands
| | - Vincent S. F. T. Merckx
- Naturalis Biodiversity Center Leiden The Netherlands
- Department of Evolutionary and Population Biology Institute for Biodiversity and Ecosystem Dynamics University of Amsterdam Amsterdam The Netherlands
| | - Gerhard Gebauer
- Laboratory of Isotope Biogeochemistry Bayreuth Center of Ecology and Environmental Research (BayCEER) University of Bayreuth Bayreuth Germany
| |
Collapse
|
22
|
Tominaga T, Yamaguchi K, Shigenobu S, Yamato M, Kaminaka H. The effects of gibberellin on the expression of symbiosis-related genes in Paris-type arbuscular mycorrhizal symbiosis in Eustoma grandiflorum. PLANT SIGNALING & BEHAVIOR 2020; 15:1784544. [PMID: 32594890 PMCID: PMC8550185 DOI: 10.1080/15592324.2020.1784544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 06/02/2023]
Abstract
Arbuscular mycorrhiza (AM) is a symbiotic interaction in terrestrial plants that is colonized by fungi in the Glomeromycotina. The morphological types of AM, including the Arum-type and Paris-type, are distinct, depending on the host plant species. A part of the regulatory pathways in Arum-type AM symbiosis has been revealed because most model plants form the Arum-type AM with a model AM fungus, Rhizophagus irregularis. Moreover, gibberellin (GA) is known to severely inhibit AM fungal colonization in Arum-type AM symbiosis. Recently, we showed that exogenous GA treatment significantly promoted AM fungal colonization in Paris-type AM symbiosis in Eustoma grandiflorum. In this study, we focused on the transcriptional changes in AM symbiosis-related genes in GA-treated E. grandiflorum. The expression levels of all examined E. grandiflorum genes were maintained or increased by GA treatment compared with those of the control treatment. Our new results suggest that signaling pathway(s) required for establishing AM symbiosis in E. grandiflorum may be distinct from the well-characterized pathway for that in model plants.
Collapse
Affiliation(s)
- Takaya Tominaga
- The United Graduate School of Agricultural Science, Tottori University, Tottori, Japan
| | - Katsushi Yamaguchi
- Functional Genomics Facility, NIBB Core Research Facilities, National Institute for Basic Biology, Okazaki, Japan
| | - Shuji Shigenobu
- Functional Genomics Facility, NIBB Core Research Facilities, National Institute for Basic Biology, Okazaki, Japan
| | | | | |
Collapse
|
23
|
The potential of arbuscular mycorrhizal fungi in C cycling: a review. Arch Microbiol 2020; 202:1581-1596. [PMID: 32448964 DOI: 10.1007/s00203-020-01915-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/15/2020] [Accepted: 05/15/2020] [Indexed: 11/27/2022]
Abstract
Arbuscular mycorrhizal fungi (AMF) contribute predominantly to soil organic matter by creating a sink demand for plant C and distributing to below-ground hyphal biomass. The extra-radical hyphae along with glomalin-related soil protein significantly influence the soil carbon dynamics through their larger extent and turnover period need to discuss. The role of AMF is largely overlooked in terrestrial C cycling and climate change models despite their greater involvement in net primary productivity augmentation and further accumulation of this additional photosynthetic fixed C in the soil. However, this buffering mechanism against elevated CO2 condition to sequester extra C by AMF can be described only after considering their potential interaction with other microbes and associated mineral nutrients such as nitrogen cycling. In this article, we try to review the potential of AMF in C sequestration paving the way towards a better understanding of possible AMF mechanism by which C balance between biosphere and atmosphere can be moved forward in more positive direction.
Collapse
|
24
|
Suetsugu K, Matsubayashi J, Ogawa NO, Murata S, Sato R, Tomimatsu H. Isotopic evidence of arbuscular mycorrhizal cheating in a grassland gentian species. Oecologia 2020; 192:929-937. [PMID: 32172377 DOI: 10.1007/s00442-020-04631-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/05/2020] [Indexed: 01/25/2023]
Abstract
All orchids and pyroloids are mycoheterotrophic at least in the early stage. Many species are predisposed to mycoheterotrophic nutrition even in the adult stage, due to the initial mycoheterotrophy during germination. Although other green plants, such as gentian species, also produce numerous minute seeds, whose germination may depend on fungal associations to meet C demands, physiological evidence for partial mycoheterotrophy in the adult stage is lacking for most candidate taxa. Here, we compared the natural abundances of 13C and 15N isotopes in the AM-associated gentian species Pterygocalyx volubilis growing in high-light-intensity habitats with those of co-occurring autotrophic C3 and C4 plants and AM fungal spores. We found that P. volubilis was significantly enriched in 13C compared with the surrounding C3 plants, which suggests the transfer of some C from the surrounding autotrophic plants through shared AM networks. In addition, the intermediate δ15N values of P. volubilis, between those of autotrophic plants and AM fungal spores, provide further evidence for partial mycoheterotrophy in P. volubilis. Although it is often considered that light deficiency selects partial mycoheterotrophy, we show that partial mycoheterotrophy in AM-forming plants can evolve even under light-saturated conditions. The fact that there have been relatively few descriptions of partial mycoheterotrophy in AM plants may not necessarily reflect the rarity of such associations. In conclusion, partial mycoheterotrophy in AM plants may be more common than hitherto believed.
Collapse
Affiliation(s)
- Kenji Suetsugu
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan.
| | - Jun Matsubayashi
- Department of Biogeochemistry, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa, Japan
| | - Nanako O Ogawa
- Department of Biogeochemistry, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa, Japan
| | - Satoe Murata
- Faculty of Science, Yamagata University, Yamagata, Japan
| | - Risa Sato
- Faculty of Science, Yamagata University, Yamagata, Japan
| | | |
Collapse
|