1
|
Fang Y, Ju C, Javed L, Cao C, Deng Y, Gao Y, Chen X, Sun L, Zhao Y, Wang C. Plasma membrane-associated calcium signaling modulates zinc homeostasis in Arabidopsis. Sci Bull (Beijing) 2025; 70:1478-1490. [PMID: 39979205 DOI: 10.1016/j.scib.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/07/2025] [Accepted: 02/07/2025] [Indexed: 02/22/2025]
Abstract
Zinc (Zn) is a crucial micronutrient for all organisms, and its deficiency can significantly hamper crop yield and quality. However, the understanding of the regulatory mechanisms involved in plant Zn signal perception and transduction remains limited. In this study, we discovered that the Ca2+-CBL1/4/5/8/9-CIPK3/9/23/26-ZIP12 signaling module effectively responds to Zn deficiency and regulates Zn homeostasis in Arabidopsis thaliana. Furthermore, we determined that CIPK3/9/23/26 interact with the Zn transporter ZIP12 and phosphorylate it primarily at Ser185. This phosphorylation event was crucial for the stability of the ZIP12 protein, suggesting that it regulates the function of ZIP12 in Zn transport. Collectively, our findings identify a plasma membrane-associated calcium signaling pathway that regulates Zn homeostasis in Arabidopsis thaliana. This pathway represents a promising target for molecular breeding approaches aimed at developing crops with enhanced tolerance to Zn deficiency.
Collapse
Affiliation(s)
- Yanjun Fang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest Agriculture & Forestry University, Yangling 712100, China; State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chuanfeng Ju
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest Agriculture & Forestry University, Yangling 712100, China
| | - Laiba Javed
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest Agriculture & Forestry University, Yangling 712100, China
| | - Chenyu Cao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest Agriculture & Forestry University, Yangling 712100, China
| | - Yuan Deng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest Agriculture & Forestry University, Yangling 712100, China
| | - Yaqi Gao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest Agriculture & Forestry University, Yangling 712100, China
| | - Xuanyi Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest Agriculture & Forestry University, Yangling 712100, China
| | - Lv Sun
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest Agriculture & Forestry University, Yangling 712100, China
| | - Yusheng Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Cun Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest Agriculture & Forestry University, Yangling 712100, China; Institute of Future Agriculture, Northwest Agriculture & Forestry University, Yangling 712100, China.
| |
Collapse
|
2
|
Zhang B, Liu J. Genome-wide analysis of CBL and CIPK gene families in bermudagrass reveals the CdCIPK29-A1 as a stem growth angle regulator. PLANT CELL REPORTS 2025; 44:68. [PMID: 40032687 DOI: 10.1007/s00299-025-03457-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 02/18/2025] [Indexed: 03/05/2025]
Abstract
KEY MESSAGE Genome-wide analysis of CBL and CIPK gene family was conducted in bermudagrass while a functional role in stem growth angle regulation was established for CdCIPK29-A1 via the generation of molecularly modified Arabidopsis plants. Calcineurin B-like proteins (CBLs) and CBL-interacting protein kinases (CIPKs) are plant-specific Ca2+ sensors and effectors which mediate diverse Ca2+ signaling transduction pathways in plant growth, development, and stress responses. However, the functions of CBLs and CIPKs in bermudagrass (Cynodon dactylon L.), a widely planted warm-season turfgrass species with great economic value, remain poorly understood. In this study, a total of 33 CdCBL and 81 CdCIPK genes were identified in the bermudagrass genome, and were clustered in three and five groups according to their phylogenetic relationships, respectively. In line with their sequence divergence, different groups of CdCBL and CdCIPK genes exhibited different gene structures and expression patterns. Systematic yeast two-hybrid screening indicated that 27 CdCBL-CdCIPK complexes could be formed from 290 putative CdCBL and CdCIPK protein pairs. Among the CdCIPK proteins, CdCIPK29-A1 was found to interact with up to four CdCBL proteins. The CdCIPK29-A1 gene was preferentially expressed in the stolon internode of bermudagrass plants and the CdCIPK29-A1 protein was located to the cytoplasm. The expression of CdCIPK29-A1 in molecularly modified Arabidopsis thaliana (Arabidopsis) plants further indicated that CdCIPK29-A1 could regulate the stem growth angle and gravitropism possibly through modulating the starch metabolism in stem endodermal cells. These results not only established a solid foundation to explore the Ca2+ signaling transduction pathways in bermudagrass but also provided new insight into the function of CBL-CIPK complex in plant gravitropic response and stem growth angle regulation.
Collapse
Affiliation(s)
- Bing Zhang
- Department of Grassland Science, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| | - Jianxiu Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| |
Collapse
|
3
|
Li Y, Liu H, Wang X, Wang B. Genome-wide identification and comprehensive analysis of the FtsH gene family in wheat. Mol Biol Rep 2025; 52:186. [PMID: 39899074 DOI: 10.1007/s11033-025-10243-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/09/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND The filamentation temperature-sensitive H (FtsH) gene family, which is known to play a critical role in plant growth and development by regulating photosynthesis, chloroplast development, and response to plant stress, has been extensively studied in various species. However, the FtsH gene family in wheat has not been previously documented. METHODS AND RESULTS In this study, 38 TaFtsH gene family members were identified, divided into eight groups and unevenly distributed across various chromosomes. Analysis of gene structure and conserved motifs revealed that TaFtsH genes within the same taxon share similar gene structures and conserved motifs. Further collinearity analysis provided insights into the evolutionary history of TaFtsH genes. Examination of cis-acting elements in the promoter region of TaFtsH genes revealed the presence of developmental and stress response elements in genes. The expression pattern of the wheat FtsH gene under various abiotic stresses was analyzed using real-time fluorescence quantitative PCR. Additionally, transient expression in tobacco verified the localization of the TaFtsH11-B protein in chloroplasts. CONCLUSIONS These findings collectively contribute to laying the groundwork for the functional characterization of TaFtsH genes.
Collapse
Affiliation(s)
- Yuwei Li
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong, People's Republic of China
| | - Hao Liu
- College of Horticulture, Ludong University, Yantai, Shandong, People's Republic of China
| | - Xiaoyu Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong, People's Republic of China.
| | - Bo Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong, People's Republic of China.
| |
Collapse
|
4
|
Ilyas T, Shahid M, Shafi Z, Aijaz SA, Wasiullah. Molecular mechanisms of methyl jasmonate (MeJAs)-mediated detoxification of heavy metals (HMs) in agricultural crops: An interactive review. SOUTH AFRICAN JOURNAL OF BOTANY 2025; 177:139-159. [DOI: 10.1016/j.sajb.2024.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
5
|
Yan M, Dong Z, Pan T, Li L, Zhou Z, Li W, Ke Z, Feng Z, Yu S. Systematical characterization of Rab7 gene family in Gossypium and potential functions of GhRab7B3-A gene in drought tolerance. BMC Genomics 2024; 25:1023. [PMID: 39482579 PMCID: PMC11529164 DOI: 10.1186/s12864-024-10930-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Cotton serves as a primary source of natural fibers crucial for the textile industry. However, environmental elements such as drought have posed challenges to cotton cultivation, resulting in adverse impacts on both production and fiber quality. Improving cotton's resilience to drought could mitigate yield losses and foster the expansion of cotton farming. Rab7 protein, widely present in organisms, controls the degradation and recycling of cargo, and has a potential role in biotic and abiotic tolerance. However, comprehensive exploration of the Rab7 gene family in Gossypium remains scarce. RESULTS Herein, we identified a total of 10, 10, 20, and 20 Rab7 genes through genome-wide analysis in Gossypium arboreum, Gossypium raimondii, Gossypium hirsutum, and Gossypium barbadense, respectively. Collinearity analysis unveiled the pivotal role of whole genome or segmental duplication events in the expansion of GhRab7s. Study of gene architecture, conserved protein motifs, and domains suggested the conservation of structure and function throughout evolution. Exploration of cis-regulatory elements revealed the responsiveness of GhRab7 genes to abiotic stress, corroborated by transcriptome analysis under diverse environmental stresses. Notably, the greatly induced expression of GhRab7B3-A under drought treatment prompted us to investigate its function through virus-induced gene silencing (VIGS) assays. Silencing GhRab7B3-A led to exacerbated dehydration and wilting compared with the control. Additionally, inhibition of stomatal closure, antioxidant enzyme activities and expression patterns of genes responsive to abiotic stress were observed in GhRab7B3-A silenced plants. CONCLUSIONS This study sheds light on Rab7 members in cotton, identifies a gene linked to drought stress, and paves the way for additional investigation of Rab7 genes associated with drought stress tolerance.
Collapse
Affiliation(s)
- Mengyuan Yan
- College of Advanced Agriculture Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Zhiwei Dong
- College of Advanced Agriculture Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Tian Pan
- College of Advanced Agriculture Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Libei Li
- College of Advanced Agriculture Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Ziyue Zhou
- College of Advanced Agriculture Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Wen Li
- College of Advanced Agriculture Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Zhanbo Ke
- College of Advanced Agriculture Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Zhen Feng
- College of Advanced Agriculture Sciences, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Shuxun Yu
- College of Advanced Agriculture Sciences, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
6
|
Qin T, Huang Q, Li J, Ayyaz A, Farooq MA, Chen W, Zhou Y, Wu X, Ali B, Zhou W. Comprehensive characterization of gibberellin oxidase gene family in Brassica napus reveals BnGA2ox15 involved in hormone signaling and response to drought stress. Int J Biol Macromol 2024; 282:136822. [PMID: 39447790 DOI: 10.1016/j.ijbiomac.2024.136822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/08/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Brassica napus is a well-known allopolyploid oil crop with high commercial potential. Gibberellin oxidase (GAox) is an essential enzyme that activates gibberellins, which regulate plant growth, and development, and have a significant impact on plant responses to abiotic stress. However, the comprehensive understanding of GAox genes and their evolution in Brassica plants remains elusive. Using advanced bioinformatics tools, this study identified 125 candidate GAox genes from the whole genomes of three key Brassica species. This study also investigated sequence characteristics, conserved motifs, exon/intron structures, cis-acting elements, syntenic analysis, duplication events and expression patterns. Subcellular localization analysis showed that the BnGA2ox14 and BnGA2ox15 proteins are located in the nucleus, whereas BnGA2ox26 is specifically localized to the chloroplast. Yeast one-hybrid and dual-luciferase assays demonstrated that MYELOCYTOMATOSIS 4 (BnMYC4) and ABA-INDUCIBLE BHLH-TYPE TRANSCRIPTION FACTOR (BnAIB) bind to the BnGA2ox15 promoter and activate its transcription. Molecular docking analysis further elucidated their interaction structures and identified potential binding sites. Roots transformations show that overexpression of BnGA2ox15 increased sensitivity to PEG-6000 treatment in rapeseed. In brief, this study reveals that BnGA2ox15 is a downstream target in JA and ABA signaling pathways, functioning as a negative regulator in response to drought stress.
Collapse
Affiliation(s)
- Tongjun Qin
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Qian Huang
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China.
| | - Juanjuan Li
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Ahsan Ayyaz
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Ahsan Farooq
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Weiqi Chen
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Yingying Zhou
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Xiaofen Wu
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Basharat Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim yar Khan, 64200, Pakistan
| | - Weijun Zhou
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
7
|
Zhang J, Wu L, Mu L, Wang Y, Zhao M, Wang H, Li X, Zhao L, Lin C, Zhang H, Gu L. Evolution and post-transcriptional regulation insights of m 6A writers, erasers, and readers in plant epitranscriptome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:505-525. [PMID: 39167634 DOI: 10.1111/tpj.16996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/30/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024]
Abstract
As a dynamic and reversible post-transcriptional marker, N6-methyladenosine (m6A) plays an important role in the regulation of biological functions, which are mediated by m6A pathway components including writers (MT-A70, FIP37, VIR and HAKAI family), erasers (ALKBH family) and readers (YTH family). There is an urgent need for a comprehensive analysis of m6A pathway components across species at evolutionary levels. In this study, we identified 4062 m6A pathway components from 154 plant species including green algae, utilizing large-scale phylogenetic to explore their origin and evolution. We discovered that the copy number of writers was conserved among different plant lineages, with notable expansions in the ALKBH and YTH families. Synteny network analysis revealed conserved genomic contexts and lineage-specific transpositions. Furthermore, we used Direct RNA Sequencing (DRS) to reveal the Poly(A) length (PAL) and m6A ratio profiles in six angiosperms species, with a particular focus on the m6A pathway components. The ECT1/2-Poeaece4 sub-branches (YTH family) with unique genomic contexts exhibited significantly higher expression level than genes of other ECT1/2 poeaece sub-branches (ECT1/2-Poeaece1-3), accompanied by lower m6A modification and PAL. Besides, conserved m6A sites distributed in CDS and 3'UTR were detected in the ECT1/2-Poaceae4, and the dual-luciferase assay further demonstrated that these conserved m6A sites in the 3'UTR negatively regulated the expression of Firefly luciferase (LUC) gene. Finally, we developed transcription factor regulatory networks for m6A pathway components, using yeast one-hybrid assay demonstrated that PheBPC1 could interact with the PheECT1/2-5 promoter. Overall, this study presents a comprehensive evolutionary and functional analysis of m6A pathway components and their modifications in plants, providing a valuable resource for future functional analysis in this field.
Collapse
Affiliation(s)
- Jun Zhang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lin Wu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lele Mu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuhua Wang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mengna Zhao
- Basic Forestry and Proteomics Research Center, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huiyuan Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiangrong Li
- Basic Forestry and Proteomics Research Center, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liangzhen Zhao
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chentao Lin
- Basic Forestry and Proteomics Research Center, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hangxiao Zhang
- Basic Forestry and Proteomics Research Center, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
8
|
Wang S, Pan K, Liao M, Li X, Zhang M. Characterization of CBL-CIPK signaling networks and their response to abiotic stress in sugarcane. Int J Biol Macromol 2024; 278:134836. [PMID: 39154697 DOI: 10.1016/j.ijbiomac.2024.134836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Calcineurin B-like proteins (CBLs) perceive calcium signals triggered by abiotic stress and interact with CBL-interacting protein kinases (CIPKs) to form a complex signal network. This study identified 21 SsCBL and 89 SsCIPK genes in Saccharum spontaneum, and 90 ScCBL and 367 ScCIPK genes in the sugarcane cultivar ZZ1. Phylogenetic analysis classified CBL genes into three groups and CIPK genes into twenty-five groups, with whole-genome duplication events promoting their expansion in sugarcane. RNA-seq analysis revealed their involvement in abiotic stress responses through ABA, JA, and SA pathways. Four ScCBLs and eight ScCIPKs were cloned from ZZ1. Three CBL-CIPK interactions were detected using a yeast two-hybrid system and Firefly luciferase complementation imaging, showing CBLs as membrane proteins and CIPKs as nuclear proteins. Spatial expression profiles indicate these genes are expressed in various tissues, with the highest expression in roots. Gene expression analyses suggested that CBL-CIPK signaling networks are involved in responses to drought, salt, and reactive oxygen species, possibly through Ca2+-induced hormone pathways. These findings establish three CBL-CIPK signaling networks responding to abiotic stress, providing a molecular basis for improving sugarcane stress resistance.
Collapse
Affiliation(s)
- Shuang Wang
- Guangxi Key Lab for Sugarcane Biology, State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, College of Agriculture, Guangxi University, Nanning 530005, China
| | - Kaiyuan Pan
- College of Life Science and Technology, Guangxi University, Daxue East Road 100, Nanning 530005, China
| | - Mingjing Liao
- Guangxi Key Lab for Sugarcane Biology, State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, College of Agriculture, Guangxi University, Nanning 530005, China
| | - Xiaofeng Li
- Guangxi Key Lab for Sugarcane Biology, State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, College of Agriculture, Guangxi University, Nanning 530005, China
| | - Muqing Zhang
- Guangxi Key Lab for Sugarcane Biology, State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, College of Agriculture, Guangxi University, Nanning 530005, China.
| |
Collapse
|
9
|
Martínez-Martínez A, Amo J, Jiménez-Estévez E, Lara A, Martínez V, Rubio F, Nieves-Cordones M. SlCIPK9 regulates pollen tube elongation in tomato plants via a K +-independent mechanism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109039. [PMID: 39142013 DOI: 10.1016/j.plaphy.2024.109039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Potassium (K+) is an essential macronutrient which contributes to osmotic- and turgor-related processes in plants. Calcineurin-B like Interacting Protein Kinases (CIPKs) play crucial roles in plants under low-K+ supply since they activate root K+ uptake transport systems such as AKT1 and AtHAK5. In Arabidopsis, AtCIPK9 is important for low-K+ tolerance since atcipk9 plants exhibited poor growth and leaf chlorosis when K+ was scarce. Part of these phenotypes could be ascribed to the activation of AtHAK5 by AtCIPK9. It has been reported that important differences exist between Arabidopsis and other plant species such as tomato with respect to the regulation of K+ uptake systems. Thus, our aim was to evaluate the contribution of SlCIPK9, the homologous protein of AtCIPK9 in tomato, to K+ nutrition. Unexpectedly, phenotyping experiments carried out with slcipk9 loss-of-function mutants revealed that SlCIPK9 did not play a clear role in tomato K+ homeostasis. By contrast, it was found that SlCIPK9 contributed to pollen tube elongation, but not to pollen germination, via a K+-independent mechanism. Therefore, our results highlight the remarkable differences that exist in Ca2+ signaling pathways between plant species and encourage the realization of more comparative studies as the one presented here.
Collapse
Affiliation(s)
| | - Jesus Amo
- Department of Plant Nutrition. CEBAS-CSIC. Campus de Espinardo, 30100, Murcia, Spain
| | - Elisa Jiménez-Estévez
- Department of Plant Nutrition. CEBAS-CSIC. Campus de Espinardo, 30100, Murcia, Spain
| | - Alberto Lara
- Department of Plant Nutrition. CEBAS-CSIC. Campus de Espinardo, 30100, Murcia, Spain
| | - Vicente Martínez
- Department of Plant Nutrition. CEBAS-CSIC. Campus de Espinardo, 30100, Murcia, Spain
| | - Francisco Rubio
- Department of Plant Nutrition. CEBAS-CSIC. Campus de Espinardo, 30100, Murcia, Spain
| | | |
Collapse
|
10
|
Lyu H, Yim WC, Yu Q. Genomic and Transcriptomic Insights into the Evolution of C4 Photosynthesis in Grasses. Genome Biol Evol 2024; 16:evae163. [PMID: 39066653 PMCID: PMC11319937 DOI: 10.1093/gbe/evae163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/18/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
C4 photosynthesis has independently evolved over 62 times within 19 angiosperm families. The recurrent evolution of C4 photosynthesis appears to contradict the complex anatomical and biochemical modifications required for the transition from C3 to C4 photosynthesis. In this study, we conducted an integrated analysis of genomics and transcriptomics to elucidate the molecular underpinnings of convergent C4 evolution in the grass family. Our genome-wide exploration of C4-related gene families suggests that the expansion of these gene families may have played an important role in facilitating C4 evolution in the grass family. A phylogenomic synteny network analysis uncovered the emergence of C4 genes in various C4 grass lineages from a common ancestral gene pool. Moreover, through a comparison between non-C4 and C4 PEPCs, we pinpointed 14 amino acid sites exhibiting parallel adaptations. These adaptations, occurring post the BEP-PACMAD divergence, shed light on why all C4 origins in grasses are confined to the PACMAD clade. Furthermore, our study revealed that the ancestor of Chloridoideae grasses possessed a more favorable molecular preadaptation for C4 functions compared to the ancestor of Panicoideae grasses. This molecular preadaptation potentially explains why C4 photosynthesis evolved earlier in Chloridoideae than in Panicoideae and why the C3-to-C4 transition occurred once in Chloridoideae but multiple times in Panicoideae. Additionally, we found that C4 genes share similar cis-elements across independent C4 lineages. Notably, NAD-ME subtype grasses may have retained the ancestral regulatory machinery of the C4 NADP-ME gene, while NADP-ME subtype grasses might have undergone unique cis-element modifications.
Collapse
Affiliation(s)
- Haomin Lyu
- Tropical Plant Genetic Resources and Disease Research Unit, Daniel K Inouye U.S. Pacific Basin Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Hilo, HI 96720, USA
- Hawaii Agriculture Research Center, Kunia, HI 96759, USA
| | - Won Cheol Yim
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Qingyi Yu
- Tropical Plant Genetic Resources and Disease Research Unit, Daniel K Inouye U.S. Pacific Basin Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Hilo, HI 96720, USA
| |
Collapse
|
11
|
Sun W, Xia L, Deng J, Sun S, Yue D, You J, Wang M, Jin S, Zhu L, Lindsey K, Zhang X, Yang X. Evolution and subfunctionalization of CIPK6 homologous genes in regulating cotton drought resistance. Nat Commun 2024; 15:5733. [PMID: 38977687 PMCID: PMC11231324 DOI: 10.1038/s41467-024-50097-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 06/28/2024] [Indexed: 07/10/2024] Open
Abstract
The occurrence of whole-genome duplication or polyploidy may promote plant adaptability to harsh environments. Here, we clarify the evolutionary relationship of eight GhCIPK6 homologous genes in upland cotton (Gossypium hirsutum). Gene expression and interaction analyses indicate that GhCIPK6 homologous genes show significant functional changes after polyploidy. Among these, GhCIPK6D1 and GhCIPK6D3 are significantly up-regulated by drought stress. Functional studies reveal that high GhCIPK6D1 expression promotes cotton drought sensitivity, while GhCIPK6D3 expression promotes drought tolerance, indicating clear functional differentiation. Genetic and biochemical analyses confirm the synergistic negative and positive regulation of cotton drought resistance through GhCBL1A1-GhCIPK6D1 and GhCBL2A1-GhCIPK6D3, respectively, to regulate stomatal movement by controlling the directional flow of K+ in guard cells. These results reveal differentiated roles of GhCIPK6 homologous genes in response to drought stress in upland cotton following polyploidy. The work provides a different perspective for exploring the functionalization and subfunctionalization of duplicated genes in response to polyploidization.
Collapse
Affiliation(s)
- Weinan Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
| | - Linjie Xia
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
| | - Jinwu Deng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
| | - Simin Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
| | - Dandan Yue
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
| | - Jiaqi You
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Keith Lindsey
- Department of Biosciences, Durham University, Durham, UK
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xiyan Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China.
- Hubei Hongshan Laboratory, Wuhan, China.
| |
Collapse
|
12
|
Xia P, Zhou S, Zhao X, Zhao C. Characterization and Expression Analysis of Sugar Transporters through Partial Least Square Structural Equation Model (PLS-SEM) Revealed Their Role in Pepper ( Capsicum annuum L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:1825. [PMID: 38999665 PMCID: PMC11243835 DOI: 10.3390/plants13131825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
Pepper (Capsicum annuum L.) is one of the most important economic crops in the world. By controlling the transport and distribution of photosynthetic products between cells and organs, sugar transporters are widely involved in growth and development, environmental adaptation, and microbial interactions. The present study was carried out at the genome-wide level to systematically characterize sugar transporters. As a result, 50 MST, 3 SUT, and 29 SWEET genes were identified and classified. The expression pattern of sugar transporters in pepper was analyzed by transcriptomic data. The expression properties of sugar transporters were further explored in pepper varieties with significant differences in weight, shape, and pungency. It was shown that the pepper sugar transporter genes had obvious spatiotemporal specific expression characteristics and exhibited variety-specific expression preferences. We focus on analyzing candidate genes that may be involved in fruit development and expansion. We further explore the response of pepper sugar transporters to adversity stress using a structural equation model. Finally, we found that the MST, SUT, and SWEET families are collectively involved in balancing pepper resistance to abiotic stress by coordinating the expression strengths of different family members. Our study may contribute to the functional study of pepper sugar transporter genes and create the prospect of utilizing sugar transporter gene resources to improve pepper variety.
Collapse
Affiliation(s)
- Pan Xia
- Faculty of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Shiyong Zhou
- Faculty of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Xiaoxue Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Changling Zhao
- Faculty of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
13
|
Wu Y, Feng J, Zhang Q, Wang Y, Guan Y, Wang R, Shi F, Zeng F, Wang Y, Chen M, Chang J, He G, Yang G, Li Y. Integrative gene duplication and genome-wide analysis as an approach to facilitate wheat reverse genetics: An example in the TaCIPK family. J Adv Res 2024; 61:19-33. [PMID: 37689241 PMCID: PMC11258669 DOI: 10.1016/j.jare.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/25/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023] Open
Abstract
INTRODUCTION Reverse genetic studies conducted in the plant with a complex or polyploidy genome enriched with large gene families (like wheat) often meet challenges in identifying the key candidate genes related to important traits and prioritizing the genes for functional experiments. OBJECTIVE To overcome the above-mentioned challenges of reverse genetics, this work aims to establish an efficient multi-species strategy for genome-wide gene identification and prioritization of the key candidate genes. METHODS We established the integrative gene duplication and genome-wide analysis (iGG analysis) as a strategy for pinpointing key candidate genes deserving functional research. The iGG captures the evolution, and the expansion/contraction of large gene families across phylogeny-related species and integrates spatial-temporal expression information for gene function inference. Transgenic approaches were also employed to functional validation. RESULTS As a proof-of-concept for the iGG analysis, we took the wheat calcineurin B-like protein-interacting protein kinases (CIPKs) family as an example. We identified CIPKs from seven monocot species, established the orthologous relationship of CIPKs between rice and wheat, and characterized Triticeae-specific CIPK duplicates (e.g., CIPK4 and CIPK17). Integrated with our analysis of CBLs and CBL-CIPK interaction, we revealed that divergent expressions of TaCBLs and TaCIPKs could play an important role in keeping the stoichiometric balance of CBL-CIPK. Furthermore, we validated the function of TaCIPK17-A2 in the regulation of drought tolerance by using transgenic approaches. Overexpression of TaCIPK17 enhanced antioxidant capacity and improved drought tolerance in wheat. CONCLUSION The iGG analysis leverages evolutionary and comparative genomics of crops with large genomes to rapidly highlight the duplicated genes potentially associated with speciation, domestication and/or particular traits that deserve reverse-genetic functional studies. Through the identification of Triticeae-specific TaCIPK17 duplicates and functional validation, we demonstrated the effectiveness of the iGG analysis and provided a new target gene for improving drought tolerance in wheat.
Collapse
Affiliation(s)
- Ya'nan Wu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Jialu Feng
- Hubei Provincial Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Qian Zhang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Yaqiong Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Yanbin Guan
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Ruibin Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Fu Shi
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Fang Zeng
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Yuesheng Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Mingjie Chen
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Junli Chang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China.
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China.
| | - Yin Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China.
| |
Collapse
|
14
|
Kaya C, Uğurlar F, Adamakis IDS. Molecular Mechanisms of CBL-CIPK Signaling Pathway in Plant Abiotic Stress Tolerance and Hormone Crosstalk. Int J Mol Sci 2024; 25:5043. [PMID: 38732261 PMCID: PMC11084290 DOI: 10.3390/ijms25095043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
Abiotic stressors, including drought, salt, cold, and heat, profoundly impact plant growth and development, forcing elaborate cellular responses for adaptation and resilience. Among the crucial orchestrators of these responses is the CBL-CIPK pathway, comprising calcineurin B-like proteins (CBLs) and CBL-interacting protein kinases (CIPKs). While CIPKs act as serine/threonine protein kinases, transmitting calcium signals, CBLs function as calcium sensors, influencing the plant's response to abiotic stress. This review explores the intricate interactions between the CBL-CIPK pathway and plant hormones such as ABA, auxin, ethylene, and jasmonic acid (JA). It highlights their role in fine-tuning stress responses for optimal survival and acclimatization. Building on previous studies that demonstrated the enhanced stress tolerance achieved by upregulating CBL and CIPK genes, we explore the regulatory mechanisms involving post-translational modifications and protein-protein interactions. Despite significant contributions from prior research, gaps persist in understanding the nuanced interplay between the CBL-CIPK system and plant hormone signaling under diverse abiotic stress conditions. In contrast to broader perspectives, our review focuses on the interaction of the pathway with crucial plant hormones and its implications for genetic engineering interventions to enhance crop stress resilience. This specialized perspective aims to contribute novel insights to advance our understanding of the potential of the CBL-CIPK pathway to mitigate crops' abiotic stress.
Collapse
Affiliation(s)
- Cengiz Kaya
- Soil Science and Plant Nutrition Department, Agriculture Faculty, Harran University, Sanliurfa 63200, Turkey; (C.K.); (F.U.)
| | - Ferhat Uğurlar
- Soil Science and Plant Nutrition Department, Agriculture Faculty, Harran University, Sanliurfa 63200, Turkey; (C.K.); (F.U.)
| | | |
Collapse
|
15
|
Zhao X, Wang S, Guo F, Xia P. Genome-wide identification of polyamine metabolism and ethylene synthesis genes in Chenopodium quinoa Willd. and their responses to low-temperature stress. BMC Genomics 2024; 25:370. [PMID: 38627628 PMCID: PMC11020822 DOI: 10.1186/s12864-024-10265-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Quinoa (Chenopodium quinoa Willd.) is valued for its nutritional richness. However, pre-harvest sprouting poses a significant threat to yield and grain quality. This study aims to enhance our understanding of pre-harvest sprouting mitigation strategies, specifically through delayed sowing and avoiding rainy seasons during quinoa maturation. The overarching goal is to identify cold-resistant varieties and unravel the molecular mechanisms behind the low-temperature response of quinoa. We employed bioinformatics and genomics tools for a comprehensive genome-wide analysis of polyamines (PAs) and ethylene synthesis gene families in quinoa under low-temperature stress. RESULTS This involved the identification of 37 PA biosynthesis and 30 PA catabolism genes, alongside 227 ethylene synthesis. Structural and phylogenetic analyses showcased conserved patterns, and subcellular localization predictions indicated diverse cellular distributions. The results indicate that the PA metabolism of quinoa is closely linked to ethylene synthesis, with multiple genes showing an upregulation in response to cold stress. However, differential expression within gene families suggests a nuanced regulatory network. CONCLUSIONS Overall, this study contributes valuable insights for the functional characterization of the PA metabolism and ethylene synthesis of quinoa, which emphasize their roles in plant low-temperature tolerance and providing a foundation for future research in this domain.
Collapse
Affiliation(s)
- Xiaoxue Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, 650201, Kunming, China
| | - Shiyu Wang
- College of Horticulture and Landscape, Yunnan Agricultural University, 650201, Kunming, China
| | - Fenggen Guo
- College of Agronomy and Biotechnology, Yunnan Agricultural University, 650201, Kunming, China.
| | - Pan Xia
- College of Agronomy and Biotechnology, Yunnan Agricultural University, 650201, Kunming, China
| |
Collapse
|
16
|
Wu W, Feng X, Wang N, Shao S, Liu M, Si F, Chen L, Jin C, Xu S, Guo Z, Zhong C, Shi S, He Z. Genomic analysis of Nypa fruticans elucidates its intertidal adaptations and early palm evolution. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:824-843. [PMID: 38372488 DOI: 10.1111/jipb.13625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/28/2024] [Indexed: 02/20/2024]
Abstract
Nypa fruticans (Wurmb), a mangrove palm species with origins dating back to the Late Cretaceous period, is a unique species for investigating long-term adaptation strategies to intertidal environments and the early evolution of palms. Here, we present a chromosome-level genome sequence and assembly for N. fruticans. We integrated the genomes of N. fruticans and other palm family members for a comparative genomic analysis, which confirmed that the common ancestor of all palms experienced a whole-genome duplication event around 89 million years ago, shaping the distinctive characteristics observed in this clade. We also inferred a low mutation rate for the N. fruticans genome, which underwent strong purifying selection and evolved slowly, thus contributing to its stability over a long evolutionary period. Moreover, ancient duplicates were preferentially retained, with critical genes having experienced positive selection, enhancing waterlogging tolerance in N. fruticans. Furthermore, we discovered that the pseudogenization of Early Methionine-labelled 1 (EM1) and EM6 in N. fruticans underly its crypto-vivipary characteristics, reflecting its intertidal adaptation. Our study provides valuable genomic insights into the evolutionary history, genome stability, and adaptive evolution of the mangrove palm. Our results also shed light on the long-term adaptation of this species and contribute to our understanding of the evolutionary dynamics in the palm family.
Collapse
Affiliation(s)
- Weihong Wu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiao Feng
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Greater Bay Area Institute of Precision Medicine, School of Life Sciences, Fudan University, Guangzhou, 511462, China
| | - Nan Wang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shao Shao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Min Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Fa Si
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Linhao Chen
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chuanfeng Jin
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shaohua Xu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zixiao Guo
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Cairong Zhong
- Hainan Academy of Forestry (Hainan Academy of Mangrove), Haikou, 571100, China
| | - Suhua Shi
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ziwen He
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
17
|
Kang H, Yang Y, Meng Y. Functional Differentiation of the Duplicated Gene BrrCIPK9 in Turnip ( Brassica rapa var. rapa). Genes (Basel) 2024; 15:405. [PMID: 38674340 PMCID: PMC11049275 DOI: 10.3390/genes15040405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Gene duplication is a key biological process in the evolutionary history of plants and an important driving force for the diversification of genomic and genetic systems. Interactions between the calcium sensor calcineurin B-like protein (CBL) and its target, CBL-interacting protein kinase (CIPK), play important roles in the plant's response to various environmental stresses. As a food crop with important economic and research value, turnip (Brassica rapa var. rapa) has been well adapted to the environment of the Tibetan Plateau and become a traditional crop in the region. The BrrCIPK9 gene in turnip has not been characterized. In this study, two duplicated genes, BrrCIPK9.1 and BrrCIPK9.2, were screened from the turnip genome. Based on the phylogenetic analysis, BrrCIPK9.1 and BrrCIPK9.2 were found located in different sub-branches on the phylogenetic tree. Real-time fluorescence quantitative PCR analyses revealed their differential expression levels between the leaves and roots and in response to various stress treatments. The differences in their interactions with BrrCBLs were also revealed by yeast two-hybrid analyses. The results indicate that BrrCIPK9.1 and BrrCIPK9.2 have undergone Asparagine-alanine-phenylalanine (NAF) site divergence during turnip evolution, which has resulted in functional differences between them. Furthermore, BrrCIPK9.1 responded to high-pH (pH 8.5) stress, while BrrCIPK9.2 retained its ancestral function (low K+), thus providing further evidence of their functional divergence. These functional divergence genes facilitate turnip's good adaptation to the extreme environment of the Tibetan Plateau. In summary, the results of this study reveal the characteristics of the duplicated BrrCIPK9 genes and provide a basis for further functional studies of BrrCBLs-BrrCIPKs in turnip.
Collapse
Affiliation(s)
- Haotong Kang
- Key Laboratory of Plant Resources Conservation and Utilization, College of Biological Resources and Environmental Sciences, Jishou University, Jishou 416000, China;
| | - Yunqiang Yang
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Ying Meng
- Key Laboratory of Plant Resources Conservation and Utilization, College of Biological Resources and Environmental Sciences, Jishou University, Jishou 416000, China;
| |
Collapse
|
18
|
Kan S, Liao X, Lan L, Kong J, Wang J, Nie L, Zou J, An H, Wu Z. Cytonuclear Interactions and Subgenome Dominance Shape the Evolution of Organelle-Targeted Genes in the Brassica Triangle of U. Mol Biol Evol 2024; 41:msae043. [PMID: 38391484 PMCID: PMC10919925 DOI: 10.1093/molbev/msae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/24/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024] Open
Abstract
The interaction and coevolution between nuclear and cytoplasmic genomes are one of the fundamental hallmarks of eukaryotic genome evolution and, 2 billion yr later, are still major contributors to the formation of new species. Although many studies have investigated the role of cytonuclear interactions following allopolyploidization, the relative magnitude of the effect of subgenome dominance versus cytonuclear interaction on genome evolution remains unclear. The Brassica triangle of U features 3 diploid species that together have formed 3 separate allotetraploid species on similar evolutionary timescales, providing an ideal system for understanding the contribution of the cytoplasmic donor to hybrid polyploid. Here, we investigated the evolutionary pattern of organelle-targeted genes in Brassica carinata (BBCC) and 2 varieties of Brassica juncea (AABB) at the whole-genome level, with particular focus on cytonuclear enzyme complexes. We found partial evidence that plastid-targeted genes experience selection to match plastid genomes, but no obvious corresponding signal in mitochondria-targeted genes from these 2 separately formed allopolyploids. Interestingly, selection acting on plastid genomes always reduced the retention rate of plastid-targeted genes encoded by the B subgenome, regardless of whether the Brassica nigra (BB) subgenome was contributed by the paternal or maternal progenitor. More broadly, this study illustrates the distinct selective pressures experienced by plastid- and mitochondria-targeted genes, despite a shared pattern of inheritance and natural history. Our study also highlights an important role for subgenome dominance in allopolyploid genome evolution, even in genes whose function depends on separately inherited molecules.
Collapse
Affiliation(s)
- Shenglong Kan
- Marine College, Shandong University, Weihai 264209, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xuezhu Liao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Lan Lan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, 6150 Western Australia, Australia
| | - Jiali Kong
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jie Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, 6150 Western Australia, Australia
| | - Liyun Nie
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hong An
- Bioinformatics and Analytics Core, University of Missouri, Columbia, MO, USA
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
19
|
Zhang Z, Diao R, Sun J, Liu Y, Zhao M, Wang Q, Xu Z, Zhong B. Diversified molecular adaptations of inorganic nitrogen assimilation and signaling machineries in plants. THE NEW PHYTOLOGIST 2024; 241:2108-2123. [PMID: 38155438 DOI: 10.1111/nph.19508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/11/2023] [Indexed: 12/30/2023]
Abstract
Plants evolved sophisticated machineries to monitor levels of external nitrogen supply, respond to nitrogen demand from different tissues and integrate this information for coordinating its assimilation. Although roles of inorganic nitrogen in orchestrating developments have been studied in model plants and crops, systematic understanding of the origin and evolution of its assimilation and signaling machineries remains largely unknown. We expanded taxon samplings of algae and early-diverging land plants, covering all main lineages of Archaeplastida, and reconstructed the evolutionary history of core components involved in inorganic nitrogen assimilation and signaling. Most components associated with inorganic nitrogen assimilation were derived from the ancestral Archaeplastida. Improvements of assimilation machineries by gene duplications and horizontal gene transfers were evident during plant terrestrialization. Clusterization of genes encoding nitrate assimilation proteins might be an adaptive strategy for algae to cope with changeable nitrate availability in different habitats. Green plants evolved complex nitrate signaling machinery that was stepwise improved by domains shuffling and regulation co-option. Our study highlights innovations in inorganic nitrogen assimilation and signaling machineries, ranging from molecular modifications of proteins to genomic rearrangements, which shaped developmental and metabolic adaptations of plants to changeable nutrient availability in environments.
Collapse
Affiliation(s)
- Zhenhua Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Runjie Diao
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Jingyan Sun
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Yannan Liu
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Mengru Zhao
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Qiuping Wang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Zilong Xu
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Bojian Zhong
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
20
|
Wang J, Zhang T, Tu A, Xie H, Hu H, Chen J, Yang J. Genome-Wide Identification and Analysis of APC E3 Ubiquitin Ligase Genes Family in Triticum aestivum. Genes (Basel) 2024; 15:271. [PMID: 38540330 PMCID: PMC10970508 DOI: 10.3390/genes15030271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 06/15/2024] Open
Abstract
E3 ubiquitin ligases play a pivotal role in ubiquitination, a crucial post-translational modification process. Anaphase-promoting complex (APC), a large cullin-RING E3 ubiquitin ligase, regulates the unidirectional progression of the cell cycle by ubiquitinating specific target proteins and triggering plant immune responses. Several E3 ubiquitin ligases have been identified owing to advancements in sequencing and annotation of the wheat genome. However, the types and functions of APC E3 ubiquitin ligases in wheat have not been reported. This study identified 14 members of the APC gene family in the wheat genome and divided them into three subgroups (CCS52B, CCS52A, and CDC20) to better understand their functions. Promoter sequence analysis revealed the presence of several cis-acting elements related to hormone and stress responses in the APC E3 ubiquitin ligases in wheat. All identified APC E3 ubiquitin ligase family members were highly expressed in the leaves, and the expression of most genes was induced by the application of methyl jasmonate (MeJA). In addition, the APC gene family in wheat may play a role in plant defense mechanisms. This study comprehensively analyzes APC genes in wheat, laying the groundwork for future research on the function of APC genes in response to viral infections and expanding our understanding of wheat immunity mechanisms.
Collapse
Affiliation(s)
- Jinnan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.W.); (T.Z.); (A.T.); (H.X.); (H.H.)
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Tianye Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.W.); (T.Z.); (A.T.); (H.X.); (H.H.)
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Aizhu Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.W.); (T.Z.); (A.T.); (H.X.); (H.H.)
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Haoxin Xie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.W.); (T.Z.); (A.T.); (H.X.); (H.H.)
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Haichao Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.W.); (T.Z.); (A.T.); (H.X.); (H.H.)
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.W.); (T.Z.); (A.T.); (H.X.); (H.H.)
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jian Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.W.); (T.Z.); (A.T.); (H.X.); (H.H.)
| |
Collapse
|
21
|
Yang F, Luo J, Guo W, Zhang Y, Liu Y, Yu Z, Sun Y, Li M, Ma F, Zhao T. Origin and early divergence of tandem duplicated sorbitol transporter genes in Rosaceae: insights from evolutionary analysis of the SOT gene family in angiosperms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:856-872. [PMID: 37983569 DOI: 10.1111/tpj.16533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/30/2023] [Accepted: 10/21/2023] [Indexed: 11/22/2023]
Abstract
Sorbitol is a critical photosynthate and storage substance in the Rosaceae family. Sorbitol transporters (SOTs) play a vital role in facilitating sorbitol allocation from source to sink organs and sugar accumulation in sink organs. While prior research has addressed gene duplications within the SOT gene family in Rosaceae, the precise origin and evolutionary dynamics of these duplications remain unclear, largely due to the complicated interplay of whole genome duplications and tandem duplications. Here, we investigated the synteny relationships among all identified Polyol/Monosaccharide Transporter (PLT) genes in 61 angiosperm genomes and SOT genes in representative genomes within the Rosaceae family. By integrating phylogenetic analyses, we elucidated the lineage-specific expansion and syntenic conservation of PLTs and SOTs across diverse plant lineages. We found that Rosaceae SOTs, as PLT family members, originated from a pair of tandemly duplicated PLT genes within Class III-A. Furthermore, our investigation highlights the role of lineage-specific and synergistic duplications in Amygdaloideae in contributing to the expansion of SOTs in Rosaceae plants. Collectively, our findings provide insights into the genomic origins, duplication events, and subsequent divergence of SOT gene family members. Such insights lay a crucial foundation for comprehensive functional characterizations in future studies.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
- Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Jiawei Luo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
- Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Wenmeng Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
- Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Yuxin Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
- Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Yunxiao Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
- Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Ze Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
- Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Yaqiang Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
- Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Mingjun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
- Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
- Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Tao Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
- Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| |
Collapse
|
22
|
Chen X, Zhang J, Wang S, Cai H, Yang M, Dong Y. Genome-wide molecular evolution analysis of the GRF and GIF gene families in Plantae (Archaeplastida). BMC Genomics 2024; 25:74. [PMID: 38233778 PMCID: PMC10795294 DOI: 10.1186/s12864-024-10006-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 01/11/2024] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Plant growth-regulating factors (GRFs) and GRF-interacting factors (GIFs) interact with each other and collectively have important regulatory roles in plant growth, development, and stress responses. Therefore, it is of great significance to explore the systematic evolution of GRF and GIF gene families. However, our knowledge and understanding of the role of GRF and GIF genes during plant evolution has been fragmentary. RESULTS In this study, a large number of genomic and transcriptomic datasets of algae, mosses, ferns, gymnosperms and angiosperms were used to systematically analyze the evolution of GRF and GIF genes during the evolution of plants. The results showed that GRF gene first appeared in the charophyte Klebsormidium nitens, whereas the GIF genes originated relatively early, and these two gene families were mainly expanded by segmental duplication events after plant terrestrialization. During the process of evolution, the protein sequences and functions of GRF and GIF family genes are relatively conservative. As cooperative partner, GRF and GIF genes contain the similar types of cis-acting elements in their promoter regions, which enables them to have similar transcriptional response patterns, and both show higher levels of expression in reproductive organs and tissues and organs with strong capacity for cell division. Based on protein-protein interaction analysis and verification, we found that the GRF-GIF protein partnership began to be established in pteridophytes and is highly conserved across different terrestrial plants. CONCLUSIONS These results provide a foundation for further exploration of the molecular evolution and biological functions of GRF and GIF genes.
Collapse
Affiliation(s)
- Xinghao Chen
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, 071000, Baoding, People's Republic of China
| | - Jun Zhang
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, 071000, Baoding, People's Republic of China
| | - Shijie Wang
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, 071000, Baoding, People's Republic of China
| | - Hongyu Cai
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, 071000, Baoding, People's Republic of China
| | - Minsheng Yang
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China.
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, 071000, Baoding, People's Republic of China.
| | - Yan Dong
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China.
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, 071000, Baoding, People's Republic of China.
| |
Collapse
|
23
|
Wang S, Wang C, Lv F, Chu P, Jin H. Genome-wide identification of the OMT gene family in Cucumis melo L. and expression analysis under abiotic and biotic stress. PeerJ 2023; 11:e16483. [PMID: 38107581 PMCID: PMC10725674 DOI: 10.7717/peerj.16483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/27/2023] [Indexed: 12/19/2023] Open
Abstract
Background O-methyltransferase (OMT)-mediated O-methylation is a frequent modification that occurs during natural product biosynthesis, and it increases the diversity and stability of secondary metabolites. However, detailed genome-wide identification and expression analyses of OMT gene family members have not been performed in melons. In this study, we aimed to perform the genome-wide identification of OMT gene family members in melon to identify and clarify their actions during stress. Methods Genome-wide identification of OMT gene family members was performed using data from the melon genome database. The Cucumis melo OMT genes (CmOMTs) were then compared with the genes from two representative monocotyledons and three representative dicotyledons. The basic information, cis-regulatory elements in the promoter, predicted 3-D-structures, and GO enrichment results of the 21 CmOMTs were analyzed. Results In our study, 21 CmOMTs (named CmOMT1-21) were obtained by analyzing the melon genome. These genes were located on six chromosomes and divided into three groups composed of nine, six, and six CmOMTs based on phylogenetic analysis. Gene structure and motif descriptions were similar within the same classes. Each CmOMT gene contains at least one cis-acting element associated with hormone transport regulation. Analysis of cis-acting elements illustrated the potential role of CmOMTs in developmental regulation and adaptations to various abiotic and biotic stresses. The RNA-seq and quantitative real-time PCR (qRT-PCR) results indicated that NaCl stress significantly induced CmOMT6/9/14/18 and chilling and high temperature and humidity (HTH) stresses significantly upregulated CmOMT14/18. Furthermore, the expression pattern of CmOMT18 may be associated with Fusarium oxysporum f. sp. melonis race 1.2 (FOM1.2) and powdery mildew resistance. Our study tentatively explored the biological functions of CmOMT genes in various stress regulation pathways and provided a conceptual basis for further detailed studies of the molecular mechanisms.
Collapse
Affiliation(s)
| | - Chuang Wang
- Liaocheng Vocational & Technical College, Liaocheng, China
| | - Futang Lv
- Liaocheng University, Liaocheng, China
| | | | - Han Jin
- Liaocheng University, Liaocheng, China
| |
Collapse
|
24
|
Diao R, Zhao M, Liu Y, Zhang Z, Zhong B. The advantages of crosstalk during the evolution of the BZR1-ARF6-PIF4 (BAP) module. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2631-2644. [PMID: 37552560 DOI: 10.1111/jipb.13554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/07/2023] [Indexed: 08/10/2023]
Abstract
The BAP module, comprising BRASSINAZOLE RESISTANT 1 (BZR1), AUXIN RESPONSE FACTOR 6 (ARF6), and PHYTOCHROME-INTERACTING FACTOR 4 (PIF4), functions as a molecular hub to orchestrate plant growth and development. In Arabidopsis thaliana, components of the BAP module physically interact to form a complex system that integrates light, brassinosteroid (BR), and auxin signals. Little is known about the origin and evolution of the BAP module. Here, we conducted comparative genomic and transcriptomic analyses to investigate the evolution and functional diversification of the BAP module. Our results suggest that the BAP module originated in land plants and that the ζ, ε, and γ whole-genome duplication/triplication events contributed to the expansion of BAP module components in seed plants. Comparative transcriptomic analysis suggested that the prototype BAP module arose in Marchantia polymorpha, experienced stepwise evolution, and became established as a mature regulatory system in seed plants. We developed a formula to calculate the signal transduction productivity of the BAP module and demonstrate that more crosstalk among components enables higher signal transduction efficiency. Our results reveal the evolutionary history of the BAP module and provide insights into the evolution of plant signaling networks and the strategies employed by plants to integrate environmental and endogenous signals.
Collapse
Affiliation(s)
- Runjie Diao
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Mengru Zhao
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Yannan Liu
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Zhenhua Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Bojian Zhong
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
25
|
Wang X, Ma X, Yan G, Hua L, Liu H, Huang W, Liang Z, Chao Q, Hibberd JM, Jiao Y, Zhang M. Gene duplications facilitate C4-CAM compatibility in common purslane. PLANT PHYSIOLOGY 2023; 193:2622-2639. [PMID: 37587696 PMCID: PMC10663116 DOI: 10.1093/plphys/kiad451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 08/18/2023]
Abstract
Common purslane (Portulaca oleracea) integrates both C4 and crassulacean acid metabolism (CAM) photosynthesis pathways and is a promising model plant to explore C4-CAM plasticity. Here, we report a high-quality chromosome-level genome of nicotinamide adenine dinucleotide (NAD)-malic enzyme (ME) subtype common purslane that provides evidence for 2 rounds of whole-genome duplication (WGD) with an ancient WGD (P-β) in the common ancestor to Portulacaceae and Cactaceae around 66.30 million years ago (Mya) and another (Po-α) specific to common purslane lineage around 7.74 Mya. A larger number of gene copies encoding key enzymes/transporters involved in C4 and CAM pathways were detected in common purslane than in related species. Phylogeny, conserved functional site, and collinearity analyses revealed that the Po-α WGD produced the phosphoenolpyruvate carboxylase-encoded gene copies used for photosynthesis in common purslane, while the P-β WGD event produced 2 ancestral genes of functionally differentiated (C4- and CAM-specific) beta carbonic anhydrases involved in the C4 + CAM pathways. Additionally, cis-element enrichment analysis in the promoters showed that CAM-specific genes have recruited both evening and midnight circadian elements as well as the Abscisic acid (ABA)-independent regulatory module mediated by ethylene-response factor cis-elements. Overall, this study provides insights into the origin and evolutionary process of C4 and CAM pathways in common purslane, as well as potential targets for engineering crops by integrating C4 or CAM metabolism.
Collapse
Affiliation(s)
- Xiaoliang Wang
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing 100093, China
| | - Xuxu Ma
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing 100093, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ge Yan
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing 100093, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Lei Hua
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Han Liu
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Wei Huang
- National Maize Improvement Center, China Agricultural University, Beijing 100193, China
| | - Zhikai Liang
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Qing Chao
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Yuannian Jiao
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing 100093, China
| | - Mei Zhang
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing 100093, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
26
|
Zhang Y, Van de Peer Y, Lu B, Zhang S, Che J, Chen J, Marchal K, Yang X. Expression divergence of expansin genes drive the heteroblasty in Ceratopteris chingii. BMC Biol 2023; 21:244. [PMID: 37926805 PMCID: PMC10626718 DOI: 10.1186/s12915-023-01743-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND Sterile-fertile heteroblasty is a common phenomenon observed in ferns, where the leaf shape of a fern sporophyll, responsible for sporangium production, differs from that of a regular trophophyll. However, due to the large size and complexity of most fern genomes, the molecular mechanisms that regulate the formation of these functionally different heteroblasty have remained elusive. To shed light on these mechanisms, we generated a full-length transcriptome of Ceratopteris chingii with PacBio Iso-Seq from five tissue samples. By integrating Illumina-based sequencing short reads, we identified the genes exhibiting the most significant differential expression between sporophylls and trophophylls. RESULTS The long reads were assembled, resulting in a total of 24,024 gene models. The differential expressed genes between heteroblasty primarily involved reproduction and cell wall composition, with a particular focus on expansin genes. Reconstructing the phylogeny of expansin genes across 19 plant species, ranging from green algae to seed plants, we identified four ortholog groups for expansins. The observed high expression of expansin genes in the young sporophylls of C. chingii emphasizes their role in the development of heteroblastic leaves. Through gene coexpression analysis, we identified highly divergent expressions of expansin genes both within and between species. CONCLUSIONS The specific regulatory interactions and accompanying expression patterns of expansin genes are associated with variations in leaf shapes between sporophylls and trophophylls.
Collapse
Affiliation(s)
- Yue Zhang
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0028, South Africa
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bei Lu
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sisi Zhang
- Wuhan Institute of Landscape Architecture, Wuhan, 430081, China
| | - Jingru Che
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinming Chen
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
| | - Kathleen Marchal
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium.
- Department of Information Technology, IDLab, IMEC, Ghent University, 9052, Ghent, Belgium.
| | - Xingyu Yang
- Wuhan Institute of Landscape Architecture, Wuhan, 430081, China.
- Hubei Ecology Polytechnic College, Wuhan, 430200, China.
| |
Collapse
|
27
|
Wu Y, Luo Q, Wu Z, Yu J, Zhang Q, Shi F, Zou Y, Li L, Zhao H, Wang Y, Chen M, Chang J, He G, Yang G, Li Y. A straight-forward gene mining strategy to identify TaCIPK19 as a new regulator of drought tolerance in wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108034. [PMID: 37738865 DOI: 10.1016/j.plaphy.2023.108034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023]
Abstract
Drought stress is one of the most impactful abiotic stresses to global wheat production. Therefore, identifying key regulators such as the calcineurin B-like protein interacting protein kinase (CIPK) in the signaling cascades known to coordinate developmental cues and environmental stimuli represents a useful approach to improve drought tolerance. However, functional studies have been very limited partly due to the difficulties in prioritizing candidate genes from the large TaCIPK family. To address this issue, we demonstrate a straight-forward strategy by analyzing gene expression patterns in response to phytohormones or stresses and identified TaCIPK19 as a new regulator to improve drought tolerance. The effects of TaCIPK19 on drought tolerance were evaluated in both tobacco and wheat through transgenic approach. Ectopic expression of TaCIPK19 in tobacco greatly improves drought tolerance with enhanced ABA biosynthesis/signaling and ROS scavenging capacity. TaCIPK19 overexpression in wheat also confers the drought tolerance at both seedling and mature stages with enhanced ROS scavenging capacity. Additionally, potential CBL partners interacting with TaCIPK19 were investigated. Collectively, our finding exemplifies a straight-forward approach to facilitate reverse genetics related to abiotic stress improvement and demonstrates TaCIPK19 as a new candidate gene to improve ROS scavenging capacity and drought tolerance, which is useful for genetic improvement and breeding application in wheat.
Collapse
Affiliation(s)
- Ya'nan Wu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Qingchen Luo
- Hubei Key Laboratory of Purification and Application of Plant Anti-Cancer Active Ingredients, Department of Chemistry and Life Science, Hubei University of Education, Wuhan, 430205, China
| | - Zehao Wu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Jingbo Yu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Qian Zhang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Fu Shi
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Yuge Zou
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Li Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Hongyan Zhao
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Yuesheng Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Mingjie Chen
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Junli Chang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China.
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China.
| | - Yin Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China.
| |
Collapse
|
28
|
You Z, Guo S, Li Q, Fang Y, Huang P, Ju C, Wang C. The CBL1/9-CIPK1 calcium sensor negatively regulates drought stress by phosphorylating the PYLs ABA receptor. Nat Commun 2023; 14:5886. [PMID: 37735173 PMCID: PMC10514306 DOI: 10.1038/s41467-023-41657-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
The stress hormone, Abscisic acid (ABA), is crucial for plants to respond to changes in their environment. It triggers changes in cytoplasmic Ca2+ levels, which activate plant responses to external stresses. However, how Ca2+ sensing and signaling feeds back into ABA signaling is not well understood. Here we reveal a calcium sensing module that negatively regulates drought stress via modulating ABA receptor PYLs. Mutants cbl1/9 and cipk1 exhibit hypersensitivity to ABA and drought resilience. Furthermore, CIPK1 is shown to interact with and phosphorylate 7 of 14 ABA receptors at the evolutionarily conserved site corresponding to PYL4 Ser129, thereby suppressing their activities and promoting PP2C activities under normal conditions. Under drought stress, ABA impedes PYLs phosphorylation by CIPK1 to respond to ABA signaling and survive in unfavorable environment. These findings provide insights into a previously unknown negative regulatory mechanism of the ABA signaling pathway, which is mediated by CBL1/9-CIPK1-PYLs, resulting in plants that are more sensitive to drought stress. This discovery expands our knowledge about the interplay between Ca2+ signaling and ABA signaling.
Collapse
Affiliation(s)
- Zhang You
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Shiyuan Guo
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Qiao Li
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yanjun Fang
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Panpan Huang
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Chuanfeng Ju
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Cun Wang
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
- Institute of Future Agriculture, Northwest Agriculture & Forestry University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
29
|
Xia HX, Li Q, Cushman SA, Yuan WJ, Li Y. Expression dosage effects of a small number of genes after the artificial doubling of weeping forsythia. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107945. [PMID: 37562202 DOI: 10.1016/j.plaphy.2023.107945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/04/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023]
Abstract
Whole genome doubling (WGD) plays a critical role in plant evolution, yet the mechanisms underlying the maintenance of overall equilibrium following an artificial doubling event, as well as its impact on phenotype and adaptability, remain unclear. By comparing the gene expression of naturally occurring weeping forsythia diploids and colchicine-induced autotetraploids under normal growth conditions and cold stress, we identified gene expression dosage responses resulting from ploidy change. Only a small proportion of effectively expressed genes showed dosage effect, and most genes did not exhibit significant expression differences. However, the genes that showed expression dosage effect were largely random. The autotetraploids had slower overall growth rates, possibly resulting from negative gene dosage effects on zeatin synthesis and multiple metabolic delays caused by other negative dosage genes. Our comparative analysis of cold response genes in diploids and autotetraploids revealed that genes related to "response to abscisic acid" and "cold acclimation" were key factors contributing to greater cold tolerance in the autotetraploids. In particular, gene expression related to "cold acclimation" might mitigate the effects of cold stress. Taken together, our findings suggested that overall gene expression equilibrium following WGD of weeping forsythia autotetraploids was achieved through the inactivation of the majority of duplicated genes. Our research provides new insights into the mechanisms regulating expression dosage balance following polyploidization events.
Collapse
Affiliation(s)
- He-Xiao Xia
- College of Life Science and Technology, Inner Mongolia Normal University, Huhehaote, China; College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou, China
| | - Qian Li
- College of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Samuel A Cushman
- School of Forestry, Northern Arizona University, Flagstaff, AZ, USA
| | - Wang-Jun Yuan
- School of Pharmacy, Henan University, Kaifeng, China
| | - Yong Li
- College of Life Science and Technology, Inner Mongolia Normal University, Huhehaote, China; State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China.
| |
Collapse
|
30
|
Chen Y, Guo Y, Xie X, Wang Z, Miao L, Yang Z, Jiao Y, Xie C, Liu J, Hu Z, Xin M, Yao Y, Ni Z, Sun Q, Peng H, Guo W. Pangenome-based trajectories of intracellular gene transfers in Poaceae unveil high cumulation in Triticeae. PLANT PHYSIOLOGY 2023; 193:578-594. [PMID: 37249052 PMCID: PMC10469385 DOI: 10.1093/plphys/kiad319] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023]
Abstract
Intracellular gene transfers (IGTs) between the nucleus and organelles, including plastids and mitochondria, constantly reshape the nuclear genome during evolution. Despite the substantial contribution of IGTs to genome variation, the dynamic trajectories of IGTs at the pangenomic level remain elusive. Here, we developed an approach, IGTminer, that maps the evolutionary trajectories of IGTs using collinearity and gene reannotation across multiple genome assemblies. We applied IGTminer to create a nuclear organellar gene (NOG) map across 67 genomes covering 15 Poaceae species, including important crops. The resulting NOGs were verified by experiments and sequencing data sets. Our analysis revealed that most NOGs were recently transferred and lineage specific and that Triticeae species tended to have more NOGs than other Poaceae species. Wheat (Triticum aestivum) had a higher retention rate of NOGs than maize (Zea mays) and rice (Oryza sativa), and the retained NOGs were likely involved in photosynthesis and translation pathways. Large numbers of NOG clusters were aggregated in hexaploid wheat during 2 rounds of polyploidization, contributing to the genetic diversity among modern wheat accessions. We implemented an interactive web server to facilitate the exploration of NOGs in Poaceae. In summary, this study provides resources and insights into the roles of IGTs in shaping interspecies and intraspecies genome variation and driving plant genome evolution.
Collapse
Affiliation(s)
- Yongming Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yiwen Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xiaoming Xie
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zihao Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Lingfeng Miao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhengzhao Yang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yuannian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaojie Xie
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jie Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| |
Collapse
|
31
|
Chen H, Zhang Y, Feng S. Whole-genome and dispersed duplication, including transposed duplication, jointly advance the evolution of TLP genes in seven representative Poaceae lineages. BMC Genomics 2023; 24:290. [PMID: 37254040 DOI: 10.1186/s12864-023-09389-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/18/2023] [Indexed: 06/01/2023] Open
Abstract
BACKGROUND In the evolutionary study of gene families, exploring the duplication mechanisms of gene families helps researchers understand their evolutionary history. The tubby-like protein (TLP) family is essential for growth and development in plants and animals. Much research has been done on its function; however, limited information is available with regard to the evolution of the TLP gene family. Herein, we systematically investigated the evolution of TLP genes in seven representative Poaceae lineages. RESULTS Our research showed that the evolution of TLP genes was influenced not only by whole-genome duplication (WGD) and dispersed duplication (DSD) but also by transposed duplication (TRD), which has been neglected in previous research. For TLP family size, we found an evolutionary pattern of progressive shrinking in the grass family. Furthermore, the evolution of the TLP gene family was at least affected by evolutionary driving forces such as duplication, purifying selection, and base mutations. CONCLUSIONS This study presents the first comprehensive evolutionary analysis of the TLP gene family in grasses. We demonstrated that the TLP gene family is also influenced by a transposed duplication mechanism. Several new insights into the evolution of the TLP gene family are presented. This work provides a good reference for studying gene evolution and the origin of duplication.
Collapse
Affiliation(s)
- Huilong Chen
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yingchao Zhang
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China.
| | - Shuyan Feng
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| |
Collapse
|
32
|
Chen L, Yang W, Liu S, Meng Y, Zhu Z, Liang R, Cao K, Xie Y, Li X. Genome-wide analysis and identification of light-harvesting chlorophyll a/b binding (LHC) gene family and BSMV-VIGS silencing TaLHC86 reduced salt tolerance in wheat. Int J Biol Macromol 2023; 242:124930. [PMID: 37236564 DOI: 10.1016/j.ijbiomac.2023.124930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 04/24/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023]
Abstract
The discovery and identification of gene families by using wide-genome and public databases is an effective way to gain initial insight into gene function, which also is one of the current hot spots of research. Chlorophyll ab-binding proteins (LHC) are important for photosynthesis and widely involved in plant adversity stress. However, the study in wheat has not been reported. In this study, we identified 127 TaLHC members from common wheat which were unevenly distributed on all chromosomes except 3B and 3D. All members divided into three subfamilies, LHC a, LHC b and the LHC t which was only discovered in wheat. All of them had maximum expression in leaves and contained multiple light-responsive cis-acting element, which were evidence of the extensive involvement of LHC families in photosynthesis. In addition, we also analyzed their collinear relationship, targeting relationship with miRNA and their responses under different stresses. Based on these analyses, it was found that TaLHC86 was an excellent candidate gene for stress resistance. The full-length ORF of TaLHC86 was 792 bp and was localized on the chloroplasts. The salt tolerance of wheat was reduced when BSMV-VIGS silenced TaLHC86, and the photosynthetic rate and electron transport were also seriously affected. This study made a comprehensive analysis of the TaLHC family and found that TaLHC86 was a good gene for salt tolerance.
Collapse
Affiliation(s)
- Liuping Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weibing Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Shuqing Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ying Meng
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhanhua Zhu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rui Liang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kaiyan Cao
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanzhou Xie
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xuejun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
33
|
Zhao Y, Duan B, Liu Y, Wu Y, Yu D, Ke L, Cai F, Mei J, Zhu N, Sun Y. Identification and characterization of the LDAP family revealed GhLDAP2_Dt enhances drought tolerance in cotton. FRONTIERS IN PLANT SCIENCE 2023; 14:1167761. [PMID: 37260939 PMCID: PMC10228748 DOI: 10.3389/fpls.2023.1167761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/10/2023] [Indexed: 06/02/2023]
Abstract
Lipid droplet-associated proteins (LDAPs) play essential roles in tissue growth and development and in drought stress responses in plants. Cotton is an important fiber and cash crop; however, the LDAP family has not been characterized in cotton. In this study, a total of 14, six, seven, and seven genes were confirmed as LDAP family members in Gossypium hirsutum, Gossypium raimondii, Gossypium arboreum, and Gossypium stocksii, respectively. Additionally, expansion in the LDAP family occurred with the formation of Gossypium, which is mirrored in the number of LDAPs found in five Malvaceae species (Gossypioides kirkii, Bombax ceiba, Durio zibethinus, Theobroma cacao, and Corchorus capsularis), Arabidopsis thaliana, and Carica papaya. The phylogenetic tree showed that the LDAP genes in cotton can be divided into three groups (I, II, and III). The analysis of gene structure and conserved domains showed that LDAPs derived from group I (LDAP1/2/3) are highly conserved during evolution, while members from groups II and III had large variations in both domains and gene structures. The gene expression pattern analysis of LDAP genes showed that they are expressed not only in the reproductive organs (ovule) but also in vegetative organs (root, stem, and leaves). The expression level of two genes in group III, GhLDAP6_At/Dt, were significantly higher in fiber development than in other tissues, indicating that it may be an important regulator of cotton fiber development. In group III, GhLDAP2_At/Dt, especially GhLDAP2_Dt was strongly induced by various abiotic stresses. Decreasing the expression of GhLDAP2_Dt in cotton via virus-induced gene silencing increased the drought sensitivity, and the over-expression of GhLDAP2_Dt led to increased tolerance to mannitol-simulated osmotic stress at the germination stage. Thus, we conclude that GhLDAP2_Dt plays a positive role in drought tolerance.
Collapse
|
34
|
Gandarilla-Pérez CA, Pinilla S, Bitbol AF, Weigt M. Combining phylogeny and coevolution improves the inference of interaction partners among paralogous proteins. PLoS Comput Biol 2023; 19:e1011010. [PMID: 36996234 PMCID: PMC10089317 DOI: 10.1371/journal.pcbi.1011010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 04/11/2023] [Accepted: 03/08/2023] [Indexed: 04/01/2023] Open
Abstract
Predicting protein-protein interactions from sequences is an important goal of computational biology. Various sources of information can be used to this end. Starting from the sequences of two interacting protein families, one can use phylogeny or residue coevolution to infer which paralogs are specific interaction partners within each species. We show that these two signals can be combined to improve the performance of the inference of interaction partners among paralogs. For this, we first align the sequence-similarity graphs of the two families through simulated annealing, yielding a robust partial pairing. We next use this partial pairing to seed a coevolution-based iterative pairing algorithm. This combined method improves performance over either separate method. The improvement obtained is striking in the difficult cases where the average number of paralogs per species is large or where the total number of sequences is modest.
Collapse
Affiliation(s)
- Carlos A Gandarilla-Pérez
- Facultad de Física, Universidad de la Habana, San Lázaro y L, Vedado, Habana, Cuba
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire de Biologie Computationnelle et Quantitative (LCQB, UMR 7238), Paris, France
| | - Sergio Pinilla
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire de Biologie Computationnelle et Quantitative (LCQB, UMR 7238), Paris, France
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire Jean Perrin (UMR 8237), Paris, France
| | - Anne-Florence Bitbol
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Martin Weigt
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire de Biologie Computationnelle et Quantitative (LCQB, UMR 7238), Paris, France
| |
Collapse
|
35
|
Qiu K, Pan H, Sheng Y, Wang Y, Shi P, Xie Q, Zhang J, Zhou H. The Peach ( Prunus persica) CBL and CIPK Family Genes: Protein Interaction Profiling and Expression Analysis in Response to Various Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2022; 11:3001. [PMID: 36365452 PMCID: PMC9653928 DOI: 10.3390/plants11213001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/01/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
The plant calcineurin B-like protein-CBL interacting protein kinase (CBL-CIPK) signaling pathway is a Ca2+-related signaling pathway that responds strongly to both biological and abiotic environmental stimuli. This study identified eight CBL and eighteen CIPK genes from peach for the first time. Their basic properties and gene structure were analyzed, and the CBL and CIPK members from Arabidopsis and apple were combined to study their evolutionary relationships. Using RT-qPCR and RNA-seq data, we detected the expression patterns of PprCBLs and PprCIPKs in different tissues and fruit development stages of peach. Among them, the expression levels of PprCBL1 and PprCIPK18 were stable in various tissues and stages. The expression patterns of other members showed specificity between cultivars and developmental stages. By treating shoots with drought and salt stress simulated using PEG6000 and NaCl, it was found that PprCIPK3, PprCIPK6, PprCIPK15 and PprCIPK16 were strongly responsive to salt stress, and PprCIPK3, PprCIPK4, PprCIPK10, PprCIPK14, PprCIPK15, PprCIPK16 and PprCIPK18 were sensitive to drought stress. Three genes, PprCIPK3, PprCIPK15 and PprCIPK16, were sensitive to both salt and drought stress. We cloned four PprCBL and several PprCIPK genes and detected their interaction by yeast two-hybrid assay (Y2H). The results of Y2H show not only the evolutionary conservation of the interaction network of CBL-CIPK but also the specificity among different species. In conclusion, CBL and CIPK genes are important in peach and play an important role in the response to various abiotic stresses.
Collapse
Affiliation(s)
- Keli Qiu
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230001, China
- School of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Haifa Pan
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Yu Sheng
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Yunyun Wang
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230001, China
- School of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Pei Shi
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Qingmei Xie
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Jinyun Zhang
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Hui Zhou
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230001, China
| |
Collapse
|
36
|
Zhang XX, Ren XL, Qi XT, Yang ZM, Feng XL, Zhang T, Wang HJ, Liang P, Jiang QY, Yang WJ, Fu Y, Chen M, Fu ZX, Xu B. Evolution of the CBL and CIPK gene families in Medicago: genome-wide characterization, pervasive duplication, and expression pattern under salt and drought stress. BMC PLANT BIOLOGY 2022; 22:512. [PMID: 36324083 PMCID: PMC9632064 DOI: 10.1186/s12870-022-03884-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/17/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND Calcineurin B-like proteins (CBLs) are ubiquitous Ca2+ sensors that mediate plant responses to various stress and developmental processes by interacting with CBL-interacting protein kinases (CIPKs). CBLs and CIPKs play essential roles in acclimatization of crop plants. However, evolution of these two gene families in the genus Medicago is poorly understood. RESULTS A total of 68 CBL and 135 CIPK genes have been identified in five genomes from Medicago. Among these genomes, the gene number of CBLs and CIPKs shows no significant difference at the haploid genome level. Phylogenetic and comprehensive characteristic analyses reveal that CBLs and CIPKs are classified into four clades respectively, which is validated by distribution of conserved motifs. The synteny analysis indicates that the whole genome duplication events (WGDs) have contributed to the expansion of both families. Expression analysis demonstrates that two MsCBLs and three MsCIPKs are specifically expressed in roots, mature leaves, developing flowers and nitrogen fixing nodules of Medicago sativa spp. sativa, the widely grown tetraploid species. In particular, the expression of these five genes was highly up-regulated in roots when exposed to salt and drought stress, indicating crucial roles in stress responses. CONCLUSIONS Our study leads to a comprehensive understanding of evolution of CBL and CIPK gene families in Medicago, but also provides a rich resource to further address the functions of CBL-CIPK complexes in cultivated species and their closely related wild relatives.
Collapse
Affiliation(s)
- Xiao-Xia Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xiao-Long Ren
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Tong Qi
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Min Yang
- Zhangjiakou Academy of Agricultural Sciences, Zhangjiakou, 075000, China
| | - Xiao-Lei Feng
- Zhangjiakou Academy of Agricultural Sciences, Zhangjiakou, 075000, China
| | - Tian Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui-Jie Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peng Liang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi-Ying Jiang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Jun Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Fu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Zhi-Xi Fu
- College of Life Sciences, Sichuan Normal University, Chengdu, 610101, China
| | - Bo Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
37
|
Gao C, Lu S, Zhou R, Wang Z, Li Y, Fang H, Wang B, Chen M, Cao Y. The OsCBL8-OsCIPK17 Module Regulates Seedling Growth and Confers Resistance to Heat and Drought in Rice. Int J Mol Sci 2022; 23:12451. [PMID: 36293306 PMCID: PMC9604039 DOI: 10.3390/ijms232012451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 12/01/2023] Open
Abstract
The calcium signaling pathway is critical for plant growth, development, and response to external stimuli. The CBL-CIPK pathway has been well characterized as a calcium-signaling pathway. However, in most reports, only a single function for this module has been described. Here, we examined multiple functions of this module. CIPK showed a similar distribution to that of CBL, and OsCBL and OsCIPK families were retained after experiencing whole genome duplication events through the phylogenetic and synteny analysis. This study found that OsCBL8 negatively regulated rice seed germination and seedling growth by interacting with OsCIPK17 with overexpression and gene editing mutant plants as materials combining plant phenotype, physiological indicators and transcriptome sequencing. This process is likely mediated by OsPP2C77, which is a member of the ABA signaling pathway. In addition, OsCBL mediated the targeting of OsNAC77 and OsJAMYB by OsCIPK17, thus conferring resistance to high temperatures and pathogens in rice. Our work reveals a unique signaling pathway, wherein OsCBL8 interacts with OsCIPK17 and provides rice with multiple resistance while also regulating seedling growth.
Collapse
Affiliation(s)
- Cong Gao
- College of Life Sciences, Nantong University, Nantong 226007, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shuai Lu
- College of Life Sciences, Nantong University, Nantong 226007, China
| | - Rong Zhou
- College of Life Sciences, Nantong University, Nantong 226007, China
| | - Zihui Wang
- College of Life Sciences, Nantong University, Nantong 226007, China
| | - Yi Li
- College of Life Sciences, Nantong University, Nantong 226007, China
| | - Hui Fang
- College of Life Sciences, Nantong University, Nantong 226007, China
| | - Baohua Wang
- College of Life Sciences, Nantong University, Nantong 226007, China
| | - Moxian Chen
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian 271000, China
| | - Yunying Cao
- College of Life Sciences, Nantong University, Nantong 226007, China
| |
Collapse
|
38
|
Yu C, Ke Y, Qin J, Huang Y, Zhao Y, Liu Y, Wei H, Liu G, Lian B, Chen Y, Zhong F, Zhang J. Genome-wide identification of calcineurin B-like protein-interacting protein kinase gene family reveals members participating in abiotic stress in the ornamental woody plant Lagerstroemia indica. FRONTIERS IN PLANT SCIENCE 2022; 13:942217. [PMID: 36204074 PMCID: PMC9530917 DOI: 10.3389/fpls.2022.942217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Calcineurin B-like protein-interacting protein kinases (CIPKs) play important roles in plant responses to stress. However, their function in the ornamental woody plant Lagerstroemia indica is remains unclear. In this study, the LiCIPK gene family was analyzed at the whole genome level. A total of 37 LiCIPKs, distributed across 17 chromosomes, were identified. Conserved motif analysis indicated that all LiCIPKs possess a protein kinase motif (S_TKc) and C-terminal regulatory motif (NAF), while seven LiCIPKs lack a protein phosphatase interaction (PPI) motif. 3D structure analysis further revealed that the N-terminal and C-terminal 3D-structure of 27 members are situated near to each other, while 4 members have a looser structure, and 6 members lack intact structures. The intra- and interspecies collinearity analysis, synonymous substitution rate (K s ) peaks of duplicated LiCIPKs, revealed that ∼80% of LiCIPKs were retained by the two whole genome duplication (WGD) events that occurred approximately 56.12-61.16 million year ago (MYA) and 16.24-26.34 MYA ago. The promoter of each LiCIPK contains a number of auxin, abscisic acid, gibberellic acid, salicylic acid, and drought, anaerobic, defense, stress, and wound responsive cis-elements. Of the 21 members that were successfully amplified by qPCR, 18 LiCIPKs exhibited different expression patterns under NaCl, mannitol, PEG8000, and ABA treatments. Given that LiCIPK30, the AtSOS2 ortholog, responded to all four types of stress it was selected for functional verification. LiCIPK30 complements the atsos2 phenotype in vivo. 35S:LiCIPK-overexpressing lines exhibit increased leaf area increment, chlorophyll a and b content, reactive oxygen species scavenging enzyme activity, and expression of ABF3 and RD22, while the degree of membrane lipid oxidation decreases under NaCl treatment compared to WT. The evolutionary history, and potential mechanism by which LiCIPK30 may regulate plant tolerance to salt stress were also discussed. In summary, we identified LiCIPK members involved in abiotic stress and found that LiCIPK30 transgenic Arabidopsis exhibits more salt and osmotic stress tolerance than WT. This research provides a theoretical foundation for further investigation into the function of LiCIPKs, and for mining gene resources to facilitate the cultivation and breeding of new L. indica varieties in coastal saline-alkali soil.
Collapse
Affiliation(s)
- Chunmei Yu
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, Nantong, China
| | - Yongchao Ke
- School of Life Sciences, Nantong University, Nantong, China
| | - Jin Qin
- School of Life Sciences, Nantong University, Nantong, China
| | - Yunpeng Huang
- School of Life Sciences, Nantong University, Nantong, China
| | - Yanchun Zhao
- School of Life Sciences, Nantong University, Nantong, China
| | - Yu Liu
- School of Life Sciences, Nantong University, Nantong, China
| | - Hui Wei
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, Nantong, China
| | - Guoyuan Liu
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, Nantong, China
| | - Bolin Lian
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, Nantong, China
| | - Yanhong Chen
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, Nantong, China
| | - Fei Zhong
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, Nantong, China
| | - Jian Zhang
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, Nantong, China
| |
Collapse
|
39
|
Fang Y, Du Q, Yang Q, Jiang J, Hou X, Yang Z, Zhao D, Li X, Xie X. Identification, characterization, and expression profiling of the putative U-box E3 ubiquitin ligase gene family in Sorghum bicolor. Front Microbiol 2022; 13:942302. [PMID: 36187972 PMCID: PMC9520534 DOI: 10.3389/fmicb.2022.942302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022] Open
Abstract
The U-box family is one of the main E3 ubiquitin ligase families in plants. The U-box family has been characterized in several species. However, genome-wide gene identification and expression profiling of the U-box family in response to abiotic stress in Sorghum bicolor remain unclear. In this study, we broadly identified 68 U-box genes in the sorghum genome, including 2 CHIP genes, and 1 typical UFD2 (Ub fusion degradation 2) gene. The U-box gene family was divided into eight subclasses based on homology and conserved domain characteristics. Evolutionary analysis identified 14, 66, and 82 U-box collinear gene pairs in sorghum compared with arabidopsis, rice, and maize, respectively, and a unique tandem repeat pair (SbPUB26/SbPUB27) is present in the sorghum genome. Gene Ontology (GO) enrichment analysis showed that U-box proteins were mainly related to ubiquitination and modification, and various stress responses. Comprehensive analysis of promoters, expression profiling, and gene co-regulation networks also revealed that many sorghum U-box genes may be correlated with multiple stress responses. In summary, our results showed that sorghum contains 68 U-box genes, which may be involved in multiple abiotic stress responses. The findings will support future gene functional studies related to ubiquitination in sorghum.
Collapse
Affiliation(s)
- Yuanpeng Fang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
| | - Qiaoli Du
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
| | - Qian Yang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
| | - Junmei Jiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Xiaolong Hou
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
| | - Zaifu Yang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
| | - Degang Zhao
- College of Life Sciences, Ministry of Education, Institute of Agricultural Bioengineering, Key Laboratory of Mountain Plant Resources Protection and Germplasm Innovation, Guizhou University, Guiyang, China
- Guizhou Academy of Agricultural Sciences, Guizhou Conservation Technology Application Engineering Research Center, Guizhou Institute of Prataculture, Guizhou Institute of Biotechnology, Guiyang, China
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Xin Xie
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
- Guizhou Academy of Agricultural Sciences, Guizhou Conservation Technology Application Engineering Research Center, Guizhou Institute of Prataculture, Guizhou Institute of Biotechnology, Guiyang, China
- *Correspondence: Xin Xie,
| |
Collapse
|
40
|
Xiao C, Zhang H, Xie F, Pan ZY, Qiu WM, Tong Z, Wang ZQ, He XJ, Xu YH, Sun ZH. Evolution, gene expression, and protein‒protein interaction analyses identify candidate CBL-CIPK signalling networks implicated in stress responses to cold and bacterial infection in citrus. BMC PLANT BIOLOGY 2022; 22:420. [PMID: 36045357 PMCID: PMC9434895 DOI: 10.1186/s12870-022-03809-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Cold is a major abiotic stress and Huanglongbing and citrus canker disease are two devastating bacterial diseases for citrus. The Ca2+-CBL-CIPK network is known to regulate different types of stress signalling in plants. How do CBL-CIPK signalling networks function in response to cold and infection by CLas or Xcc in citrus? RESULTS Eight calcineurin B-like proteins (CBLs) and seventeen CBL-interacting protein kinases (CIPKs) were identified from the cold-tolerant satsuma mandarin 'Guijing2501' (Citrus. unshiu) and CLas/Xcc-sensitive sweet orange (C. sinensis). Phylogenetic analysis revealed that both CBL and CIPK family members in citrus were classified into an ancient and a recent clade according to their conserved domain characteristics and/or intron/exon structures. Genome duplication analysis suggested that both tandem and segmental duplications contributed to the amplification of the CBL and CIPK gene families in citrus under intense purifying selection, and the duplication events only existed in the recent clades. Expression comparison of the duplicated gene pairs indicated that the duplicated CBL and CIPK genes underwent functional differentiation. Further expression analysis identified that CBL1, 5, 6, and 8 and CIPK2, 8, 12, 15, 16, and 17 were significantly regulated by multiple stresses, including cold, Xcc infection and/or CLas infection, in citrus, whereas CBL2/7 and CIPK1/4/5/11/13/14 were independently highly regulated by cold and CIPK3 was uniquely responsive to Xcc infection. The combination analyses of targeted Y2H assay and expression analysis revealed that CBL6-CIPK8 was the common signalling network in response to cold and Xcc infection, while CBL6/CBL8-CIPK14 was uniquely responsive to cold in citrus. Further stable transformation and cold tolerance assay indicated that overexpression of CuCIPK16 enhanced the cold tolerance of transgenic Arabidopsis with higher POD activity and lower MDA content. CONCLUSIONS In this study, evolution, gene expression and protein‒protein interaction analyses of citrus CBLs and CIPKs were comprehensively conducted over a genome-wide range. The results will facilitate future functional characterization of individual citrus CBLs and CIPKs under specific stresses and provide clues for the clarification of cold tolerance and disease susceptibility mechanisms in corresponding citrus cultivars.
Collapse
Affiliation(s)
- Cui Xiao
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Hu Zhang
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Fan Xie
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070 China
| | - Zhi-Yong Pan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070 China
| | - Wen-Ming Qiu
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Zhu Tong
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Ze-Qiong Wang
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Xiu-Juan He
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Yu-Hai Xu
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Zhong-Hai Sun
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| |
Collapse
|
41
|
Zuo C, Zhang L, Yan X, Guo X, Zhang Q, Li S, Li Y, Xu W, Song X, Wang J, Yuan M. Evolutionary analysis and functional characterization of BZR1 gene family in celery revealed their conserved roles in brassinosteroid signaling. BMC Genomics 2022; 23:568. [PMID: 35941544 PMCID: PMC9361572 DOI: 10.1186/s12864-022-08810-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Brassinosteroids (BRs) are a group of essential steroid hormones involved in diverse developmental and physiological processes in plants. The Brassinazole-resistant 1 (BZR1) transcription factors are key components of BR signaling and integrate a wide range of internal and environmental signals to coordinate plant development, growth, and resistance to abiotic and biotic stresses. Although the BZR1 family has been fully studied in Arabidopsis, celery BZR1 family genes remain largely unknown. RESULTS Nine BZR1 genes were identified in the celery genome, and categorized into four classes based on phylogenetic and gene structure analyses. All the BZR1 proteins shared a typical bHLH (basic helix-loop-helix) domain that is highly conserved across the whole family in Arabidopsis, grape, lettuce, ginseng, and three Apiaceae species. Both duplications and losses of the BZR1 gene family were detected during the shaping of the celery genome. Whole-genome duplication (WGD) or segmental duplication contributed 55.56% of the BZR1 genes expansion, and the γ as well as celery-ω polyploidization events made a considerable contribution to the production of the BZR1 paralogs in celery. Four AgBZR1 members (AgBZR1.1, AgBZR1.3, AgBZR1.5, and AgBZR1.9), which were localized both in the nucleus and cytoplasm, exhibit transcription activation activity in yeast. AgBZR1.5 overexpression transgenic plants in Arabidopsis showed curled leaves with bent, long petioles and constitutive BR-responsive phenotypes. Furthermore, the AgBZR1 genes possessed divergent expression patterns with some overlaps in roots, petioles, and leaves, suggesting an extensive involvement of AgBZR1s in the developmental processes in celery with both functional redundancy and divergence. CONCLUSIONS Our results not only demonstrated that AgBZR1 played a conserved role in BR signaling but also suggested that AgBZR1 might be extensively involved in plant developmental processes in celery. The findings lay the foundation for further study on the molecular mechanism of the AgBZR1s in regulating the agronomic traits and environmental adaptation of celery, and provide insights for future BR-related genetic breeding of celery and other Apiaceae crops.
Collapse
Affiliation(s)
- Chunliu Zuo
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Lan Zhang
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Xinyue Yan
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Xinyue Guo
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Qing Zhang
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Songyang Li
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Yanling Li
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Wen Xu
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Xiaoming Song
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Jinpeng Wang
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Min Yuan
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China.
| |
Collapse
|
42
|
Wang QH, Zhang J, Liu Y, Jia Y, Jiao YN, Xu B, Chen ZD. Diversity, phylogeny, and adaptation of bryophytes: insights from genomic and transcriptomic data. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4306-4322. [PMID: 35437589 DOI: 10.1093/jxb/erac127] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Bryophytes including mosses, liverworts, and hornworts are among the earliest land plants, and occupy a crucial phylogenetic position to aid in the understanding of plant terrestrialization. Despite their small size and simple structure, bryophytes are the second largest group of extant land plants. They live ubiquitously in various habitats and are highly diversified, with adaptive strategies to modern ecosystems on Earth. More and more genomes and transcriptomes have been assembled to address fundamental questions in plant biology. Here, we review recent advances in bryophytes associated with diversity, phylogeny, and ecological adaptation. Phylogenomic studies have provided increasing supports for the monophyly of bryophytes, with hornworts sister to the Setaphyta clade including liverworts and mosses. Further comparative genomic analyses revealed that multiple whole-genome duplications might have contributed to the species richness and morphological diversity in mosses. We highlight that the biological changes through gene gain or neofunctionalization that primarily evolved in bryophytes have facilitated the adaptation to early land environments; among the strategies to adapt to modern ecosystems in bryophytes, desiccation tolerance is the most remarkable. More genomic information for bryophytes would shed light on key mechanisms for the ecological success of these 'dwarfs' in the plant kingdom.
Collapse
Affiliation(s)
- Qing-Hua Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jian Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yang Liu
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, 518004, China
| | - Yu Jia
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yuan-Nian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Bo Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Zhi-Duan Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
43
|
Genome-Wide Identification of the Salvia miltiorrhiza SmCIPK Gene Family and Revealing the Salt Resistance Characteristic of SmCIPK13. Int J Mol Sci 2022; 23:ijms23126861. [PMID: 35743301 PMCID: PMC9224336 DOI: 10.3390/ijms23126861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/05/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
Members of the CIPK (CBL-interacting protein kinases) gene family play important roles in calcium (Ca2+) signaling pathway-regulated plant resistance to abiotic stresses. Salvia miltiorrhiza, which is widely planted and grown in complex and diverse environments, is mainly focused on the transcriptional regulation of enzyme genes related to the biosynthesis of its bioactive components. However, the excavation of the genes related to the resistance of S.miltiorrhiza and the involved signaling pathways have not been deeply studied. In this study, 20 SmCIPK genes were identified and classified into two families and five subfamilies by biochemical means. Sequence characteristics and conserved motif analysis revealed the conservation and difference of SmCIPK protein in plants. Expression pattern analysis showed that SmCIPKs were mainly expressed in flowers and roots, and more than 90% of gene expression was induced by SA (salicylic acid), and MeJA (methyl jasmonate). Furthermore, the expression level of SmCIPK13 could be significantly increased after stress treatment with NaCl. SmCIPK13 expression in yeast reduces sensitivity to salt, while overexpression of it in Arabidopsis has the same effect and was localized in the cytoplasm, cell membrane and nucleus. In conclusion, the identification of the SmCIPK gene family and the functional characterization of the SmCIPK13 gene provides the basis for clarification of key genes in the Ca2+ signaling pathway and abiotic stress in S.miltiorrhiza.
Collapse
|
44
|
Li J, Zou X, Chen G, Meng Y, Ma Q, Chen Q, Wang Z, Li F. Potential Roles of 1-Aminocyclopropane-1-carboxylic Acid Synthase Genes in the Response of Gossypium Species to Abiotic Stress by Genome-Wide Identification and Expression Analysis. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11111524. [PMID: 35684296 PMCID: PMC9183111 DOI: 10.3390/plants11111524] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/23/2022] [Accepted: 06/02/2022] [Indexed: 06/12/2023]
Abstract
Ethylene plays a pivotal role in plant stress resistance and 1-aminocyclopropane-1-carboxylic acid synthase (ACS) is the rate-limiting enzyme in ethylene biosynthesis. Upland cotton (Gossypium hirsutum L.) is the most important natural fiber crop, but the function of ACS in response to abiotic stress has rarely been reported in this plant. We identified 18 GaACS, 18 GrACS, and 35 GhACS genes in Gossypiumarboreum, Gossypium raimondii and Gossypiumhirsutum, respectively, that were classified as types I, II, III, or IV. Collinearity analysis showed that the GhACS genes were expanded from diploid cotton by the whole-genome-duplication. Multiple alignments showed that the C-terminals of the GhACS proteins were conserved, whereas the N-terminals of GhACS10 and GhACS12 were different from the N-terminals of AtACS10 and AtACS12, probably diverging during evolution. Most type II ACS genes were hardly expressed, whereas GhACS10/GhACS12 were expressed in many tissues and in response to abiotic stress; for example, they were highly and hardly expressed at the early stages of cold and heat exposure, respectively. The GhACS genes showed different expression profiles in response to cold, heat, drought, and salt stress by quantitative PCR analysis, which indicate the potential roles of them when encountering the various adverse conditions, and provide insights into GhACS functions in cotton’s adaptation to abiotic stress.
Collapse
Affiliation(s)
- Jie Li
- Xinjiang Research Base, State Key Laboratory of Cotton Biology, Xinjiang Agricultural University, Urumqi 830052, China; (J.L.); (Q.C.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.Z.); (Z.W.)
| | - Xianyan Zou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.Z.); (Z.W.)
| | - Guoquan Chen
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China;
| | - Yongming Meng
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China;
| | - Qi Ma
- Key Laboratory of China Northwestern Inland Region, Ministry of Agriculture and Rural Affairs, Cotton Research Institute of Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832003, China;
| | - Quanjia Chen
- Xinjiang Research Base, State Key Laboratory of Cotton Biology, Xinjiang Agricultural University, Urumqi 830052, China; (J.L.); (Q.C.)
| | - Zhi Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.Z.); (Z.W.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China;
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.Z.); (Z.W.)
| |
Collapse
|
45
|
Zhu K, Fan P, Liu H, Tan P, Ma W, Mo Z, Zhao J, Chu G, Peng F. Insight into the CBL and CIPK gene families in pecan (Carya illinoinensis): identification, evolution and expression patterns in drought response. BMC PLANT BIOLOGY 2022; 22:221. [PMID: 35484502 PMCID: PMC9047272 DOI: 10.1186/s12870-022-03601-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/18/2022] [Indexed: 05/05/2023]
Abstract
BACKGROUND Calcium (Ca2+) serves as a ubiquitous second messenger and plays a pivotal role in signal transduction. Calcineurin B-like proteins (CBLs) are plant-specific Ca2+ sensors that interact with CBL-interacting protein kinases (CIPKs) to transmit Ca2+ signals. CBL-CIPK complexes have been reported to play pivotal roles in plant development and response to drought stress; however, limited information is available about the CBL and CIPK genes in pecan, an important nut crop. RESULTS In the present study, a total of 9 CBL and 30 CIPK genes were identified from the pecan genome and divided into four and five clades based on phylogeny, respectively. Gene structure and distribution of conserved sequence motif analysis suggested that family members in the same clade commonly exhibited similar exon-intron structures and motif compositions. The segmental duplication events contributed largely to the expansion of pecan CBL and CIPK gene families, and Ka/Ks values revealed that all of them experienced strong negative selection. Phylogenetic analysis of CIPK proteins from 14 plant species revealed that CIPKs in the intron-poor clade originated in seed plants. Tissue-specific expression profiles of CiCBLs and CiCIPKs were analysed, presenting functional diversity. Expression profiles derived from RNA-Seq revealed distinct expression patterns of CiCBLs and CiCIPKs under drought treatment in pecan. Moreover, coexpression network analysis helped to elucidate the relationships between these genes and identify potential candidates for the regulation of drought response, which were verified by qRT-PCR analysis. CONCLUSIONS The characterization and analysis of CBL and CIPK genes in pecan genome could provide a basis for further functional analysis of CiCBLs and CiCIPKs in the drought stress response of pecan.
Collapse
Affiliation(s)
- Kaikai Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 Jiangsu China
| | - Pinghua Fan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 Jiangsu China
| | - Hui Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| | - Pengpeng Tan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 Jiangsu China
| | - Wenjuan Ma
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 Jiangsu China
| | - Zhenghai Mo
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014 Jiangsu China
| | - Juan Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 Jiangsu China
| | - Guolin Chu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 Jiangsu China
| | - Fangren Peng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 Jiangsu China
| |
Collapse
|
46
|
Wang X, Kang W, Wu F, Miao J, Shi S. Comparative Transcriptome Analysis Reveals New Insight of Alfalfa ( Medicago sativa L.) Cultivars in Response to Abrupt Freezing Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:798118. [PMID: 35432429 PMCID: PMC9010130 DOI: 10.3389/fpls.2022.798118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/14/2022] [Indexed: 05/04/2023]
Abstract
Freezing stress is a major limiting environmental factor that affects the productivity and distribution of alfalfa (Medicago sativa L.). There is growing evidence that enhancing freezing tolerance through resistance-related genes is one of the most efficient methods for solving this problem, whereas little is known about the complex regulatory mechanism of freezing stress. Herein, we performed transcriptome profiling of the leaves from two genotypes of alfalfa, freezing tolerance "Gannong NO.3" and freezing-sensitive "WL326GZ" exposure to -10°C to investigate which resistance-related genes could improve the freezing tolerance. Our results showed that a total of 121,366 genes were identified, and there were 7,245 differentially expressed genes (DEGs) between the control and treated leaves. In particular, the DEGs in "Gannong NO.3" were mainly enriched in the metabolic pathways and biosynthesis of secondary metabolites, and most of the DEGs in "WL326GZ" were enriched in the metabolic pathways, the biosynthesis of secondary metabolites, and plant-pathogen interactions. Moreover, the weighted gene co-expression network analysis (WGCNA) showed that ATP-binding cassette (ABC) C subfamily genes were strongly impacted by freezing stress, indicating that ABCC8 and ABCC3 are critical to develop the freezing tolerance. Moreover, our data revealed that numerous Ca2+ signal transduction and CBF/DREB1 pathway-related genes were severely impacted by the freezing resistance, which is believed to alleviate the damage caused by freezing stress. Altogether, these findings contribute the comprehensive information to understand the molecular mechanism of alfalfa adaptation to freezing stress and further provide functional candidate genes that can adapt to abiotic stress.
Collapse
Affiliation(s)
| | | | | | - Jiamin Miao
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
| | - Shangli Shi
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
47
|
Wang X, Yan X, Hu Y, Qin L, Wang D, Jia J, Jiao Y. A recent burst of gene duplications in Triticeae. PLANT COMMUNICATIONS 2022; 3:100268. [PMID: 35529951 PMCID: PMC9073319 DOI: 10.1016/j.xplc.2021.100268] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 11/09/2021] [Accepted: 12/09/2021] [Indexed: 06/13/2023]
Abstract
Gene duplication provides raw genetic materials for evolution and potentially novel genes for crop improvement. The two seminal genomic studies of Aegilops tauschii both mentioned the large number of genes independently duplicated in recent years, but the duplication mechanism and the evolutionary significance of these gene duplicates have not yet been investigated. Here, we found that a recent burst of gene duplications (hereafter abbreviated as the RBGD) has probably occurred in all sequenced Triticeae species. Further investigations of the characteristics of the gene duplicates and their flanking sequences suggested that transposable element (TE) activity may have been involved in generating the RBGD. We also characterized the duplication timing, retention pattern, diversification, and expression of the duplicates following the evolution of Triticeae. Multiple subgenome-specific comparisons of the duplicated gene pairs clearly supported extensive differential regulation and related functional diversity among such pairs in the three subgenomes of bread wheat. Moreover, several duplicated genes from the RBGD have evolved into key factors that influence important agronomic traits of wheat. Our results provide insights into a unique source of gene duplicates in Triticeae species, which has increased the gene dosage together with the two polyploidization events in the evolutionary history of wheat.
Collapse
Affiliation(s)
- Xiaoliang Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueqing Yan
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiheng Hu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liuyu Qin
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daowen Wang
- College of Agronomy, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Jizeng Jia
- College of Agronomy, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, Henan 450046, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuannian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
48
|
Fang Y, Jiang J, Hou X, Guo J, Li X, Zhao D, Xie X. Plant protein-coding gene families: Their origin and evolution. FRONTIERS IN PLANT SCIENCE 2022; 13:995746. [PMID: 36160967 PMCID: PMC9490259 DOI: 10.3389/fpls.2022.995746] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/15/2022] [Indexed: 05/13/2023]
Abstract
Steady advances in genome sequencing methods have provided valuable insights into the evolutionary processes of several gene families in plants. At the core of plant biodiversity is an extensive genetic diversity with functional divergence and expansion of genes across gene families, representing unique phenomena. The evolution of gene families underpins the evolutionary history and development of plants and is the subject of this review. We discuss the implications of the molecular evolution of gene families in plants, as well as the potential contributions, challenges, and strategies associated with investigating phenotypic alterations to explain the origin of plants and their tolerance to environmental stresses.
Collapse
Affiliation(s)
- Yuanpeng Fang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
| | - Junmei Jiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Xiaolong Hou
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
| | - Jiyuan Guo
- Department of Resources and Environment, Moutai Institute, Zunyi, China
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Degang Zhao
- Key Laboratory of Mountain Plant Resources Protection and Germplasm Innovation, Ministry of Education, College of Life Sciences, Institute of Agricultural Bioengineering, Guizhou University, Guiyang, China
- Guizhou Conservation Technology Application Engineering Research Center, Guizhou Institute of Prataculture/Guizhou Institute of Biotechnology/Guizhou Academy of Agricultural Sciences, Guiyang, China
- *Correspondence: Degang Zhao,
| | - Xin Xie
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
- Guizhou Conservation Technology Application Engineering Research Center, Guizhou Institute of Prataculture/Guizhou Institute of Biotechnology/Guizhou Academy of Agricultural Sciences, Guiyang, China
- Xin Xie,
| |
Collapse
|
49
|
Tong T, Li Q, Jiang W, Chen G, Xue D, Deng F, Zeng F, Chen ZH. Molecular Evolution of Calcium Signaling and Transport in Plant Adaptation to Abiotic Stress. Int J Mol Sci 2021; 22:12308. [PMID: 34830190 PMCID: PMC8618852 DOI: 10.3390/ijms222212308] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/06/2021] [Accepted: 11/12/2021] [Indexed: 01/16/2023] Open
Abstract
Adaptation to unfavorable abiotic stresses is one of the key processes in the evolution of plants. Calcium (Ca2+) signaling is characterized by the spatiotemporal pattern of Ca2+ distribution and the activities of multi-domain proteins in integrating environmental stimuli and cellular responses, which are crucial early events in abiotic stress responses in plants. However, a comprehensive summary and explanation for evolutionary and functional synergies in Ca2+ signaling remains elusive in green plants. We review mechanisms of Ca2+ membrane transporters and intracellular Ca2+ sensors with evolutionary imprinting and structural clues. These may provide molecular and bioinformatics insights for the functional analysis of some non-model species in the evolutionarily important green plant lineages. We summarize the chronological order, spatial location, and characteristics of Ca2+ functional proteins. Furthermore, we highlight the integral functions of calcium-signaling components in various nodes of the Ca2+ signaling pathway through conserved or variant evolutionary processes. These ultimately bridge the Ca2+ cascade reactions into regulatory networks, particularly in the hormonal signaling pathways. In summary, this review provides new perspectives towards a better understanding of the evolution, interaction and integration of Ca2+ signaling components in green plants, which is likely to benefit future research in agriculture, evolutionary biology, ecology and the environment.
Collapse
Affiliation(s)
- Tao Tong
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434022, China; (T.T.); (W.J.); (F.D.)
| | - Qi Li
- Central Laboratory, Zhejiang Academy of Agricultural Science, Hangzhou 310030, China; (Q.L.); (G.C.)
| | - Wei Jiang
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434022, China; (T.T.); (W.J.); (F.D.)
| | - Guang Chen
- Central Laboratory, Zhejiang Academy of Agricultural Science, Hangzhou 310030, China; (Q.L.); (G.C.)
| | - Dawei Xue
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China;
| | - Fenglin Deng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434022, China; (T.T.); (W.J.); (F.D.)
| | - Fanrong Zeng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434022, China; (T.T.); (W.J.); (F.D.)
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith 2751, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith 2751, Australia
| |
Collapse
|
50
|
Pu X, Dong X, Li Q, Chen Z, Liu L. An update on the function and regulation of methylerythritol phosphate and mevalonate pathways and their evolutionary dynamics. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1211-1226. [PMID: 33538411 DOI: 10.1111/jipb.13076] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/02/2021] [Indexed: 05/29/2023]
Abstract
Isoprenoids are among the largest and most chemically diverse classes of organic compounds in nature and are involved in the processes of photosynthesis, respiration, growth, development, and plant responses to stress. The basic building block units for isoprenoid synthesis-isopentenyl diphosphate and its isomer dimethylallyl diphosphate-are generated by the mevalonate (MVA) and methylerythritol phosphate (MEP) pathways. Here, we summarize recent advances on the roles of the MEP and MVA pathways in plant growth, development and stress responses, and attempt to define the underlying gene networks that orchestrate the MEP and MVA pathways in response to developmental or environmental cues. Through phylogenomic analysis, we also provide a new perspective on the evolution of the plant isoprenoid pathway. We conclude that the presence of the MVA pathway in plants may be associated with the transition from aquatic to subaerial and terrestrial environments, as lineages for its core components are absent in green algae. The emergence of the MVA pathway has acted as a key evolutionary event in plants that facilitated land colonization and subsequent embryo development, as well as adaptation to new and varied environments.
Collapse
Affiliation(s)
- Xiaojun Pu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 434200, China
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, the Chinese Academy of Sciences, and Yunnan Key Laboratory for Wild Plant Resources, Kunming, 650201, China
| | - Xiumei Dong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 434200, China
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, the Chinese Academy of Sciences, and Yunnan Key Laboratory for Wild Plant Resources, Kunming, 650201, China
| | - Qing Li
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, the Chinese Academy of Sciences, and Yunnan Key Laboratory for Wild Plant Resources, Kunming, 650201, China
- School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Zexi Chen
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, the Chinese Academy of Sciences, and Yunnan Key Laboratory for Wild Plant Resources, Kunming, 650201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 434200, China
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, the Chinese Academy of Sciences, and Yunnan Key Laboratory for Wild Plant Resources, Kunming, 650201, China
| |
Collapse
|