1
|
Kressuk JM, Collins JT, Gardiner ES, Bataineh MM, Babst BA. Willow oak (Quercus phellos) seedling roots continue respiration and growth during fall and winter in a soil temperature-dependent manner. TREE PHYSIOLOGY 2025; 45:tpae154. [PMID: 39658210 DOI: 10.1093/treephys/tpae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 11/08/2024] [Accepted: 12/07/2024] [Indexed: 12/12/2024]
Abstract
Many greentree reservoirs (GTRs) and other bottomland hardwood forests have experienced a shift in tree species composition away from desired red oaks (Quercus section Lobatae), like willow oak (Quercus phellos L.), due to flood stress mortality. Trees experience flood stress primarily through their root system, so it is surmised that GTR flooding may be occurring before root systems have reduced their activity entering the winter. Because soils buffer seasonal temperature changes, we hypothesized that root activity would respond to the belowground environment rather than the aboveground environment. To investigate whether cold soil temperatures reduce root growth and respiration in willow oak during winter, soil temperatures for container seedlings were either held at 15 °C or transitioned to 10 or 5 °C in the late fall. Root elongation was measured in seedlings grown in rhizotron pots by analyzing repeated images of roots during the fall-winter transition period. Root respiration, measured at soil temperature levels, was used as an indicator of root energetic expenses. Also, root respiration was measured at 15 and 5 °C to determine Q10 values to test for acclimation to low soil temperature. Root elongation continued in winter, even after stem elongation stopped in soil temperatures ≥5 °C, a condition usually met throughout most of the native range of willow oak. Both root elongation and respiration rates decreased in cooler soil temperatures. However, Q10 values were unaffected by soil temperature treatment. These findings do not support root dormancy or cold acclimation of root respiratory activity but indicate that temperature directly and reversibly affected root respiration rate. Root elongation may have been dependent on photoassimilates produced by green leaves that were retained through much of winter. Overall, our results suggest that willow oak roots may continue a high rate of growth throughout winter, unlike most temperate species measured to date, and that soil temperature has a major influence over their growth and respiration rates.
Collapse
Affiliation(s)
- Jonathan M Kressuk
- College of Forestry Agriculture and Natural Resources, University of Arkansas at Monticello, 110 University Court, Monticello, AR 71656, USA
- College of Natural Resources, North Carolina State University, Raleigh, NC, USA
| | - James T Collins
- College of Forestry Agriculture and Natural Resources, University of Arkansas at Monticello, 110 University Court, Monticello, AR 71656, USA
- Arkansas Game and Fish Commission, Jonesboro, AR, USA
| | - Emile S Gardiner
- Center for Bottomland Hardwoods Research, Southern Research Station, USDA Forest Service, 432 Stoneville Road, Stoneville, MS 38776, USA
| | - Mohammad M Bataineh
- College of Forestry Agriculture and Natural Resources, University of Arkansas at Monticello, 110 University Court, Monticello, AR 71656, USA
- Arkansas Forest Resource Center, Division of Agriculture, University of Arkansas System, 110 University Court, Monticello, AR 71656, USA
- Center for Forest Health and Disturbance, Southern Research Station, USDA Forest Service, Pineville, LA, USA
| | - Benjamin A Babst
- College of Forestry Agriculture and Natural Resources, University of Arkansas at Monticello, 110 University Court, Monticello, AR 71656, USA
- Arkansas Forest Resource Center, Division of Agriculture, University of Arkansas System, 110 University Court, Monticello, AR 71656, USA
| |
Collapse
|
2
|
Ramachandran P, Ramirez A, Dinneny JR. Rooting for survival: how plants tackle a challenging environment through a diversity of root forms and functions. PLANT PHYSIOLOGY 2024; 197:kiae586. [PMID: 39657006 DOI: 10.1093/plphys/kiae586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/23/2024] [Indexed: 12/17/2024]
Abstract
The current climate crisis has global impacts and will affect the physiology of plants across every continent. Ensuring resilience of our agricultural and natural ecosystems to the environmental stresses imposed by climate change will require molecular insight into the adaptations employed by a diverse array of plants. However, most current studies continue to focus on a limited set of model species or crops. Root systems are particularly understudied even though their functions in water and nutrient uptake are likely pivotal for plant stress resilience and sustainable agriculture. In this review, we highlight anatomical adaptations in roots that enable plant survival in different ecological niches. We then present the current state of knowledge for the molecular underpinnings of these adaptations. Finally, we identify areas where future research using a biodiversity approach can fill knowledge gaps necessary for the development of climate-resilient crops of the future.
Collapse
Affiliation(s)
- Prashanth Ramachandran
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Andrea Ramirez
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - José R Dinneny
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
3
|
Zhao J, Chen Y, Tao Q, Schreiber L, Suresh K, Frei M, Alam MS, Li B, Zhou Y, Baer M, Hochholdinger F, Wang C, Yu P. Enhanced CO 2 Coordinates the Spatial Recruitment of Diazotrophs in Rice Via Root Development. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39526402 DOI: 10.1111/pce.15259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Understanding the reciprocal interaction between root development and coadapted beneficial microbes in response to elevated CO2 (eCO2) will facilitate the identification of nutrient-efficient cultivars for sustainable agriculture. Here, systematic morphological, anatomical, chemical and gene expression assays performed under low-nitrogen conditions revealed that eCO2 drove the development of the endodermal barrier with respect to L-/S-shaped lateral roots (LRs) in rice. Next, we applied metabolome and endodermal-cell-specific RNA sequencing and showed that rice adapts to eCO2 by spatially recruiting diazotrophs via flavonoid secretion in L-shaped LRs. Using the rice Casparian strip mutant Oscasp1-1, we confirmed that reduced lignin deposition selectively recruits the diazotrophic family of Oxalobacteraceae to confer tolerance to low nitrogen availability.
Collapse
Affiliation(s)
- Junwen Zhao
- College of Resources, Sichuan Agricultural University, Chengdu, China
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
- Institute of Agricultural Engineering, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Yuting Chen
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Qi Tao
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Lukas Schreiber
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Kiran Suresh
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Michael Frei
- Department of Agronomy and Crop Physiology, Institute for Agronomy and Plant Breeding I, Justus Liebig University Giessen, Giessen, Germany
| | - Muhammad Shahedul Alam
- Department of Agronomy and Crop Physiology, Institute for Agronomy and Plant Breeding I, Justus Liebig University Giessen, Giessen, Germany
| | - Bing Li
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yaping Zhou
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Marcel Baer
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Frank Hochholdinger
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Changquan Wang
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Peng Yu
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
4
|
Ye Z, Mu Y, Van Duzen S, Ryser P. Root and shoot phenology, architecture, and organ properties: an integrated trait network among 44 herbaceous wetland species. THE NEW PHYTOLOGIST 2024; 244:436-450. [PMID: 38600040 DOI: 10.1111/nph.19747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/24/2024] [Indexed: 04/12/2024]
Abstract
Integrating traits across above- and belowground organs offers comprehensive insights into plant ecology, but their various functions also increase model complexity. This study aimed to illuminate the interspecific pattern of whole-plant trait correlations through a network lens, including a detailed analysis of the root system. Using a network algorithm that allows individual traits to belong to multiple modules, we characterize interrelations among 19 traits, spanning both shoot and root phenology, architecture, morphology, and tissue properties of 44 species, mostly herbaceous monocots from Northern Ontario wetlands, grown in a common garden. The resulting trait network shows three distinct yet partially overlapping modules. Two major trait modules indicate constraints of plant size and form, and resource economics, respectively. These modules highlight the interdependence between shoot size, root architecture and porosity, and a shoot-root coordination in phenology and dry-matter content. A third module depicts leaf biomechanical adaptations specific to wetland graminoids. All three modules overlap on shoot height, suggesting multifaceted constraints of plant stature. In the network, individual-level traits showed significantly higher centrality than tissue-level traits do, demonstrating a hierarchical trait integration. The presented whole-plant, integrated network suggests that trait covariation is essentially function-driven rather than organ-specific.
Collapse
Affiliation(s)
- Ziqi Ye
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON, P3E 2C6, Canada
| | - Yanmei Mu
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Shianne Van Duzen
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON, P3E 2C6, Canada
| | - Peter Ryser
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON, P3E 2C6, Canada
| |
Collapse
|
5
|
Mleziva AD, Ngumbi EN. Comparative analysis of defensive secondary metabolites in wild teosinte and cultivated maize under flooding and herbivory stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14216. [PMID: 38366721 DOI: 10.1111/ppl.14216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/26/2024] [Accepted: 02/03/2024] [Indexed: 02/18/2024]
Abstract
Climate change is driving an alarming increase in the frequency and intensity of abiotic and biotic stress factors, negatively impacting plant development and agricultural productivity. To survive, plants respond by inducing changes in below and aboveground metabolism with concomitant alterations in defensive secondary metabolites. While plant responses to the isolated stresses of flooding and insect herbivory have been extensively studied, much less is known about their response in combination. Wild relatives of cultivated plants with robust stress tolerance traits provide an excellent system for comparing how diverse plant species respond to combinatorial stress, and provide insight into potential germplasms for stress-tolerant hybrids. In this study, we compared the below and aboveground changes in the secondary metabolites of maize (Zea mays) and a flood-tolerant wild relative Nicaraguan teosinte (Zea nicaraguensis) in response to flooding, insect herbivory, and their combination. Root tissue was analyzed for changes in belowground metabolism. Leaf total phenolic content and headspace volatile organic compound emission were analyzed for changes in aboveground secondary metabolism. Results revealed significant differences in the root metabolome profiles of teosinte and maize. Notably, the accumulation of the flavonoids apigenin, naringenin, and luteolin during flooding and herbivory differentiated teosinte from maize. Aboveground, terpenes, including trans-α-bergamotene and (E)-4,8-dimethylnona-1,3,7-triene, shaped compositional differences in their volatile profiles between flooding, herbivory, and their combination. Taken together, these results suggest teosinte may be more tolerant than maize due to dynamic metabolic changes during flooding and herbivory that help relieve stress and influence plant-insect interactions.
Collapse
Affiliation(s)
- Aaron D Mleziva
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Esther N Ngumbi
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
6
|
Tamaru S, Goto K, Sakagami JI. Spatial O 2 Profile in Coix lacryma-jobi and Sorghum bicolor along the Gas Diffusion Pathway under Waterlogging Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 13:3. [PMID: 38202311 PMCID: PMC10780499 DOI: 10.3390/plants13010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024]
Abstract
While internal aeration in plants is critical for adaptation to waterlogging, there is a gap in understanding the differences in oxygen diffusion gradients from shoots to roots between hypoxia-tolerant and -sensitive species. This study aims to elucidate the differences in tissue oxygen concentration at various locations on the shoot and root between a hypoxia-tolerant species and a -sensitive species using a microneedle sensor that allows for spatial oxygen profiling. Job's tears, a hypoxia-tolerant species, and sorghum, a hypoxia-susceptible species, were tested. Plants aged 10 days were acclimated to a hypoxic agar solution for 12 days. Oxygen was profiled near the root tip, root base, root shoot junction, stem, and leaf. An anatomical analysis was also performed on the roots used for the O2 profile. The oxygen partial pressure (pO2) values at the root base and tip of sorghum were significantly lower than that of the root of Job's tears. At the base of the root of Job's tears, pO2 rapidly decreased from the root cortex to the surface, indicating a function to inhibit oxygen leakage. No significant differences in pO2 between the species were identified in the shoot part. The root cortex to stele ratio was significantly higher from the root tip to the base in Job's tears compared to sorghum. The pO2 gradient began to differ greatly at the root shoot junction and root base longitudinally, and between the cortex and stele radially, between Job's tears and sorghum. Differences in the root oxygen retention capacity and the cortex to stele ratio are considered to be related to differences in pO2.
Collapse
Affiliation(s)
- Shotaro Tamaru
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima City 890-0065, Japan; (S.T.)
| | - Keita Goto
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima City 890-0065, Japan; (S.T.)
| | - Jun-Ichi Sakagami
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima City 890-0065, Japan; (S.T.)
- Faculty of Agriculture, Kagoshima University, Kagoshima City 890-0065, Japan
| |
Collapse
|
7
|
Herzog M, Pellegrini E, Pedersen O. A meta-analysis of plant tissue O 2 dynamics. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:519-531. [PMID: 37160400 DOI: 10.1071/fp22294] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/13/2023] [Indexed: 05/11/2023]
Abstract
Adequate tissue O2 supply is crucial for plant function. We aimed to identify the environmental conditions and plant characteristics that affect plant tissue O2 status. We extracted data and performed meta-analysis on >1500 published tissue O2 measurements from 112 species. Tissue O2 status ranged from anoxic conditions in roots to >53kPa in submerged, photosynthesising shoots. Using information-theoretic model selection, we identified 'submergence', 'light', 'tissue type' as well as 'light×submergence' interaction as significant drivers of tissue O2 status. Median O2 status were especially low (Solanum tuberosum ) tubers and root nodules. Mean shoot and root O2 were ~25% higher in light than in dark when shoots had atmospheric contact. However, light showed a significant interaction with submergence on plant O2 , with a submergence-induced 44% increase in light, compared with a 42% decline in dark, relative to plants with atmospheric contact. During submergence, ambient water column O2 and shoot tissue O2 correlated stronger in darkness than in light conditions. Although use of miniaturised Clark-type O2 electrodes has enhanced understanding of plant O2 dynamics, application of non-invasive methods in plants is still lacking behind its widespread use in mammalian tissues.
Collapse
Affiliation(s)
- Max Herzog
- The Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Universitetsparken 4, 3rd Floor, Copenhagen 2100, Denmark
| | - Elisa Pellegrini
- The Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Universitetsparken 4, 3rd Floor, Copenhagen 2100, Denmark; and Department of Food, Agricultural, Environmental and Animal Sciences, University of Udine, via delle Scienze 206, Udine, Italy
| | - Ole Pedersen
- The Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Universitetsparken 4, 3rd Floor, Copenhagen 2100, Denmark; and School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| |
Collapse
|
8
|
Jiménez JDLC, Pedersen O. Mitigation of Greenhouse Gas Emissions from Rice via Manipulation of Key Root Traits. RICE (NEW YORK, N.Y.) 2023; 16:24. [PMID: 37160782 PMCID: PMC10169991 DOI: 10.1186/s12284-023-00638-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/18/2023] [Indexed: 05/11/2023]
Abstract
Rice production worldwide represents a major anthropogenic source of greenhouse gas emissions. Nitrogen fertilization and irrigation practices have been fundamental to achieve optimal rice yields, but these agricultural practices together with by-products from plants and microorganisms, facilitate the production, accumulation and venting of vast amounts of CO2, CH4 and N2O. We propose that the development of elite rice varieties should target root traits enabling an effective internal O2 diffusion, via enlarged aerenchyma channels. Moreover, gas tight barriers impeding radial O2 loss in basal parts of the roots will increase O2 diffusion to the root apex where molecular O2 diffuses into the rhizosphere. These developments result in plants with roots penetrating deeper into the flooded anoxic soils, producing higher volumes of oxic conditions in the interface between roots and rhizosphere. Molecular O2 in these zones promotes CH4 oxidation into CO2 by methanotrophs and nitrification (conversion of NH4+ into NO3-), reducing greenhouse gas production and at the same time improving plant nutrition. Moreover, roots with tight barriers to radial O2 loss will have restricted diffusional entry of CH4 produced in the anoxic parts of the rhizosphere and therefore plant-mediated diffusion will be reduced. In this review, we describe how the exploitation of these key root traits in rice can potentially reduce greenhouse gas emissions from paddy fields.
Collapse
Affiliation(s)
- Juan de la Cruz Jiménez
- Department of Biology, University of Copenhagen, Universitetsparken 4, 3rd floor, Copenhagen, 2100, Denmark.
| | - Ole Pedersen
- Department of Biology, University of Copenhagen, Universitetsparken 4, 3rd floor, Copenhagen, 2100, Denmark.
- School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.
| |
Collapse
|
9
|
Eckardt NA, Ainsworth EA, Bahuguna RN, Broadley MR, Busch W, Carpita NC, Castrillo G, Chory J, DeHaan LR, Duarte CM, Henry A, Jagadish SVK, Langdale JA, Leakey ADB, Liao JC, Lu KJ, McCann MC, McKay JK, Odeny DA, Jorge de Oliveira E, Platten JD, Rabbi I, Rim EY, Ronald PC, Salt DE, Shigenaga AM, Wang E, Wolfe M, Zhang X. Climate change challenges, plant science solutions. THE PLANT CELL 2023; 35:24-66. [PMID: 36222573 PMCID: PMC9806663 DOI: 10.1093/plcell/koac303] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Climate change is a defining challenge of the 21st century, and this decade is a critical time for action to mitigate the worst effects on human populations and ecosystems. Plant science can play an important role in developing crops with enhanced resilience to harsh conditions (e.g. heat, drought, salt stress, flooding, disease outbreaks) and engineering efficient carbon-capturing and carbon-sequestering plants. Here, we present examples of research being conducted in these areas and discuss challenges and open questions as a call to action for the plant science community.
Collapse
Affiliation(s)
- Nancy A Eckardt
- Senior Features Editor, The Plant Cell, American Society of Plant Biologists, USA
| | - Elizabeth A Ainsworth
- USDA ARS Global Change and Photosynthesis Research Unit, Urbana, Illinois 61801, USA
| | - Rajeev N Bahuguna
- Centre for Advanced Studies on Climate Change, Dr Rajendra Prasad Central Agricultural University, Samastipur 848125, Bihar, India
| | - Martin R Broadley
- School of Biosciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Wolfgang Busch
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Nicholas C Carpita
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA
| | - Gabriel Castrillo
- School of Biosciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Future Food Beacon of Excellence, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Joanne Chory
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | - Carlos M Duarte
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Amelia Henry
- International Rice Research Institute, Rice Breeding Innovations Platform, Los Baños, Laguna 4031, Philippines
| | - S V Krishna Jagadish
- Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas 79410, USA
| | - Jane A Langdale
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - Andrew D B Leakey
- Department of Plant Biology, Department of Crop Sciences, and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Illinois 61801, USA
| | - James C Liao
- Institute of Biological Chemistry, Academia Sinica, Taipei 11528, Taiwan
| | - Kuan-Jen Lu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11528, Taiwan
| | - Maureen C McCann
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA
| | - John K McKay
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Damaris A Odeny
- The International Crops Research Institute for the Semi-Arid Tropics–Eastern and Southern Africa, Gigiri 39063-00623, Nairobi, Kenya
| | | | - J Damien Platten
- International Rice Research Institute, Rice Breeding Innovations Platform, Los Baños, Laguna 4031, Philippines
| | - Ismail Rabbi
- International Institute of Tropical Agriculture (IITA), PMB 5320 Ibadan, Oyo, Nigeria
| | - Ellen Youngsoo Rim
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616, USA
| | - Pamela C Ronald
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616, USA
- Innovative Genomics Institute, Berkeley, California 94704, USA
| | - David E Salt
- School of Biosciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Future Food Beacon of Excellence, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Alexandra M Shigenaga
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616, USA
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Marnin Wolfe
- Auburn University, Dept. of Crop Soil and Environmental Sciences, College of Agriculture, Auburn, Alabama 36849, USA
| | - Xiaowei Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
10
|
Waterlogging Stress Induces Antioxidant Defense Responses, Aerenchyma Formation and Alters Metabolisms of Banana Plants. PLANTS 2022; 11:plants11152052. [PMID: 35956531 PMCID: PMC9370344 DOI: 10.3390/plants11152052] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/28/2022]
Abstract
Flooding caused or exacerbated by climate change has threatened plant growth and food production worldwide. The lack of knowledge on how crops respond and adapt to flooding stress imposes a major barrier to enhancing their productivity. Hence, understanding the flooding-responsive mechanisms of crops is indispensable for developing new flooding-tolerant varieties. Here, we examined the banana (Musa acuminata cv. Berangan) responses to soil waterlogging for 1, 3, 5, 7, 14, and 24 days. After waterlogging stress, banana root samples were analyzed for their molecular and biochemical changes. We found that waterlogging treatment induced the formation of adventitious roots and aerenchyma with conspicuous gas spaces. In addition, the antioxidant activities, hydrogen peroxide, and malondialdehyde contents of the waterlogged bananas increased in response to waterlogging stress. To assess the initial response of bananas toward waterlogging stress, we analyzed the transcriptome changes of banana roots. A total of 3508 unigenes were differentially expressed under 1-day waterlogging conditions. These unigenes comprise abiotic stress-related transcription factors, such as ethylene response factors, basic helix-loop-helix, myeloblastosis, plant signal transduction, and carbohydrate metabolisms. The findings of the study provide insight into the complex molecular events of bananas in response to waterlogging stress, which could later help develop waterlogging resilient crops for the future climate.
Collapse
|
11
|
Wang X, Komatsu S. The Role of Phytohormones in Plant Response to Flooding. Int J Mol Sci 2022; 23:6383. [PMID: 35742828 PMCID: PMC9223812 DOI: 10.3390/ijms23126383] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 02/07/2023] Open
Abstract
Climatic variations influence the morphological, physiological, biological, and biochemical states of plants. Plant responses to abiotic stress include biochemical adjustments, regulation of proteins, molecular mechanisms, and alteration of post-translational modifications, as well as signal transduction. Among the various abiotic stresses, flooding stress adversely affects the growth of plants, including various economically important crops. Biochemical and biological techniques, including proteomic techniques, provide a thorough understanding of the molecular mechanisms during flooding conditions. In particular, plants can cope with flooding conditions by embracing an orchestrated set of morphological adaptations and physiological adjustments that are regulated by an elaborate hormonal signaling network. With the help of these findings, the main objective is to identify plant responses to flooding and utilize that information for the development of flood-tolerant plants. This review provides an insight into the role of phytohormones in plant response mechanisms to flooding stress, as well as different mitigation strategies that can be successfully administered to improve plant growth during stress exposure. Ultimately, this review will expedite marker-assisted genetic enhancement studies in crops for developing high-yield lines or varieties with flood tolerance.
Collapse
Affiliation(s)
- Xin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China;
| | - Setsuko Komatsu
- Faculty of Environmental and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| |
Collapse
|
12
|
Ding LN, Liu R, Li T, Li M, Liu XY, Wang WJ, Yu YK, Cao J, Tan XL. Physiological and comparative transcriptome analyses reveal the mechanisms underlying waterlogging tolerance in a rapeseed anthocyanin-more mutant. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:55. [PMID: 35596185 PMCID: PMC9123723 DOI: 10.1186/s13068-022-02155-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/11/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Rapeseed (Brassica napus) is the second largest oil crop worldwide. It is widely used in food, energy production and the chemical industry, as well as being an ornamental. Consequently, it has a large economic value and developmental potential. Waterlogging is an important abiotic stress that restricts plant growth and development. However, little is known about the molecular mechanisms underlying waterlogging tolerance in B. napus. RESULTS In the present study, the physiological changes and transcriptomes of germination-stage rapeseed in response to waterlogging stress were investigated in the B. napus cultivar 'Zhongshuang 11' (ZS11) and its anthocyanin-more (am) mutant, which was identified in our previous study. The mutant showed stronger waterlogging tolerance compared with ZS11, and waterlogging stress significantly increased anthocyanin, soluble sugar and malondialdehyde contents and decreased chlorophyll contents in the mutant after 12 days of waterlogging. An RNA-seq analysis identified 1370 and 2336 differently expressed genes (DEGs) responding to waterlogging stress in ZS11 and am, respectively. An enrichment analysis revealed that the DEGs in ZS11 were predominately involved in carbohydrate metabolism, whereas those in the am mutant were particularly enriched in plant hormone signal transduction and response to endogenous stimulation. In total, 299 DEGs were identified as anthocyanin biosynthesis-related structural genes (24) and regulatory genes encoding transcription factors (275), which may explain the increased anthocyanin content in the am mutant. A total of 110 genes clustered in the plant hormone signal transduction pathway were also identified as DEGs, including 70 involved in auxin and ethylene signal transduction that were significantly changed in the mutant. Furthermore, the expression levels of 16 DEGs with putative roles in anthocyanin accumulation and biotic/abiotic stress responses were validated by quantitative real-time PCR as being consistent with the transcriptome profiles. CONCLUSION This study provides new insights into the molecular mechanisms of increased anthocyanin contents in rapeseed in response to waterlogging stress, which should be useful for reducing the damage caused by waterlogging stress and for further breeding new rapeseed varieties with high waterlogging tolerance.
Collapse
Affiliation(s)
- Li-Na Ding
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Rui Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Teng Li
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ming Li
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xiao-Yan Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Wei-Jie Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Yan-Kun Yu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Jun Cao
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xiao-Li Tan
- School of Life Sciences, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
13
|
G. Viana W, Scharwies JD, Dinneny JR. Deconstructing the root system of grasses through an exploration of development, anatomy and function. PLANT, CELL & ENVIRONMENT 2022; 45:602-619. [PMID: 35092025 PMCID: PMC9303260 DOI: 10.1111/pce.14270] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 05/16/2023]
Abstract
Well-adapted root systems allow plants to grow under resource-limiting environmental conditions and are important determinants of yield in agricultural systems. Important staple crops such as rice and maize belong to the family of grasses, which develop a complex root system that consists of an embryonic root system that emerges from the seed, and a postembryonic nodal root system that emerges from basal regions of the shoot after germination. While early seedling establishment is dependent on the embryonic root system, the nodal root system, and its associated branches, gains in importance as the plant matures and will ultimately constitute the bulk of below-ground growth. In this review, we aim to give an overview of the different root types that develop in cereal grass root systems, explore the different physiological roles they play by defining their anatomical features, and outline the genetic networks that control their development. Through this deconstructed view of grass root system function, we provide a parts-list of elements that function together in an integrated root system to promote survival and crop productivity.
Collapse
Affiliation(s)
| | | | - José R. Dinneny
- Department of BiologyStanford UniversityStanfordCaliforniaUSA
| |
Collapse
|
14
|
Abstract
Drought and waterlogging seriously affect the growth of plants and are considered severe constraints on agricultural and forestry productivity; their frequency and degree have increased over time due to global climate change. The morphology, photosynthetic activity, antioxidant enzyme system and hormone levels of plants could change in response to water stress. The mechanisms of these changes are introduced in this review, along with research on key transcription factors and genes. Both drought and waterlogging stress similarly impact leaf morphology (such as wilting and crimping) and inhibit photosynthesis. The former affects the absorption and transportation mechanisms of plants, and the lack of water and nutrients inhibits the formation of chlorophyll, which leads to reduced photosynthetic capacity. Constitutive overexpression of 9-cis-epoxydioxygenase (NCED) and acetaldehyde dehydrogenase (ALDH), key enzymes in abscisic acid (ABA) biosynthesis, increases drought resistance. The latter forces leaf stomata to close in response to chemical signals, which are produced by the roots and transferred aboveground, affecting the absorption capacity of CO2, and reducing photosynthetic substrates. The root system produces adventitious roots and forms aerenchymal to adapt the stresses. Ethylene (ETH) is the main response hormone of plants to waterlogging stress, and is a member of the ERFVII subfamily, which includes response factors involved in hypoxia-induced gene expression, and responds to energy expenditure through anaerobic respiration. There are two potential adaptation mechanisms of plants (“static” or “escape”) through ETH-mediated gibberellin (GA) dynamic equilibrium to waterlogging stress in the present studies. Plant signal transduction pathways, after receiving stress stimulus signals as well as the regulatory mechanism of the subsequent synthesis of pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH) enzymes to produce ethanol under a hypoxic environment caused by waterlogging, should be considered. This review provides a theoretical basis for plants to improve water stress tolerance and water-resistant breeding.
Collapse
|
15
|
Karlova R, Boer D, Hayes S, Testerink C. Root plasticity under abiotic stress. PLANT PHYSIOLOGY 2021; 187:1057-1070. [PMID: 34734279 PMCID: PMC8566202 DOI: 10.1093/plphys/kiab392] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/25/2021] [Indexed: 05/08/2023]
Abstract
Abiotic stresses increasingly threaten existing ecological and agricultural systems across the globe. Plant roots perceive these stresses in the soil and adapt their architecture accordingly. This review provides insights into recent discoveries showing the importance of root system architecture (RSA) and plasticity for the survival and development of plants under heat, cold, drought, salt, and flooding stress. In addition, we review the molecular regulation and hormonal pathways involved in controlling RSA plasticity, main root growth, branching and lateral root growth, root hair development, and formation of adventitious roots. Several stresses affect root anatomy by causing aerenchyma formation, lignin and suberin deposition, and Casparian strip modulation. Roots can also actively grow toward favorable soil conditions and avoid environments detrimental to their development. Recent advances in understanding the cellular mechanisms behind these different root tropisms are discussed. Understanding root plasticity will be instrumental for the development of crops that are resilient in the face of abiotic stress.
Collapse
Affiliation(s)
- Rumyana Karlova
- Laboratory of Plant Physiology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Damian Boer
- Laboratory of Plant Physiology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Scott Hayes
- Laboratory of Plant Physiology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Christa Testerink
- Laboratory of Plant Physiology, Wageningen University, 6700 AA Wageningen, The Netherlands
- Author for communication:
| |
Collapse
|
16
|
Jiménez JDLC, Pellegrini E, Pedersen O, Nakazono M. Radial Oxygen Loss from Plant Roots—Methods. PLANTS 2021; 10:plants10112322. [PMID: 34834684 PMCID: PMC8622749 DOI: 10.3390/plants10112322] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022]
Abstract
In flooded soils, an efficient internal aeration system is essential for root growth and plant survival. Roots of many wetland species form barriers to restrict radial O2 loss (ROL) to the rhizosphere. The formation of such barriers greatly enhances longitudinal O2 diffusion from basal parts towards the root tip, and the barrier also impedes the entry of phytotoxic compounds produced in flooded soils into the root. Nevertheless, ROL from roots is an important source of O2 for rhizosphere oxygenation and the oxidation of toxic compounds. In this paper, we review the methodological aspects for the most widely used techniques for the qualitative visualization and quantitative determination of ROL from roots. Detailed methodological approaches, practical set-ups and examples of ROL from roots with or without barriers to ROL are included. This paper provides practical knowledge relevant to several disciplines, including plant–soil interactions, biogeochemistry and eco-physiological aspects of roots and soil biota.
Collapse
Affiliation(s)
- Juan de la Cruz Jiménez
- Laboratory of Plant Genetics and Breeding, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan;
- Correspondence:
| | - Elisa Pellegrini
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy;
- The Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Universitetsparken 4, DK2100 Copenhagen, Denmark;
| | - Ole Pedersen
- The Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Universitetsparken 4, DK2100 Copenhagen, Denmark;
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Perth, WA 6009, Australia
| | - Mikio Nakazono
- Laboratory of Plant Genetics and Breeding, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan;
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
17
|
Iversen CM, McCormack ML. Filling gaps in our understanding of belowground plant traits across the world: an introduction to a Virtual Issue. THE NEW PHYTOLOGIST 2021; 231:2097-2103. [PMID: 34405907 DOI: 10.1111/nph.17326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Colleen M Iversen
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37830-6301, USA
| | - M Luke McCormack
- Center for Tree Science, The Morton Arboretum, Liesle, IL, 60515, USA
| |
Collapse
|
18
|
Jiménez JDLC, Clode PL, Signorelli S, Veneklaas EJ, Colmer TD, Kotula L. The barrier to radial oxygen loss impedes the apoplastic entry of iron into the roots of Urochloa humidicola. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3279-3293. [PMID: 33543268 DOI: 10.1093/jxb/erab043] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 02/01/2021] [Indexed: 05/25/2023]
Abstract
Lack of O2 and high concentrations of iron (Fe) and manganese (Mn) commonly occur in waterlogged soils. The development of a barrier to impede radial O2 loss (ROL) is a key trait improving internal O2 transport and waterlogging tolerance in plants. We evaluated the ability of the barrier to ROL to impede the entry of excess Fe into the roots of the waterlogging-tolerant grass Urochloa humidicola. Plants were grown in aerated or stagnant deoxygenated nutrient solution with 5 µM or 900 µM Fe. Quantitative X-ray microanalysis was used to determine cell-specific Fe concentrations at two positions behind the root apex in relation to ROL and the formation of apoplastic barriers. At a mature zone of the root, Fe was 'excluded' at the exodermis where a suberized lamella was evident, a feature also associated with a strong barrier to ROL. In contrast, the potassium (K) concentration was similar in all root cells, indicating that K uptake was not affected by apoplastic barriers. The hypothesis that the formation of a tight barrier to ROL impedes the apoplastic entry of toxic concentrations of Fe into the mature zones of roots was supported by the significantly higher accumulation of Fe on the outer side of the exodermis.
Collapse
Affiliation(s)
- Juan de la Cruz Jiménez
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Peta L Clode
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA, Australia
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
| | - Santiago Signorelli
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, CP 12900 Montevideo, Uruguay
| | - Erik J Veneklaas
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- The Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Timothy D Colmer
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
- The Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Lukasz Kotula
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
- The Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
19
|
Mano Y, Nakazono M. Genetic regulation of root traits for soil flooding tolerance in genus Zea. BREEDING SCIENCE 2021; 71:30-39. [PMID: 33762874 PMCID: PMC7973494 DOI: 10.1270/jsbbs.20117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/11/2020] [Indexed: 05/16/2023]
Abstract
Flooding stress caused by excessive precipitation and poor drainage threatens upland crop production and food sustainability, so new upland crop cultivars are needed with greater tolerance to soil flooding (waterlogging). So far, however, there have been no reports of highly flooding-tolerant upland crop cultivars, including maize, because of the lack of flooding-tolerant germplasm and the presence of a large number of traits affecting flooding tolerance. To achieve the goal of breeding flooding-tolerant maize cultivars by overcoming these difficulties, we chose highly flooding-tolerant teosinte germplasm. These flooding-tolerance-related traits were separately assessed by establishing a method for the accurate evaluation of each one, followed by performing quantitative trait locus (QTL) analyses for each trait using maize × teosinte mapping populations, developing introgression lines (ILs) or near-isogenic lines (NILs) containing QTLs and pyramiding useful traits. We have identified QTLs for flooding-tolerance-related root traits, including the capacity to form aerenchyma, formation of radial oxygen loss barriers, tolerance to flooded reducing soil conditions, flooding-induced adventitious root formation and shallow root angle. In addition, we have developed several ILs and NILs with flooding-tolerance-related QTLs and are currently developing pyramided lines. These lines should be valuable for practical maize breeding programs focused on flooding tolerance.
Collapse
Affiliation(s)
- Yoshiro Mano
- Forage Crop Research Division, Institute of Livestock and Grassland Science, NARO, 768 Senbonmatsu, Nasushiobara, Tochigi 329-2793, Japan
| | - Mikio Nakazono
- Laboratory of Plant Genetics and Breeding, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8601, Japan
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
20
|
Ejiri M, Fukao T, Miyashita T, Shiono K. A barrier to radial oxygen loss helps the root system cope with waterlogging-induced hypoxia. BREEDING SCIENCE 2021; 71:40-50. [PMID: 33762875 PMCID: PMC7973497 DOI: 10.1270/jsbbs.20110] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/14/2020] [Indexed: 05/04/2023]
Abstract
Internal aeration is crucial for root growth under waterlogged conditions. Many wetland plants have a structural barrier that impedes oxygen leakage from the basal part of roots called a radial oxygen loss (ROL) barrier. ROL barriers reduce the loss of oxygen transported via the aerenchyma to the root tips, enabling long-distance oxygen transport for cell respiration at the root tip. Because the root tip does not have an ROL barrier, some of the transferred oxygen is released into the waterlogged soil, where it oxidizes and detoxifies toxic substances (e.g., sulfate and Fe2+) around the root tip. ROL barriers are located at the outer part of roots (OPRs). Their main component is thought to be suberin. Suberin deposits may block the entry of potentially toxic compounds in highly reduced soils. The amount of ROL from the roots depends on the strength of the ROL barrier, the length of the roots, and environmental conditions, which causes spatiotemporal changes in the root system's oxidization pattern. We summarize recent achievements in understanding how ROL barrier formation is regulated and discuss opportunities for breeding waterlogging-tolerant crops.
Collapse
Affiliation(s)
- Masato Ejiri
- Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuoka-Kenjojima, Eiheiji, Fukui 910-1195,
Japan
| | - Takeshi Fukao
- Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuoka-Kenjojima, Eiheiji, Fukui 910-1195,
Japan
| | - Tomoki Miyashita
- Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuoka-Kenjojima, Eiheiji, Fukui 910-1195,
Japan
| | - Katsuhiro Shiono
- Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuoka-Kenjojima, Eiheiji, Fukui 910-1195,
Japan
- Corresponding author (e-mail: )
| |
Collapse
|
21
|
Yamauchi T, Noshita K, Tsutsumi N. Climate-smart crops: key root anatomical traits that confer flooding tolerance. BREEDING SCIENCE 2021; 71:51-61. [PMID: 33762876 PMCID: PMC7973492 DOI: 10.1270/jsbbs.20119] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/14/2020] [Indexed: 05/05/2023]
Abstract
Plants require water, but a deficit or excess of water can negatively impact their growth and functioning. Soil flooding, in which root-zone is filled with excess water, restricts oxygen diffusion into the soil. Global climate change is increasing the risk of crop yield loss caused by flooding, and the development of flooding tolerant crops is urgently needed. Root anatomical traits are essential for plants to adapt to drought and flooding, as they determine the balance between the rates of water and oxygen transport. The stele contains xylem and the cortex contains aerenchyma (gas spaces), which respectively contribute to water uptake from the soil and oxygen supply to the roots; this implies that there is a trade-off between the ratio of cortex and stele sizes with respect to adaptation to drought or flooding. In this review, we analyze recent advances in the understanding of root anatomical traits that confer drought and/or flooding tolerance to plants and illustrate the trade-off between cortex and stele sizes. Moreover, we introduce the progress that has been made in modelling and fully automated analyses of root anatomical traits and discuss how key root anatomical traits can be used to improve crop tolerance to soil flooding.
Collapse
Affiliation(s)
- Takaki Yamauchi
- Japan Science and Technology Agency, PRESTO, Kawaguchi, Saitama 332-0012, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Koji Noshita
- Japan Science and Technology Agency, PRESTO, Kawaguchi, Saitama 332-0012, Japan
- Department of Biology, Kyushu University, Fukuoka, Fukuoka 819–0395, Japan
- Plant Frontier Research Center, Kyushu University, Fukuoka, Fukuoka 819–0395, Japan
| | - Nobuhiro Tsutsumi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| |
Collapse
|
22
|
Sasidharan R, Voesenek LACJ, Perata P. Plant performance and food security in a wetter world. THE NEW PHYTOLOGIST 2021; 229:5-7. [PMID: 33285019 DOI: 10.1111/nph.17067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Rashmi Sasidharan
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584 CH, the Netherlands
| | - Laurentius A C J Voesenek
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584 CH, the Netherlands
| | - Pierdomenico Perata
- The Plant Lab, Institute of Life Sciences, Scuola Superiore Sant'Anna, Via Giudiccioni 10, San Giuliano Terme, Pisa, 56010, Italy
| |
Collapse
|
23
|
Cheng H, Wu ML, Li CD, Sun FL, Sun CC, Wang YS. Dynamics of radial oxygen loss in mangroves subjected to waterlogging. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:684-690. [PMID: 32394359 DOI: 10.1007/s10646-020-02221-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
Tidal flooding can directly result in oxygen (O2) shortage, however the functions of root aeration in flooding tolerance and O2 dynamics within mangroves are still poorly understood. Thus, in this study, the correlations among waterlogging tolerance, root porosity and O2 movement within the plants were investigated using two mangrove species (Aegiceras corniculatum and Bruguiera gymnorrhiza) and a semi-mangrove Heritiera littoralis. Based on the present data, the species A. corniculatum and B. gymnorrhiza, which possessed higher root porosity, exhibited higher waterlogging tolerance, while H. littoralis is intolerant. Increased root porosity, leaf stoma, and total ROL were observed in the roots of A. corniculatum and B. gymnorrhiza growing in stagnant solution when compared to respective aerated controls. As for ROL spatial pattern along roots, external anaerobic condition could promote ROL from apical root regions but reduce ROL from basal roots, leading to a 'tighter barrier'. In summary, the present study indicated that the plants (e.g., A. corniculatum and B. gymnorrhiza) prioritized to ensure O2 diffusion towards root tips under waterlogging by increasing aerenchyma formation and reducing O2 leakage at basal root regions.
Collapse
Affiliation(s)
- Hao Cheng
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen, 518121, China
| | - Mei-Lin Wu
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen, 518121, China
| | - Chang-Da Li
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Fu-Lin Sun
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen, 518121, China
- Marine and fisheries Development Research Center, Dongtou District, Wenzhou, 325009, China
| | - Cui-Ci Sun
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen, 518121, China
- Marine and fisheries Development Research Center, Dongtou District, Wenzhou, 325009, China
| | - You-Shao Wang
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
- Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen, 518121, China.
- Marine and fisheries Development Research Center, Dongtou District, Wenzhou, 325009, China.
| |
Collapse
|
24
|
Pedersen O, Revsbech NP, Shabala S. Microsensors in plant biology: in vivo visualization of inorganic analytes with high spatial and/or temporal resolution. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3941-3954. [PMID: 32253437 DOI: 10.1093/jxb/eraa175] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
This Expert View provides an update on the recent development of new microsensors, and briefly summarizes some novel applications of existing microsensors, in plant biology research. Two major topics are covered: (i) sensors for gaseous analytes (O2, CO2, and H2S); and (ii) those for measuring concentrations and fluxes of ions (macro- and micronutrients and environmental pollutants such as heavy metals). We show that application of such microsensors may significantly advance understanding of mechanisms of plant-environmental interaction and regulation of plant developmental and adaptive responses under adverse environmental conditions via non-destructive visualization of key analytes with high spatial and/or temporal resolution. Examples included cover a broad range of environmental situations including hypoxia, salinity, and heavy metal toxicity. We highlight the power of combining microsensor technology with other advanced biophysical (patch-clamp, voltage-clamp, and single-cell pressure probe), imaging (MRI and fluorescent dyes), and genetic techniques and approaches. We conclude that future progress in the field may be achieved by applying existing microsensors for important signalling molecules such as NO and H2O2, by improving selectivity of existing microsensors for some key analytes (e.g. Na, Mg, and Zn), and by developing new microsensors for P.
Collapse
Affiliation(s)
- Ole Pedersen
- Department of Biology, University of Copenhagen, Denmark
- School of Agriculture and Environment, The University of Western Australia, Australia
| | - Niels Peter Revsbech
- Aarhus University Centre for Water Technology, Department of Bioscience, Aarhus University, Denmark
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, China
| |
Collapse
|