1
|
Wu BS, Addo PW, MacPherson S, Orsat V, Lefsrud M. Updates to McCree's photosynthetically active radiation curve - 55 years later. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 262:113069. [PMID: 39631308 DOI: 10.1016/j.jphotobiol.2024.113069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Our interpretation of photosynthetically active radiation in plants has evolved since the 1970s with new data explaining the underlying mechanisms. To update McCree's founding work, this study explored the spectral response of photosynthesis in young tomato (Solanum lycopersicum cv. Beefsteak) and lettuce (Lactuca sativa cv. Breen) plants using a narrow-spectrum light unit and a portable photosynthesis system equipped with a whole plant chamber. Highly resolved spectral photosynthesis curves using 1-nm increments at 10 nm full width at half maximum (FWHM) were generated. Results show that the lowest quantum yields were observed at 450 nm and 660 nm, two wavelengths commonly used to improve photosynthesis in research. Different trends and amplified peaks were observed among the spectral quantum yield curves of tomato and lettuce plants and those of earlier studies with red and blue light. An opposing phenomenon was observed, where blue light is more efficient than red light. This is based on the narrower wavelength data acquired in both experimental plant species. Findings represent the most detailed and highly resolved spectral photosynthesis and quantum yield curves to date using experimental model plants (tomato and lettuce).
Collapse
Affiliation(s)
- Bo-Sen Wu
- Department of Bioresource Engineering, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Philip Wiredu Addo
- Department of Bioresource Engineering, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Sarah MacPherson
- Department of Bioresource Engineering, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Valérie Orsat
- Department of Bioresource Engineering, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Mark Lefsrud
- Department of Bioresource Engineering, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada.
| |
Collapse
|
2
|
Wang X, Ma WT, Sun YR, Xu YN, Li L, Miao G, Tcherkez G, Gong XY. The response of mesophyll conductance to short-term CO 2 variation is related to stomatal conductance. PLANT, CELL & ENVIRONMENT 2024; 47:3590-3604. [PMID: 39031544 DOI: 10.1111/pce.15006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 07/22/2024]
Abstract
The response of mesophyll conductance (gm) to CO2 plays a key role in photosynthesis and ecosystem carbon cycles under climate change. Despite numerous studies, there is still debate about how gm responds to short-term CO2 variations. Here we used multiple methods and looked at the relationship between stomatal conductance to CO2 (gsc) and gm to address this aspect. We measured chlorophyll fluorescence parameters and online carbon isotope discrimination (Δ) at different CO2 mole fractions in sunflower (Helianthus annuus L.), cowpea (Vigna unguiculata L.), and wheat (Triticum aestivum L.) leaves. The variable J and Δ based methods showed that gm decreased with an increase in CO2 mole fraction, and so did stomatal conductance. There were linear relationships between gm and gsc across CO2 mole fractions. gm obtained from A-Ci curve fitting method was higher than that from the variable J method and was not representative of gm under the growth CO2 concentration. gm could be estimated by empirical models analogous to the Ball-Berry model and the USO model for stomatal conductance. Our results suggest that gm and gsc respond in a coordinated manner to short-term variations in CO2, providing new insight into the role of gm in photosynthesis modelling.
Collapse
Affiliation(s)
- Xuming Wang
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, College of Geographical Sciences, Fuzhou, China
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), Fujian Normal University, Fuzhou, China
- Fujian Provincial Key Laboratory for Plant Eco-physiology, Fuzhou, China
| | - Wei Ting Ma
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, College of Geographical Sciences, Fuzhou, China
| | - Yan Ran Sun
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, College of Geographical Sciences, Fuzhou, China
| | - Yi Ning Xu
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, College of Geographical Sciences, Fuzhou, China
| | - Lei Li
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, College of Geographical Sciences, Fuzhou, China
| | - Guofang Miao
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, College of Geographical Sciences, Fuzhou, China
| | - Guillaume Tcherkez
- Institut de Recherche en Horticulture et Semences, Université d'Angers, INRAe, Beaucouzé, France
- Research, School of Biology, ANU College of Sciences, Australian National University, Canberra, Acton, Australia
| | - Xiao Ying Gong
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, College of Geographical Sciences, Fuzhou, China
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), Fujian Normal University, Fuzhou, China
- Fujian Provincial Key Laboratory for Plant Eco-physiology, Fuzhou, China
| |
Collapse
|
3
|
Teng D, Gong X, He X, Wang J, Lv G, Wang J, Yang X. Impact of meteorological variability on diurnal and seasonal net ecosystem productivity in a desert riparian forest ecosystem. FRONTIERS IN PLANT SCIENCE 2024; 15:1332192. [PMID: 38699537 PMCID: PMC11063279 DOI: 10.3389/fpls.2024.1332192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/03/2024] [Indexed: 05/05/2024]
Abstract
The desert riparian forests are susceptible to meteorological changes and contribute significantly to the net ecosystem productivity (NEP) variations of arid ecosystems. However, the responsive patterns of their NEP variations to the meteorological variabilities remain inadequately comprehended. To address this gap, we utilized seven years of eddy covariance flux measurements in a representative desert riparian forest to investigate the NEP variations and its response to changing meteorological factors across diverse temporal scales. The results revealed significant periodic variations in half-hourly NEP, with dominant cycles spanning from five hours to one year, with a principal oscillation period of one day. Key meteorological factors including global solar radiation (Rg), relative humidity (RH), air temperature (Ta), soil temperature (Ts), and vapor pressure deficit (VPD) exhibited synchronization with NEP on daily scales. This synchronization, coupled with the observed one-day periodic NEP variations, provides robust evidence supporting the existence of a circadian rhythm in the ecosystem carbon exchange of desert riparian forest regulated by meteorological conditions. Seasonal patterns were significant in the impact of Rg phase, Ta diurnal amplitude, and VPD diurnal amplitude on NEP diurnal amplitude and phase. The NEP diurnal amplitude significantly, directly, and positively affected daily NEP in both the dormant and growing seasons, whereas its phase yielded significant negative effects (P< 0.05). The averages, amplitudes, and phases of diurnal meteorological conditions controlled the daily NEP by regulating NEP diurnal amplitude and phase. These findings provide evidence that the variability in circadian rhythms, caused by the increase in diurnal Ta and VPD, significantly impact the daily NEP at an ecosystem scale. This study enriches our comprehension of the meteorological mechanisms governing diurnal and seasonal carbon uptake dynamics within desert riparian forests, providing fresh insights into the direct and indirect roles of climate change in shaping patterns of ecosystem carbon exchange.
Collapse
Affiliation(s)
- Dexiong Teng
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Xuewei Gong
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Xuemin He
- College of Ecology and Environment, Xinjiang University, Urumqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, China
| | - Jingzhe Wang
- School of Artificial Intelligence, Shenzhen Polytechnic University, Shenzhen, China
| | - Guanghui Lv
- College of Ecology and Environment, Xinjiang University, Urumqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, China
| | - Jinlong Wang
- College of Ecology and Environment, Xinjiang University, Urumqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, China
| | - Xiaodong Yang
- Department of Geography & Spatial Information Technology, Ningbo University, Ningbo, China
| |
Collapse
|
4
|
Li X, Chen X, Li J, Wu P, Hu D, Zhong Q, Cheng D. Respiration in light of evergreen and deciduous woody species and its links to the leaf economic spectrum. TREE PHYSIOLOGY 2024; 44:tpad129. [PMID: 37847610 DOI: 10.1093/treephys/tpad129] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023]
Abstract
Leaf respiration in the light (Rlight) is crucial for understanding the net CO2 exchange of individual plants and entire ecosystems. However, Rlight is poorly quantified and rarely discussed in the context of the leaf economic spectrum (LES), especially among woody species differing in plant functional types (PFTs) (e.g., evergreen vs. deciduous species). To address this gap in our knowledge, Rlight, respiration in the dark (Rdark), light-saturated photosynthetic rates (Asat), leaf dry mass per unit area (LMA), leaf nitrogen (N) and phosphorus (P) concentrations, and maximum carboxylation (Vcmax) and electron transport rates (Jmax) of 54 representative subtropical woody evergreen and deciduous species were measured. With the exception of LMA, the parameters quantified in this study were significantly higher in deciduous species than in evergreen species. The degree of light inhibition did not significantly differ between evergreen (52%) and deciduous (50%) species. Rlight was significantly correlated with LES traits such as Asat, Rdark, LMA, N and P. The Rlight vs. Rdark and N relationships shared common slopes between evergreen and deciduous species, but significantly differed in their y-intercepts, in which the rates of Rlight were slower or faster for any given Rdark or N in deciduous species, respectively. A model for Rlight based on three traits (i.e., Rdark, LMA and P) had an explanatory power of 84.9%. These results show that there is a link between Rlight and the LES, and highlight that PFTs is an important factor in affecting Rlight and the relationships of Rlight with Rdark and N. Thus, this study provides information that can improve the next generation of terrestrial biosphere models (TBMs).
Collapse
Affiliation(s)
- Xueqin Li
- Institute of Geography, Fujian Normal University, No.8 Shangsan Road, Cangshan District, Fuzhou, Fujian 350007, China
| | - Xiaoping Chen
- Institute of Geography, Fujian Normal University, No.8 Shangsan Road, Cangshan District, Fuzhou, Fujian 350007, China
- Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, No. 8 Shangsan Road, Cangshan District, Fuzhou, Fujian 350007, China
| | - Jinlong Li
- Institute of Geography, Fujian Normal University, No.8 Shangsan Road, Cangshan District, Fuzhou, Fujian 350007, China
| | - Panpan Wu
- Institute of Geography, Fujian Normal University, No.8 Shangsan Road, Cangshan District, Fuzhou, Fujian 350007, China
| | - Dandan Hu
- Institute of Geography, Fujian Normal University, No.8 Shangsan Road, Cangshan District, Fuzhou, Fujian 350007, China
| | - Quanlin Zhong
- Institute of Geography, Fujian Normal University, No.8 Shangsan Road, Cangshan District, Fuzhou, Fujian 350007, China
| | - Dongliang Cheng
- Institute of Geography, Fujian Normal University, No.8 Shangsan Road, Cangshan District, Fuzhou, Fujian 350007, China
- Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, No. 8 Shangsan Road, Cangshan District, Fuzhou, Fujian 350007, China
| |
Collapse
|
5
|
Zheng DM, Wang X, Liu Q, Sun YR, Ma WT, Li L, Yang Z, Tcherkez G, Adams MA, Yang Y, Gong XY. Temperature responses of leaf respiration in light and darkness are similar and modulated by leaf development. THE NEW PHYTOLOGIST 2024; 241:1435-1446. [PMID: 37997699 DOI: 10.1111/nph.19428] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023]
Abstract
Our ability to predict temperature responses of leaf respiration in light and darkness (RL and RDk ) is essential to models of global carbon dynamics. While many models rely on constant thermal sensitivity (characterized by Q10 ), uncertainty remains as to whether Q10 of RL and RDk are actually similar. We measured short-term temperature responses of RL and RDk in immature and mature leaves of two evergreen tree species, Castanopsis carlesii and Ormosia henry in an open field. RL was estimated by the Kok method, the Yin method and a newly developed Kok-iterCc method. When estimated by the Yin and Kok-iterCc methods, RL and RDk had similar Q10 (c. 2.5). The Kok method overestimated both Q10 and the light inhibition of respiration. RL /RDk was not affected by leaf temperature. Acclimation of respiration in summer was associated with a decline in basal respiration but not in Q10 in both species, which was related to changes in leaf nitrogen content between seasons. Q10 of RL and RDk in mature leaves were 40% higher than in immature leaves. Our results suggest similar Q10 values can be used to model RL and RDk while leaf development-associated changes in Q10 require special consideration in future respiration models.
Collapse
Affiliation(s)
- Ding Ming Zheng
- Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, College of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Xuming Wang
- Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, College of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, China
- Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming, 365000, China
- Fujian Provincial Key Laboratory for Plant Eco-Physiology, Fuzhou, 350117, China
| | - Qi Liu
- Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, College of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Yan Ran Sun
- Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, College of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Wei Ting Ma
- Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, College of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Lei Li
- Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, College of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Zhijie Yang
- Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, College of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, China
- Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming, 365000, China
| | - Guillaume Tcherkez
- Research School of Biology, ANU College of Medicine, Biology and Environment, Australian National University, Canberra, ACT, 0200, Australia
- Institut de Recherche en Horticulture et Semences, INRAe, Université d'Angers, 42 rue Georges Morel, 49070, Beaucouzé, France
| | - Mark A Adams
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, VIC, 3122, Australia
| | - Yusheng Yang
- Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, College of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, China
- Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming, 365000, China
| | - Xiao Ying Gong
- Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, College of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, China
- Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming, 365000, China
- Fujian Provincial Key Laboratory for Plant Eco-Physiology, Fuzhou, 350117, China
| |
Collapse
|
6
|
Yin X, Amthor JS. Estimating leaf day respiration from conventional gas exchange measurements. THE NEW PHYTOLOGIST 2024; 241:52-58. [PMID: 37858976 DOI: 10.1111/nph.19330] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023]
Abstract
Leaf day respiration (Rd ) strongly influences carbon-use efficiencies of whole plants and the global terrestrial biosphere. It has long been thought that Rd is slower than respiration in the dark at a given temperature, but measuring Rd by gas exchange remains a challenge because leaves in the light are also photosynthesizing. The Kok method and the Laisk method are widely used to estimate Rd . We highlight theoretical limitations of these popular methods, and recent progress toward their improvement by using additional information from chlorophyll fluorescence and by accounting for the photosynthetic reassimilation of respired CO2 . The latest evidence for daytime CO2 and energy release from the oxidative pentose phosphate pathway in chloroplasts appears to be important to understanding Rd .
Collapse
Affiliation(s)
- Xinyou Yin
- Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University & Research, PO Box 430, 6700 AK, Wageningen, the Netherlands
| | - Jeffrey S Amthor
- Center for Ecosystem Science and Society, Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| |
Collapse
|
7
|
Bansal S, Creed IF, Tangen BA, Bridgham SD, Desai AR, Krauss KW, Neubauer SC, Noe GB, Rosenberry DO, Trettin C, Wickland KP, Allen ST, Arias-Ortiz A, Armitage AR, Baldocchi D, Banerjee K, Bastviken D, Berg P, Bogard MJ, Chow AT, Conner WH, Craft C, Creamer C, DelSontro T, Duberstein JA, Eagle M, Fennessy MS, Finkelstein SA, Göckede M, Grunwald S, Halabisky M, Herbert E, Jahangir MMR, Johnson OF, Jones MC, Kelleway JJ, Knox S, Kroeger KD, Kuehn KA, Lobb D, Loder AL, Ma S, Maher DT, McNicol G, Meier J, Middleton BA, Mills C, Mistry P, Mitra A, Mobilian C, Nahlik AM, Newman S, O’Connell JL, Oikawa P, van der Burg MP, Schutte CA, Song C, Stagg CL, Turner J, Vargas R, Waldrop MP, Wallin MB, Wang ZA, Ward EJ, Willard DA, Yarwood S, Zhu X. Practical Guide to Measuring Wetland Carbon Pools and Fluxes. WETLANDS (WILMINGTON, N.C.) 2023; 43:105. [PMID: 38037553 PMCID: PMC10684704 DOI: 10.1007/s13157-023-01722-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/24/2023] [Indexed: 12/02/2023]
Abstract
Wetlands cover a small portion of the world, but have disproportionate influence on global carbon (C) sequestration, carbon dioxide and methane emissions, and aquatic C fluxes. However, the underlying biogeochemical processes that affect wetland C pools and fluxes are complex and dynamic, making measurements of wetland C challenging. Over decades of research, many observational, experimental, and analytical approaches have been developed to understand and quantify pools and fluxes of wetland C. Sampling approaches range in their representation of wetland C from short to long timeframes and local to landscape spatial scales. This review summarizes common and cutting-edge methodological approaches for quantifying wetland C pools and fluxes. We first define each of the major C pools and fluxes and provide rationale for their importance to wetland C dynamics. For each approach, we clarify what component of wetland C is measured and its spatial and temporal representativeness and constraints. We describe practical considerations for each approach, such as where and when an approach is typically used, who can conduct the measurements (expertise, training requirements), and how approaches are conducted, including considerations on equipment complexity and costs. Finally, we review key covariates and ancillary measurements that enhance the interpretation of findings and facilitate model development. The protocols that we describe to measure soil, water, vegetation, and gases are also relevant for related disciplines such as ecology. Improved quality and consistency of data collection and reporting across studies will help reduce global uncertainties and develop management strategies to use wetlands as nature-based climate solutions. Supplementary Information The online version contains supplementary material available at 10.1007/s13157-023-01722-2.
Collapse
Affiliation(s)
- Sheel Bansal
- U.S. Geological Survey, Northern Prairie Wildlife Research Center, Jamestown, ND USA
| | - Irena F. Creed
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON Canada
| | - Brian A. Tangen
- U.S. Geological Survey, Northern Prairie Wildlife Research Center, Jamestown, ND USA
| | - Scott D. Bridgham
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR USA
| | - Ankur R. Desai
- Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison, Madison, WI USA
| | - Ken W. Krauss
- U.S. Geological Survey, Wetland and Aquatic Research Center, Lafayette, LA USA
| | - Scott C. Neubauer
- Department of Biology, Virginia Commonwealth University, Richmond, VA USA
| | - Gregory B. Noe
- U.S. Geological Survey, Florence Bascom Geoscience Center, Reston, VA USA
| | | | - Carl Trettin
- U.S. Forest Service, Pacific Southwest Research Station, Davis, CA USA
| | - Kimberly P. Wickland
- U.S. Geological Survey, Geosciences and Environmental Change Science Center, Denver, CO USA
| | - Scott T. Allen
- Department of Natural Resources and Environmental Science, University of Nevada, Reno, Reno, NV USA
| | - Ariane Arias-Ortiz
- Ecosystem Science Division, Department of Environmental Science, Policy and Management, University of California, Berkeley, CA USA
| | - Anna R. Armitage
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX USA
| | - Dennis Baldocchi
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA USA
| | - Kakoli Banerjee
- Department of Biodiversity and Conservation of Natural Resources, Central University of Odisha, Koraput, Odisha India
| | - David Bastviken
- Department of Thematic Studies – Environmental Change, Linköping University, Linköping, Sweden
| | - Peter Berg
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA USA
| | - Matthew J. Bogard
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB Canada
| | - Alex T. Chow
- Earth and Environmental Sciences Programme, The Chinese University of Hong Kong, Shatin, Hong Kong SAR China
| | - William H. Conner
- Baruch Institute of Coastal Ecology and Forest Science, Clemson University, Georgetown, SC USA
| | - Christopher Craft
- O’Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN USA
| | - Courtney Creamer
- U.S. Geological Survey, Geology, Minerals, Energy and Geophysics Science Center, Menlo Park, CA USA
| | - Tonya DelSontro
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON Canada
| | - Jamie A. Duberstein
- Baruch Institute of Coastal Ecology and Forest Science, Clemson University, Georgetown, SC USA
| | - Meagan Eagle
- U.S. Geological Survey, Woods Hole Coastal & Marine Science Center, Woods Hole, MA USA
| | | | | | - Mathias Göckede
- Department for Biogeochemical Signals, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Sabine Grunwald
- Soil, Water and Ecosystem Sciences Department, University of Florida, Gainesville, FL USA
| | - Meghan Halabisky
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA USA
| | | | | | - Olivia F. Johnson
- U.S. Geological Survey, Northern Prairie Wildlife Research Center, Jamestown, ND USA
- Departments of Biology and Environmental Studies, Kent State University, Kent, OH USA
| | - Miriam C. Jones
- U.S. Geological Survey, Florence Bascom Geoscience Center, Reston, VA USA
| | - Jeffrey J. Kelleway
- School of Earth, Atmospheric and Life Sciences and Environmental Futures Research Centre, University of Wollongong, Wollongong, NSW Australia
| | - Sara Knox
- Department of Geography, McGill University, Montreal, Canada
| | - Kevin D. Kroeger
- U.S. Geological Survey, Woods Hole Coastal & Marine Science Center, Woods Hole, MA USA
| | - Kevin A. Kuehn
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS USA
| | - David Lobb
- Department of Soil Science, University of Manitoba, Winnipeg, MB Canada
| | - Amanda L. Loder
- Department of Geography, University of Toronto, Toronto, ON Canada
| | - Shizhou Ma
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK Canada
| | - Damien T. Maher
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW Australia
| | - Gavin McNicol
- Department of Earth and Environmental Sciences, University of Illinois Chicago, Chicago, IL USA
| | - Jacob Meier
- U.S. Geological Survey, Northern Prairie Wildlife Research Center, Jamestown, ND USA
| | - Beth A. Middleton
- U.S. Geological Survey, Wetland and Aquatic Research Center, Lafayette, LA USA
| | - Christopher Mills
- U.S. Geological Survey, Geology, Geophysics, and Geochemistry Science Center, Denver, CO USA
| | - Purbasha Mistry
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK Canada
| | - Abhijit Mitra
- Department of Marine Science, University of Calcutta, Kolkata, West Bengal India
| | - Courtney Mobilian
- O’Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN USA
| | - Amanda M. Nahlik
- Office of Research and Development, Center for Public Health and Environmental Assessments, Pacific Ecological Systems Division, U.S. Environmental Protection Agency, Corvallis, OR USA
| | - Sue Newman
- South Florida Water Management District, Everglades Systems Assessment Section, West Palm Beach, FL USA
| | - Jessica L. O’Connell
- Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO USA
| | - Patty Oikawa
- Department of Earth and Environmental Sciences, California State University, East Bay, Hayward, CA USA
| | - Max Post van der Burg
- U.S. Geological Survey, Northern Prairie Wildlife Research Center, Jamestown, ND USA
| | - Charles A. Schutte
- Department of Environmental Science, Rowan University, Glassboro, NJ USA
| | - Changchun Song
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Camille L. Stagg
- U.S. Geological Survey, Wetland and Aquatic Research Center, Lafayette, LA USA
| | - Jessica Turner
- Freshwater and Marine Science, University of Wisconsin-Madison, Madison, WI USA
| | - Rodrigo Vargas
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE USA
| | - Mark P. Waldrop
- U.S. Geological Survey, Geology, Minerals, Energy and Geophysics Science Center, Menlo Park, CA USA
| | - Marcus B. Wallin
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Zhaohui Aleck Wang
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA USA
| | - Eric J. Ward
- U.S. Geological Survey, Wetland and Aquatic Research Center, Lafayette, LA USA
| | - Debra A. Willard
- U.S. Geological Survey, Florence Bascom Geoscience Center, Reston, VA USA
| | - Stephanie Yarwood
- Environmental Science and Technology, University of Maryland, College Park, MD USA
| | - Xiaoyan Zhu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, China
| |
Collapse
|
8
|
Schmiege SC, Sharkey TD, Walker B, Hammer J, Way DA. Laisk measurements in the nonsteady state: Tests in plants exposed to warming and variable CO2 concentrations. PLANT PHYSIOLOGY 2023; 193:1045-1057. [PMID: 37232396 PMCID: PMC10517191 DOI: 10.1093/plphys/kiad305] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/27/2023]
Abstract
Light respiration (RL) is an important component of plant carbon balance and a key parameter in photosynthesis models. RL is often measured using the Laisk method, a gas exchange technique that is traditionally employed under steady-state conditions. However, a nonsteady-state dynamic assimilation technique (DAT) may allow for more rapid Laisk measurements. In 2 studies, we examined the efficacy of DAT for estimating RL and the parameter Ci* (the intercellular CO2 concentration where Rubisco's oxygenation velocity is twice its carboxylation velocity), which is also derived from the Laisk technique. In the first study, we compared DAT and steady-state RL and Ci* estimates in paper birch (Betula papyrifera) growing under control and elevated temperature and CO2 concentrations. In the second, we compared DAT-estimated RL and Ci* in hybrid poplar (Populus nigra L. × P. maximowiczii A. Henry "NM6") exposed to high or low CO2 concentration pre-treatments. The DAT and steady-state methods provided similar RL estimates in B. papyrifera, and we found little acclimation of RL to temperature or CO2; however, Ci* was higher when measured with DAT compared to steady-state methods. These Ci* differences were amplified by the high or low CO2 pre-treatments. We propose that changes in the export of glycine from photorespiration may explain these apparent differences in Ci*.
Collapse
Affiliation(s)
- Stephanie C Schmiege
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
- Department of Biology, Western University, London, Ontario N6A 5B7, Canada
| | - Thomas D Sharkey
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Berkley Walker
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Julia Hammer
- Department of Biology, Western University, London, Ontario N6A 5B7, Canada
| | - Danielle A Way
- Department of Biology, Western University, London, Ontario N6A 5B7, Canada
- Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia
- Nicholas School of the Environment, Duke University, Durham, NC 27710, USA
- Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
9
|
Sun W, Luo X, Fang Y, Shiga YP, Zhang Y, Fisher JB, Keenan TF, Michalak AM. Biome-scale temperature sensitivity of ecosystem respiration revealed by atmospheric CO 2 observations. Nat Ecol Evol 2023; 7:1199-1210. [PMID: 37322104 PMCID: PMC10406605 DOI: 10.1038/s41559-023-02093-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/10/2023] [Indexed: 06/17/2023]
Abstract
The temperature sensitivity of ecosystem respiration regulates how the terrestrial carbon sink responds to a warming climate but has been difficult to constrain observationally beyond the plot scale. Here we use observations of atmospheric CO2 concentrations from a network of towers together with carbon flux estimates from state-of-the-art terrestrial biosphere models to characterize the temperature sensitivity of ecosystem respiration, as represented by the Arrhenius activation energy, over various North American biomes. We infer activation energies of 0.43 eV for North America and 0.38 eV to 0.53 eV for major biomes therein, which are substantially below those reported for plot-scale studies (approximately 0.65 eV). This discrepancy suggests that sparse plot-scale observations do not capture the spatial-scale dependence and biome specificity of the temperature sensitivity. We further show that adjusting the apparent temperature sensitivity in model estimates markedly improves their ability to represent observed atmospheric CO2 variability. This study provides observationally constrained estimates of the temperature sensitivity of ecosystem respiration directly at the biome scale and reveals that temperature sensitivities at this scale are lower than those based on earlier plot-scale studies. These findings call for additional work to assess the resilience of large-scale carbon sinks to warming.
Collapse
Affiliation(s)
- Wu Sun
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, USA.
| | - Xiangzhong Luo
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Geography, National University of Singapore, Singapore, Singapore
| | - Yuanyuan Fang
- Bay Area Air Quality Management District, San Francisco, CA, USA
| | - Yoichi P Shiga
- Universities Space Research Association, Mountain View, CA, USA
- , San Francisco, CA, USA
| | - Yao Zhang
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Joshua B Fisher
- Schmid College of Science and Technology, Chapman University, Orange, CA, USA
| | - Trevor F Keenan
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Anna M Michalak
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, USA.
| |
Collapse
|
10
|
Sun YR, Ma WT, Xu YN, Wang X, Li L, Tcherkez G, Gong XY. Short- and long-term responses of leaf day respiration to elevated atmospheric CO2. PLANT PHYSIOLOGY 2023; 191:2204-2217. [PMID: 36517877 PMCID: PMC10069886 DOI: 10.1093/plphys/kiac582] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/16/2022] [Accepted: 12/01/2022] [Indexed: 05/06/2023]
Abstract
Evaluating leaf day respiration rate (RL), which is believed to differ from that in the dark (RDk), is essential for predicting global carbon cycles under climate change. Several studies have suggested that atmospheric CO2 impacts RL. However, the magnitude of such an impact and associated mechanisms remain uncertain. To explore the CO2 effect on RL, wheat (Triticum aestivum) and sunflower (Helianthus annuus) plants were grown under ambient (410 ppm) and elevated (820 ppm) CO2 mole fraction ([CO2]). RL was estimated from combined gas exchange and chlorophyll fluorescence measurements using the Kok method, the Kok-Phi method, and a revised Kok method (Kok-Cc method). We found that elevated growth [CO2] led to an 8.4% reduction in RL and a 16.2% reduction in RDk in both species, in parallel to decreased leaf N and chlorophyll contents at elevated growth [CO2]. We also looked at short-term CO2 effects during gas exchange experiments. Increased RL or RL/RDk at elevated measurement [CO2] were found using the Kok and Kok-Phi methods, but not with the Kok-Cc method. This discrepancy was attributed to the unaccounted changes in Cc in the former methods. We found that the Kok and Kok-Phi methods underestimate RL and overestimate the inhibition of respiration under low irradiance conditions of the Kok curve, and the inhibition of RL was only 6%, representing 26% of the apparent Kok effect. We found no significant long-term CO2 effect on RL/RDk, originating from a concurrent reduction in RL and RDk at elevated growth [CO2], and likely mediated by acclimation of nitrogen metabolism.
Collapse
Affiliation(s)
- Yan Ran Sun
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Wei Ting Ma
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Yi Ning Xu
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Xuming Wang
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Lei Li
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Guillaume Tcherkez
- Research School of Biology, ANU College of Science, Australian National University, Canberra, ACT 0200, Australia
- Institut de Recherche en Horticulture et Semences, INRAe, Université d’Angers, 42 rue Georges Morel, 49070 Beaucouzé, France
| | - Xiao Ying Gong
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| |
Collapse
|
11
|
Igamberdiev AU, Bykova NV. Mitochondria in photosynthetic cells: Coordinating redox control and energy balance. PLANT PHYSIOLOGY 2023; 191:2104-2119. [PMID: 36440979 PMCID: PMC10069911 DOI: 10.1093/plphys/kiac541] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 05/21/2023]
Abstract
In photosynthetic tissues in the light, the function of energy production is associated primarily with chloroplasts, while mitochondrial metabolism adjusts to balance ATP supply, regulate the reduction level of pyridine nucleotides, and optimize major metabolic fluxes. The tricarboxylic acid cycle in the light transforms into a noncyclic open structure (hemicycle) maintained primarily by the influx of malate and the export of citrate to the cytosol. The exchange of malate and citrate forms the basis of feeding redox energy from the chloroplast into the cytosolic pathways. This supports the level of NADPH in different compartments, contributes to the biosynthesis of amino acids, and drives secondary metabolism via a supply of substrates for 2-oxoglutarate-dependent dioxygenase and for cytochrome P450-catalyzed monooxygenase reactions. This results in the maintenance of redox and energy balance in photosynthetic plant cells and in the formation of numerous bioactive compounds specific to any particular plant species. The noncoupled mitochondrial respiration operates in coordination with the malate and citrate valves and supports intensive fluxes of respiration and photorespiration. The metabolic system of plants has features associated with the remarkable metabolic plasticity of mitochondria that permit the use of energy accumulated during photosynthesis in a way that all anabolic and catabolic pathways become optimized and coordinated.
Collapse
|
12
|
Implications of seasonal changes in photosynthetic traits and leaf area index for canopy CO2 and H2O fluxes in a Japanese cedar (Cryptomeria japonica D. Don) plantation. Ecol Modell 2023. [DOI: 10.1016/j.ecolmodel.2022.110271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
13
|
Faber AH, Griffin KL, Tjoelker MG, Pagter M, Yang J, Bruhn D. Consistent diurnal pattern of leaf respiration in the light among contrasting species and climates. THE NEW PHYTOLOGIST 2022; 236:71-85. [PMID: 35727175 PMCID: PMC9544685 DOI: 10.1111/nph.18330] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/12/2022] [Indexed: 05/02/2023]
Abstract
Leaf daytime respiration (leaf respiration in the light, RL ) is often assumed to constitute a fixed fraction of leaf dark respiration (RD ) (i.e. a fixed light inhibition of respiration (RD )) and vary diurnally due to temperature fluctuations. These assumptions were tested by measuring RL , RD and the light inhibition of RD in the field at a constant temperature using the Kok method. Measurements were conducted diurnally on 21 different species: 13 deciduous, four evergreen and four herbaceous from humid continental and humid subtropical climates. RL and RD showed significant diurnal variations and the diurnal pattern differed in trajectory and magnitude between climates, but not between plant functional types (PFTs). The light inhibition of RD varied diurnally and differed between climates and in trajectory between PFTs. The results highlight the entrainment of leaf daytime respiration to the diurnal cycle and that time of day should be accounted for in studies seeking to examine the environmental and biological drivers of leaf daytime respiration.
Collapse
Affiliation(s)
- Andreas H. Faber
- Department of Chemistry and BioscienceAalborg UniversityFredrik Bajers Vej 7H9220AalborgDenmark
| | - Kevin L. Griffin
- Department of Earth and Environmental SciencesColumbia UniversityPalisadesNY10964USA
- Department of Ecology, Evolution and Environmental BiologyColumbia UniversityNew YorkNY10027USA
- Lamont‐Doherty Earth ObservatoryColumbia UniversityPalisadesNY10964USA
| | - Mark G. Tjoelker
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNSW2750Australia
| | - Majken Pagter
- Department of Chemistry and BioscienceAalborg UniversityFredrik Bajers Vej 7H9220AalborgDenmark
| | - Jinyan Yang
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNSW2750Australia
| | - Dan Bruhn
- Department of Chemistry and BioscienceAalborg UniversityFredrik Bajers Vej 7H9220AalborgDenmark
| |
Collapse
|
14
|
Kohonen KM, Dewar R, Tramontana G, Mauranen A, Kolari P, Kooijmans LMJ, Papale D, Vesala T, Mammarella I. Intercomparison of methods to estimate gross primary production based on CO 2 and COS flux measurements. BIOGEOSCIENCES (ONLINE) 2022; 19:4067-4088. [PMID: 36171741 PMCID: PMC7613647 DOI: 10.5194/bg-19-4067-2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Separating the components of ecosystem-scale carbon exchange is crucial in order to develop better models and future predictions of the terrestrial carbon cycle. However, there are several uncertainties and unknowns related to current photosynthesis estimates. In this study, we evaluate four different methods for estimating photosynthesis at a boreal forest at the ecosystem scale, of which two are based on carbon dioxide (CO2) flux measurements and two on carbonyl sulfide (COS) flux measurements. The CO2-based methods use traditional flux partitioning and artificial neural networks to separate the net CO2 flux into respiration and photosynthesis. The COS-based methods make use of a unique 5-year COS flux data set and involve two different approaches to determine the leaf-scale relative uptake ratio of COS and CO2 (LRU), of which one (LRUCAP) was developed in this study. LRUCAP was based on a previously tested stomatal optimization theory (CAP), while LRUPAR was based on an empirical relation to measured radiation. For the measurement period 2013-2017, the artificial neural network method gave a GPP estimate very close to that of traditional flux partitioning at all timescales. On average, the COS-based methods gave higher GPP estimates than the CO2-based estimates on daily (23% and 7% higher, using LRUPAR and LRUCAP, respectively) and monthly scales (20% and 3% higher), as well as a higher cumulative sum over 3 months in all years (on average 25% and 3% higher). LRUCAP was higher than LRU estimated from chamber measurements at high radiation, leading to underestimation of midday GPP relative to other GPP methods. In general, however, use of LRUCAP gave closer agreement with CO2-based estimates of GPP than use of LRUPAR. When extended to other sites, LRUCAP may be more robust than LRUPAR because it is based on a physiological model whose parameters can be estimated from simple measurements or obtained from the literature. In contrast, the empirical radiation relation in LRUPAR may be more site-specific. However, this requires further testing at other measurement sites.
Collapse
Affiliation(s)
- Kukka-Maaria Kohonen
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Roderick Dewar
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Gianluca Tramontana
- Image Processing Laboratory (IPL), Parc Científic Universitat de València, Universitat de València, Paterna, Spain
- Terrasystem s.r.l, Viterbo, Italy
| | - Aleksanteri Mauranen
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Pasi Kolari
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Linda M. J. Kooijmans
- Meteorology and Air Quality, Wageningen University and Research, Wageningen, the Netherlands
| | - Dario Papale
- DIBAF, Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo, Italy
- IAFES, Euro-Mediterranean Center for Climate Change (CMCC), Viterbo, Italy
| | - Timo Vesala
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
- Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Ivan Mammarella
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
15
|
Jardine KJ, Lei J, Som S, Souza D, Clendinen CS, Mehta H, Handakumbura P, Bill M, Young RP. Light-Dependence of Formate (C1) and Acetate (C2) Transport and Oxidation in Poplar Trees. PLANTS 2022; 11:plants11162080. [PMID: 36015384 PMCID: PMC9413118 DOI: 10.3390/plants11162080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022]
Abstract
Although apparent light inhibition of leaf day respiration is a widespread reported phenomenon, the mechanisms involved, including utilization of alternate respiratory pathways and substrates and light inhibition of TCA cycle enzymes are under active investigation. Recently, acetate fermentation was highlighted as a key drought survival strategy mediated through protein acetylation and jasmonate signaling. Here, we evaluate the light-dependence of acetate transport and assimilation in Populus trichocarpa trees using the dynamic xylem solution injection (DXSI) method developed here for continuous studies of C1 and C2 organic acid transport and light-dependent metabolism. Over 7 days, 1.0 L of [13C]formate and [13C2]acetate solutions were delivered to the stem base of 2-year old potted poplar trees, while continuous diurnal observations were made in the canopy of CO2, H2O, and isoprene gas exchange together with δ13CO2. Stem base injection of 10 mM [13C2]acetate induced an overall pattern of canopy branch headspace 13CO2 enrichment (δ13CO2 +27‰) with a diurnal structure in δ13CO2 reaching a mid-day minimum followed by a maximum shortly after darkening where δ13CO2 values rapidly increased up to +12‰. In contrast, 50 mM injections of [13C]formate were required to reach similar δ13CO2 enrichment levels in the canopy with δ13CO2 following diurnal patterns of transpiration. Illuminated leaves of detached poplar branches pretreated with 10 mM [13C2]acetate showed lower δ13CO2 (+20‰) compared to leaves treated with 10 mM [13C]formate (+320‰), the opposite pattern observed at the whole plant scale. Following dark/light cycles at the leaf-scale, rapid, strong, and reversible enhancements in headspace δ13CO2 by up to +60‰ were observed in [13C2]acetate-treated leaves which showed enhanced dihydrojasmonic acid and TCA cycle intermediate concentrations. The results are consistent with acetate in the transpiration stream as an effective activator of the jasmonate signaling pathway and respiratory substrate. The shorter lifetime of formate relative to acetate in the transpiration stream suggests rapid formate oxidation to CO2 during transport to the canopy. In contrast, acetate is efficiently transported to the canopy where an increased allocation towards mitochondrial dark respiration occurs at night. The results highlight the potential for an effective integration of acetate into glyoxylate and TCA cycles and the light-inhibition of citrate synthase as a potential regulatory mechanism controlling the diurnal allocation of acetate between anabolic and catabolic processes.
Collapse
Affiliation(s)
- Kolby J. Jardine
- Lawrence Berkeley National Laboratory, Climate and Ecosystem Science Division, Berkeley, CA 94720, USA
- Correspondence:
| | - Joseph Lei
- Lawrence Berkeley National Laboratory, Climate and Ecosystem Science Division, Berkeley, CA 94720, USA
| | - Suman Som
- Lawrence Berkeley National Laboratory, Climate and Ecosystem Science Division, Berkeley, CA 94720, USA
| | - Daisy Souza
- Forest Management Laboratory, National Institute for Amazon Research, Manaus 69067-375, Brazil
| | - Chaevien S. Clendinen
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Hardeep Mehta
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Pubudu Handakumbura
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Markus Bill
- Lawrence Berkeley National Laboratory, Climate and Ecosystem Science Division, Berkeley, CA 94720, USA
| | - Robert P. Young
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| |
Collapse
|
16
|
Fang L, Yin X, van der Putten PEL, Martre P, Struik PC. Drought exerts a greater influence than growth temperature on the temperature response of leaf day respiration in wheat (Triticum aestivum). PLANT, CELL & ENVIRONMENT 2022; 45:2062-2077. [PMID: 35357701 PMCID: PMC9324871 DOI: 10.1111/pce.14324] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/21/2022] [Accepted: 03/26/2022] [Indexed: 05/22/2023]
Abstract
We assessed how the temperature response of leaf day respiration (Rd ) in wheat responded to contrasting water regimes and growth temperatures. In Experiment 1, well-watered and drought-stressed conditions were imposed on two genotypes; in Experiment 2, the two water regimes combined with high (HT), medium (MT) and low (LT) growth temperatures were imposed on one of the genotypes. Rd was estimated from simultaneous gas exchange and chlorophyll fluorescence measurements at six leaf temperatures (Tleaf ) for each treatment, using the Yin method for nonphotorespiratory conditions and the nonrectangular hyperbolic fitting method for photorespiratory conditions. The two genotypes responded similarly to growth and measurement conditions. Estimates of Rd for nonphotorespiratory conditions were generally higher than those for photorespiratory conditions, but their responses to Tleaf were similar. Under well-watered conditions, Rd and its sensitivity to Tleaf slightly acclimated to LT, but did not acclimate to HT. Temperature sensitivities of Rd were considerably suppressed by drought, and the suppression varied among growth temperatures. Thus, it is necessary to quantify interactions between drought and growth temperature for reliably modelling Rd under climate change. Our study also demonstrated that the Kok method, one of the currently popular methods for estimating Rd , underestimated Rd significantly.
Collapse
Affiliation(s)
- Liang Fang
- Department of Plant Sciences, Centre for Crop Systems AnalysisWageningen University & ResearchWageningenThe Netherlands
| | - Xinyou Yin
- Department of Plant Sciences, Centre for Crop Systems AnalysisWageningen University & ResearchWageningenThe Netherlands
| | - Peter E. L. van der Putten
- Department of Plant Sciences, Centre for Crop Systems AnalysisWageningen University & ResearchWageningenThe Netherlands
| | - Pierre Martre
- LEPSE, Institut Agro SupAgro, INRAE, Univ MontpellierMontpellierFrance
| | - Paul C. Struik
- Department of Plant Sciences, Centre for Crop Systems AnalysisWageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|
17
|
Fan Y, Asao S, Furbank RT, von Caemmerer S, Day DA, Tcherkez G, Sage TL, Sage RF, Atkin OK. The crucial roles of mitochondria in supporting C 4 photosynthesis. THE NEW PHYTOLOGIST 2022; 233:1083-1096. [PMID: 34669188 DOI: 10.1111/nph.17818] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
C4 photosynthesis involves a series of biochemical and anatomical traits that significantly improve plant productivity under conditions that reduce the efficiency of C3 photosynthesis. We explore how evolution of the three classical biochemical types of C4 photosynthesis (NADP-ME, NAD-ME and PCK types) has affected the functions and properties of mitochondria. Mitochondria in C4 NAD-ME and PCK types play a direct role in decarboxylation of metabolites for C4 photosynthesis. Mitochondria in C4 PCK type also provide ATP for C4 metabolism, although this role for ATP provision is not seen in NAD-ME type. Such involvement has increased mitochondrial abundance/size and associated enzymatic capacity, led to changes in mitochondrial location and ultrastructure, and altered the role of mitochondria in cellular carbon metabolism in the NAD-ME and PCK types. By contrast, these changes in mitochondrial properties are absent in the C4 NADP-ME type and C3 leaves, where mitochondria play no direct role in photosynthesis. From an eco-physiological perspective, rates of leaf respiration in darkness vary considerably among C4 species but does not differ systematically among the three C4 types. This review outlines further mitochondrial research in key areas central to the engineering of the C4 pathway into C3 plants and to the understanding of variation in rates of C4 dark respiration.
Collapse
Affiliation(s)
- Yuzhen Fan
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Shinichi Asao
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Robert T Furbank
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Susanne von Caemmerer
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - David A Day
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia
| | - Guillaume Tcherkez
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
- Institut de Recherche en Horticulture et Semences, INRA and University of Angers, Beaucouzé, 49070, France
| | - Tammy L Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Rowan F Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Owen K Atkin
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
18
|
Tcherkez G, Atkin OK. Unravelling mechanisms and impacts of day respiration in plant leaves: an introduction to a Virtual Issue. THE NEW PHYTOLOGIST 2021; 230:5-10. [PMID: 33650185 DOI: 10.1111/nph.17164] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Affiliation(s)
- Guillaume Tcherkez
- Division of Plant Sciences, Research School of Biology, ANU College of Science, Australian National University, Canberra, ACT, 2601, Australia
| | - Owen K Atkin
- Division of Plant Sciences, Research School of Biology, ANU College of Science, Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
19
|
Gauthier PPG, Saenz N, Griffin KL, Way D, Tcherkez G. Is the Kok effect a respiratory phenomenon? Metabolic insight using 13 C labeling in Helianthus annuus leaves. THE NEW PHYTOLOGIST 2020; 228:1243-1255. [PMID: 32564374 DOI: 10.1111/nph.16756] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
The Kok effect is a well-known phenomenon in which the quantum yield of photosynthesis changes abruptly at low light. This effect has often been interpreted as a shift in leaf respiratory metabolism and thus used widely to measure day respiration. However, there is still no formal evidence that the Kok effect has a respiratory origin. Here, both gas exchange and isotopic labeling were carried out on sunflower leaves, using glucose that was 13 C-enriched at specific C-atom positions. Position-specific decarboxylation measurements and NMR analysis of metabolites were used to trace the fate of C-atoms in metabolism. Decarboxylation rates were significant at low light (including above the Kok break point) and increased with decreasing irradiance below 100 µmol photons m-2 s-1 . The variation in several metabolite pools such as malate, fumarate or citrate, and flux calculations suggest the involvement of several decarboxylating pathways in the Kok effect, including the malic enzyme. Our results show that day respiratory CO2 evolution plays an important role in the Kok effect. However, the increase in the apparent quantum yield of photosynthesis below the Kok break point is also probably related to malate metabolism, which participates in maintaining photosynthetic linear electron flow.
Collapse
Affiliation(s)
- Paul P G Gauthier
- Department of Geosciences, Princeton University, Princeton, NJ, 08544, USA
| | - Natalie Saenz
- Department of Chemistry, Columbia University, 3000 Broadway NYC, New York, NY, 10025, USA
| | - Kevin L Griffin
- Department of Ecology, Evolution and Environmental Biology (E3B), Columbia University, 1200 Amsterdam Avenue, New York, NY, 10027, USA
- Department of Earth and Environmental Sciences, Lamont Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, NY, 10964, USA
| | - Danielle Way
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B7, Canada
- Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
- Nicholas School of the Environment, Duke University, Durham, NC, 27710, USA
| | - Guillaume Tcherkez
- Research School of Biology, Joint College of Sciences, Australian National University, Canberra, ACT, 2601, Australia
- Seedling Metabolism and Stress, Institut de Recherche en Horticulture et Semences, INRAE Angers, Université d'Angers, 42 rue Georges Morel, Beaucouzé Cedex, 49780, France
| |
Collapse
|