1
|
Liu J, Wu S, Shi H. Circular cell clusters and calcium oxalate crystals: critical players in Solanaceae anther dehiscence. PLANTA 2025; 261:120. [PMID: 40299132 DOI: 10.1007/s00425-025-04701-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/18/2025] [Indexed: 04/30/2025]
Abstract
MAIN CONCLUSION Circular cell clusters in Solanaceae anthers, crucial for pollen release, influence anther opening through coordinated development, programmed cell death, and calcium oxalate crystal dynamics. Circular cell clusters (CCCs), which are specialised crystal idioblasts, represent unique anatomical structures in Solanaceae anthers. These clusters may impact anther dehiscence through precisely coordinated developmental processes and programmed cell death (PCD). The dynamic metabolism of calcium oxalate (CaOx) crystals within CCCs likely contributes to PCD signalling. Although many factors, such as phytohormones, anther wall mechanics, and dehydration processes, influence anther dehiscence, it is increasingly clear that the CaOx crystals in CCCs are important for the timely degradation of CCCs and stomium cells. This review summarises the current understanding of the functions of CCCs in Solanaceae, highlighting their multifaceted roles in plant reproduction. A deeper comprehension of these mechanisms may provide insights for innovative crop improvement strategies. Similar structures in other plant families indicate a conserved evolutionary strategy for anther dehiscence across angiosperms.
Collapse
Affiliation(s)
- Jing Liu
- School of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Shiyi Wu
- School of Life Science, Guangzhou University, Guangzhou, 510006, China
| | - Hongyong Shi
- School of Life Science, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Ernst E, Abramson B, Acosta K, Hoang PTN, Mateo-Elizalde C, Schubert V, Pasaribu B, Albert PS, Hartwick N, Colt K, Aylward A, Ramu U, Birchler JA, Schubert I, Lam E, Michael TP, Martienssen RA. Duckweed genomes and epigenomes underlie triploid hybridization and clonal reproduction. Curr Biol 2025; 35:1828-1847.e9. [PMID: 40174586 PMCID: PMC12015598 DOI: 10.1016/j.cub.2025.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/03/2025] [Accepted: 03/11/2025] [Indexed: 04/04/2025]
Abstract
The Lemnaceae (duckweeds) are the world's smallest but fastest-growing flowering plants. Prolific clonal propagation facilitates continuous micro-cropping for plant-based protein and starch production and holds tremendous promise for sequestration of atmospheric CO2. Here, we present chromosomal assemblies, annotations, and phylogenomic analysis of Lemna genomes that uncover candidate genes responsible for the unique metabolic and developmental traits of the family, such as anatomical reduction, adaxial stomata, lack of stomatal closure, and carbon sequestration via crystalline calcium oxalate. Lemnaceae have selectively lost genes required for RNA interference, including Argonaute genes required for reproductive isolation (the triploid block) and haploid gamete formation. Triploid hybrids arise commonly among Lemna, and we have found mutations in highly conserved meiotic crossover genes that could support polyploid meiosis. Further, mapping centromeres by chromatin immunoprecipitation suggests their epigenetic origin despite divergence of underlying tandem repeats and centromeric retrotransposons. Syntenic comparisons with Wolffia and Spirodela reveal that diversification of these genera coincided with the "Azolla event" in the mid-Eocene, during which aquatic macrophytes reduced high atmospheric CO2 levels to those of the current ice age. Facile regeneration of transgenic fronds from tissue culture, aided by reduced epigenetic silencing, makes Lemna a powerful biotechnological platform, as exemplified by recent engineering of high-oil Lemna that outperforms oil-seed crops.
Collapse
Affiliation(s)
- Evan Ernst
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA
| | - Bradley Abramson
- Plant Molecular and Cellular Biology Laboratory, the Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Kenneth Acosta
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA
| | - Phuong T N Hoang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Corrensstraße 3, D-06466 Stadt Seeland, Germany; Biology Faculty, Dalat University, 1 Phu Dong Thien Vuong, Dalat City 670000, Vietnam
| | - Cristian Mateo-Elizalde
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Corrensstraße 3, D-06466 Stadt Seeland, Germany
| | - Buntora Pasaribu
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA; Department of Marine Sciences, Faculty of Fisheries and Marine Sciences, Universitas Padjadjaran, Bandung Sumedang Highway KM 21, Jatinangor 40600, Indonesia
| | - Patrice S Albert
- Biological Sciences, University of Missouri, Columbia, 105 Tucker Hall, Columbia, MO 65211, USA
| | - Nolan Hartwick
- Plant Molecular and Cellular Biology Laboratory, the Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Kelly Colt
- Plant Molecular and Cellular Biology Laboratory, the Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Anthony Aylward
- Plant Molecular and Cellular Biology Laboratory, the Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Umamaheswari Ramu
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA
| | - James A Birchler
- Biological Sciences, University of Missouri, Columbia, 105 Tucker Hall, Columbia, MO 65211, USA
| | - Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Corrensstraße 3, D-06466 Stadt Seeland, Germany
| | - Eric Lam
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA.
| | - Todd P Michael
- Plant Molecular and Cellular Biology Laboratory, the Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA.
| | - Robert A Martienssen
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
3
|
Liu C, Lei T, Wang Y, Yang L, Li J, Chen Q, Guo L, Li Y, Zhao Z, Wen N, Yin Y, Gao S. Ceratostigma willmottianum mineralizes atmospheric carbon dioxide into calcium carbonate in a high-calcium environment. PLANT PHYSIOLOGY 2025; 197:kiaf134. [PMID: 40184491 DOI: 10.1093/plphys/kiaf134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/24/2025] [Accepted: 03/13/2025] [Indexed: 04/06/2025]
Abstract
Calcium carbonate biomineralization is an ancient evolutionary feature of life that plays a key role in environmental adaptation. In plants, calcium carbonate deposition is found in several taxa; however, current knowledge of its formation and ecological adaptive implication is limited. Here, we used the chalk gland plant Ceratostigma willmottianum to gain insight into calcium carbonate biomineralization. We found that secretion crystals are mainly composed of calcium carbonate (>90%), and the chalk gland consists of 16 cells with 4 secretory pores on the surface. Calcium carbonate accumulation was highly dependent on atmospheric carbon dioxide and independent of soil dissolved inorganic carbon. Calcium carbonate accumulation occurred mainly during the day, with diurnal variations in the carbon source, mainly atmospheric carbon dioxide during the day and metabolic carbon dioxide at night. Hydration of carbon dioxide to bicarbonate (HCO3-) occurred within the leaves, and the reaction rate was controlled by the activity of extracellular carbonic anhydrases. C. willmottianum showed a high tolerance to calcium stress, potentially related to enhanced calcium compartmentalization and calcium carbonate excretion in the chalk gland under high-calcium environments. The conversion of atmospheric carbon dioxide into calcium carbonate by C. willmottianum may represent an ecological adaptation of plants to high-calcium environments. These results provide cases and theoretical references for studying calcium carbonate biomineralization mechanisms and plant calcium adaptation.
Collapse
Affiliation(s)
- Cailei Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Ting Lei
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yunlong Wang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Lijuan Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiani Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Qibing Chen
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Long Guo
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yirui Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zian Zhao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Niting Wen
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yichen Yin
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Suping Gao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
4
|
Jaume DF, Pelliza YI, Nanni A, Tadey M. Drought resistance or herbivory defense strategy? Oxalate druses function in a forage xeric species. FUNCTIONAL PLANT BIOLOGY : FPB 2025; 52:FP24299. [PMID: 40014445 DOI: 10.1071/fp24299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/07/2025] [Indexed: 03/01/2025]
Abstract
Oxalate druse synthesis in plants helps to reduce drought stress by maintaining osmotic balance and might also act as a defence against herbivory by reducing nutritional quality. This study experimentally investigated the role of druses in Atriplex lampa under drought and herbivory treatments. We propose that both stressors trigger druse synthesis. Furthermore, if druse production is an adaptation to stress, the allocation of resources to other physiological functions should not be affected. These hypotheses were experimentally tested under greenhouse and natural field conditions. Leaves of A. lampa were collected from eight rangelands in Monte Desert in Argentina, which shared similar environmental characteristics but differed in stocking rates. The manipulative experiment in the greenhouse consisted in applying drought and herbivory treatments to A. lampa seedlings. The highest druse abundance was observed at intermediate stocking rates, suggesting resource limitation for druse synthesis at extreme stocking rates. The adaptive advantage of druse synthesis was evident only for drought stress treatment, where higher druse abundance was correlated with improved growth rates. When both stressors were combined, there was no difference in druse abundance with respect to control treatment, indicating that herbivory negatively influenced the adaptive response to drought. Druse synthesis is an adaptation to drought that is susceptible to herbivory stress.
Collapse
Affiliation(s)
- D F Jaume
- Grupo De Ecología De Ambientes Áridos - IdEAS, INIBIOMA-CONICET, San Carlos de Bariloche, Río Negro, Argentina
| | - Y I Pelliza
- Grupo De Ecología De Ambientes Áridos - IdEAS, INIBIOMA-CONICET, San Carlos de Bariloche, Río Negro, Argentina
| | - A Nanni
- Grupo De Ecología De Ambientes Áridos - IdEAS, INIBIOMA-CONICET, San Carlos de Bariloche, Río Negro, Argentina
| | - M Tadey
- Grupo De Ecología De Ambientes Áridos - IdEAS, INIBIOMA-CONICET, San Carlos de Bariloche, Río Negro, Argentina
| |
Collapse
|
5
|
Margońska HB, Kozieradzka-Kiszkurno M, Brzezicka E, Haliński ŁP, Davies KL. Floral morphological and chemical analyses of Dienia flowers (Orchidaceae, Malaxidinae) relative to pollination processes. Sci Rep 2025; 15:723. [PMID: 39753737 PMCID: PMC11698871 DOI: 10.1038/s41598-024-84538-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 12/24/2024] [Indexed: 01/06/2025] Open
Abstract
Dienia is a small, pantropical genus of epidendroid Malaxideae orchids. The floral lip is upwardly directed and does not serve as a landing platform for pollinators. This role has been assumed by sepals and/or gynostemium or whole inflorescence. Information about the pollination and floral morphology of this genus is scarce. Field observations have revealed that the flowers are visited by small flies, midges, other small dipterans, ants, and mites etc. Preliminary observations have revealed that small liquid droplets of at least two types occur on the morphologically adaxial lip surface of Dienia: namely, simple secretions produced by epidermal cells, and cell sap released on the rupturing of raphide cells. These secretions were subjected to sequential organic solvent extraction and gas chromatography-mass spectrometry. Floral structures were investigated by means of scanning and transmission electron microscopy, and subjected to histochemical tests. The form of liquid droplets on the lip, as well as the presence of a food reward and the sequence of raphide development are reported here for the first time. Tree different form of calcium oxalate crystals were raported in Dienia ophrydis flowers.
Collapse
Affiliation(s)
- Hanna B Margońska
- Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| | | | - Emilia Brzezicka
- Department of Plant Experimental Biology and Biotechnology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Łukasz P Haliński
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Kevin L Davies
- School of Earth and Environmental Sciences, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| |
Collapse
|
6
|
Bontpart T, Weiss A, Vile D, Gérard F, Lacombe B, Reichheld JP, Mari S. Growing on calcareous soils and facing climate change. TRENDS IN PLANT SCIENCE 2024; 29:1319-1330. [PMID: 38570279 DOI: 10.1016/j.tplants.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/05/2024]
Abstract
Soil calcium carbonate (CaCO3) impacts plant mineral nutrition far beyond Fe metabolism, imposing constraints for crop growth and quality in calcareous agrosystems. Our knowledge on plant strategies to tolerate CaCO3 effects mainly refers to Fe acquisition. This review provides an update on plant cellular and molecular mechanisms recently described to counteract the negative effects of CaCO3 in soils, as well as recent efforts to identify genetic bases involved in CaCO3 tolerance from natural populations, that could be exploited to breed CaCO3-tolerant crops. Finally, we review the impact of environmental factors (soil water content, air CO2, and temperature) affecting soil CaCO3 equilibrium and plant tolerance to calcareous soils, and we propose strategies for improvement in the context of climate change.
Collapse
Affiliation(s)
- Thibaut Bontpart
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Alizée Weiss
- Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, CNRS, 66860 Perpignan, France
| | - Denis Vile
- LEPSE, INRAE, Institut Agro, Université de Montpellier, 2 Place P. Viala, F-34060, Montpellier cédex 2, France
| | - Frédéric Gérard
- UMR Eco&Sols, INRAE, IRD, CIRAD, Institut Agro, Université de Montpellier, Montpellier, France
| | - Benoît Lacombe
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | | | - Stéphane Mari
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France.
| |
Collapse
|
7
|
McElwain JC, Matthaeus WJ, Barbosa C, Chondrogiannis C, O' Dea K, Jackson B, Knetge AB, Kwasniewska K, Nair R, White JD, Wilson JP, Montañez IP, Buckley YM, Belcher CM, Nogué S. Functional traits of fossil plants. THE NEW PHYTOLOGIST 2024; 242:392-423. [PMID: 38409806 DOI: 10.1111/nph.19622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/19/2023] [Indexed: 02/28/2024]
Abstract
A minuscule fraction of the Earth's paleobiological diversity is preserved in the geological record as fossils. What plant remnants have withstood taphonomic filtering, fragmentation, and alteration in their journey to become part of the fossil record provide unique information on how plants functioned in paleo-ecosystems through their traits. Plant traits are measurable morphological, anatomical, physiological, biochemical, or phenological characteristics that potentially affect their environment and fitness. Here, we review the rich literature of paleobotany, through the lens of contemporary trait-based ecology, to evaluate which well-established extant plant traits hold the greatest promise for application to fossils. In particular, we focus on fossil plant functional traits, those measurable properties of leaf, stem, reproductive, or whole plant fossils that offer insights into the functioning of the plant when alive. The limitations of a trait-based approach in paleobotany are considerable. However, in our critical assessment of over 30 extant traits we present an initial, semi-quantitative ranking of 26 paleo-functional traits based on taphonomic and methodological criteria on the potential of those traits to impact Earth system processes, and for that impact to be quantifiable. We demonstrate how valuable inferences on paleo-ecosystem processes (pollination biology, herbivory), past nutrient cycles, paleobiogeography, paleo-demography (life history), and Earth system history can be derived through the application of paleo-functional traits to fossil plants.
Collapse
Affiliation(s)
- Jennifer C McElwain
- School of Natural Sciences, Botany, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - William J Matthaeus
- School of Natural Sciences, Botany, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Catarina Barbosa
- School of Natural Sciences, Botany, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | | | - Katie O' Dea
- School of Natural Sciences, Botany, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Bea Jackson
- School of Natural Sciences, Botany, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Antonietta B Knetge
- School of Natural Sciences, Botany, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Kamila Kwasniewska
- School of Natural Sciences, Botany, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Richard Nair
- School of Natural Sciences, Botany, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Joseph D White
- Department of Biology, Baylor University, Waco, 76798-7388, TX, USA
| | - Jonathan P Wilson
- Department of Environmental Studies, Haverford College, Haverford, Pennsylvania, 19041, PA, USA
| | - Isabel P Montañez
- UC Davis Institute of the Environment, University of California, Davis, CA, 95616, USA
- Department of Earth and Planetary Sciences, University of California, Davis, CA, 95616, USA
| | - Yvonne M Buckley
- School of Natural Sciences, Zoology, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | | | - Sandra Nogué
- Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), 08193, Catalonia, Spain
- CREAF, Bellaterra (Cerdanyola del Vallès), 08193, Catalonia, Spain
| |
Collapse
|
8
|
Gómez-Espinoza O, Fuentes FI, Ramírez CF, Bravo LA, Sáez PL. In Situ Accumulation of CaOx Crystals in C. quitensis Leaves and Its Relationship with Anatomy and Gas Exchange. PLANTS (BASEL, SWITZERLAND) 2024; 13:769. [PMID: 38592779 PMCID: PMC10975422 DOI: 10.3390/plants13060769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 04/11/2024]
Abstract
The accumulation of crystal calcium oxalate (CaOx) in plants is linked to a type of stress-induced photosynthesis termed 'alarm photosynthesis', serving as a carbon reservoir when carbon dioxide (CO2) exchange is constrained. Colobanthus quitensis is an extremophyte found from southern Mexico to Antarctica, which thrives in high-altitude Andean regions. Growing under common garden conditions, C. quitensis from different latitudinal provenances display significant variations in CaOx crystal accumulation. This raises the following questions: are these differences maintained under natural conditions? And is the CaOx accumulation related to mesophyll conductance (gm) and net photosynthesis (AN) performed in situ? It is hypothesized that in provenances with lower gm, C. quitensis will exhibit an increase in the use of CaOx crystals, resulting in reduced crystal leaf abundance. Plants from Central Chile (33°), Patagonia (51°), and Antarctica (62°) were measured in situ and sampled to determine gas exchange and CaOx crystal accumulation, respectively. Both AN and gm decrease towards higher latitudes, correlating with increases in leaf mass area and leaf density. The crystal accumulation decreases at higher latitudes, correlating positively with AN and gm. Thus, in provenances where environmental conditions induce more xeric traits, the CO2 availability for photosynthesis decreases, making the activation of alarm photosynthesis feasible as an internal source of CO2.
Collapse
Affiliation(s)
- Olman Gómez-Espinoza
- Laboratorio de Fisiología y Biología Molecular Vegetal, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile; (O.G.-E.); (F.I.F.); (L.A.B.)
| | - Francisca I. Fuentes
- Laboratorio de Fisiología y Biología Molecular Vegetal, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile; (O.G.-E.); (F.I.F.); (L.A.B.)
| | - Constanza F. Ramírez
- Laboratorio Cultivo de Tejidos Vegetales, Centro de Biotecnología, Departamento de Silvicultura, Facultad de Ciencias Forestales, Universidad de Concepción, Casilla 160-C, Concepción 4030000, Chile;
- Instituto de Ecología y Biodiversidad—IEB, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile
| | - León A. Bravo
- Laboratorio de Fisiología y Biología Molecular Vegetal, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile; (O.G.-E.); (F.I.F.); (L.A.B.)
| | - Patricia L. Sáez
- Laboratorio de Fisiología y Biología Molecular Vegetal, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile; (O.G.-E.); (F.I.F.); (L.A.B.)
- Instituto de Ecología y Biodiversidad—IEB, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile
| |
Collapse
|
9
|
Khan MI, Bashir N, Pandith S, Shah M, Reshi Z, Shahzad A. Rhubarb: A novel model plant to study the conundrum of calcium oxalate synthesis. Food Chem 2024; 434:137458. [PMID: 37722335 DOI: 10.1016/j.foodchem.2023.137458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/01/2023] [Accepted: 09/10/2023] [Indexed: 09/20/2023]
Abstract
The study investigated calcium oxalate (CaOx) crystal composition, accumulation, synthesis, and degradation in five rhubarb species from the North-Western Indian Himalayas. Techniques like optical and scanning electron microscopy (SEM), SEM-energy-dispersive X-ray spectroscopy (SEM-EDS), inductively coupled plasma-optical emission spectrometry (ICP-OES), X-ray diffraction spectroscopy (XRD), and real-time (qRT-PCR) expression analysis of strategic genes were used to understand the processes of oxalate synthesis and precipitation. Results showed crystals tend to accumulate around vascular bundles in all species, irrespective of size, indicating a consistent pattern. Crystal synthesis and accumulation were stress-driven, linked to substrate composition, and in planta soluble oxalate and calcium levels, paralleling oxalate precursors. Based on their availability, CaOx crystals precipitated heavy metals mostly associated with its weddellite form. Crystal content correlated positively with mRNA levels of calcium/oxalate/ascorbate-related and stress-responsive genes, and negatively with oxalate oxidation/decarboxylation genes. CaOx crystals were suggested as potential biominerals for addressing heavy metal stress in agriculture.
Collapse
Affiliation(s)
- Mohd-Ishfaq Khan
- Department of Botany, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir 190006, India; Plant Biotechnology Section, Department of Botany, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Nargis Bashir
- Department of Botany, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir 190006, India
| | - Shahzad Pandith
- Department of Botany, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir 190006, India.
| | - Manzoor Shah
- Department of Botany, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir 190006, India
| | - Zafar Reshi
- Department of Botany, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir 190006, India
| | - Anwar Shahzad
- Plant Biotechnology Section, Department of Botany, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| |
Collapse
|
10
|
Rasool F, Nizamani ZA, Ahmad KS, Parveen F, Khan SA, Sabir N. An appraisal of traditional knowledge of plant poisoning of livestock and its validation through acute toxicity assay in rats. Front Pharmacol 2024; 15:1328133. [PMID: 38420196 PMCID: PMC10900104 DOI: 10.3389/fphar.2024.1328133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024] Open
Abstract
Background: Kashmir Himalaya hosts the most diverse and rich flora in the world, which serves as grazing land for millions of small ruminants in the area. While most plant species are beneficial, some can be poisonous, causing economic losses and animal health issues for livestock. Consequently, this study is the first comprehensive report on the traditional phyto-toxicological knowledge in District Muzaffarabad and the assessment of its authenticity through experimental studies in rats. Methods: The data regarding traditional knowledge was gathered from 70 key respondents through semi-structured interviews, which was quantitatively analyzed and authenticated through plant extract testing on Wistar female rats and comparison with published resources. Results: A total of 46 poisonous plant species belonging to 23 families and 38 genera were reported to be poisonous in the study area. Results revealed that leaves were the most toxic plant parts (24 species, 52.1%), followed by the whole plant (18 species, 39.1%), stem (17 species, 36.9%), and seeds (10 species, 21.7%). At the organ level, liver as most susceptible affected by 13 species (28.2%), followed by the gastrointestinal tract (15 species, 32.6%), nervous system (13 species, 8.2%), dermis (8 species, 17.3%), renal (7 species, 15.2%), respiratory (4 species, 8.7%), cardiovascular system (3 species, 6.5%), and reproductive system (2 species, 4.3%). The poisonous plant species with high Relative frequency citation (RFC) and fidelity level (FL) were Nerium oleander (RFC, 0.6; FL, 100), Lantana camara (RFC, 0.6; FL, 100), and Ricinus communis (RFC, 0.6; FL, 100). Experimental assessment of acute toxicity assay in rats revealed that Nerium oleander was the most toxic plant with LD50 of (4,000 mg/kg), trailed by Ricinus communis (4,200 mg/kg), L. camara (4,500 mg/kg), and Datura stramonium (4,700 mg/kg); however, other plants showed moderate to mild toxicity. The major clinical observations were anorexia, piloerection, dyspnea, salivation, tachypnea, constipation, diarrhea, tremor, itchiness, and dullness. Conclusion: This study showed that numerous poisonous plants pose a significant risk to the livestock industry within Himalayan territory, leading to substantial economic losses. Consequently, it is of utmost importance to conduct further comprehensive studies on the phytotoxicity of plants.
Collapse
Affiliation(s)
- Faisal Rasool
- Department of Veterinary Pathology, Sindh Agriculture University Tandojam, Hyderabad, Pakistan
- Department of Pathobiology, University of Poonch Rawalakot, Rawalakot, Pakistan
| | - Zaheer Ahmed Nizamani
- Department of Veterinary Pathology, Sindh Agriculture University Tandojam, Hyderabad, Pakistan
| | | | - Fahmida Parveen
- Department of Veterinary Pathology, Sindh Agriculture University Tandojam, Hyderabad, Pakistan
| | - Shahzad Akbar Khan
- Department of Pathobiology, University of Poonch Rawalakot, Rawalakot, Pakistan
| | - Naveed Sabir
- Department of Pathobiology, University of Poonch Rawalakot, Rawalakot, Pakistan
| |
Collapse
|
11
|
Ramírez E, Rodríguez N, de la Fuente V. Arthrocnemum Moq.: Unlocking Opportunities for Biosaline Agriculture and Improved Human Nutrition. PLANTS (BASEL, SWITZERLAND) 2024; 13:496. [PMID: 38498449 PMCID: PMC10892625 DOI: 10.3390/plants13040496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 03/20/2024]
Abstract
(1) Background: This study provides novel insights into the elemental content and biomineralization processes of two halophytic species of the genus Arthrocnemum Moq. (A. macrostachyum and A. meridionale). (2) Methods: Elemental content was analyzed using ICP-MS, while biominerals were detected through electron microscopy (SEM and TEM) and X-ray diffraction. (3) Results: The elemental content showed significant concentrations of macronutrients (sodium, potassium, magnesium, and calcium) and micronutrients, especially iron. Iron was consistently found as ferritin in A. macrostachyum chloroplasts. Notably, A. macrostachyum populations from the Center of the Iberian Peninsula exhibited exceptionally high magnesium content, with values that exceeded 40,000 mg/kg d.w. Succulent stems showed elemental content consistent with the minerals identified through X-ray diffraction analysis (halite, sylvite, natroxalate, and glushinskite). Seed analysis revealed elevated levels of macro- and micronutrients and the absence of heavy metals. Additionally, the presence of reduced sodium chloride crystals in the seed edges suggested a mechanism to mitigate potential sodium toxicity. (4) Conclusions: These findings highlight the potential of Arthrocnemum species as emerging edible halophytes with nutritional properties, particularly in Western European Mediterranean territories and North Africa. They offer promising prospects for biosaline agriculture and biotechnology applications.
Collapse
Affiliation(s)
- Esteban Ramírez
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Nuria Rodríguez
- Centro de Astrobiología (CAB), CSIC-INTA, Torrejón de Ardoz, 28850 Madrid, Spain;
| | - Vicenta de la Fuente
- Centro de Astrobiología (CAB), CSIC-INTA, Torrejón de Ardoz, 28850 Madrid, Spain;
| |
Collapse
|
12
|
Li C, Chen C, Qin L, Zheng D, Du Q, Hou Q, Wen X. A highlightedly improved method for isolating and characterizing calcium oxalate crystals from tubercles of Mammillaria schumannii. PLANT METHODS 2023; 19:135. [PMID: 38012623 PMCID: PMC10680252 DOI: 10.1186/s13007-023-01110-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Calcium oxalate (CaOx) is the most prevalent and widespread biomineral in plants and is involved in protective and/or defensive functions against abiotic stress factors. It is, however, expected that this function has an extremely significant contribution to growth processes in plants bearing large amounts of CaOx, such as cacti growing in desert environment. RESULTS In our research, small-sized CaOx crystals (≤ 20 µm) with tetrahedral or spherical shapes were observed to dominate in each epidermal and cortical cell from the tubercles of Mammillaria schumannii, a species from the Cereoideae subfamily, having tubercles (main photosynthetic organs) united with adjacent ones almost into ridges on its stem. Because they have potential significant functions, differential centrifugations after mechanical blending were used to obtain these small-sized CaOx crystals, which extremely tend to adhere to tissue or suspend in solution. And then the combined Scanning Electron Microscope Energy Dispersive System (SEM-EDS) and Raman spectroscopy were further performed to demonstrate that the extracted crystals were mainly CaC2O4·2H2O. Interestingly, spherical druses had 2 obvious abnormal Raman spectroscopy peaks of -CH and -OH at 2947 and 3290 cm-1, respectively, which may be attributed to the occluded organic matrix. The organic matrix was further extracted from spherical crystals, which could be polysaccharide, flavone, or lipid compounds on the basis of Raman spectroscopy bands at 2650, 2720, 2770, and 2958 cm-1. CONCLUSIONS Here we used a highlightedly improved method to effectively isolate small-sized CaOx crystals dominating in the epidermal and cortical cells from tubercles of Mammillaria schumannii, which extremely tended to adhere plant tissues or suspend in isolation solution. And then we further clarified the organic matrix getting involved in the formation of CaOx crystals. This improved method for isolating and characterizing biomineral crystals can be helpful to understand how CaOx crystals in cacti function against harsh environments such as strong light, high and cold temperature, and aridity.
Collapse
Affiliation(s)
- Changying Li
- College of Life Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Chunli Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Lihong Qin
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Dengyue Zheng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Qian Du
- College of Life Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Qiandong Hou
- College of Life Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Xiaopeng Wen
- College of Life Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
13
|
Hirt H, Boukcim H, Ducousso M, Saad MM. Engineering carbon sequestration on arid lands. TRENDS IN PLANT SCIENCE 2023; 28:1218-1221. [PMID: 37741740 DOI: 10.1016/j.tplants.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 09/25/2023]
Abstract
To limit the effects of global warming, arid lands, which constitute approximately one-third of terrestrial surfaces and are not utilized for agriculture, could serve as an effective method for long-term carbon (C) storage. We propose that soil-plant-microbiome engineering with oxalogenic plants and oxalotrophic microbes could facilitate C sequestration on a global scale.
Collapse
Affiliation(s)
- Heribert Hirt
- Darwin21 Desert Initiative, Plant Science Program, King Abdullah University of Science and Technology, 23955 Thuwal, Kingdom of Saudi Arabia.
| | - Hassan Boukcim
- Valorhiz, 1900, Boulevard de la Lironde, Parc Scientifique Agropolis III, F34980 Montferrier sur Lez, France; African Sustainable Agriculture Research Institute (ASARI), University Mohammed VI Polytechnic, Laayoune, Morocco
| | - Marc Ducousso
- CIRAD, UMR082 LSTM, 34398 Montpellier Cedex 5, France
| | - Maged M Saad
- Darwin21 Desert Initiative, Plant Science Program, King Abdullah University of Science and Technology, 23955 Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
14
|
Khan MI, Pandith SA, Shah MA, Reshi ZA. Calcium Oxalate Crystals, the Plant 'Gemstones': Insights into Their Synthesis and Physiological Implications in Plants. PLANT & CELL PHYSIOLOGY 2023; 64:1124-1138. [PMID: 37498947 DOI: 10.1093/pcp/pcad081] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/17/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023]
Abstract
From simple algal forms to the most advanced angiosperms, calcium oxalate (CaOx) crystals (CRs) occur in the majority of taxonomic groups of photosynthetic organisms. Various studies have demonstrated that this biomineralization is not a simple or random event but a genetically regulated coordination between calcium uptake, oxalate (OX) synthesis and, sometimes, environmental stresses. Certainly, the occurrence of CaOx CRs is old; however, questions related to their genesis, biosynthesis, significance and genetics exhibit robust evolution. Moreover, their speculated roles in bulk calcium regulation, heavy metal/OX detoxification, light reflectance and photosynthesis, and protection against grazing and herbivory, besides other characteristics, are gaining much interest. Thus, it is imperative to understand their synthesis and regulation in relation to the ascribed key functions to reconstruct future perspectives in harnessing their potential to achieve nutritious and pest-resistant crops amid anticipated global climatic perturbations. This review critically addresses the basic and evolving concepts of the origin (and recycling), synthesis, significance, regulation and fate vis-à-vis various functional aspects of CaOx CRs in plants (and soil). Overall, insights and conceptual future directions present them as potential biominerals to address future climate-driven issues.
Collapse
Affiliation(s)
- Mohd Ishfaq Khan
- Department of Botany, University of Kashmir, Hazratbal Srinagar, Jammu and Kashmir 190006, India
| | - Shahzad A Pandith
- Department of Botany, University of Kashmir, Hazratbal Srinagar, Jammu and Kashmir 190006, India
| | - Manzoor A Shah
- Department of Botany, University of Kashmir, Hazratbal Srinagar, Jammu and Kashmir 190006, India
| | - Zafar A Reshi
- Department of Botany, University of Kashmir, Hazratbal Srinagar, Jammu and Kashmir 190006, India
| |
Collapse
|
15
|
Fradera-Soler M, Mravec J, Harholt J, Grace OM, Jørgensen B. Cell wall polysaccharide and glycoprotein content tracks growth-form diversity and an aridity gradient in the leaf-succulent genus Crassula. PHYSIOLOGIA PLANTARUM 2023; 175:e14007. [PMID: 37882271 DOI: 10.1111/ppl.14007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 06/22/2023] [Accepted: 08/14/2023] [Indexed: 10/27/2023]
Abstract
Cell wall traits are believed to be a key component of the succulent syndrome, an adaptive syndrome to drought, yet the variability of such traits remains largely unknown. In this study, we surveyed the leaf polysaccharide and glycoprotein composition in a wide sampling of Crassula species that occur naturally along an aridity gradient in southern Africa, and we interpreted its adaptive significance in relation to growth form and arid adaptation. To study the glycomic diversity, we sampled leaf material from 56 Crassula taxa and performed comprehensive microarray polymer profiling to obtain the relative content of cell wall polysaccharides and glycoproteins. This analysis was complemented by the determination of monosaccharide composition and immunolocalization in leaf sections using glycan-targeting antibodies. We found that compact and non-compact Crassula species occupy distinct phenotypic spaces in terms of leaf glycomics, particularly in regard to rhamnogalacturonan I, its arabinan side chains, and arabinogalactan proteins (AGPs). Moreover, these cell wall components also correlated positively with increasing aridity, which suggests that they are likely advantageous in terms of arid adaptation. These differences point to compact Crassula species having more elastic cell walls with plasticizing properties, which can be interpreted as an adaptation toward increased drought resistance. Furthermore, we report an intracellular pool of AGPs associated with oil bodies and calcium oxalate crystals, which could be a peculiarity of Crassula and could be linked to increased drought resistance. Our results indicate that glycomics may be underlying arid adaptation and drought resistance in succulent plants.
Collapse
Affiliation(s)
- Marc Fradera-Soler
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- Royal Botanic Gardens, London, UK
| | - Jozef Mravec
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- Plant Science and Biodiversity Center, Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Nitra, Slovakia
| | | | - Olwen M Grace
- Royal Botanic Gardens, London, UK
- Royal Botanic Garden Edinburgh, Edinburgh, UK
| | - Bodil Jørgensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
16
|
Cera A, Verdugo-Escamilla C, Marín JA, Palacio S. Calcium sulphate biomineralisation: Artefact of sample preparation? PHYSIOLOGIA PLANTARUM 2023; 175:e14017. [PMID: 37882257 DOI: 10.1111/ppl.14017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 10/27/2023]
Abstract
Calcium biomineralisation is widely documented in plants. However, crystallisation of Ca-sulphate-containing minerals is closely related to water content, and sample processing, such as drying, alters the water balance of plant tissues. We hypothesised that common sample processing practices may favour the formation of crystals, leading to spurious crystallisation not observed in unaltered plant tissues. We selected three species (Ononis tridentata, Helianthemum squamatum and Gypsophila struthium) with reported gypsum biomineralisation. We used x-ray diffractometry on fresh intact or sliced leaves, and on the same leaves processed by subsequent drying, to address whether sample processing alters crystal formation. Ca-sulphate crystals were detected in dry samples of all species but not in fresh intact samples. Ca-sulphate crystallisation occurred in some cut fresh samples, although the accumulation greatly increased after drying. In addition, G. struthium exhibited Ca-oxalate crystals in both fresh and dry treatments, with a tendency for greater accumulation in dry treatments. Our results demonstrate that the Ca-sulphate crystals observed by x-ray diffractometry in these species are artefacts caused by common sample processing practices, such as excessive drying and slicing samples. We encourage future studies on the biomineral potential of plants to avoid the use of procedures that alter the water balance of tissues.
Collapse
Affiliation(s)
- Andreu Cera
- Centro de Ecologia Aplicada Prof. Baeta Neves (CEABN-InBIO), Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
- Departamento Biodiversidad y Restauración, Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas, Jaca, Spain
| | - Cristóbal Verdugo-Escamilla
- Laboratorio de Estudios Cristalográficos, Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, Armilla, Spain
| | - Juan A Marín
- Departamento de Pomologia, Estación Experimental de Aula Dei CSIC, Zaragoza, Spain
| | - Sara Palacio
- Departamento Biodiversidad y Restauración, Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas, Jaca, Spain
| |
Collapse
|
17
|
Koher G, Khan A, Suarez-vega G, Meesakul P, Bacani AJ, Kohno T, Zhu X, Kim KH, Cao S, Jia Z. A Comprehensive Insight into Māmaki ( Pipturus albidus): Its Ethnomedicinal Heritage, Human Health Research, and Phytochemical Properties. PLANTS (BASEL, SWITZERLAND) 2023; 12:2924. [PMID: 37631137 PMCID: PMC10459036 DOI: 10.3390/plants12162924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
In Hawaii, the plants P. albidus, P. forbesii, P. kauaiensis, and P. ruber are collectively known as māmaki in ethnomedicine, where P. albidus predominates. Farmed māmaki is becoming increasingly popular in Hawaii and the United States. Māmaki teas (such as bottled Shaka tea) are the dominant product. Historically, māmaki has been utilized for its medicinal properties, promoting well-being and good health through consuming tea made from its leaves, ingesting its fruit, and incorporating it into ointments. Māmaki holds cultural significance among Native Hawaiians and is widely used in ethnic medicine, having been incorporated into traditional practices for centuries. However, the scientific mechanisms behind its effects remain unclear. This review consolidates current knowledge of māmaki, shedding light on its potential therapeutic properties, physical properties, nutritional and mineral composition, and active phytochemicals. We also highlight recent research advances in māmaki's antibacterial, anti-viral, chemopreventive, anti-inflammatory, and antioxidant activities. Additionally, we discuss future prospects in this field.
Collapse
Affiliation(s)
- Grant Koher
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27410, USA; (G.K.); (A.K.); (G.S.-v.)
| | - Ajmal Khan
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27410, USA; (G.K.); (A.K.); (G.S.-v.)
| | - Gabriel Suarez-vega
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27410, USA; (G.K.); (A.K.); (G.S.-v.)
| | - Pornphimon Meesakul
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, Hilo, HI 96720, USA; (P.M.); (A.-J.B.); (T.K.)
| | - Ann-Janin Bacani
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, Hilo, HI 96720, USA; (P.M.); (A.-J.B.); (T.K.)
| | - Tomomi Kohno
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, Hilo, HI 96720, USA; (P.M.); (A.-J.B.); (T.K.)
| | - Xuewei Zhu
- Department of Medicine, Wake Forest University School of Medicine, Winston Salem, NC 27101, USA;
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Shugeng Cao
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, Hilo, HI 96720, USA; (P.M.); (A.-J.B.); (T.K.)
| | - Zhenquan Jia
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27410, USA; (G.K.); (A.K.); (G.S.-v.)
| |
Collapse
|
18
|
George L, Catunda KLM, Wuhrer R, Fanna DJ, Moran K, Moore BD. The Use of Correlative Micro-CT and XRM to Locate and Identify Dense Structures in Plant Material. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:868-871. [PMID: 37613435 DOI: 10.1093/micmic/ozad067.430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Laurel George
- Western Sydney University, Advanced Materials Characterisation Facility, Rydalmere, Australia
| | - Karen L M Catunda
- Western Sydney University, Hawkesbury Institute for the Environment, Richmond, Australia
| | - Richard Wuhrer
- Western Sydney University, Advanced Materials Characterisation Facility, Rydalmere, Australia
| | - Daniel J Fanna
- Western Sydney University, Advanced Materials Characterisation Facility, Rydalmere, Australia
| | - Ken Moran
- Moran Scientific Pty Ltd., Bungonia, Australia
| | - Ben D Moore
- Western Sydney University, Hawkesbury Institute for the Environment, Richmond, Australia
| |
Collapse
|
19
|
Lawrie NS, Cuetos NM, Sini F, Salam GA, Ding H, Vancolen A, Nelson JM, Erkens RHJ, Perversi G. Systematic review on raphide morphotype calcium oxalate crystals in angiosperms. AOB PLANTS 2023; 15:plad031. [PMID: 37554287 PMCID: PMC10406436 DOI: 10.1093/aobpla/plad031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/31/2023] [Indexed: 08/10/2023]
Abstract
Calcium oxalate (CaOx) crystals are biominerals present in a wide variety of plants. Formation of these crystals is a biomineralization process occurring in vacuoles within specialized cells called crystal idioblasts. This process is dependent on two key components: deprotonated oxalic acid, and calcium ions (Ca2+), and can result in multiple crystal morphologies. Raphides are needle-like CaOx crystals found in various plant organs and tissues. Though their function is highly debated, they can potentially store calcium, sequester heavy metals, protect against herbivory and possibly programmed cell death. The last review of the taxonomic and anatomical distribution of raphides across the plant kingdom dates back to 1980, in a review by Franceschi and Horner, prompting an updated systematic review of raphides in plants. We conduct a broad literature search to record plant taxa and tissue locations containing raphides. We provide an overview of raphide-forming plant taxa, discussing phylogenetic distribution of raphides at the order level, and report on the specific locations of raphides within plants. Our review reveals raphide occurrence has been studied in 33 orders, 76 families and 1305 species, with raphides presence confirmed in 24 orders, 46 families and 797 species. These taxa represented less than 1 % of known species per family. Leaves are the most prominent raphide-containing primary location in all three major angiosperm clades investigated: Eudicots, Magnoliids, and Monocots. Roots are least reported to contain raphides. The collation of such information lays the groundwork to unveil the genetic origin and evolution of raphides in plants, and highlights targets for future studies of the presence and role of plant raphides.
Collapse
Affiliation(s)
- Natasha S Lawrie
- Maastricht Science Programme, Faculty of Science and Engineering, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Nekane Medrano Cuetos
- Maastricht Science Programme, Faculty of Science and Engineering, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Francesca Sini
- Maastricht Science Programme, Faculty of Science and Engineering, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Ghifary A Salam
- Maastricht Science Programme, Faculty of Science and Engineering, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Hangyu Ding
- Maastricht Science Programme, Faculty of Science and Engineering, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Arthur Vancolen
- Maastricht Science Programme, Faculty of Science and Engineering, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Jessica M Nelson
- Maastricht Science Programme, Faculty of Science and Engineering, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Roy H J Erkens
- Maastricht Science Programme, Faculty of Science and Engineering, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Giuditta Perversi
- Maastricht Science Programme, Faculty of Science and Engineering, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
20
|
Raven JA, Andrews M. Photon costs of shoot and root NO 3-, and root NH 4+, assimilation in terrestrial vascular plants considering associated pH regulation, osmotic and ontogenetic effects. PHOTOSYNTHESIS RESEARCH 2023; 155:127-137. [PMID: 36418758 DOI: 10.1007/s11120-022-00975-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
The photon costs of photoreduction/assimilation of nitrate (NO3-) into organic nitrogen in shoots and respiratory driven NO3- and NH4+ assimilation in roots are compared for terrestrial vascular plants, considering associated pH regulation, osmotic and ontogenetic effects. Different mechanisms of neutralisation of the hydroxyl (OH-) ion necessarily generated in shoot NO3- assimilation are considered. Photoreduction/assimilation of NO3- in shoots with malic acid synthesis and either accumulation of malate in leaf vacuoles or transport of malate to roots and catabolism there have a similar cost which is around 35% less than that for root NO3- assimilation and around 20% less than that for photoreduction/assimilation of NO3-, oxalate production and storage of Ca oxalate in leaf vacuoles. The photon cost of root NH4+ assimilation with H+ efflux to the root medium is around 70% less than that of root NO3- assimilation. These differences in photon cost must be considered in the context of the use of a combination of locations of NO3- assimilation and mechanisms of acid-base regulation, and a maximum of 4.9-9.1% of total photon absorption needed for growth and maintenance that is devoted to NO3- assimilation and acid-base regulation.
Collapse
Affiliation(s)
- John A Raven
- Division of Plant Science, University of Dundee at the James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK.
- School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia.
- Climate Change Cluster, Faculty of Science, University of Technology, Sydney, Ultimo, NSW, 2007, Australia.
| | - Mitchell Andrews
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, 7647, New Zealand
| |
Collapse
|
21
|
da Silva GS, Firmino GV, Ferraro A, Appezzato-da-Glória B. Anatomical inferences on aerial bud protection of three Eugenia shrub species from the Cerrado. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:176-186. [PMID: 36314866 DOI: 10.1111/plb.13483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Location and degree of protection of aerial buds are important functional traits in disturbance- or stress-prone environments since aerial buds ensure the development of new organs under favourable growing conditions. This study was carried out in a Brazilian Cerrado area under regeneration after long-term Pinus cultivation, where the trees were clear-cut in 2012 and the remaining material was burned in 2014. After the fire treatment, several species resprouted from belowground organs and their aboveground organs were directly exposed to full sunlight. We collected 15 terminal branches with fully expanded leaves from three individuals of each of three Eugenia species to investigate if those with well-developed belowground organs invest in bark for aboveground bud protection. The samples were analysed using light and electron microscopy. In addition to terminal and axillary buds, all species presented accessory buds, and the number varied according to the node analysed. None of the aerial buds were protected by bark, but all were well protected by cataphylls and densely pubescent leaf primordia. There were also inter- and intra-petiolar colleters that released a mucilaginous protein exudate. The distance between the shoot apical meristem and the outer surface was longer in the terminal bud than in axillary buds. The bud leaf primordia covering the shoot apical meristem had a thick cuticle, unicellular non-glandular trichomes that accumulate phenolic and lipophilic compounds, and secretory cavities. Our study shows that all three Eugenia species studied here had highly protected aerial buds allocated from belowground organs. These morphological traits may improve the chances of the species' persistence in areas subjected to frost events, low relative humidity, high irradiance and harmful UV levels.
Collapse
Affiliation(s)
- G S da Silva
- Plant Anatomy Laboratory, Department of Biological Sciences, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - G V Firmino
- Plant Anatomy Laboratory, Department of Biological Sciences, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - A Ferraro
- Department of Experimental and Functional Morphology, Institute of Botany of the Czech Academy of Sciences, Třeboň, Czech Republic
| | - B Appezzato-da-Glória
- Plant Anatomy Laboratory, Department of Biological Sciences, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, Brazil
| |
Collapse
|
22
|
Paull RE, Zerpa‐Catanho D, Chen NJ, Uruu G, Wai CMJ, Kantar M. Taro raphide-associated proteins: Allergens and crystal growth. PLANT DIRECT 2022; 6:e443. [PMID: 36091877 PMCID: PMC9440338 DOI: 10.1002/pld3.443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/15/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Calcium oxalate raphide crystals are found in bundles in intravacuolar membrane chambers of specialized idioblasts cells of most plant families. Aroid raphides are proposed to cause acridity in crops such as taro (Colocasia esculenta (L.) Schott). Acridity is irritation that causes itchiness and pain when raw/insufficiently cooked tissues are eaten. Since raphides do not always cause acridity and since acridity can be inactivated by cooking and/or protease treatment, it is possible that a toxin or allergen-like compound is associated with the crystals. Using two-dimensional (2D) gel electrophoresis and mass spectrometry (MS) peptide sequencing of selected peptides from purified raphides and taro apex transcriptome sequencing, we showed the presence on the raphides of peptides normally associated with mitochrondria (ATP synthase), chloroplasts (chaperonin ~60 kDa), cytoplasm (actin, profilin), and vacuole (V-type ATPase) that indicates a multistage biocrystallation process ending with possible invagination of the tonoplast and addition of mucilage that may be derived from the Golgi. Actin might play a crucial role in the generation of the needle-like raphides. One of the five raphide profilins genes was highly expressed in the apex and had a 17-amino acid insert that significantly increased that profilin's antigenic epitope peak. A second profilin had a 2-amino acid insert and also had a greater B-cell epitope prediction. Taro profilins showed 83% to 92% similarity to known characterized profilins. Further, commercial allergen test strips for hazelnuts, where profilin is a secondary allergen, have potential for screening in a taro germplasm to reduce acridity and during food processing to avoid overcooking.
Collapse
Affiliation(s)
- Robert E. Paull
- Tropical Plant and Soil SciencesUniversity of Hawaii at ManoaHonoluluHIUSA
| | | | - Nancy J. Chen
- Tropical Plant and Soil SciencesUniversity of Hawaii at ManoaHonoluluHIUSA
| | - Gail Uruu
- Tropical Plant and Soil SciencesUniversity of Hawaii at ManoaHonoluluHIUSA
| | | | - Michael Kantar
- Tropical Plant and Soil SciencesUniversity of Hawaii at ManoaHonoluluHIUSA
| |
Collapse
|
23
|
Liu J, Bi B, Tian G, Li Z, Wang W, Ma F, Shi H, Liu W. Crystal idioblasts are involved in the anther dehiscence of Nicotiana tabacum. PHYSIOLOGIA PLANTARUM 2022; 174:e13753. [PMID: 36004735 DOI: 10.1111/ppl.13753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/08/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
In Nicotiana tabacum, the degeneration of connective tissue and stomium tissue (the stomium and circular cell cluster [CCC]) is essential for anther dehiscence. Both connective cells and CCC cells are crystal idioblasts, and these cells will undergo degeneration after accumulating calcium oxalate (CaOx) crystals. However, detailed data concerning this process are minimal. Therefore, this study used cellular biological and physiological methods to illustrate this relationship. Results demonstrated that tobacco anther dehiscence is a series of timed programmed cell death (PCD) processes that include the CCC, connective tissue, and stomium. The degenerating crystal idioblasts of the tobacco anther were found to possess two hallmark characteristics that distinguished them from normal PCD cells, namely dynamic changes in CaOx crystals and the appearance of numerous peroxisomes. The accumulation of CaOx and the production of H2 O2 occurred simultaneously or successively before PCD. The peak H2 O2 content was found to appear after the insoluble oxalate. Further, CeCl3 cytochemistry staining was used to detect subcellular H2 O2 , and the precipitate of H2 O2 was primarily present in peroxisomes and around CaOx crystals. These results show that anther dehiscence in N. tabacum is a PCD process in which crystal idioblasts play a vital role in CaOx degradation and H2 O2 production.
Collapse
Affiliation(s)
- Jing Liu
- School of Life Science, Northwest University, Xi'an, China
- School of Life Science, Northwest Normal University, Lanzhou, China
| | - Baoxia Bi
- School of Life Science, Northwest University, Xi'an, China
| | - Guanghua Tian
- School of Life Science, Northwest University, Xi'an, China
| | - Ziwei Li
- School of Life Science, Northwest University, Xi'an, China
| | - Weirui Wang
- School of Life Science, Northwest University, Xi'an, China
| | - Fang Ma
- School of Life Science, Northwest University, Xi'an, China
- Institute of Ethnic Preparatory, Ningxia University, Yinchuan, China
| | - Hongyong Shi
- School of Life Science, Guangzhou University, Guangzhou, China
| | - Wenzhe Liu
- School of Life Science, Northwest University, Xi'an, China
| |
Collapse
|
24
|
Rasool F, Nizamani ZA, Ahmad KS, Parveen F, Khan SA, Sabir N. Phytotoxicological study of selected poisonous plants from Azad Jammu & Kashmir. PLoS One 2022; 17:e0263605. [PMID: 35544538 PMCID: PMC9094571 DOI: 10.1371/journal.pone.0263605] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/23/2022] [Indexed: 11/19/2022] Open
Abstract
Poisonous plants cause tremendous economic losses to the livestock industry. These economic losses are deterioration in their health, decreased productivity, deformed offspring, and reduced longevity. The current study is the first comprehensive report on poisonous plants of Azad Jammu and Kashmir which systematically documents the phytotoxicological effect and mode of action in livestock. The information was gathered from 271 informants including 167 men and 104 women through semi-structured interviews and literature search through available databases. The data collected through interviews was analyzed with quantitative tools viz. the factor informant consensus and fidelity level. A total of 38 species of flowering plants belonging to 23 families and 38 genera were reported. Family Asteraceae (5 spp) was the most dominant, followed by Solanaceae (4 spp), Fabaceae (4 spp), Euphorbiaceae (4 spp) and Convolvulaceae (3 spp). Among all the species collected, herbs were the dominant life form (22 spp, 57.89%), trailed by shrubs (11 spp, 28.95%), and trees (5 spp, 13.16%). Whole plant toxicity was reported to be the highest (15 spp, 39.47%), followed by leaf toxicity (12 spp, 31.58%), seed toxicity (4 spp, 7.89%), fruit toxicity (3 spp, 10.53%), latex toxicity (2 spp, 5.26%), flowers toxicity (1 spp, 2.63%), and berries toxicity (1 spp, 2.63%). The most toxic route of administration was found oral (39 spp, 40.63%), followed by intraperitoneal (24 spp, 25%), and intravenous (21 spp, 21.88%). The most commonly affected organ was found liver (20.41%), followed by gastrointestinal tract (20.341%), CNS (16.33%), skin (14.29%), kidneys (12.24%), lungs (4.04%), reproductive organs (2.04%), spleen (1.75%), blood (1.75%), heart (1.75%), urinary tract (1.75%), and pancreas (1.75%). The maximum Fic value was found for dermatological disorders (0.91), followed by the endocrine system (0.90), gastrointestinal (0.82), neurology (0.77), nephrology (0.67), cardiovascular (0.67), urinary (0.67), respiratory (0.60), sexual (0.60) disorders. Senecio vulgaris, and Ageratum conyzoides were the most important plants with fidelity level (0.95) and (0.87). Nerium oleander, Lantana camara, Leucaena leucocephala, and Ricinus communis were the important poisonous plant with maximum fidelity level (100%). Ricinus communis with reported lowest LD50 (<20 mg/kg) was the top-ranked poisonous plant followed by Lantana camara and Justicia adhatoda (25-50 mg/kg), Nerium Oleander (157.37 mg/kg), and Datura innoxia (400 mg/kg). We found that knowledge about poisonous plants is less prevailing in the rural areas of Azad Kashmir compared to the knowledge about medicinal plants and poisonous nature of reported plants is due to production of toxic substances and presence of essential oils.
Collapse
Affiliation(s)
- Faisal Rasool
- Department of Veterinary Pathology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Pakistan
- Department of Pathobiology, Faulty of Veterinary and Animal Sciences, University of Poonch Rawalakot (UPR), Azad Jammu & Kashmir, Pakistan
| | - Zaheer Ahmed Nizamani
- Department of Veterinary Pathology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Pakistan
| | - Khawaja Shafique Ahmad
- Department of Botany, University of Poonch Rawalakot (UPR), Azad Jammu & Kashmir, Pakistan
| | - Fahmida Parveen
- Department of Veterinary Pathology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Pakistan
| | - Shahzad Akbar Khan
- Department of Pathobiology, Faulty of Veterinary and Animal Sciences, University of Poonch Rawalakot (UPR), Azad Jammu & Kashmir, Pakistan
| | - Naveed Sabir
- Department of Pathobiology, Faulty of Veterinary and Animal Sciences, University of Poonch Rawalakot (UPR), Azad Jammu & Kashmir, Pakistan
| |
Collapse
|
25
|
X-ray computed tomography, electron microscopy, and energy-dispersive X-ray spectroscopy of severed Zelkova serrata roots (Japanese elm tree). Micron 2022; 156:103231. [DOI: 10.1016/j.micron.2022.103231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 11/23/2022]
|
26
|
Kalliola R, Linna A, Ruokolainen K, Tyystjärvi E, Lange C. Foliar element distributions in Guadua bamboo, a major forest dominant in southwestern Amazonia. SN APPLIED SCIENCES 2022. [DOI: 10.1007/s42452-021-04927-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
AbstractSilica is the best-known component filling the spaces that form phytoliths in many plants, but phytoliths may also contain other elements. We used scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM–EDX) to map element distributions in the leaves of Guadua bamboo, which is a successful competitor in southwestern Amazonian forests. We emphasize immobile elements that can be mineralized (silicon and calcium) as well as potassium, an abundant mobile nutrient with many vital functions. We discovered high silicon (Si) content with little or no calcium (Ca) or potassium (K) in bulliform cells, bilobate shaped short cells and stomata, all of which can form phytoliths, and moderately high Si content in the bundle sheet, prickle tips and papillae. K often surrounded Si-loaded cells, Si and K had overlapping distributions in the intercostal areas near vein margins, and Ca showed abundant spotted distribution in the intercostal areas. The dark inside content of the costal zones of some samples in light microscopy showed no mineralization but prominently contained sulfur. Adjacent fusoid cells showed different Si, K and Ca combinations, which may suggest potentially variable functions of these cells. Widespread Si deposition strengthens Guadua bamboo leaves and may help it to outcompete tree species during periods of drought.
Collapse
|
27
|
Al Jitan S, Scurria A, Albanese L, Pagliaro M, Meneguzzo F, Zabini F, Al Sakkaf R, Yusuf A, Palmisano G, Ciriminna R. Micronized cellulose from citrus processing waste using water and electricity only. Int J Biol Macromol 2022; 204:587-592. [PMID: 35157905 DOI: 10.1016/j.ijbiomac.2022.02.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 01/25/2023]
Abstract
Along with a water-soluble fraction rich in pectin, the hydrodynamic cavitation of citrus processing waste carried out in water demonstrated directly on semi-industrial scale affords an insoluble fraction consisting of micronized cellulose of low crystallinity ("CytroCell"). Lemon and grapefruit CytroCell respectively consist of 100-500 nm wide cellulose nanorods, and of 500-1000 nm wide ramified microfibrils extending for several μm. These findings establish a technically viable route to low crystallinity micronized cellulose laying in between nano- and microcellulose, using water and electricity only.
Collapse
Affiliation(s)
- Samar Al Jitan
- Department of Chemical Engineering, Center for Membranes and Advanced Water Technology, Research and Innovation Center on CO2 and Hydrogen, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Antonino Scurria
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR, via U. La Malfa 153, 90146 Palermo, Italy
| | - Lorenzo Albanese
- Istituto per la Bioeconomia, CNR, via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy
| | - Mario Pagliaro
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR, via U. La Malfa 153, 90146 Palermo, Italy
| | - Francesco Meneguzzo
- Istituto per la Bioeconomia, CNR, via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy
| | - Federica Zabini
- Istituto per la Bioeconomia, CNR, via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy
| | - Reem Al Sakkaf
- Department of Chemical Engineering, Center for Membranes and Advanced Water Technology, Research and Innovation Center on CO2 and Hydrogen, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Ahmed Yusuf
- Department of Chemical Engineering, Center for Membranes and Advanced Water Technology, Research and Innovation Center on CO2 and Hydrogen, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Giovanni Palmisano
- Department of Chemical Engineering, Center for Membranes and Advanced Water Technology, Research and Innovation Center on CO2 and Hydrogen, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Rosaria Ciriminna
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR, via U. La Malfa 153, 90146 Palermo, Italy.
| |
Collapse
|
28
|
Kayabaş A, Amutkan Mutlu D. Notes on the Newly Identified Asperula cankiriense B. Şahin & Sağıroğlu (Rubiaceae) from Turkey Based on a Light and Scanning Electron Microscopic Study. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-9. [PMID: 35135654 DOI: 10.1017/s1431927622000149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Micromorphological features of vegetative and reproductive organs in plants are considered important because they can be used as taxonomic characters. Asperula cankiriense B. Şahin & Sağıroğlu, commonly known as “Çankırı belumu”, belongs to the family Rubiaceae and generally occurs in gypsum steppes. This research reports for the first time the micromorphological characteristics of the vegetative and reproductive organs of A. cankiriense using light and scanning electron microscopy. Taxonomically critical diagnostic features, such as raphide crystals, presence and shape of trichomes, leaf cross-section shape, flower structure, and epidermal ornamentation, were described in detail. This study provided up-to-date information on the micromorphology of this newly described species and provided additional systematic information on A. cankiriense. New data about the species are reported here and will contribute to the knowledge about the family Rubiaceae.
Collapse
Affiliation(s)
- Ayşenur Kayabaş
- Faculty of Science, Department of Biology, Çankırı Karatekin University, Çankırı, Turkey
| | | |
Collapse
|
29
|
Rodrigues da Silva A, da Costa Silva D, Dos Santos Pinto KN, Santos Filho HP, Coelho Filho MA, Dos Santos Soares Filho W, Ferreira CF, da Silva Gesteira A. Epigenetic responses to Phytophthora citrophthora gummosis in citrus. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 313:111082. [PMID: 34763867 DOI: 10.1016/j.plantsci.2021.111082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/28/2021] [Accepted: 10/02/2021] [Indexed: 06/13/2023]
Abstract
Studies show that DNA methylation is associated with plant immunity but little is known as to how this epigenetic mechanism assists plants in adjusting their responses to biotic stress, especially when interacting with an hemibiotrophic pathogen such as citrus Phytophthora. The aim of the present study was to assess the effects of scion-rootstock interaction on plant resistance to P. citrophthora infection and DNA methylation patterns in 'Pera' sweet orange and 'Tahiti' acid lime grafted onto 'Rangpur' lime and 'Tropical' sunki rootstocks reinoculated with P. citrophthora. Results showed that reinoculated plants of the 'Pera' sweet orange/'Rangpur' lime and 'Tahiti' acid lime/'Tropical' sunki combinations with more and less sensitive varieties to Phytophthora, presented smaller stem lesions and increased frequency of full methylation and hemimethylation rates, compared to inoculated plants. In contrast, 'Tahiti' acid lime/'Rangpur' lime, two highly sensitive varieties, and 'Pera'/'Tropical' sunki, two much less sensitive varieties, showed high increases in the frequency of hemimethylation and non-methylation levels. Results suggest that in citrus, both the scion-rootstock interaction and DNA methylation affect the response to P. citrophthora infection. Reinoculated plants, depending on the combination, showed changes in intracellular hyphae growth through the formation of sets of fibers and crystal accumulation in the periderm, cortex, and phloem. In addition, starch grain concentration was higher in reinoculated plants in comparison to inoculated plants. These findings support the assumption that DNA methylation is a plant defense mechanism and therefore may be exploited to improve the response of plants to the gummosis of P. citrophthora in citrus.
Collapse
Affiliation(s)
- Adielle Rodrigues da Silva
- Departamento de Biologia, Centro de Genética e Biologia Molecular, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, 45662-900, Brazil
| | - Delmira da Costa Silva
- Departamento de Biologia, Centro de Genética e Biologia Molecular, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, 45662-900, Brazil
| | | | | | | | | | | | - Abelmon da Silva Gesteira
- Departamento de Biologia, Centro de Genética e Biologia Molecular, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, 45662-900, Brazil; Embrapa Mandioca e Fruticultura, Cruz das Almas, Bahia, 44380-000, Brazil.
| |
Collapse
|
30
|
Gómez-Espinoza O, González-Ramírez D, Méndez-Gómez J, Guillén-Watson R, Medaglia-Mata A, Bravo LA. Calcium Oxalate Crystals in Leaves of the Extremophile Plant Colobanthus quitensis (Kunth) Bartl. (Caryophyllaceae). PLANTS 2021; 10:plants10091787. [PMID: 34579321 PMCID: PMC8470922 DOI: 10.3390/plants10091787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 12/14/2022]
Abstract
The presence of calcium oxalate (CaOx) crystals has been widely reported in the plant kingdom. These structures play a central role in various physiological functions, including calcium regulation, metal detoxification, and photosynthesis. However, precise knowledge about their possible roles and functions in plants is still limited. Therefore, the present work aims to study the ecotypic variability of Colobanthus quitensis, an extremophile species, concerning CaOx crystal accumulation. The CaOx crystals were studied in leaves of C. quitensis collected from different provenances within a latitudinal gradient (From Andes mountains in central Chile to Antarctica) and grown under common garden conditions. Polarized light microscopy, digital image analysis, and electron microscopy were used to characterize CaOx crystals. The presence of CaOx crystals was confirmed in the four provenances of C. quitensis, with significant differences in the accumulation among them. The Andean populations presented the highest accumulation of crystals and the Antarctic population the lowest. Electron microscopy showed that CaOx crystals in C. quitensis are classified as druses based on their morphology. The differences found could be linked to processes of ecotypic differentiation and plant adaptation to harsh environments.
Collapse
Affiliation(s)
- Olman Gómez-Espinoza
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Agroindustria, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Forestales & Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 1145, Chile; or
- Centro de Investigación en Biotecnología, Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica; (D.G.-R.); (R.G.-W.)
| | - Daniel González-Ramírez
- Centro de Investigación en Biotecnología, Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica; (D.G.-R.); (R.G.-W.)
| | - Jairo Méndez-Gómez
- Laboratorio Institucional de Microscopía, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica; (J.M.-G.); (A.M.-M.)
| | - Rossy Guillén-Watson
- Centro de Investigación en Biotecnología, Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica; (D.G.-R.); (R.G.-W.)
- Laboratorio Institucional de Microscopía, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica; (J.M.-G.); (A.M.-M.)
| | - Alejandro Medaglia-Mata
- Laboratorio Institucional de Microscopía, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica; (J.M.-G.); (A.M.-M.)
| | - León A. Bravo
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Agroindustria, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Forestales & Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 1145, Chile; or
- Correspondence: ; Tel.: +56-45-2592821
| |
Collapse
|
31
|
Karabourniotis G, Liakopoulos G, Bresta P, Nikolopoulos D. The Optical Properties of Leaf Structural Elements and Their Contribution to Photosynthetic Performance and Photoprotection. PLANTS (BASEL, SWITZERLAND) 2021; 10:1455. [PMID: 34371656 PMCID: PMC8309337 DOI: 10.3390/plants10071455] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/18/2022]
Abstract
Leaves have evolved to effectively harvest light, and, in parallel, to balance photosynthetic CO2 assimilation with water losses. At times, leaves must operate under light limiting conditions while at other instances (temporally distant or even within seconds), the same leaves must modulate light capture to avoid photoinhibition and achieve a uniform internal light gradient. The light-harvesting capacity and the photosynthetic performance of a given leaf are both determined by the organization and the properties of its structural elements, with some of these having evolved as adaptations to stressful environments. In this respect, the present review focuses on the optical roles of particular leaf structural elements (the light capture module) while integrating their involvement in other important functional modules. Superficial leaf tissues (epidermis including cuticle) and structures (epidermal appendages such as trichomes) play a crucial role against light interception. The epidermis, together with the cuticle, behaves as a reflector, as a selective UV filter and, in some cases, each epidermal cell acts as a lens focusing light to the interior. Non glandular trichomes reflect a considerable part of the solar radiation and absorb mainly in the UV spectral band. Mesophyll photosynthetic tissues and biominerals are involved in the efficient propagation of light within the mesophyll. Bundle sheath extensions and sclereids transfer light to internal layers of the mesophyll, particularly important in thick and compact leaves or in leaves with a flutter habit. All of the aforementioned structural elements have been typically optimized during evolution for multiple functions, thus offering adaptive advantages in challenging environments. Hence, each particular leaf design incorporates suitable optical traits advantageously and cost-effectively with the other fundamental functions of the leaf.
Collapse
Affiliation(s)
- George Karabourniotis
- Laboratory of Plant Physiology and Morphology, Faculty of Crop Science, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece; (G.L.); (D.N.)
| | - Georgios Liakopoulos
- Laboratory of Plant Physiology and Morphology, Faculty of Crop Science, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece; (G.L.); (D.N.)
| | - Panagiota Bresta
- Laboratory of Electron Microscopy, Faculty of Crop Science, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece;
| | - Dimosthenis Nikolopoulos
- Laboratory of Plant Physiology and Morphology, Faculty of Crop Science, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece; (G.L.); (D.N.)
| |
Collapse
|
32
|
Martin McAinsh. THE NEW PHYTOLOGIST 2021; 231:29-31. [PMID: 34060663 DOI: 10.1111/nph.17411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
|
33
|
Paiva ÉAS. Do calcium oxalate crystals protect against herbivory? Naturwissenschaften 2021; 108:24. [PMID: 34043088 DOI: 10.1007/s00114-021-01735-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/02/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
Calcium oxalate (CaOx) crystals have challenged human curiosity since the advent of microscopy. These crystals are linked to the control of calcium levels in plant cells, but they have also been attributed several other functions, including protection against herbivory. However, the protection offered by CaOx crystals against herbivory may be overstated, as claims have been mainly based on their shapes and hard and indigestible nature rather than on experimental evidence. I contend that it is improbable that a constitutive defense, present since very early in the evolution of plants, has not been superseded by herbivores, especially insects. Here, I present arguments and evidence that suggest that these crystals have low efficiency in protecting plants against herbivores. First, I argue that insects with chewing mouthparts possess a semipermeable structure that protects their midgut, minimizing damage from crystals. Second, the action of CaOx crystals is purely mechanical and similar to other inert materials such as sand. Therefore, CaOx crystals only provide effective protection from herbivory in very particular cases and should not be considered an effective defense without supporting experimental evidence.
Collapse
Affiliation(s)
- Élder Antônio Sousa Paiva
- Plant Secretion & Reproduction (PlantSeR) Lab, Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| |
Collapse
|
34
|
Hervé V, Simon A, Randevoson F, Cailleau G, Rajoelison G, Razakamanarivo H, Bindschedler S, Verrecchia E, Junier P. Functional Diversity of the Litter-Associated Fungi from an Oxalate-Carbonate Pathway Ecosystem in Madagascar. Microorganisms 2021; 9:microorganisms9050985. [PMID: 34062900 PMCID: PMC8147286 DOI: 10.3390/microorganisms9050985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022] Open
Abstract
The oxalate-carbonate pathway (OCP) is a biogeochemical process linking oxalate oxidation and carbonate precipitation. Currently, this pathway is described as a tripartite association involving oxalogenic plants, oxalogenic fungi, and oxalotrophic bacteria. While the OCP has recently received increasing interest given its potential for capturing carbon in soils, there are still many unknowns, especially regarding the taxonomic and functional diversity of the fungi involved in this pathway. To fill this gap, we described an active OCP site in Madagascar, under the influence of the oxalogenic tree Tamarindus indica, and isolated, identified, and characterized 50 fungal strains from the leaf litter. The fungal diversity encompassed three phyla, namely Mucoromycota, Ascomycota, and Basidiomycota, and 23 genera. Using various media, we further investigated their functional potential. Most of the fungal strains produced siderophores and presented proteolytic activities. The majority were also able to decompose cellulose and xylan, but only a few were able to solubilize inorganic phosphate. Regarding oxalate metabolism, several strains were able to produce calcium oxalate crystals while others decomposed calcium oxalate. These results challenge the current view of the OCP by indicating that fungi are both oxalate producers and degraders. Moreover, they strengthen the importance of the role of fungi in C, N, Ca, and Fe cycles.
Collapse
Affiliation(s)
- Vincent Hervé
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland; (A.S.); (G.C.); (S.B.); (P.J.)
- Laboratory of Biogeosciences, Institute of Earth Surface Dynamics, University of Lausanne, 1015 Lausanne, Switzerland; (F.R.); (E.V.)
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Correspondence: ; Tel.: +49-6421178122
| | - Anaële Simon
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland; (A.S.); (G.C.); (S.B.); (P.J.)
| | - Finaritra Randevoson
- Laboratory of Biogeosciences, Institute of Earth Surface Dynamics, University of Lausanne, 1015 Lausanne, Switzerland; (F.R.); (E.V.)
| | - Guillaume Cailleau
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland; (A.S.); (G.C.); (S.B.); (P.J.)
- Laboratory of Biogeosciences, Institute of Earth Surface Dynamics, University of Lausanne, 1015 Lausanne, Switzerland; (F.R.); (E.V.)
| | - Gabrielle Rajoelison
- Ecole Supérieure des Sciences Agronomiques, Université d’Antananarivo, Antananarivo 101, Madagascar;
| | | | - Saskia Bindschedler
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland; (A.S.); (G.C.); (S.B.); (P.J.)
| | - Eric Verrecchia
- Laboratory of Biogeosciences, Institute of Earth Surface Dynamics, University of Lausanne, 1015 Lausanne, Switzerland; (F.R.); (E.V.)
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland; (A.S.); (G.C.); (S.B.); (P.J.)
| |
Collapse
|
35
|
Sasani N, Bock P, Felhofer M, Gierlinger N. Raman imaging reveals in-situ microchemistry of cuticle and epidermis of spruce needles. PLANT METHODS 2021; 17:17. [PMID: 33557869 PMCID: PMC7871409 DOI: 10.1186/s13007-021-00717-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/28/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND The cuticle is a protective layer playing an important role in plant defense against biotic and abiotic stresses. So far cuticle structure and chemistry was mainly studied by electron microscopy and chemical extraction. Thus, analysing composition involved sample destruction and the link between chemistry and microstructure remained unclear. In the last decade, Raman imaging showed high potential to link plant anatomical structure with microchemistry and to give insights into orientation of molecules. In this study, we use Raman imaging and polarization experiments to study the native cuticle and epidermal layer of needles of Norway spruce, one of the economically most important trees in Europe. The acquired hyperspectral dataset is the basis to image the chemical heterogeneity using univariate (band integration) as well as multivariate data analysis (cluster analysis and non-negative matrix factorization). RESULTS Confocal Raman microscopy probes the cuticle together with the underlying epidermis in the native state and tracks aromatics, lipids, carbohydrates and minerals with a spatial resolution of 300 nm. All three data analysis approaches distinguish a waxy, crystalline layer on top, in which aliphatic chains and coumaric acid are aligned perpendicular to the surface. Also in the lipidic amorphous cuticle beneath, strong signals of coumaric acid and flavonoids are detected. Even the unmixing algorithm results in mixed endmember spectra and confirms that lipids co-locate with aromatics. The underlying epidermal cell walls are devoid of lipids but show strong aromatic Raman bands. Especially the upper periclinal thicker cell wall is impregnated with aromatics. At the interface between epidermis and cuticle Calcium oxalate crystals are detected in a layer-like fashion. Non-negative matrix factorization gives the purest component spectra, thus the best match with reference spectra and by this promotes band assignments and interpretation of the visualized chemical heterogeneity. CONCLUSIONS Results sharpen our view about the cuticle as the outermost layer of plants and highlight the aromatic impregnation throughout. In the future, developmental studies tracking lipid and aromatic pathways might give new insights into cuticle formation and comparative studies might deepen our understanding why some trees and their needle and leaf surfaces are more resistant to biotic and abiotic stresses than others.
Collapse
Affiliation(s)
- Nadia Sasani
- Department of Nanobiotechnology (DNBT), Institute for Biophysics, University of Natural Resources and Life Sciences (BOKU), Muthgasse 11-II, 1190, Vienna, Austria
| | - Peter Bock
- Department of Nanobiotechnology (DNBT), Institute for Biophysics, University of Natural Resources and Life Sciences (BOKU), Muthgasse 11-II, 1190, Vienna, Austria
| | - Martin Felhofer
- Department of Nanobiotechnology (DNBT), Institute for Biophysics, University of Natural Resources and Life Sciences (BOKU), Muthgasse 11-II, 1190, Vienna, Austria
| | - Notburga Gierlinger
- Department of Nanobiotechnology (DNBT), Institute for Biophysics, University of Natural Resources and Life Sciences (BOKU), Muthgasse 11-II, 1190, Vienna, Austria.
| |
Collapse
|
36
|
CytroCell: Valued Cellulose from Citrus Processing Waste. Molecules 2021; 26:molecules26030596. [PMID: 33498706 PMCID: PMC7865635 DOI: 10.3390/molecules26030596] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 12/05/2022] Open
Abstract
Isolating cellulose from citrus processing waste without employing chemicals has so far been an unfulfilled goal of chemical research applied to the valorization of a widely available biowaste, annually totaling >100 million tonnes. We have applied hydrodynamic cavitation using a Venturi-type reactor for the extraction of all valued bioproducts of industrial citrus processing waste in water only, directly on a semi-industrial scale. After reporting the discovery of IntegroPectin in the soluble fraction of the aqueous extract, we now report the isolation of a cellulosic material in the water-insoluble fraction of cavitated lemon and grapefruit processing waste. Named “CytroCell”, the material is cellulose of low crystallinity, high porosity, good water holding capacity and good dispersibility in water. These properties open the route to mass-scale production of a useful functional material from a cheap and abundant biowaste.
Collapse
|
37
|
Protein-driven biomineralization: Comparing silica formation in grass silica cells to other biomineralization processes. J Struct Biol 2020; 213:107665. [PMID: 33227416 DOI: 10.1016/j.jsb.2020.107665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 11/20/2022]
Abstract
Biomineralization is a common strategy adopted by organisms to support their body structure. Plants practice significant silicon and calcium based biomineralization in which silicon is deposited as silica in cell walls and intracellularly in various cell-types, while calcium is deposited mostly as calcium oxalate in vacuoles of specialized cells. In this review, we compare cellular processes leading to protein-dependent mineralization in plants, diatoms and sponges (phylum Porifera). The mechanisms of biomineralization in these organisms are inherently different. The composite silica structure in diatoms forms inside the cytoplasm in a membrane bound vesicle, which after maturation is exocytosed to the cell surface. In sponges, separate vesicles with the mineral precursor (silicic acid), an inorganic template, and organic molecules, fuse together and are extruded to the extracellular space. In plants, calcium oxalate mineral precipitates in vacuolar crystal chambers containing a protein matrix which is never exocytosed. Silica deposition in grass silica cells takes place outside the cell membrane when the cells secrete the mineralizing protein into the apoplasm rich with silicic acid (the mineral precursor molecules). Our review infers that the organism complexity and precursor reactivity (calcium and oxalate versus silicic acid) are main driving forces for the evolution of varied mineralization mechanisms.
Collapse
|
38
|
Decomposition of Calcium Oxalate Crystals in Colobanthus quitensis under CO 2 Limiting Conditions. PLANTS 2020; 9:plants9101307. [PMID: 33023238 PMCID: PMC7600318 DOI: 10.3390/plants9101307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 12/23/2022]
Abstract
Calcium oxalate (CaOx) crystals are widespread among plant species. Their functions are not yet completely understood; however, they can provide tolerance against multiple environmental stress factors. Recent evidence suggested that CaOx crystals function as carbon reservoirs since its decomposition provides CO2 that may be used as carbon source for photosynthesis. This might be advantageous in plants with reduced mesophyll conductance, such as the Antarctic plant Colobanthus quitensis, which have shown CO2 diffusion limitations. In this study, we evaluate the effect of two CO2 concentrations in the CaOx crystals decomposition and chlorophyll fluorescence of C. quitensis. Plants were exposed to airflows with 400 ppm and 11.5 ppm CO2 and the number and relative size of crystals, electron transport rate (ETR), and oxalate oxidase (OxO) activity were monitored along time (10 h). Here we showed that leaf crystal area decreases over time in plants with 11.5 ppm CO2, which was accompanied by increased OxO activity and only a slight decrease in the ETR. These results suggested a relation between CO2 limiting conditions and the CaOx crystals decomposition in C. quitensis. Hence, crystal decomposition could be a complementary endogenous mechanism for CO2 supply in plants facing the Antarctic stressful habitat.
Collapse
|