1
|
Nomura Y, Okada M, Tameshige T, Takenaka S, Shimizu KK, Nasuda S, Nagano AJ. Subgenome-informed statistical modeling of transcriptomes in 25 common wheat accessions reveals cis- and trans-regulation architectures. PLANT & CELL PHYSIOLOGY 2025; 66:347-357. [PMID: 39829360 DOI: 10.1093/pcp/pcaf011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Common wheat is an allohexaploid, where it is difficult to obtain homoeolog-distinguished transcriptome data. Lasy-Seq, a type of 3' RNA-seq, is technology efficient at obtaining homoeolog-distinguished transcriptomes. Here, we applied Lasy-Seq to obtain transcriptome data from the seedlings, second leaves, and root tips of 25 common wheat lines mainly from East Asia. Roots and seedlings were similar to each other in transcriptome profiles, but they were different from the leaves. We then asked how three homoeologous genes from different subgenomes (i.e. triads) show different levels of expression. Specifically, we examined the effects of subgenomes, lines, and their interaction on the expression levels of each homoeolog triad, separately in each tissue. Of the 19 805 homoeolog triads, 51-55% showed significant effect of subgenome, suggesting cis-regulation, whereas 24-30% showed significant effect line, suggesting trans-regulation. We also found that 7.7-9.0% triads showed significant effects of the interaction. Hierarchical clustering and co-trans regulation network analysis of homoeolog triads revealed that the patterns of expression polymorphisms among the lines were shared in different genes. Our results also implied that expression variation between lines is caused by changes in a smaller number of common trans-factors. We performed gene ontology (GO)-term enrichment analysis using newly annotated and substantially improved GO annotations, which revealed that GO terms related to each tissue-type function were enriched in genes expressed in the leaves and roots. Our information provides fundamental knowledge for the future breeding of plants possessing complex gene regulatory networks such as common wheat.
Collapse
Affiliation(s)
- Yasuyuki Nomura
- Research Institute for Food and Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga, 520-2194 Japan
| | - Moeko Okada
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813 Japan
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata, 950-2181 Japan
| | - Toshiaki Tameshige
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813 Japan
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Nakaragi-cho, Shimogamo, Sakyo-ku, Kyoto, 606-8522 Japan
| | - Shotaro Takenaka
- Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga, 520-2194 Japan
| | - Kentaro K Shimizu
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813 Japan
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Shuhei Nasuda
- Graduate school of Agriculture, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga, 520-2194 Japan
- Institute for Advanced Biosciences, Keio University, 246-2, Tsuruoka, Yamagata, 997-0052 Japan
| |
Collapse
|
2
|
Wang X, Wang Y, Zheng Z, Cui Y. GPA1 is a determinant of leaf width and fruit size in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112336. [PMID: 39622387 DOI: 10.1016/j.plantsci.2024.112336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/06/2024] [Accepted: 11/23/2024] [Indexed: 12/08/2024]
Abstract
The identification and dissection of the genetic foundations underlying natural variations in crop species are critical for understanding their phenotypic diversity and for subsequent application in selective breeding. In this research, we identify a natural polymorphism in the promoter region of the G protein α subunit 1 (GPA1) gene, which is associated with the width of the tomato leaves. This may be an evolutionary consequence resulting from the domestication processes aimed at increasing fruit size. A functional disruption of the GPA1 gene resulted in a significant reduction in both the leaf size and the fruit mass in tomatoes compared to the wild type. Further exploration revealed that the intrinsic variation present in the GPA1 promoter region is responsible for the differential expression of the GPA1 gene. Distinct GPA1 haplotypes show a significant correlation with geographic distribution, suggesting that the polymorphisms within the GPA1 locus confer adaptive advantages for modulating leaf morphology in tomatoes, reflecting evolutionary responses to regional environmental pressures. Consequently, our findings provide new insights into the genetic diversity underlying leaf morphology and offer a valuable genetic resource for the selective breeding of cultivated tomato varieties.
Collapse
Affiliation(s)
- Xiang Wang
- The State Key Laboratory of Subtropical Silviculture, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
| | - Youwei Wang
- The State Key Laboratory of Subtropical Silviculture, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Ziyi Zheng
- The State Key Laboratory of Subtropical Silviculture, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Yongmei Cui
- Academy of Agricultural and Forestry Sciences, Qinghai University, Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining 810016, China
| |
Collapse
|
3
|
Jiang T, Huang N, Wang Z, Li J, Ma L, Wang X, Shen L, Zhang Y, Yu Y, Wang W, Fan Y, Liu K, Zhao Z, Xiong Z, Song Q, Tang H, Zhang H, Bao Y. MEMBRANE PROTEIN 1 encoding an amino acid transporter confers resistance to blast fungus and leaf-blight bacterium in rice. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:7284-7299. [PMID: 39171750 DOI: 10.1093/jxb/erae350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/21/2024] [Indexed: 08/23/2024]
Abstract
Amino acid transporters (AATs) have been shown to be involved in immune responses during plant-pathogen interactions; however, the molecular mechanism by which they function in this process remains unclear. Here, we used a joint analysis of a genome-wide association study and quantitative trait locus (QTL) mapping to identify MEMBRANE PROTEIN 1, which acts as a QTL in rice against blast fungus. Heterogeneous expression of OsMP1 in yeast supported its function in transporting a wide range of amino acids, including Thr, Ser, Phe, His, and Glu. OsMP1 could also mediate 15N-Glu efflux and influx in Xenopus oocyte cells. The expression of OsMP1 was significantly induced by Magnaporthe oryzae in the resistant rice landrace Heikezijing, whereas no such induction was observed in the susceptible landrace Suyunuo. Overexpressing OsMP1 in Suyunuo enhanced disease resistance to blast fungus and leaf blight bacterium without resulting in a yield penalty. In addition, the overexpression of OsMP1 led to increased accumulation of Thr, Ser, Phe, and His in the leaves and this contributed to the reduced disease susceptibility, which was associated with up-regulation of the jasmonic acid pathway. Our results demonstrate the important role of OsMP1 in disease resistance in rice and provide a potential target for breeding more resistant cultivars without reducing yield.
Collapse
Affiliation(s)
- Tingting Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ning Huang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhixue Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiawen Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Lu Ma
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinying Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Lingtong Shen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yao Yu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunxin Fan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kunquan Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhi Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ziwei Xiong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qisheng Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Haijuan Tang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongsheng Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yongmei Bao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
4
|
Wang J, Zheng Q, Zhang R, Huang Z, Wu Q, Liu L, Ning Q, Jackson D, Xu F. Heterozygous fasciated ear mutations improve yield traits in inbred and hybrid maize lines. PLANT PHYSIOLOGY 2024; 196:2291-2295. [PMID: 39259646 PMCID: PMC11637988 DOI: 10.1093/plphys/kiae472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 09/13/2024]
Abstract
Heterozygous mutations in two genes encoding key regulators of development improve kernel row number in inbred and hybrid maize, revealing their potential for yield improvement.
Collapse
Affiliation(s)
- Jinbiao Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Qi Zheng
- College of Agronomy, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Ruizhong Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Zhaoyu Huang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Qingyu Wu
- Chinese Academy of Agricultural Sciences, Institute of Agricultural Resources and Regional Planning, Beijing 100081, China
| | - Lei Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Ning
- Hubei Academy of Agricultural Sciences, Food Crops Institute, Wuhan 430064, China
| | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA
| | - Fang Xu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
- Suzhou Research Institute of Shandong University, Suzhou 215123, China
| |
Collapse
|
5
|
Zhang C, Shao Z, Kong Y, Du H, Li W, Yang Z, Li X, Ke H, Sun Z, Shao J, Chen S, Zhang H, Chu J, Xing X, Tian R, Qin N, Li J, Huang M, Sun Y, Huo X, Meng C, Wang G, Liu Y, Ma Z, Tian S, Li X. High-quality genome of a modern soybean cultivar and resequencing of 547 accessions provide insights into the role of structural variation. Nat Genet 2024; 56:2247-2258. [PMID: 39251789 DOI: 10.1038/s41588-024-01901-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 08/08/2024] [Indexed: 09/11/2024]
Abstract
Soybean provides protein, oil and multiple health-related compounds. Understanding the effects of structural variations (SVs) on economic traits in modern breeding is important for soybean improvement. Here we assembled the high-quality genome of modern cultivar Nongdadou2 (NDD2) and identified 25,814 SV-gene pairs compared to 29 reported genomes, with 13 NDD2-private SVs validated in 547 deep-resequencing (average = 18.05-fold) accessions, which advances our understanding of genomic variation biology. We found some insertions/deletions involved in seed protein and weight formation, an inversion related to adaptation to drought and a large intertranslocation implicated in a key divergence event in soybean. Of 749,714 SVs from 547 accessions, 6,013 were significantly associated with 22 yield-related and seed-quality-related traits determined in ten location × year environments. We uncovered 1,761 associated SVs that hit genes or regulatory regions, with 12 in GmMQT influencing oil and isoflavone contents. Our work provides resources and insights into SV roles in soybean improvement.
Collapse
Affiliation(s)
- Caiying Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China.
| | - Zhenqi Shao
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Youbin Kong
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Hui Du
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Wenlong Li
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Zhanwu Yang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Xiangkong Li
- Novogene Bioinformatics Institute, Beijing, China
| | - Huifeng Ke
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Zhengwen Sun
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Jiabiao Shao
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Shiliang Chen
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Hua Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Jiahao Chu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Xinzhu Xing
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Rui Tian
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Ning Qin
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Junru Li
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Meihong Huang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Yaqian Sun
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Xiaobo Huo
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Chengsheng Meng
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Guoning Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Yuan Liu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Zhiying Ma
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China.
| | - Shilin Tian
- Novogene Bioinformatics Institute, Beijing, China.
| | - Xihuan Li
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China.
| |
Collapse
|
6
|
Dhatterwal P, Sharma N, Prasad M. Decoding the functionality of plant transcription factors. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4745-4759. [PMID: 38761104 DOI: 10.1093/jxb/erae231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/16/2024] [Indexed: 05/20/2024]
Abstract
Transcription factors (TFs) intricately govern cellular processes and responses to external stimuli by modulating gene expression. TFs help plants to balance the trade-off between stress tolerance and growth, thus ensuring their long-term survival in challenging environments. Understanding the factors and mechanisms that define the functionality of plant TFs is of paramount importance for unravelling the intricate regulatory networks governing development, growth, and responses to environmental stimuli in plants. This review provides a comprehensive understanding of these factors and mechanisms defining the activity of TFs. Understanding the dynamic nature of TFs has practical implications for modern molecular breeding programmes, as it provides insights into how to manipulate gene expression to optimize desired traits in crops. Moreover, recent studies also report the functional duality of TFs, highlighting their ability to switch between activation and repression modes; this represents an important mechanism for attuning gene expression. Here we discuss what the possible reasons for the dual nature of TFs are and how this duality instructs the cell fate decision during development, and fine-tunes stress responses in plants, enabling them to adapt to various environmental challenges.
Collapse
Affiliation(s)
| | | | - Manoj Prasad
- National Institute of Plant Genome Research, New Delhi, India
- Department of Genetics, University of Delhi South Campus, New Delhi, India
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
7
|
Hardy EC, Balcerowicz M. Untranslated yet indispensable-UTRs act as key regulators in the environmental control of gene expression. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4314-4331. [PMID: 38394144 PMCID: PMC11263492 DOI: 10.1093/jxb/erae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/22/2024] [Indexed: 02/25/2024]
Abstract
To survive and thrive in a dynamic environment, plants must continuously monitor their surroundings and adjust their development and physiology accordingly. Changes in gene expression underlie these developmental and physiological adjustments, and are traditionally attributed to widespread transcriptional reprogramming. Growing evidence, however, suggests that post-transcriptional mechanisms also play a vital role in tailoring gene expression to a plant's environment. Untranslated regions (UTRs) act as regulatory hubs for post-transcriptional control, harbouring cis-elements that affect an mRNA's processing, localization, translation, and stability, and thereby tune the abundance of the encoded protein. Here, we review recent advances made in understanding the critical function UTRs exert in the post-transcriptional control of gene expression in the context of a plant's abiotic environment. We summarize the molecular mechanisms at play, present examples of UTR-controlled signalling cascades, and discuss the potential that resides within UTRs to render plants more resilient to a changing climate.
Collapse
Affiliation(s)
- Emma C Hardy
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, UK
| | - Martin Balcerowicz
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, UK
| |
Collapse
|
8
|
Liu P, An L, Ma L, Zou L, Du S, Shen Y. MTP family analysis and association study reveal the role of ZmMTP11 in lead (Pb) accumulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108740. [PMID: 38797007 DOI: 10.1016/j.plaphy.2024.108740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
The metal tolerance protein (MTP) gene family plays an essential role in the transport of heavy metals, however the function of the MTP family in transporting lead (Pb) was still unclear in plants. In this study, we identified and characterized 12 ZmMTPs in the whole genome of maize. These ZmMTP genes were divided into three subfamilies in evolution, namely Zn-CDF, Zn/Fe-CDF, Mn-CDF subfamilies, which showed diverse expression patterns in different tissues of maize. Using gene-based association analyses, we identified a Pb accumulation-related MTP member in maize, ZmMTP11, which was located in plasma membrane and had the potential of transporting Pb ion. Under the Pb treatment, ZmMTP11 showed a generally decreased expression relative to the normal conditions. Heterologous expressions of ZmMTP11 in yeast, Arabidopsis, and rice demonstrated that ZmMTP11 enhanced Pb accumulation in the cells without affecting yeast and plant growth under Pb stress. Remarkably, the increased Pb concentration in the plant roots did not cause changes in Pb content in the shoots. Our study provides new insights into the genetic improvement of heavy metal tolerance in plants and contributes to bioremediation of Pb-contaminant soils.
Collapse
Affiliation(s)
- Peng Liu
- College of Life Science & Biotechnology, Mianyang Normal University, Mianyang, 621000, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lijun An
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Langlang Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lijuan Zou
- College of Life Science & Biotechnology, Mianyang Normal University, Mianyang, 621000, China; Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, China
| | - Shizhang Du
- College of Life Science & Biotechnology, Mianyang Normal University, Mianyang, 621000, China
| | - Yaou Shen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
9
|
Wang X, Song X, Miao H, Feng S, Wu G. Natural variation in CYCLIC NUCLEOTIDE-GATED ION CHANNEL 4 reveals a novel role of calcium signaling in vegetative phase change in Arabidopsis. THE NEW PHYTOLOGIST 2024; 242:1043-1054. [PMID: 38184789 DOI: 10.1111/nph.19498] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/07/2023] [Indexed: 01/08/2024]
Abstract
The timing of vegetative phase change (VPC) in plants is regulated by a temporal decline in the expression of miR156. Both exogenous cues and endogenous factors, such as temperature, light, sugar, nutrients, and epigenetic regulators, have been shown to affect VPC by altering miR156 expression. However, the genetic basis of natural variation in VPC remains largely unexplored. Here, we conducted a genome-wide association study on the variation of the timing of VPC in Arabidopsis. We identified CYCLIC NUCLEOTIDE-GATED ION CHANNEL 4 (CNGC4) as a significant locus associated with the diversity of VPC. Mutations in CNGC4 delayed VPC, accompanied by an increased expression level of miR156 and a corresponding decrease in SQUAMOSA PROMOTER BINDING-LIKE (SPL) gene expression. Furthermore, mutations in CNGC2 and CATION EXCHANGER 1/3 (CAX1/3) also led to a delay in VPC. Polymorphisms in the CNGC4 promoter contribute to the natural variation in CNGC4 expression and the diversity of VPC. Specifically, the early CNGC4 variant promotes VPC and enhances plant adaptation to local environments. In summary, our findings offer genetic insights into the natural variation in VPC in Arabidopsis, and reveal a previously unidentified role of calcium signaling in the regulation of VPC.
Collapse
Affiliation(s)
- Xiang Wang
- The State Key Laboratory of Subtropical Silviculture, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Xia Song
- The State Key Laboratory of Subtropical Silviculture, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Huaiqi Miao
- The State Key Laboratory of Subtropical Silviculture, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Shengjun Feng
- The State Key Laboratory of Subtropical Silviculture, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Gang Wu
- The State Key Laboratory of Subtropical Silviculture, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| |
Collapse
|
10
|
Wang X, Miao H, Lv C, Wu G. Genome-wide association study identifies a novel BMI1A QTL allele that confers FLC expression diversity in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:837-849. [PMID: 36995968 DOI: 10.1093/jxb/erad120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Identification and understanding of the genetic basis of natural variations in plants are essential for comprehending their phenotypic adaptation. Here, we report a genome-wide association study (GWAS) of FLOWERING LOCUS C (FLC) expression in 727 Arabidopsis accessions. We identified B LYMPHOMA MOLONEY MURINE LEUKEMIA VIRUS INSERTION REGION 1 HOMOLOG 1A (BMI1A) as a causal gene for one of the FLC expression quantitative trait loci (QTLs). Loss of function in BMI1A increases FLC expression and delays flowering time at 16 °C significantly compared with the wild type (Col-0). BMI1A activity is required for histone H3 lysine 27 trimethylation (H3K27me3) accumulation at the FLC, MADS AFFECTING FLOWERING 4 (MAF4), and MAF5 loci at low ambient temperature. We further uncovered two BMI1A haplotypes associated with the natural variation in FLC expression and flowering time at 16 °C, and demonstrated that polymorphisms in the BMI1A promoter region are the main contributor. Different BMI1A haplotypes are strongly associated with geographical distribution, and the low ambient temperature-sensitive BMI1A variants are associated with a lower mean temperature of the driest quarter of their collection sites compared with the temperature-non-responsive variants, indicating that the natural variations in BMI1A have adaptive functions in FLC expression and flowering time regulation. Therefore, our results provide new insights into the natural variations in FLC expression and flowering time diversity in plants.
Collapse
Affiliation(s)
- Xiang Wang
- The State Key Laboratory of Subtropical Silviculture, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Huaiqi Miao
- The State Key Laboratory of Subtropical Silviculture, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Caijia Lv
- The State Key Laboratory of Subtropical Silviculture, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Gang Wu
- The State Key Laboratory of Subtropical Silviculture, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| |
Collapse
|
11
|
Agrahari RK, Kobayashi Y, Enomoto T, Miyachi T, Sakuma M, Fujita M, Ogata T, Fujita Y, Iuchi S, Kobayashi M, Yamamoto YY, Koyama H. STOP1-regulated SMALL AUXIN UP RNA55 ( SAUR55) is involved in proton/malate co-secretion for Al tolerance in Arabidopsis. PLANT DIRECT 2024; 8:e557. [PMID: 38161730 PMCID: PMC10755337 DOI: 10.1002/pld3.557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/25/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024]
Abstract
Proton (H+) release is linked to aluminum (Al)-enhanced organic acids (OAs) excretion from the roots under Al rhizotoxicity in plants. It is well-reported that the Al-enhanced organic acid excretion mechanism is regulated by SENSITIVE TO PROTON RHIZOTOXICITY1 (STOP1), a zinc-finger TF that regulates major Al tolerance genes. However, the mechanism of H+ release linked to OAs excretion under Al stress has not been fully elucidated. Recent physiological and molecular-genetic studies have implicated the involvement of SMALL AUXIN UP RNAs (SAURs) in the activation of plasma membrane H+-ATPases for stress responses in plants. We hypothesized that STOP1 is involved in the regulation of Al-responsive SAURs, which may contribute to the co-secretion of protons and malate under Al stress conditions. In our transcriptome analysis of the roots of the stop1 (sensitive to proton rhizotoxicity1) mutant, we found that STOP1 regulates the transcription of one of the SAURs, namely SAUR55. Furthermore, we observed that the expression of SAUR55 was induced by Al and repressed in the STOP1 T-DNA insertion knockout (KO) mutant (STOP1-KO). Through in silico analysis, we identified a functional STOP1-binding site in the promoter of SAUR55. Subsequent in vitro and in vivo studies confirmed that STOP1 directly binds to the promoter of SAUR55. This suggests that STOP1 directly regulates the expression of SAUR55 under Al stress. We next examined proton release in the rhizosphere and malate excretion in the T-DNA insertion KO mutant of SAUR55 (saur55), in conjunction with STOP1-KO. Both saur55 and STOP1-KO suppressed rhizosphere acidification and malate release under Al stress. Additionally, the root growth of saur55 was sensitive to Al-containing media. In contrast, the overexpressed line of SAUR55 enhanced rhizosphere acidification and malate release, leading to increased Al tolerance. These associations with Al tolerance were also observed in natural variations of Arabidopsis. These findings demonstrate that transcriptional regulation of SAUR55 by STOP1 positively regulates H+ excretion via PM H+-ATPase 2 which enhances Al tolerance by malate secretion from the roots of Arabidopsis. The activation of PM H+-ATPase 2 by SAUR55 was suggested to be due to PP2C.D2/D5 inhibition by interaction on the plasma membrane with its phosphatase. Furthermore, RNAi-suppression of NtSTOP1 in tobacco shows suppression of rhizosphere acidification under Al stress, which was associated with the suppression of SAUR55 orthologs, which are inducible by Al in tobacco. It suggests that transcriptional regulation of Al-inducible SAURs by STOP1 plays a critical role in OAs excretion in several plant species as an Al tolerance mechanism.
Collapse
Affiliation(s)
| | | | - Takuo Enomoto
- Faculty of Applied Biological SciencesGifu UniversityGifuJapan
| | - Tasuku Miyachi
- Faculty of Applied Biological SciencesGifu UniversityGifuJapan
| | - Marie Sakuma
- Mass Spectrometry and Microscopy UnitRIKEN Center for Sustainable Resource ScienceTsukubaIbarakiJapan
| | - Miki Fujita
- Mass Spectrometry and Microscopy UnitRIKEN Center for Sustainable Resource ScienceTsukubaIbarakiJapan
| | - Takuya Ogata
- Biological Resources and Post‐harvest DivisionJapan International Research Center for Agricultural Sciences (JIRCAS)TsukubaIbarakiJapan
| | - Yasunari Fujita
- Biological Resources and Post‐harvest DivisionJapan International Research Center for Agricultural Sciences (JIRCAS)TsukubaIbarakiJapan
- Graduate School of Life and Environmental SciencesUniversity of TsukubaTsukubaIbarakiJapan
| | - Satoshi Iuchi
- Experimental Plant DivisionRIKEN BioResource Research CenterTsukubaIbarakiJapan
| | - Masatomo Kobayashi
- Experimental Plant DivisionRIKEN BioResource Research CenterTsukubaIbarakiJapan
| | | | - Hiroyuki Koyama
- Faculty of Applied Biological SciencesGifu UniversityGifuJapan
| |
Collapse
|
12
|
Wang X, Jin B, Yan W, Wang J, Xu J, Cai C, Qi X, Xu Q, Yang X, Xu X, Chen X. Cucumber abscisic acid 8'-hydroxylase Csyf2 regulates yellow flesh by modulating carotenoid biosynthesis. PLANT PHYSIOLOGY 2023; 193:1001-1015. [PMID: 37394925 DOI: 10.1093/plphys/kiad383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 07/04/2023]
Abstract
Cucumber (Cucumis sativus L.) flesh is typically colorless or pale green. Flesh with yellow or orange pigment, determined mainly by carotenoid content and composition, is mostly found in semi-wild Xishuangbanna cucumber, which has a very narrow genetic background. Here, we identified a spontaneous cucumber mutant with yellow flesh (yf-343), which accumulated more β-cryptoxanthin and less lutein than regular cultivated European glasshouse-type cucumbers. Genetic analysis revealed that the yellow flesh phenotype was controlled by a single recessive gene. Through fine mapping and gene sequencing, we identified the candidate gene C. sativus yellow flesh 2 (Csyf2), encoding an abscisic acid (ABA) 8'-hydroxylase. Overexpression and RNAi-silencing of Csyf2 in cucumber hairy roots produced lower and higher ABA contents than in non-transgenic controls, respectively. Further, RNA-seq analysis suggested that genes related to ABA signal transduction were differentially expressed in fruit flesh between yf-343 and its wild type, BY, with white flesh. The carotenoid biosynthesis pathway was specifically enriched in fruit flesh at 30 days after pollination when yf-343 fruit flesh turns yellow. Our findings highlight a promising target for gene editing to increase carotenoid content, expanding our genetic resources for pigmented cucumber flesh breeding for improving the nutritional quality of cucumber.
Collapse
Affiliation(s)
- Xueting Wang
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Boyan Jin
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Wenjing Yan
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Jiaxi Wang
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Jun Xu
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Congxi Cai
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Xiaohua Qi
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Qiang Xu
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Xiaodong Yang
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Xuewen Xu
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xuehao Chen
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
13
|
Luan J, Xin M, Qin Z. Genome-Wide Identification and Functional Analysis of the Roles of SAUR Gene Family Members in the Promotion of Cucumber Root Expansion. Int J Mol Sci 2023; 24:ijms24065940. [PMID: 36983023 PMCID: PMC10053606 DOI: 10.3390/ijms24065940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Auxin serves as an essential regulator of the expression of many different genes in plants, thereby regulating growth and development. The specific functional roles of members of the SAUR (small auxin-up RNA) auxin early response gene family in the development of cucumber plants, however, remain to be fully clarified. Here, 62 SAUR family genes were identified, followed by their classification into 7 groups that included several functionally associated cis-regulatory elements. Phylogenetic tree and chromosomal location-based analyses revealed a high degree of homology between two cucumber gene clusters and other plants in the Cucurbitaceae family. These findings, together with the results of an RNA-seq analysis, revealed high levels of CsSAUR31 expression within the root and male flower tissues. Plants overexpressing CsSAUR31 exhibited longer roots and hypocotyls. Together, these results provide a basis for further efforts to explore the roles that SAUR genes play in cucumber plants, while also expanding the pool of available genetic resources to guide research focused on plant growth and development.
Collapse
Affiliation(s)
- Jie Luan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Ming Xin
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Zhiwei Qin
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
14
|
Mansilla N, Fonouni-Farde C, Ariel F, Lucero L. Differential chromatin binding preference is the result of the neo-functionalization of the TB1 clade of TCP transcription factors in grasses. THE NEW PHYTOLOGIST 2023; 237:2088-2103. [PMID: 36484138 DOI: 10.1111/nph.18664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
The understanding of neo-functionalization of plant transcription factors (TFs) after gene duplication has been extensively focused on changes in protein-protein interactions, the expression pattern of TFs, or the variation of cis-elements bound by TFs. Yet, the main molecular role of a TF, that is, its specific chromatin binding for the direct regulation of target gene expression, continues to be mostly overlooked. Here, we studied the TB1 clade of the TEOSINTE BRANCHED 1, CYCLOIDEA, PROLIFERATING CELL FACTORS (TCP) TF family within the grasses (Poaceae). We identified an Asp/Gly amino acid replacement within the TCP domain, originated within a paralog TIG1 clade exclusive for grasses. The heterologous expression of Zea mays TB1 and its two paralogs BAD1 and TIG1 in Arabidopsis mutant plants lacking the TB1 ortholog BRC1 revealed distinct functions in plant development. Notably, the Gly acquired in the TIG1 clade does not impair TF homodimerization and heterodimerization, while it modulates chromatin binding preferences. We found that in vivo TF recognition of target promoters depends on this Asp/Gly mutation and directly impacts downstream gene expression and subsequent plant development. These results provided new insights into how natural selection fine-tunes gene expression regulation after duplication of TFs to define plant architecture.
Collapse
Affiliation(s)
- Natanael Mansilla
- Instituto de Agrobiotecnología del Litoral, CONICET, FBCB/FHUC, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina
| | - Camille Fonouni-Farde
- Instituto de Agrobiotecnología del Litoral, CONICET, FBCB/FHUC, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina
| | - Federico Ariel
- Instituto de Agrobiotecnología del Litoral, CONICET, FBCB/FHUC, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina
| | - Leandro Lucero
- Instituto de Agrobiotecnología del Litoral, CONICET, FBCB/FHUC, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina
| |
Collapse
|
15
|
Yu H, Yang L, Li Z, Sun F, Li B, Guo S, Wang YF, Zhou T, Hua J. In situ deletions reveal regulatory components for expression of an intracellular immune receptor gene and its co-expressed genes in Arabidopsis. PLANT, CELL & ENVIRONMENT 2023; 46:621-634. [PMID: 36368774 DOI: 10.1111/pce.14489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Intracellular immune receptor nucleotide-binding leucine-rich repeats (NLRs) are highly regulated transcriptionally and post-transcriptionally for balanced plant defence and growth. NLR genes often exist in gene clusters and are usually co-expressed under various conditions. Despite of intensive studies of regulation of NLR proteins, cis-acting elements for NLR gene induction, repression or co-expression are largely unknown due to a larger than usual cis-region for their expression regulation. Here we used the CRISPR/Cas9 genome editing technology to generate a series of in situ deletions at the endogenous location of a NLR gene SNC1 residing in the RPP5 gene cluster. These deletions that made in the wild type and the SNC1 constitutive expressing autoimmune mutant bon1 revealed both positive and negative cis-acting elements for SNC1 expression. Two transcription factors that could bind to these elements were found to have an impact on the expression of SNC1. In addition, co-expression of two genes with SNC1 in the same cluster is found to be mostly dependent on the SNC1 function. Therefore, SNC1 expression is under complex local regulation involving multiple cis elements and SNC1 itself is a critical regulator of gene expression of other NLR genes in the same gene cluster.
Collapse
Affiliation(s)
- Huiyun Yu
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Plant Biology Section, School Of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Leiyun Yang
- Plant Biology Section, School Of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Zhan Li
- Plant Biology Section, School Of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Feng Sun
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Bo Li
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Centre for Brain Science, Fudan University, Shanghai, China
| | - Shengsong Guo
- Plant Biology Section, School Of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Yong-Fei Wang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Tong Zhou
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- International Rice Research Institute and Jiangsu Academy of Agricultural Sciences Joint Laboratory, Nanjing, Jiangsu, China
| | - Jian Hua
- Plant Biology Section, School Of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
16
|
Jiang Y, Wang Z, Du H, Dong R, Yuan Y, Hua J. Assessment of functional relevance of genes associated with local temperature variables in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2022; 45:3290-3304. [PMID: 35943206 DOI: 10.1111/pce.14417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/23/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
How likely genetic variations associated with environment identified in silico from genome wide association study are functionally relevant to environmental adaptation has been largely unexplored experimentally. Here we analyzed top 29 genes containing polymorphisms associated with local temperature variation (minimum, mean, maximum) among 1129 natural accessions of Arabidopsis thaliana. Their loss-of-function mutants were assessed for growth and stress tolerance at five temperatures. Twenty genes were found to affect growth or tolerance at one or more of these temperatures. Significantly, genes associated with maximum temperature more likely have a detect a function at higher temperature, while genes associated with minimum temperature more likely have a function at lower temperature. In addition, gene variants are distributed more frequently at geographic locations where they apparently offer an enhanced growth or tolerance for five genes tested. Furthermore, variations in a large proportion of the in silico identified genes associated with minimum or mean-temperatures exhibited a significant association with growth phenotypes experimentally assessed at low temperature for a small set of natural accessions. This study shows a functional relevance of gene variants associated with environmental variables and supports the feasibility of the use of local temperature factors in investigating the genetic basis of temperature adaptation.
Collapse
Affiliation(s)
- Yuan Jiang
- Jilin Engineering Research Center of Crop Biotechnology Breeding, College of Plant Science, Jilin University, Changchun, China
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Zhixue Wang
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Hui Du
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Runlong Dong
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Yaping Yuan
- Jilin Engineering Research Center of Crop Biotechnology Breeding, College of Plant Science, Jilin University, Changchun, China
| | - Jian Hua
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
17
|
Wang Z, Yang L, Jander G, Bhawal R, Zhang S, Liu Z, Oakley A, Hua J. AIG2A and AIG2B limit the activation of salicylic acid-regulated defenses by tryptophan-derived secondary metabolism in Arabidopsis. THE PLANT CELL 2022; 34:4641-4660. [PMID: 35972413 PMCID: PMC9614473 DOI: 10.1093/plcell/koac255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/11/2022] [Indexed: 05/04/2023]
Abstract
Chemical defense systems involving tryptophan-derived secondary metabolites (TDSMs) and salicylic acid (SA) are induced by general nonself signals and pathogen signals, respectively, in Arabidopsis thaliana. Whether and how these chemical defense systems are connected and balanced is largely unknown. In this study, we identified the AVRRPT2-INDUCED GENE2A (AIG2A) and AIG2B genes as gatekeepers that prevent activation of SA defense systems by TDSMs. These genes also were identified as important contributors to natural variation in disease resistance among A. thaliana natural accessions. The loss of AIG2A and AIG2B function leads to upregulation of both SA and TDSM defense systems. Suppressor screens and genetic analysis revealed that a functional TDSM system is required for the upregulation of the SA pathway in the absence of AIG2A and AIG2B, but not vice versa. Furthermore, the AIG2A and AIG2B genes are co-induced with TDSM biosynthesis genes by general pathogen elicitors and nonself signals, thereby functioning as a feedback control of the TDSM defense system, as well as limiting activation of the SA defense system by TDSMs. Thus, this study uncovers an AIG2A- and AIG2B-mediated mechanism that fine-tunes and balances SA and TDSM chemical defense systems in response to nonpathogenic and pathogenic microbes.
Collapse
Affiliation(s)
- Zhixue Wang
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Leiyun Yang
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Georg Jander
- Boyce Thompson Institute, Ithaca, New York 14853, USA
| | - Ruchika Bhawal
- Proteomics and Metabolomics Facility, Cornell University, New York 14853, USA
| | - Sheng Zhang
- Proteomics and Metabolomics Facility, Cornell University, New York 14853, USA
| | - Zhenhua Liu
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Aaron Oakley
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, New South Wales 2522, Australia
| | - Jian Hua
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
18
|
Yu H, Yang L, Li Z, Sun F, Li B, Guo S, Wang YF, Zhou T, Hua J. In situ deletions reveal regulatory components for expression of an intracellular immune receptor gene and its co-expressed genes in Arabidopsis. PLANT, CELL & ENVIRONMENT 2022; 45:1862-1875. [PMID: 35150136 DOI: 10.1111/pce.14293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/19/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Intracellular immune receptor nucleotide-binding leucine-rich repeats (NLRs) are highly regulated transcriptionally and post-transcriptionally for balanced plant defense and growth. NLR genes often exist in gene clusters and are usually co-expressed under various conditions. Despite intensive studies of the regulation of NLR proteins, cis-acting elements for NLR gene induction, repression or co-expression are largely unknown due to a larger than usual cis-region for their expression regulation. Here we used the CRISPR/Cas9 genome editing technology to generate a series of in situ deletions at the endogenous location of an NLR gene SNC1 residing in the RPP5 gene cluster. These deletions that made in the wild type and the SNC1 constitutive expressing autoimmune mutant bon1 revealed both positive and negative cis-acting elements for SNC1 expression. Two transcription factors that could bind to these elements were found to have an impact on the expression of SNC1. In addition, co-expression of two genes with SNC1 in the same cluster is found to be mostly dependent on the SNC1 function. Therefore, SNC1 expression is under complex local regulation involving multiple cis-elements and SNC1 itself is a critical regulator of gene expression of other NLR genes in the same gene cluster.
Collapse
Affiliation(s)
- Huiyun Yu
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, New York, USA
| | - Leiyun Yang
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, New York, USA
| | - Zhan Li
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, New York, USA
| | - Feng Sun
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China
| | - Bo Li
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Shengsong Guo
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, New York, USA
| | - Yong-Fei Wang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Tong Zhou
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China
- International Rice Research Institute and Jiangsu Academy of Agricultural Sciences Joint Laboratory, Nanjing, Jiangsu Province, China
| | - Jian Hua
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, New York, USA
| |
Collapse
|
19
|
Liu Y, Xiao L, Chi J, Li R, Han Y, Cui F, Peng Z, Wan S, Li G. Genome-wide identification and expression of SAUR gene family in peanut (Arachis hypogaea L.) and functional identification of AhSAUR3 in drought tolerance. BMC PLANT BIOLOGY 2022; 22:178. [PMID: 35387613 PMCID: PMC8988358 DOI: 10.1186/s12870-022-03564-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/25/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND Small auxin-upregulated RNAs (SAURs) gene family plays important roles in plant growth, development, and stress responses. However, the function of few SAUR genes is known in the peanut (Arachis hypogaea L.), one of the world's major food legume crops. This study aimed to perform a comprehensive identification of the SAUR gene family from the peanut genome. RESULTS The genome-wide analysis revealed that a total of 162 SAUR genes were identified in the peanut genome. The phylogenetic analysis indicated that the SAUR proteins were classified into eight subfamilies. The SAUR gene family experienced a remarkable expansion after tetraploidization, which contributed to the tandem duplication events first occurring in subgenome A and then segmental duplication events occurring between A and B subgenomes. The expression profiles based on transcriptomic data showed that SAUR genes were dominantly expressed in the leaves, pistils, perianth, and peg tips, and were widely involved in tolerance against abiotic stresses. A total of 18 AhSAUR genes selected from different subfamilies randomly presented 4 major expression patterns according to their expression characteristics in response to indole-3-acetic acid. The members from the same subfamily showed a similar expression pattern. Furthermore, the functional analysis revealed that AhSAUR3 played a negative role in response to drought tolerance. CONCLUSIONS This study provided insights into the evolution and function of the SAUR gene family and may serve as a resource for further functional research on AhSAUR genes.
Collapse
Affiliation(s)
- Yiyang Liu
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji’nan, 250100 Shandong Province China
| | - Lina Xiao
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji’nan, 250100 Shandong Province China
| | - Jingxian Chi
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji’nan, 250100 Shandong Province China
- Key Lab of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji’nan, 250014 Shandong Province China
| | - Rongchong Li
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji’nan, 250100 Shandong Province China
| | - Yan Han
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji’nan, 250100 Shandong Province China
| | - Feng Cui
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji’nan, 250100 Shandong Province China
| | - Zhenying Peng
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji’nan, 250100 Shandong Province China
| | - Shubo Wan
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji’nan, 250100 Shandong Province China
| | - Guowei Li
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji’nan, 250100 Shandong Province China
- Key Lab of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji’nan, 250014 Shandong Province China
| |
Collapse
|
20
|
Agrahari RK, Enomoto T, Ito H, Nakano Y, Yanase E, Watanabe T, Sadhukhan A, Iuchi S, Kobayashi M, Panda SK, Yamamoto YY, Koyama H, Kobayashi Y. Expression GWAS of PGIP1 Identifies STOP1-Dependent and STOP1-Independent Regulation of PGIP1 in Aluminum Stress Signaling in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:774687. [PMID: 34975956 PMCID: PMC8719490 DOI: 10.3389/fpls.2021.774687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
To elucidate the unknown regulatory mechanisms involved in aluminum (Al)-induced expression of POLYGALACTURONASE-INHIBITING PROTEIN 1 (PGIP1), which is one of the downstream genes of SENSITIVE TO PROTON RHIZOTOXICITY 1 (STOP1) regulating Al-tolerance genes, we conducted a genome-wide association analysis of gene expression levels (eGWAS) of PGIP1 in the shoots under Al stress using 83 Arabidopsis thaliana accessions. The eGWAS, conducted through a mixed linear model, revealed 17 suggestive SNPs across the genome having the association with the expression level variation in PGIP1. The GWAS-detected SNPs were directly located inside transcription factors and other genes involved in stress signaling, which were expressed in response to Al. These candidate genes carried different expression level and amino acid polymorphisms. Among them, three genes encoding NAC domain-containing protein 27 (NAC027), TRX superfamily protein, and R-R-type MYB protein were associated with the suppression of PGIP1 expression in their mutants, and accordingly, the system affected Al tolerance. We also found the involvement of Al-induced endogenous nitric oxide (NO) signaling, which induces NAC027 and R-R-type MYB genes to regulate PGIP1 expression. In this study, we provide genetic evidence that STOP1-independent NO signaling pathway and STOP1-dependent regulation in phosphoinositide (PI) signaling pathway are involved in the regulation of PGIP1 expression under Al stress.
Collapse
Affiliation(s)
| | - Takuo Enomoto
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Hiroki Ito
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Yuki Nakano
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Emiko Yanase
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | | | - Ayan Sadhukhan
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, India
| | - Satoshi Iuchi
- Experimental Plant Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Masatomo Kobayashi
- Experimental Plant Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Sanjib Kumar Panda
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| | | | - Hiroyuki Koyama
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Yuriko Kobayashi
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
21
|
Zhang L, Li M, Yan P, Fu J, Zhang L, Li X, Han W. A novel adenylate isopentenyltransferase 5 regulates shoot branching via the ATTTA motif in Camellia sinensis. BMC PLANT BIOLOGY 2021; 21:521. [PMID: 34753426 PMCID: PMC8577036 DOI: 10.1186/s12870-021-03254-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 09/23/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND Shoot branching is one of the important agronomic traits affecting yields and quality of tea plant (Camellia sinensis). Cytokinins (CTKs) play critical roles in regulating shoot branching. However, whether and how differently alternative splicing (AS) variant of CTKs-related genes can influence shoot branching of tea plant is still not fully elucidated. RESULTS In this study, five AS variants of CTK biosynthetic gene adenylate isopentenyltransferase (CsA-IPT5) with different 3' untranslated region (3' UTR) and 5' UTR from tea plant were cloned and investigated for their regulatory effects. Transient expression assays showed that there were significant negative correlations between CsA-IPT5 protein expression, mRNA expression of CsA-IPT5 AS variants and the number of ATTTA motifs, respectively. Shoot branching processes induced by exogenous 6-BA or pruning were studied, where CsA-IPT5 was demonstrated to regulate protein synthesis of CsA-IPT5, as well as the biosynthesis of trans-zeatin (tZ)- and isopentenyladenine (iP)-CTKs, through transcriptionally changing ratios of its five AS variants in these processes. Furthermore, the 3' UTR AS variant 2 (3AS2) might act as the predominant AS transcript. CONCLUSIONS Together, our results indicate that 3AS2 of the CsA-IPT5 gene is potential in regulating shoot branching of tea plant and provides a gene resource for improving the plant-type of woody plants.
Collapse
Affiliation(s)
- Liping Zhang
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, No. 9 Meiling South Road, Xihu District, Hangzhou, 310008 Zhejiang China
| | - Menghan Li
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, No. 9 Meiling South Road, Xihu District, Hangzhou, 310008 Zhejiang China
| | - Peng Yan
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, No. 9 Meiling South Road, Xihu District, Hangzhou, 310008 Zhejiang China
| | - Jianyu Fu
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, No. 9 Meiling South Road, Xihu District, Hangzhou, 310008 Zhejiang China
| | - Lan Zhang
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, No. 9 Meiling South Road, Xihu District, Hangzhou, 310008 Zhejiang China
| | - Xin Li
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, No. 9 Meiling South Road, Xihu District, Hangzhou, 310008 Zhejiang China
| | - Wenyan Han
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, No. 9 Meiling South Road, Xihu District, Hangzhou, 310008 Zhejiang China
| |
Collapse
|
22
|
Ding Y, Zhu J, Zhao D, Liu Q, Yang Q, Zhang T. Targeting Cis-Regulatory Elements for Rice Grain Quality Improvement. FRONTIERS IN PLANT SCIENCE 2021; 12:705834. [PMID: 34456947 PMCID: PMC8385297 DOI: 10.3389/fpls.2021.705834] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/08/2021] [Indexed: 05/05/2023]
Abstract
Rice is the most important source of food worldwide, providing energy, and nutrition for more than half of the population worldwide. Rice grain quality is a complex trait that is affected by several factors, such as the genotype and environment, and is a major target for rice breeders. Cis-regulatory elements (CREs) are the regions of non-coding DNA, which play a critical role in gene expression regulation. Compared with gene knockout, CRE modifications can fine-tune the expression levels of target genes. Genome editing has provided opportunities to modify the genomes of organisms in a precise and predictable way. Recently, the promoter modifications of coding genes using genome editing technologies in plant improvement have become popular. In this study, we reviewed the results of recent studies on the identification, characterization, and application of CREs involved in rice grain quality. We proposed CREs as preferred potential targets to create allelic diversity and to improve quality traits via genome editing strategies in rice. We also discussed potential challenges and experimental considerations for the improvement in grain quality in crop plants.
Collapse
Affiliation(s)
- Yu Ding
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Jiannan Zhu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Dongsheng Zhao
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Qiaoquan Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Qingqing Yang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, China
- Department of Biotechnology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Qingqing Yang
| | - Tao Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, China
- Tao Zhang
| |
Collapse
|