1
|
Yang L, Mayden RL, Naylor GJP. Origin of Polyploidy, Phylogenetic Relationships, and Biogeography of Botiid Fishes (Teleostei: Cypriniformes). BIOLOGY 2025; 14:531. [PMID: 40427720 PMCID: PMC12109351 DOI: 10.3390/biology14050531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2025] [Revised: 05/05/2025] [Accepted: 05/09/2025] [Indexed: 05/29/2025]
Abstract
Botiidae is a small family of freshwater fishes distributed across Southeast Asia, South Asia, and East Asia. It comprises two subfamilies: the diploid Leptobotiinae and the tetraploid Botiinae. Whether species in the Botiinae are autotetraploids or allotetraploids and how many polyploidization events occurred during the evolution of this subfamily remain open questions. The phylogenetic relationships and biogeography of the Botiidae also require further investigation. In the current study, we compared phylogenetic trees constructed using DNA sequences from the mitochondrial genome and five phased nuclear genes. We also performed whole genome sequencing for two tetraploid species: Chromobotia macracanthus and Yasuhikotakia modesta. Genome profiling of five botiine species suggests that they are likely of allotetraploid origin. Nuclear gene tree topologies indicate that the tetraploidization of the Botiinae occurred only once in the common ancestor of this subfamily. Although the possible maternal progenitor and paternal progenitor of the Botiinae cannot be determined, the subfamily Leptobotiinae can be excluded as a progenitor. The gene trees built in this study generally agree on the following sister group relationships: Leptobotiinae/Botiinae, Leptobotia/Parabotia, Chromobotia/Botia, Yasuhikotakia/Syncrossus, and Sinibotia/Ambastaia. Clades formed by the last two generic pairs are also sisters to each other. Timetree analyses and ancestral range reconstruction suggest that the family Botiidae might have originated in East Asia and Mainland Southeast Asia approximately 51 million years ago and later dispersed to South Asia and the islands of Southeast Asia.
Collapse
Affiliation(s)
- Lei Yang
- Florida Museum of Natural History, University of Florida, 1659 Museum Rd., Gainesville, FL 32611, USA
| | - Richard L. Mayden
- Biology Department, Saint Louis University, 3507 Laclede Avenue, St. Louis, MO 63103, USA
| | - Gavin J. P. Naylor
- Florida Museum of Natural History, University of Florida, 1659 Museum Rd., Gainesville, FL 32611, USA
| |
Collapse
|
2
|
Yang S, Liu M, Zhao C, Wang R, Xue L, Lei J. A novel bHLH transcription factor, FabHLH110, is involved in regulation of anthocyanin synthesis in petals of pink-flowered strawberry. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109713. [PMID: 40037177 DOI: 10.1016/j.plaphy.2025.109713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/08/2025] [Accepted: 02/24/2025] [Indexed: 03/06/2025]
Abstract
The pink-flowered strawberry is a kind of perennial herb that serves as both an ornamental plant with a range of red-colored petals and a food crop, which was produced by distant hybridization of Fragaria × Potentilla. Although there have been numerous reports on anthocyanin synthesis in strawberry fruits, the mechanism by which bHLH transcription factors regulate anthocyanin synthesis in strawberry red petals remains unclear. In this study, a total of 376 FabHLHs were finally identified, which were divided into 25 subfamilies. According to transcriptome sequencing, phylogenetic tree construction, correlation analysis and real-time fluorescence quantitative analysis, the differential gene FabHLH110 was screened out to regulate the synthesis of flower petal anthocyanin of pink-flowered strawberry. Specifically, transient overexpression of FabHLH110 in petals of pink-flowered strawberry increased anthocyanin accumulation, while virus-induced FabHLH110 gene silencing had the opposite effect, indicating FabHLH110 functioned as a positive regulator of anthocyanin biosynthesis. In addition, it was found that FabHLH110 could not bind to the promoter of FaDFR, FaANS, FaUGT and FaGST, which should interact with FaMYB10, FaMYB90 and FaMYB114 to form MBW complex to promote anthocyanin accumulation in fruit and petals of pink-flowered strawberry, respectively. Our findings provide new insight into the regulatory network of anthocyanin synthesis in petal of pink-flowered strawberry and a new strategy for breeding rich anthocyanin.
Collapse
Affiliation(s)
- Song Yang
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Ming Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Can Zhao
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Ruiqi Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Li Xue
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China.
| | - Jiajun Lei
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China.
| |
Collapse
|
3
|
Huang P, Xu T, Wang G, Zhang L, Yao Y, Zhang M, Zhang C. Morphological and metabolic changes in Changshan Huyou (Citrus changshan-huyou) following natural tetraploidization. BMC PLANT BIOLOGY 2025; 25:301. [PMID: 40055582 PMCID: PMC11889857 DOI: 10.1186/s12870-025-06293-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 02/24/2025] [Indexed: 03/12/2025]
Abstract
BACKGROUND Polyploids in citrus are generally used to improve crop varieties. Changshan Huyou (Citrus changshan-huyou) is a native citrus species in China that is highly adaptable and has pharmaceutical value. However, the influence in Changshan Huyou following polyploidization remains unclear. Here we evaluated the adult tetraploid scions of Changshan Huyou with contemporary diploid scions as the control in the phenotypic variations, metabolic alterations of fruits and associated transcriptomic changes. RESULT The tetraploid scions had rounder and thicker leaves, larger floral organs and fruits, and satisfactory viability of pollen grains and ovules. The tetraploid fruits accumulated lower levels of soluble solids but similar levels of organic acids. Metabolic profiling of three tissues of fruits revealed that most of 2064 differentially accumulated metabolites (DAMs), including flavonoids, lignans, and coumarins, were downregulated. In contrast, the upregulated DAMs mainly included alkaloids (clausine K and 2-(1-pentenyl)quinoline), amino acids (L-asparagine and L-ornithine), and terpenoids (deacetylnomilin and evodol) in tetraploid peels, as well as, flavonoids (neohesperidin and quercetin-5-O-β-D-glucoside) and organic acids (2-methylsuccinic acid and dimethylmalonic acid) in juice sacs. The upregulated genes were associated with phenylpropanoid biosynthesis, secondary metabolite biosynthesis, and the biosynthesis of various alkaloid pathways. Pearson Correlation Analysis showed that the upregulated genes encoding PEROXIDASE and CYTOCHROME P450 (CYP450) were closely related to the higher accumulation of amino acids and alkaloids in tetraploid peels, and up-regulated neohesperidin and quercetin glucoside were positively associated with FERULATE-5-HYDROXYLASE (F5H), CYP450 81Q32, FLAVONOID 3'-MONOOXYGENASE (F3'H), 4-COUMARATE-CoA LIGASE 1 (4CL1), and UDP-GLUCOSE FLAVONOID 3-O-GLUCOSYLTRANSFERASE (UFOG), as well as, some transcription factors in tetraploid juice sacs. CONCLUSION The tetraploid Changshan Huyou investigated here may be used in triploids breeding to produce seedless citrus, and for fruit processing on pharmaceutical purpose due to the alteration of metabolites following polyploidization.
Collapse
Affiliation(s)
- Peiru Huang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, People's Republic of China
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, People's Republic of China
| | - Tianyu Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, People's Republic of China
| | - Gang Wang
- Agriculture and Rural Bureau of Changshan County, Quzhou, Zhejiang, 324200, People's Republic of China
| | - Lin Zhang
- Zhejiang Agricultural Technology Extension Center, Hangzhou, Zhejiang, 310020, People's Republic of China
| | - Ying Yao
- Zhejiang Agricultural Technology Extension Center, Hangzhou, Zhejiang, 310020, People's Republic of China
| | - Min Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, People's Republic of China.
| | - Chi Zhang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, People's Republic of China.
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, People's Republic of China.
| |
Collapse
|
4
|
Zhao J, Liang ZL, Fang SL, Li RJ, Huang CJ, Zhang LB, Robison T, Zhu ZM, Cai WJ, Yu H, He ZR, Zhou XM. Phylogenomics of Paragymnopteris (Cheilanthoideae, Pteridaceae): Insights from plastome, mitochondrial, and nuclear datasets. Mol Phylogenet Evol 2025; 204:108253. [PMID: 39617091 DOI: 10.1016/j.ympev.2024.108253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/30/2024] [Accepted: 11/26/2024] [Indexed: 12/14/2024]
Abstract
Previous studies have shown that at least six genera of the Cheilanthoideae, a subfamily of the fern family Pteridaceae, may not be monophyletic. In these non-monophyletic genera, the Old-World genus Paragymnopteris including approximately five species have long been controversial. In this study, with an extensive taxon sampling of Paragymnopteris, we assembled 19 complete plastomes of all recognized Paragymnopteris species, plastomes of Pellaea (3 species) and Argyrochosma (1 species), as well as transcriptomes from Paragymnopteris (6 species) and Argyrochosma (1 species). We conducted a comprehensive and systematic phylogenomic analysis focusing on the contentious relationships among the genus of Paragymnopteris through 9 plastid makers, the plastomes, mitochondria, nuclear ribosomal cistron genomes, and single-copy nuclear genes. Moreover, we further combined distribution, ploidy, and morphological features to investigate the evolution of Paragymnopteris. The backbone of Paragymnopteris was resolved consistently in the nuclear and plastid phylogenies. Our major results include: (1) Paragymnopteris is not monophyletic including two fully supported clades; (2) confirming that Paragymnopteris delavayi var. intermedia is a close relative of P. delavayi instead of P. marantae var. marantae; (3) the chromosome base number may not be a stable trait which has previously been used as an important character to divide Paragymnopteris into two groups; and (4) gene flow or introgression might be the main reason for the gene trees conflict of Paragymnopteris, but both gene flow and ILS might simultaneously and/or cumulatively act on the conflict of core pellaeids. The robust phylogeny of Paragymnopteris presented here will help us for the future studies of the arid to semi-arid ferns of Cheilanthoideae at the evolutionary, physiological, developmental, and omics-based levels.
Collapse
Affiliation(s)
- Jing Zhao
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, Yunnan, China
| | - Zhen-Long Liang
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu, Sichuan 610041, China
| | - Shao-Li Fang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, Yunnan, China
| | - Rong-Juan Li
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, Yunnan, China
| | - Chuan-Jie Huang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, Yunnan, China
| | - Li-Bing Zhang
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu, Sichuan 610041, China; Missouri Botanical Garden, 4344 Shaw Blvd, St. Louis, MO 63110, USA
| | - Tanner Robison
- Department of Biology, Utah State University, Logan, UT, USA
| | - Zhang-Ming Zhu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, Yunnan, China
| | - Wen-Jing Cai
- Yunnan Institute of Forest Inventory and Planning, Kunming, Yunnan 650500, China
| | - Hong Yu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, Yunnan, China.
| | - Zhao-Rong He
- School of Life Sciences, Yunnan University, East Outer Ring Road, Chenggong District, Kunming, Yunnan 650500, China.
| | - Xin-Mao Zhou
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, Yunnan, China.
| |
Collapse
|
5
|
Yang Z, Liang L, Xiang W, Wu Q, Wang L, Ma Q. Phylogenomic analyses re-evaluate the backbone of Corylus and unravel extensive signals of reticulate evolution. Mol Phylogenet Evol 2025; 204:108293. [PMID: 39855493 DOI: 10.1016/j.ympev.2025.108293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/10/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Phylogenomic analyses have shown that reticulate evolution greatly affects the accuracy of phylogenetic inferences, and thus may challenge the authority of bifurcating phylogenetic trees. In this study, we re-evaluated the phylogenetic backbone of the genus Corylus based on complete taxon sampling and genomic data. We assembled 581 single-copy nuclear genes and whole plastomes from 64 genome resequencing datasets to elucidate the reticulate relationships within Corylus. Nuclear coalescent and concatenation phylogenies revealed identical and fully supported backbone, clarifying the sisterhood between sect. Acanthochlamys and sect. Siphonochlamys as well as the phylogenetic position of C. fargesii and C. wangii, which have yet been addressed in previous phylogenetic studies. However, the monophyly of C. jacquemontii and C. kwechowensis and the distinction between C. ferox and C. ferox var. thibetica were not supported. Gene trees-species tree conflicts and cytonuclear discordance were identified, with multiple evidences supporting that hybridization/introgression, coupled with incomplete lineage sorting, have led to substantial phylogenetic incongruence in Corylus. Moreover, typical geographical clustering rather than strict monophyletic pattern in plastome phylogeny implies chloroplast capture within Corylus and offers evidence of cytoplasmic introgression. Overall, this study provides a robust phylogenomic backbone for Corylus and unravels that reticulate evolution can greatly shape taxonomic revision.
Collapse
Affiliation(s)
- Zhen Yang
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Lisong Liang
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Weibo Xiang
- National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, China Three Gorges Corporation, Beijing 100083, China; Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang 443133, China
| | - Qiong Wu
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Lujun Wang
- Research Institute of Economic Forest Cultivation and Processing, Anhui Academy of Forestry, Hefei 230031, China
| | - Qinghua Ma
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.
| |
Collapse
|
6
|
Combrink LL, Golcher-Benavides J, Lewanski AL, Rick JA, Rosenthal WC, Wagner CE. Population Genomics of Adaptive Radiation. Mol Ecol 2025; 34:e17574. [PMID: 39717932 DOI: 10.1111/mec.17574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/26/2024] [Accepted: 09/12/2024] [Indexed: 12/25/2024]
Abstract
Adaptive radiations are rich laboratories for exploring, testing, and understanding key theories in evolution and ecology because they offer spectacular displays of speciation and ecological adaptation. Particular challenges to the study of adaptive radiation include high levels of species richness, rapid speciation, and gene flow between species. Over the last decade, high-throughput sequencing technologies and access to population genomic data have lessened these challenges by enabling the analysis of samples from many individual organisms at whole-genome scales. Here we review how population genomic data have facilitated our knowledge of adaptive radiation in five key areas: (1) phylogenetics, (2) hybridization, (3) timing and rates of diversification, (4) the genomic basis of trait evolution, and (5) the role of genome structure in divergence. We review current knowledge in each area, highlight outstanding questions, and focus on methods that facilitate detection of complex patterns in the divergence and demography of populations through time. It is clear that population genomic data are revolutionising the ability to reconstruct evolutionary history in rapidly diversifying clades. Additionally, studies are increasingly emphasising the central role of gene flow, re-use of standing genetic variation during adaptation, and structural genomic elements as facilitators of the speciation process in adaptive radiations. We highlight hybridization-and the hypothesized processes by which it shapes diversification-and questions seeking to bridge the divide between microevolutionary and macroevolutionary processes as rich areas for future study. Overall, access to population genomic data has facilitated an exciting era in adaptive radiation research, with implications for deeper understanding of fundamental evolutionary processes across the tree of life.
Collapse
Affiliation(s)
- Lucia L Combrink
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
| | - Jimena Golcher-Benavides
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
- Biology Department, Hope College, Holland, Michigan, USA
| | - Alexander L Lewanski
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA
| | - Jessica A Rick
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, USA
| | - William C Rosenthal
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
- Program in Ecology, University of Wyoming, Laramie, Wyoming, USA
| | - Catherine E Wagner
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
- Program in Ecology, University of Wyoming, Laramie, Wyoming, USA
| |
Collapse
|
7
|
Grass Phylogeny Working Group III. A nuclear phylogenomic tree of grasses (Poaceae) recovers current classification despite gene tree incongruence. THE NEW PHYTOLOGIST 2025; 245:818-834. [PMID: 39568153 DOI: 10.1111/nph.20263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/10/2024] [Indexed: 11/22/2024]
Abstract
Grasses (Poaceae) comprise c. 11 800 species and are central to human livelihoods and terrestrial ecosystems. Knowing their relationships and evolutionary history is key to comparative research and crop breeding. Advances in genome-scale sequencing allow for increased breadth and depth of phylogenomic analyses, making it possible to infer a new reference species tree of the family. We inferred a comprehensive species tree of grasses by combining new and published sequences for 331 nuclear genes from genome, transcriptome, target enrichment and shotgun data. Our 1153-tip tree covers 79% of grass genera (including 21 genera sequenced for the first time) and all but two small tribes. We compared it to a newly inferred 910-tip plastome tree. We recovered most of the tribes and subfamilies previously established, despite pervasive incongruence among nuclear gene trees. The early diversification of the PACMAD clade could represent a hard polytomy. Gene tree-species tree reconciliation suggests that reticulation events occurred repeatedly. Nuclear-plastome incongruence is rare, with very few cases of supported conflict. We provide a robust framework for the grass tree of life to support research on grass evolution, including modes of reticulation, and genetic diversity for sustainable agriculture.
Collapse
|
8
|
Ishii S, Sahashi N, Ebihara A, Hirota SK, Suyama Y, Watano Y. Reticulate Evolution in Japanese Sceptridium (Ophioglossaceae), including diploid, tetraploid, and hexaploid species. Mol Phylogenet Evol 2025; 202:108244. [PMID: 39547599 DOI: 10.1016/j.ympev.2024.108244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Homospory represents an intriguing reproductive strategy, including the potential for gametophytic selfing, considered the ultimate form of selfing. The plants of the fern genus Sceptridium (Ophioglossaceae) are generally considered to be predominantly selfing, making them suitable for analyzing speciation patterns and intraspecific variation characteristic of homosporous plants. The Sceptridium species in Japan not only exhibit variations in ploidy, including diploids, tetraploids, and hexaploids, but also pose taxonomic challenges due to morphologically distinctive forms that are difficult to be assigned to previously described species. We developed multiple single-copy nuclear markers and aimed to identify ancestral species of the polyploids and to elucidate the evolutionary entity of an undescribed species. Chromosome counts and analyses of individual gene trees confirmed that S. japonicum, S. atrovirens, and the undescribed species are allohexaploids originating through hybridization between a maternal tetraploid ancestor closely related to S. formosanum and a paternal diploid ancestor closely related to extant diploid species. By identifying homoeologs derived from the diploid ancestor, we successfully analyzed the phylogenetic relationship between the diploid ancestor of the hexaploid species and extant diploid species using the multispecies coalescent model. The examined undescribed species could not be distinguished from S. atrovirens by multiple nuclear markers or by SNP data obtained from multiplexed ISSR genotyping by sequencing. This species appears to represent one of the polymorphisms of S. atrovirens, which was fixed through gametophytic selfing.
Collapse
Affiliation(s)
- Sousuke Ishii
- Department of Biology, Graduate School of Science and Technology, Chiba University, Yayoi, Inage, Chiba 263-8522, Japan
| | - Norio Sahashi
- Tatsuzawa-Shinden 48-234, Tomisato, Chiba 286-0215, Japan
| | - Atushi Ebihara
- Department of Botany, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, Ibaraki 305-0005, Japan
| | - Shun K Hirota
- Botanical Gardens, Osaka Metropolitan University, Kisaichi 2000, Katano, Osaka 576-0004, Japan
| | - Yoshihisa Suyama
- Kawatabi Field Science Center, Graduate School of Agricultural Science, Tohoku University, 232-3 Aza-yomogida, Naruko Onsen, Osaki, Miyagi 989-6711, Japan
| | - Yasuyuki Watano
- Department of Biology, Graduate School of Science, Chiba University, Yayoi, Inage, Chiba 263-8522, Japan.
| |
Collapse
|
9
|
Yang L, Mayden RL, Naylor GJP. Phylogeny and Polyploidy Evolution of the Suckers (Teleostei: Catostomidae). BIOLOGY 2024; 13:1072. [PMID: 39765738 PMCID: PMC11673241 DOI: 10.3390/biology13121072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025]
Abstract
Fishes in the cypriniform family Catostomidae (suckers) are evolutionary tetraploids. The use of nuclear markers in the phylogenetic study of this important group has been greatly hindered by the challenge of identifying paralogous copies of genes. In the present study, we used two different methods to separate the gene copies of five single-copy nuclear genes (i.e., RAG1, EGR2B, EGR3, IRBP2, and RAG2). For each gene, all sequences of Copy I formed a clade that was sister to the clade formed by all sequences of Copy II in the phylogenetic trees. The maternal and paternal progenitor of the tetraploid ancestor of the Catostomidae could not be determined. We also constructed a mitochondrial tree to reflect the maternal relationships among major catostomid lineages. Our data appear to support a sister relationship between Catostominae and a monophyletic group composed of Myxocyprininae, Cycleptinae, and Ictiobinae. However, within Catostominae, there is significant conflict between mitochondrial and nuclear data regarding the relationships among Erimyzonini, Catostomini, and Moxostomatini/Thoburnini. Many indels, unexpected stop codons, and possible gene loss were identified in one gene copy of RAG1, RAG2, and IRBP2. We believe that additional nuclear genome data are needed to better resolve the phylogenetic relationships within the family Catostomidae.
Collapse
Affiliation(s)
- Lei Yang
- Florida Museum of Natural History, University of Florida, 1659 Museum Rd., Gainesville, FL 32611, USA
| | - Richard L. Mayden
- Biology Department, Saint Louis University, 3507 Laclede Avenue, St. Louis, MO 63103, USA
| | - Gavin J. P. Naylor
- Florida Museum of Natural History, University of Florida, 1659 Museum Rd., Gainesville, FL 32611, USA
| |
Collapse
|
10
|
Ren C, Wang L, Nie ZL, Tang M, Johnson G, Tan HT, Xia NH, Wen J, Yang QE. Complex but Clear Allopolyploid Pattern of Subtribe Tussilagininae (Asteraceae: Senecioneae) Revealed by Robust Phylogenomic Evidence, with Development of a Novel Homeolog-Sorting Pipeline. Syst Biol 2024; 73:941-963. [PMID: 39051673 DOI: 10.1093/sysbio/syae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 05/22/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
Polyploidy is a significant mechanism in eukaryotic evolution and is particularly prevalent in the plant kingdom. However, our knowledge about this phenomenon and its effects on evolution remains limited. A major obstacle to the study of polyploidy is the great difficulty in untangling the origins of allopolyploids. Due to the drastic genome changes and the erosion of allopolyploidy signals caused by the combined effects of hybridization and complex postpolyploid diploidization processes, resolving the origins of allopolyploids has long been a challenging task. Here we revisit this issue with the interesting case of subtribe Tussilagininae (Asteraceae: Senecioneae) and by developing HomeoSorter, a new pipeline for network inferences by phasing homeologs to parental subgenomes. The pipeline is based on the basic idea of a previous study but with major changes to address the scaling problem and implement some new functions. With simulated data, we demonstrate that HomeoSorter works efficiently on genome-scale data and has high accuracy in identifying polyploid patterns and assigning homeologs. Using HomeoSorter, the maximum pseudo-likelihood model of Phylonet, and genome-scale data, we further address the complex origin of Tussilagininae, a speciose group (ca. 45 genera and 710 species) characterized by having high base chromosome numbers (mainly x = 30, 40). In particular, the inferred patterns are strongly supported by the chromosomal evidence. Tussilagininae is revealed to comprise 2 large groups with successive allopolyploid origins: Tussilagininae s.s. (mainly x = 30) and the Gynoxyoid group (x = 40). Two allopolyploidy events first give rise to Tussilagininae s.s., with the first event occurring between the ancestor of subtribe Senecioninae (x = 10) and a lineage (highly probably with x = 10) related to the Brachyglottis alliance, and the resulting hybrid lineage crossing with the ancestor of Chersodoma (x = 10) and leading to Tussilagininae s.s. Then, after early diversification, the Central American group (mainly x = 30) of Tussilagininae s.s., is involved in a third allopolyploidy event with, again, the Chersodoma lineage and produces the Gynoxyoid group. Our study highlights the value of HomeoSorter and the homeolog-sorting approach in polyploid phylogenetics. With rich species diversity and clear evolutionary patterns, Tussilagininae s.s. and the Gynoxyoid group are also excellent models for future investigations of polyploidy.
Collapse
Affiliation(s)
- Chen Ren
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou, Guangdong 510650, China
- South China National Botanical Garden, 723 Xingke Road, Tianhe District, Guangzhou, Guangdong 510650, China
| | - Long Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou, Guangdong 510650, China
| | - Ze-Long Nie
- Key Laboratory of Plant Resources Conservation and Utilization, College of Biology and Environmental Sciences, Jishou University, 120 Renminnan Road, Jishou, Hunan 416000, China
| | - Ming Tang
- Collaborative Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, College of Forestry, Jiangxi Agricultural University, 1101 Zhimin Avenue, Qingshanhu District, Nanchang, Jiangxi 330045, China
| | - Gabriel Johnson
- Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, DC 20560, USA
| | - Hui-Tong Tan
- South China National Botanical Garden, 723 Xingke Road, Tianhe District, Guangzhou, Guangdong 510650, China
| | - Nian-He Xia
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou, Guangdong 510650, China
- South China National Botanical Garden, 723 Xingke Road, Tianhe District, Guangzhou, Guangdong 510650, China
| | - Jun Wen
- Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, DC 20560, USA
| | - Qin-Er Yang
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou, Guangdong 510650, China
- South China National Botanical Garden, 723 Xingke Road, Tianhe District, Guangzhou, Guangdong 510650, China
| |
Collapse
|
11
|
Ogutcen E, de Lima Ferreira P, Wagner ND, Marinček P, Vir Leong J, Aubona G, Cavender-Bares J, Michálek J, Schroeder L, Sedio BE, Vašut RJ, Volf M. Phylogenetic insights into the Salicaceae: The evolution of willows and beyond. Mol Phylogenet Evol 2024; 199:108161. [PMID: 39079595 DOI: 10.1016/j.ympev.2024.108161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/05/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
The Salicaceae includes approximately 54 genera and over 1,400 species with a cosmopolitan distribution. Members of the family are well-known for their diverse secondary plant metabolites, and they play crucial roles in tropical and temperate forest ecosystems. Phylogenetic reconstruction of the Salicaceae has been historically challenging due to the limitations of molecular markers and the extensive history of hybridization and polyploidy within the family. Our study employs whole-genome sequencing of 74 species to generate an extensive phylogeny of the Salicaceae. We generated two RAD-Seq enriched whole-genome sequence datasets and extracted two additional gene sets corresponding to the universal Angiosperms353 and Salicaceae-specific targeted-capture arrays. We reconstructed maximum likelihood-based molecular phylogenies using supermatrix and coalescent-based supertree approaches. Our fossil-calibrated phylogeny estimates that the Salicaceae originated around 128 million years ago and unravels the complex taxonomic relationships within the family. Our findings confirm the non-monophyly of the subgenus Salix s.l. and further support the merging of subgenera Chamaetia and Vetrix, both of which exhibit intricate patterns within and among different sections. Overall, our study not only enhances our understanding of the evolution of the Salicaceae, but also provides valuable insights into the complex relationships within the family.
Collapse
Affiliation(s)
- Ezgi Ogutcen
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Department of Environment and Biodiversity, Paris Lodron University of Salzburg, Salzburg, Austria.
| | - Paola de Lima Ferreira
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Department of Biology, Aarhus University, Aarhus, Denmark
| | - Natascha D Wagner
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Göttingen, Germany
| | - Pia Marinček
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Göttingen, Germany
| | - Jing Vir Leong
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Gibson Aubona
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | | | - Jan Michálek
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Trebon, Czech Republic
| | - Lucy Schroeder
- College of Biological Sciences, University of Minnesota, St. Paul, MN, United States
| | - Brian E Sedio
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States; Smithsonian Tropical Research Institute, Apartado, 0843-03092 Balboa, Ancón, Republic of Panama
| | - Radim J Vašut
- Department of Botany, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic; Department of Biology, Faculty of Education, Palacký University Olomouc, Olomouc, Czech Republic
| | - Martin Volf
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| |
Collapse
|
12
|
Su X, Wang X, Li R, Zhou C, Chen L, Chen S, Cai N, Xu Y. Identification and Evaluation of Diploid and Tetraploid Passiflora edulis Sims. PLANTS (BASEL, SWITZERLAND) 2024; 13:2603. [PMID: 39339578 PMCID: PMC11434754 DOI: 10.3390/plants13182603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
Passiflora edulis Sims (2n = 18) is a perennial plant with high utilization values, but its spontaneous polyploidy in nature has yet to be seen. Thus, this study aims to enhance our understanding of polyploidy P. edulis and provide rudimentary knowledge for breeding new cultivars. In this study, colchicine-induced tetraploid P. edulis (2n = 36) was used as experimental material (T1, T2, and T3) to explore the variances between it and its diploid counterpart in morphology, physiology, and biochemical characteristics, and a comparison of their performance under cold stress was conducted. We measured and collected data on phenotype parameters, chlorophyll contents, chlorophyll fluorescence, photosynthesis, osmotic substances, and antioxidant enzymes. The results showed that tetraploid P. edulis exhibited a shorter phenotype, more giant leaves, darker leaf color, and longer and fewer roots. Moreover, the physiological and biochemical analysis indicated that the tetraploid P. edulis had better photosynthesis systems and higher chlorophyll fluorescence parameters than the diploid P. edulis. Additionally, the tetraploid P. edulis had higher activity of antioxidant enzymes (SOD, POD, CAT) and lower MDA content to maintain better resistance in low temperatures. Overall, we conclude that there were apparent differences in the morphological, physiological, and biochemical traits of the tetraploid and diploid P. edulis. The tetraploid plants showed better photosynthesis systems, higher osmotic substance content, and antioxidant enzyme activity than the diploid, even under cold stress. Our results suggest that tetraploids with more abundant phenotype variation and better physiological and biochemical traits may be used as a new genetic germplasm resource for producing new P. edulis cultivars.
Collapse
Affiliation(s)
- Xin Su
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Xue Wang
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Ruilian Li
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Chiyu Zhou
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Lin Chen
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Shi Chen
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Nianhui Cai
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Yulan Xu
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
13
|
Mendez-Reneau JI, Richards JL, Hobbie J, Bollich E, Kooyers NJ, Sigel EM. Lineage diversification and rampant hybridization among subspecies explain taxonomic confusion in the endemic Hawaiian fern Polypodium pellucidum. AMERICAN JOURNAL OF BOTANY 2024; 111:e16379. [PMID: 39081002 DOI: 10.1002/ajb2.16379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 11/06/2024]
Abstract
PREMISE Polypodium pellucidum, a fern endemic to the Hawaiian Islands, encompasses five ecologically and morphologically variable subspecies, suggesting a complex history involving both rapid divergence and rampant hybridization. METHODS We employed a large target-capture data set to investigate the evolution of genetic, morphological, and ecological variation in P. pellucidum. With a broad sampling across five Hawaiian Islands, we deciphered the evolutionary history of P. pellucidum, identified nonhybrid lineages and intraspecific hybrids, and inferred the relative influence of geography and ecology on their distributions. RESULTS Polypodium pellucidum is monophyletic, dispersing to the Hawaiian archipelago 11.53-7.77 Ma and diversifying into extant clades between 5.66 and 4.73 Ma. We identified four nonhybrid clades with unique morphologies, ecological niches, and distributions. Additionally, we elucidated several intraspecific hybrid combinations and evidence for undiscovered or extinct "ghost" lineages contributing to extant hybrid populations. CONCLUSIONS We provide a foundation for revising the taxonomy of P. pellucidum to account for cryptic lineages and intraspecific hybrids. Geologic succession of the Hawaiian Islands through cycles of volcanism, vegetative succession, and erosion has determined the available habitats and distribution of ecologically specific, divergent clades within P. pellucidum. Intraspecific hybrids have likely arisen due to ecological and or geological transitions, often persisting after the local extinction of their progenitors. This research contributes to our understanding of the evolution of Hawai'i's diverse fern flora and illuminated cryptic taxa to allow better-informed conservation efforts.
Collapse
Affiliation(s)
- Jonas I Mendez-Reneau
- Department of Biology, University of Louisiana at Lafayette, 410 East St. Mary Boulevard, Billeaud Hall, Lafayette, 70504, LA, USA
| | - Joseph L Richards
- Department of Biology, University of Louisiana at Lafayette, 410 East St. Mary Boulevard, Billeaud Hall, Lafayette, 70504, LA, USA
| | - Julia Hobbie
- Department of Biology, Utah State University, BNR 117, 5305 Old Main Hill, Logan, 84322, UT, USA
| | - Emily Bollich
- Department of Biology, University of Louisiana at Lafayette, 410 East St. Mary Boulevard, Billeaud Hall, Lafayette, 70504, LA, USA
| | - Nicholas J Kooyers
- Department of Biology, University of Louisiana at Lafayette, 410 East St. Mary Boulevard, Billeaud Hall, Lafayette, 70504, LA, USA
| | - Erin M Sigel
- Department of Biological Sciences, University of New Hampshire, 105 Main St., Durham, 03824, NH, USA
| |
Collapse
|
14
|
Tseng YH, Kuo LY, Borokini I, Fawcett S. The role of deep hybridization in fern speciation: Examples from the Thelypteridaceae. AMERICAN JOURNAL OF BOTANY 2024; 111:e16388. [PMID: 39135339 DOI: 10.1002/ajb2.16388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 08/24/2024]
Abstract
PREMISE Hybridization is recognized as an important mechanism in fern speciation, with many allopolyploids known among congeners, as well as evidence of ancient genome duplications. Several contemporary instances of deep (intergeneric) hybridization have been noted, invariably resulting in sterile progeny. We chose the christelloid lineage of the family Thelypteridaceae, recognized for its high frequency of both intra- and intergeneric hybrids, to investigate recent hybrid speciation between deeply diverged lineages. We also seek to understand the ecological and evolutionary outcomes of resulting lineages across the landscape. METHODS By phasing captured reads within a phylogenomic data set of GoFlag 408 nuclear loci using HybPhaser, we investigated candidate hybrids to identify parental lineages. We estimated divergence ages by inferring a dated phylogeny using fossil calibrations with treePL. We investigated ecological niche conservatism between one confirmed intergeneric allotetraploid and its diploid progenitors using the centroid, overlap, unfilling, and expansion (COUE) framework. RESULTS We provide evidence for at least six instances of intergeneric hybrid speciation within the christelloid clade and estimate up to 45 million years of divergence between progenitors. The niche quantification analysis showed moderate niche overlap between an allopolyploid species and its progenitors, with significant divergence from the niche of one progenitor and conservatism to the other. CONCLUSIONS The examples provided here highlight the overlooked role that allopolyploidization following intergeneric hybridization may play in fern diversification and range and niche expansions. Applying this approach to other fern taxa may reveal a similar pattern of deep hybridization resulting in highly successful novel lineages.
Collapse
Affiliation(s)
- Yu-Hsin Tseng
- Department of Life Sciences, National Chung Hsing University, no. 145 Xingda Rd., South District, 40227, Taichung, Taiwan
| | - Li-Yaung Kuo
- College of Life Science, National Tsing Hua University, No. 101, Section 2, Kuang Fu Road, Hsinchu, 30044, Taiwan
| | - Israel Borokini
- Department of Ecology, Montana State University, 310 Lewis Hall, Bozeman, 59717, MT, USA
- University and Jepson Herbaria, University of California, Berkeley, 1001 Valley Life Sciences Building, Berkeley, 94720-2465, CA, USA
| | - Susan Fawcett
- University and Jepson Herbaria, University of California, Berkeley, 1001 Valley Life Sciences Building, Berkeley, 94720-2465, CA, USA
- National Tropical Botanical Garden, 3530 Papālina Road, Kalāheo, 96741, HI, USA
| |
Collapse
|
15
|
Barker MS, Jiao Y, Glennon KL. Doubling down on polyploid discoveries: Global advances in genomics and ecological impacts of polyploidy. AMERICAN JOURNAL OF BOTANY 2024; 111:e16395. [PMID: 39164922 DOI: 10.1002/ajb2.16395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/22/2024]
Abstract
All flowering plants are now recognized as diploidized paleopolyploids (Jiao et al., 2011; One Thousand Plant Transcriptomes Initiative, 2019), and polyploid species comprise approximately 30% of contemporary plant species (Wood et al., 2009; Barker et al., 2016a). A major implication of these discoveries is that, to appreciate the evolution of plant diversity, we need to understand the fundamental biology of polyploids and diploidization. This need is broadly recognized by our community as there is a continued, growing interest in polyploidy as a research topic. Over the past 25 years, the sequencing and analysis of plant genomes has revolutionized our understanding of the importance of polyploid speciation to the evolution of land plants.
Collapse
Affiliation(s)
- Michael S Barker
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, 85721, AZ, USA
| | - Yuannian Jiao
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Kelsey L Glennon
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
16
|
Leal JL, Milesi P, Hodková E, Zhou Q, James J, Eklund DM, Pyhäjärvi T, Salojärvi J, Lascoux M. Complex Polyploids: Origins, Genomic Composition, and Role of Introgressed Alleles. Syst Biol 2024; 73:392-418. [PMID: 38613229 PMCID: PMC11282369 DOI: 10.1093/sysbio/syae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/18/2023] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Introgression allows polyploid species to acquire new genomic content from diploid progenitors or from other unrelated diploid or polyploid lineages, contributing to genetic diversity and facilitating adaptive allele discovery. In some cases, high levels of introgression elicit the replacement of large numbers of alleles inherited from the polyploid's ancestral species, profoundly reshaping the polyploid's genomic composition. In such complex polyploids, it is often difficult to determine which taxa were the progenitor species and which taxa provided additional introgressive blocks through subsequent hybridization. Here, we use population-level genomic data to reconstruct the phylogenetic history of Betula pubescens (downy birch), a tetraploid species often assumed to be of allopolyploid origin and which is known to hybridize with at least four other birch species. This was achieved by modeling polyploidization and introgression events under the multispecies coalescent and then using an approximate Bayesian computation rejection algorithm to evaluate and compare competing polyploidization models. We provide evidence that B. pubescens is the outcome of an autoploid genome doubling event in the common ancestor of B. pendula and its extant sister species, B. platyphylla, that took place approximately 178,000-188,000 generations ago. Extensive hybridization with B. pendula, B. nana, and B. humilis followed in the aftermath of autopolyploidization, with the relative contribution of each of these species to the B. pubescens genome varying markedly across the species' range. Functional analysis of B. pubescens loci containing alleles introgressed from B. nana identified multiple genes involved in climate adaptation, while loci containing alleles derived from B. humilis revealed several genes involved in the regulation of meiotic stability and pollen viability in plant species.
Collapse
Affiliation(s)
- J Luis Leal
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - Pascal Milesi
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
- Science for Life Laboratory (SciLifeLab), Uppsala University, 75237 Uppsala, Sweden
| | - Eva Hodková
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16521 Prague, Czech Republic
| | - Qiujie Zhou
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - Jennifer James
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - D Magnus Eklund
- Physiology and Environmental Toxicology, Department of Organismal Biology, Uppsala University, Norbyvägen 18A, 75236 Uppsala, Sweden
| | - Tanja Pyhäjärvi
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, P.O. Box 65 (Viikinkaari 1), 00014 Helsinki, Finland
- Department of Forest Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Jarkko Salojärvi
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, P.O. Box 65 (Viikinkaari 1), 00014 Helsinki, Finland
| | - Martin Lascoux
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
- Science for Life Laboratory (SciLifeLab), Uppsala University, 75237 Uppsala, Sweden
| |
Collapse
|
17
|
Valdés-Florido A, González-Toral C, Maguilla E, Cires E, Díaz-Lifante Z, Andrés-Camacho C, Nieto Feliner G, Arroyo J, Escudero M. Polyploidy and hybridization in the Mediterranean: unravelling the evolutionary history of Centaurium (Gentianaceae). ANNALS OF BOTANY 2024; 134:247-262. [PMID: 38687133 PMCID: PMC11232519 DOI: 10.1093/aob/mcae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND AND AIMS Polyploidy is considered one of the main mechanisms of plant evolution and speciation. In the Mediterranean Basin, polyploidy has contributed to making this region a biodiversity hotspot, along with its geological and climatic history and other ecological and biogeographical factors. The Mediterranean genus Centaurium (Gentianaceae) comprises ~25 species, of which 60 % are polyploids, including tetraploids and hexaploids. To date, the evolutionary history of centauries has been studied using Sanger sequencing phylogenies, which have been insufficient to fully understand the phylogenetic relationships in this lineage. The goal of this study is to gain a better understanding of the evolutionary history of Centaurium by exploring the mechanisms that have driven its diversification, specifically hybridization and polyploidy. We aim to identify the parentage of hybrid species, at the species or clade level, as well as assessing whether morphological traits are associated with particular ploidy levels. METHODS We sequenced RADseq markers from 42 samples of 28 Centaurium taxa, and performed phylogenomic analyses using maximum likelihood, summary coalescent SVDquartets and Neighbor-Net approaches. To identify hybrid taxa, we used PhyloNetworks and the fastSTRUCTURE algorithm. To infer the putative parental species of the allopolyploids, we employed genomic analyses (SNIPloid). The association between different traits and particular ploidy levels was explored with non-metric multidimensional scaling. KEY RESULTS Our phylogenetic analyses confirmed the long-suspected occurrence of recurrent hybridization. The allopolyploid origin of the tetraploid C. serpentinicola and the hexaploids C. mairei, C. malzacianum and C. centaurioides was also confirmed, unlike that of C. discolor. We inferred additional signatures of hybridization events within the genus and identified morphological traits differentially distributed in different ploidy levels. CONCLUSIONS This study highlights the important role that hybridization has played in the evolution of a Mediterranean genus such as Centaurium, leading to a polyploid complex, which facilitated its diversification and may exemplify that of other Mediterranean groups.
Collapse
Affiliation(s)
- Ana Valdés-Florido
- Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, Seville, 41012, Spain
| | | | - Enrique Maguilla
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Seville, 41013, Spain
| | - Eduardo Cires
- Department of Organisms and Systems Biology, University of Oviedo, Oviedo, 33071, Spain
- Institute of Natural Resources and Territorial Planning (INDUROT), Campus de Mieres, Mieres, 33600, Spain
| | - Zoila Díaz-Lifante
- Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, Seville, 41012, Spain
| | - Cristina Andrés-Camacho
- Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, Seville, 41012, Spain
| | | | - Juan Arroyo
- Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, Seville, 41012, Spain
| | - Marcial Escudero
- Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, Seville, 41012, Spain
| |
Collapse
|
18
|
Bacon CD, Hill A. Hybridization in palms (Arecaceae). Ecol Evol 2024; 14:e70014. [PMID: 39011137 PMCID: PMC11246834 DOI: 10.1002/ece3.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024] Open
Abstract
Hybridization has significant evolutionary consequences across the Tree of Life. The process of hybridization has played a major role in plant evolution and has contributed to species richness and trait variation. Since morphological traits are partially a product of their environment, there may be a link between hybridization and ecology. Plant hybrid species richness is noted to be higher in harsh environments, and we explore this hypothesis with a keystone tropical plant lineage, palms (Arecaceae). Leveraging a recent literature review of naturally occurring palm hybrids, we developed a method to calculate hybrid frequency, and then tested if there is phylogenetic signal of hybrids using a phylogeny of all palms. Further, we used phylogenetic comparative methods to examine the interaction between hybrid frequency and presence in dry environments, on islands, and the species richness of genera. Phylogenetic generalized least squares models had stronger support than models of random association, indicating phylogenetic signal for the presence of hybrids in dry and island environments. However, all p-values were >.05 and therefore the correlation was poor between hybridization and the trait frequencies examined. Presence in particular environments are not strongly correlated to hybrid frequency, but phylogenetic signal suggests a role in its distribution in different habitats. Hybridization in palms is not evenly distributed across subfamilies, tribes, subtribes yet plays an important role in palm diversity, nonetheless. Increasing our understanding hybridization in this economically and culturally important plant family is essential, particularly since rates are projected to increase with climate change, reconfiguring the dynamics and distribution of biodiversity.
Collapse
Affiliation(s)
- Christine D. Bacon
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
- Gothenburg Global Biodiversity CentreGothenburgSweden
| | - Adrian Hill
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
- Gothenburg Global Biodiversity CentreGothenburgSweden
| |
Collapse
|
19
|
Ning W, Meudt HM, Tate JA. A roadmap of phylogenomic methods for studying polyploid plant genera. APPLICATIONS IN PLANT SCIENCES 2024; 12:e11580. [PMID: 39184196 PMCID: PMC11342234 DOI: 10.1002/aps3.11580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/10/2023] [Accepted: 01/13/2024] [Indexed: 08/27/2024]
Abstract
Phylogenetic inference of polyploid species is the first step towards understanding their patterns of diversification. In this paper, we review the challenges and limitations of inferring species relationships of polyploid plants using traditional phylogenetic sequencing approaches, as well as the mischaracterization of the species tree from single or multiple gene trees. We provide a roadmap to infer interspecific relationships among polyploid lineages by comparing and evaluating the application of current phylogenetic, phylogenomic, transcriptomic, and whole-genome approaches using different sequencing platforms. For polyploid species tree reconstruction, we assess the following criteria: (1) the amount of prior information or tools required to capture the genetic region(s) of interest; (2) the probability of recovering homeologs for polyploid species; and (3) the time efficiency of downstream data analysis. Moreover, we discuss bioinformatic pipelines that can reconstruct networks of polyploid species relationships. In summary, although current phylogenomic approaches have improved our understanding of reticulate species relationships in polyploid-rich genera, the difficulties of recovering reliable orthologous genes and sorting all homeologous copies for allopolyploids remain a challenge. In the future, assembled long-read sequencing data will assist the recovery and identification of multiple gene copies, which can be particularly useful for reconstructing the multiple independent origins of polyploids.
Collapse
Affiliation(s)
- Weixuan Ning
- School of Natural SciencesMassey UniversityPalmerston North4442New Zealand
| | - Heidi M. Meudt
- Museum of New Zealand Te Papa TongarewaWellington6011New Zealand
| | - Jennifer A. Tate
- School of Natural SciencesMassey UniversityPalmerston North4442New Zealand
| |
Collapse
|
20
|
Feng H, Banerjee AK, Guo W, Yuan Y, Duan F, Ng WL, Zhao X, Liu Y, Li C, Liu Y, Li L, Huang Y. Origin and evolution of a new tetraploid mangrove species in an intertidal zone. PLANT DIVERSITY 2024; 46:476-490. [PMID: 39280974 PMCID: PMC11390703 DOI: 10.1016/j.pld.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 09/18/2024]
Abstract
Polyploidy is a major factor in the evolution of plants, yet we know little about the origin and evolution of polyploidy in intertidal species. This study aimed to identify the evolutionary transitions in three true-mangrove species of the genus Acanthus distributed in the Indo-West Pacific region. For this purpose, we took an integrative approach that combined data on morphology, cytology, climatic niche, phylogeny, and biogeography of 493 samples from 42 geographic sites. Our results show that the Acanthus ilicifolius lineage distributed east of the Thai-Malay Peninsula possesses a tetraploid karyotype, which is morphologically distinct from that of the lineage on the west side. The haplotype networks and phylogenetic trees for the chloroplast genome and eight nuclear genes reveal that the tetraploid species has two sub-genomes, one each from A. ilicifolius and A . ebracteatus, the paternal and maternal parents, respectively. Population structure analysis also supports the hybrid speciation history of the new tetraploid species. The two sub-genomes of the tetraploid species diverged from their diploid progenitors during the Pleistocene. Environmental niche models revealed that the tetraploid species not only occupied the near-entire niche space of the diploids, but also expanded into novel environments. Our findings suggest that A. ilicifolius species distributed on the east side of the Thai-Malay Peninsula should be regarded as a new species, A. tetraploideus, which originated from hybridization between A. ilicifolius and A. ebracteatus, followed by chromosome doubling. This is the first report of a true-mangrove allopolyploid species that can reproduce sexually and clonally reproduction, which explains the long-term adaptive potential of the species.
Collapse
Affiliation(s)
- Hui Feng
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Achyut Kumar Banerjee
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Wuxia Guo
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, Guangdong, China
| | - Yang Yuan
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Fuyuan Duan
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Wei Lun Ng
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia
| | - Xuming Zhao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Yuting Liu
- School of Agriculture, Sun Yat-sen University, Shenzhen 518107, Guangdong, China
| | - Chunmei Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Ying Liu
- School of Ecology, Sun Yat-sen University, Shenzhen 518107, Guangdong, China
| | - Linfeng Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Yelin Huang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| |
Collapse
|
21
|
Garner AG, Goulet-Scott BE, Hopkins R. Phylogenomic analyses re-examine the evolution of reinforcement and hypothesized hybrid speciation in Phlox wildflowers. THE NEW PHYTOLOGIST 2024; 243:451-465. [PMID: 38764373 DOI: 10.1111/nph.19802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/22/2024] [Indexed: 05/21/2024]
Abstract
The tree of life is riddled with reticulate evolutionary histories, and some clades, such as the eastern standing Phlox, appear to be hotspots of hybridization. In this group, there are two cases of reinforcement and nine hypothesized hybrid species. Given their historical importance in our understanding of plant speciation, the relationships between these taxa and the role of hybridization in their diversification require genomic validation. Using phylogenomic analyses, we resolve the evolutionary relationships of the eastern standing Phlox and evaluate hypotheses about whether and how hybridization and gene flow played a role in their diversification. Our results provide novel resolution of the phylogenetic relationships in this group, including paraphyly across some taxa. We identify gene flow during one case of reinforcement and find genomic support for a hybrid lineage underlying one of the five hypothesized homoploid hybrid speciation events. Additionally, we estimate the ancestries of four allotetraploid hybrid species. Our results are consistent with hybridization contributing to diverse evolutionary outcomes within this group; although, not as extensively as previously hypothesized. This study demonstrates the importance of phylogenomics in evaluating hypothesized evolutionary histories of non-model systems and adds to the growing support of interspecific genetic exchange in the generation of biodiversity.
Collapse
Affiliation(s)
- Austin G Garner
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- The Arnold Arboretum, Harvard University, Boston, MA, 02131, USA
| | - Benjamin E Goulet-Scott
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- The Arnold Arboretum, Harvard University, Boston, MA, 02131, USA
| | - Robin Hopkins
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- The Arnold Arboretum, Harvard University, Boston, MA, 02131, USA
| |
Collapse
|
22
|
Su X, Yang Z, Zhou C, Geng S, Chen S, Cai N, Tang J, Chen L, Xu Y. The Response and Evaluation of Morphology, Physiology, and Biochemistry Traits in Triploid Passiflora edulis Sims 'Mantianxing' to Drought Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:1685. [PMID: 38931117 PMCID: PMC11207800 DOI: 10.3390/plants13121685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
As one of the most influential environmental factors, drought stress greatly impacts the development and production of plants. Triploid-induced Passiflora edulis Sims 'Mantianxing' is an important new cultivar for multi-resistance variety selective breeding, which is one of the P. edulis breeding essential targets. However, the performance of triploid 'Mantianxing' under drought stress is unknown. In order to study the drought resistance of triploid 'Mantianxing', our study compared drought-related indicators in diploids and triploids under natural drought experiments, including morphological, physiological, and biochemical characteristics. Results showed that triploid P. edulis 'Mantianxing' showed variable responses to drought treatment. Compared with diploids, triploids showed higher photosynthesis and chlorophyll fluorescence, osmotic adjustment substances, and antioxidant enzyme activity under drought stress and faster chlorophyll biosynthesis and growth recovery after rewatering. Generally speaking, these results indicate that the drought resistance of triploid P. edulis is superior to diploid. This study provides scientific information for breeding stress tolerance variety of P. edulis 'Mantianxing' new cultivar.
Collapse
Affiliation(s)
- Xin Su
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (X.S.); (Z.Y.); (C.Z.); (S.G.); (N.C.)
| | - Zhenxin Yang
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (X.S.); (Z.Y.); (C.Z.); (S.G.); (N.C.)
| | - Chiyu Zhou
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (X.S.); (Z.Y.); (C.Z.); (S.G.); (N.C.)
| | - Shili Geng
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (X.S.); (Z.Y.); (C.Z.); (S.G.); (N.C.)
| | - Shi Chen
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China; (S.C.); (J.T.); (L.C.)
| | - Nianhui Cai
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (X.S.); (Z.Y.); (C.Z.); (S.G.); (N.C.)
| | - Junrong Tang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China; (S.C.); (J.T.); (L.C.)
| | - Lin Chen
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China; (S.C.); (J.T.); (L.C.)
| | - Yulan Xu
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (X.S.); (Z.Y.); (C.Z.); (S.G.); (N.C.)
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China; (S.C.); (J.T.); (L.C.)
| |
Collapse
|
23
|
Wróbel A, Klichowska E, Nobis M. Hybrids as mirrors of the past: genomic footprints reveal spatio-temporal dynamics and extinction risk of alpine extremophytes in the mountains of Central Asia. FRONTIERS IN PLANT SCIENCE 2024; 15:1369732. [PMID: 38693932 PMCID: PMC11061500 DOI: 10.3389/fpls.2024.1369732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/02/2024] [Indexed: 05/03/2024]
Abstract
Hybridization is one of the key processes shaping lineage diversification, particularly in regions that experienced strong climate oscillations. The alpine biome with its rich history of glacial-interglacial cycles and complex patterns of species distribution shifts offers an excellent system to investigate the impact of gene flow on population dynamics and speciation, important issues for evolutionary biology and biodiversity conservation. In this study, we combined genomic data (DArTseq), chloroplast markers, and morphology to examine phylogenetic relationships and the permeability of species boundaries and their evolutionary outcomes among the alpine extremophilic species of Puccinellia (Poaceae) in the Pamir Mountains, a part of the Mountains of Central Asia biodiversity hotspot. We determined the occurrence of interspecific hybrids between P. himalaica and P. pamirica, which demonstrated almost symmetric ancestry from their parental species and did not show signals of introgression. According to our integrative revision, the natural hybrids between P. himalaica and P. pamirica should be classified as Puccinellia ×vachanica (pro species). Using approximate Bayesian computation for population history inference, we uncovered that P. himalaica hybridized with P. pamirica independently in multiple localities over the Holocene. Hybrids inherited the fine-scale genetic structure from their parental species, which developed these patterns earlier, during the Late Pleistocene. Hybridization had different consequences for the involved parental lineages, likely playing an important role in a continuing decline of P. himalaica in the Pamir Mountains over the Holocene. Our results show that P. himalaica should be considered a critically endangered species in the Pamir Mountains and could also be retreating across its entire range of distribution in High Mountain Asia. Using a comparative phylogeographic framework, we revealed the risk of extinction of a cold-adapted alpine species in a global biodiversity hotspot. This study highlights that genomics could unravel diversity trends under climate change and provides valuable evidence for conservation management.
Collapse
Affiliation(s)
- Anna Wróbel
- Institute of Botany, Faculty of Biology, Jagiellonian University, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Ewelina Klichowska
- Institute of Botany, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Marcin Nobis
- Institute of Botany, Faculty of Biology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
24
|
Sullivan W. Remarkable chromosomes and karyotypes: A top 10 list. Mol Biol Cell 2024; 35:pe1. [PMID: 38517328 PMCID: PMC11064663 DOI: 10.1091/mbc.e23-12-0498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/23/2024] [Accepted: 03/01/2024] [Indexed: 03/23/2024] Open
Abstract
Chromosomes and karyotypes are particularly rich in oddities and extremes. Described below are 10 remarkable chromosomes and karyotypes sprinkled throughout the tree of life. These include variants in chromosome number, structure, and dynamics both natural and engineered. This versatility highlights the robustness and tolerance of the mitotic and meiotic machinery to dramatic changes in chromosome and karyotype architecture. These examples also illustrate that the robustness comes at a cost, enabling the evolution of chromosomes that subvert mitosis and meiosis.
Collapse
Affiliation(s)
- William Sullivan
- Department of MCD Biology, University of California, Santa Cruz, CA 95064
| |
Collapse
|
25
|
Wang X, Liao S, Zhang Z, Zhang J, Mei L, Li H. Hybridization, polyploidization, and morphological convergence make dozens of taxa into one chaotic genetic pool: a phylogenomic case of the Ficus erecta species complex (Moraceae). FRONTIERS IN PLANT SCIENCE 2024; 15:1354812. [PMID: 38595762 PMCID: PMC11002808 DOI: 10.3389/fpls.2024.1354812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/08/2024] [Indexed: 04/11/2024]
Abstract
The Ficus erecta complex, characterized by its morphological diversity and frequent interspecific overlap, shares pollinating fig wasps among several species. This attribute, coupled with its intricate phylogenetic relationships, establishes it as an exemplary model for studying speciation and evolutionary patterns. Extensive researches involving RADseq (Restriction-site associated DNA sequencing), complete chloroplast genome data, and flow cytometry methods were conducted, focusing on phylogenomic analysis, genetic structure, and ploidy detection within the complex. Significantly, the findings exposed a pronounced nuclear-cytoplasmic conflict. This evidence, together with genetic structure analysis, confirmed that hybridization within the complex is a frequent occurrence. The ploidy detection revealed widespread polyploidy, with certain species exhibiting multiple ploidy levels, including 2×, 3×, and 4×. Of particular note, only five species (F. abelii, F. erecta, F. formosana, F. tannoensis and F. vaccinioides) in the complex were proved to be monophyletic. Species such as F. gasparriniana, F. pandurata, and F. stenophylla were found to encompass multiple phylogenetically distinct lineages. This discovery, along with morphological comparisons, suggests a significant underestimation of species diversity within the complex. This study also identified F. tannoensis as an allopolyploid species originating from F. vaccinioide and F. erecta. Considering the integration of morphological, molecular systematics, and cytological evidences, it is proposed that the scope of the F. erecta complex should be expanded to the entire subsect. Frutescentiae. This would redefine the complex as a continuously evolving group comprising at least 33 taxa, characterized by blurred species boundaries, frequent hybridization and polyploidization, and ambiguous genetic differentiation.
Collapse
Affiliation(s)
- Xiaomei Wang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Shuai Liao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Zhen Zhang
- College of Architecture and Urban Planning, Tongji University, Shanghai, China
| | - Jianhang Zhang
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, China
| | - Li Mei
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Hongqing Li
- School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
26
|
Wefferling KM, Castro M, Castro S, Holmlund H, Loureiro J, Rothfels CJ, Schuettpelz E. Polyploid goldback and silverback ferns (Pentagramma) occupy a wider, colder, and wetter bioclimatic niche than diploid counterparts. AMERICAN JOURNAL OF BOTANY 2024; 111:e16305. [PMID: 38517199 DOI: 10.1002/ajb2.16305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 03/23/2024]
Abstract
PREMISE The western North American fern genus Pentagramma (Pteridaceae) is characterized by complex patterns of ploidy variation, an understanding of which is critical to comprehending both the evolutionary processes within the genus and its current diversity. METHODS We undertook a cytogeographic study across the range of the genus, using a combination of chromosome counts and flow cytometry to infer ploidy level. Bioclimatic variables and elevation were used to compare niches. RESULTS We found that diploids and tetraploids are common and widespread, and triploids are rare and sporadic; in contrast with genome size inferences in earlier studies, no hexaploids were found. Diploids and tetraploids show different geographic ranges: only tetraploids were found in the northernmost portion of the range (Washington, Oregon, and British Columbia) and only diploids were found in the Sierra Nevada of California. Diploid, triploid, and tetraploid cytotypes were found to co-occur in relatively few localities: in the southern (San Diego County, California) and desert Southwest (Arizona) parts of the range, and along the Pacific Coast of California. CONCLUSIONS Tetraploids occupy a wider bioclimatic niche than diploids both within P. triangularis and at the genus-wide scale. It is unknown whether the wider niche of tetraploids is due to their expansion upon the diploid niche, if diploids have contracted their niche due to competition or changing abiotic conditions, or if this wider niche occupancy is due to multiple origins of tetraploids.
Collapse
Affiliation(s)
- Keir M Wefferling
- Department of Biology, Gary A. Fewless Herbarium, Cofrin Center for Biodiversity, University of Wisconsin-Green Bay, Green Bay, 54311, Wisconsin, USA
| | - Mariana Castro
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Coimbra, Portugal
| | - Sílvia Castro
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Coimbra, Portugal
| | - Helen Holmlund
- Natural Science Division, Pepperdine University, Malibu, 90263, California, USA
| | - João Loureiro
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Coimbra, Portugal
| | - Carl J Rothfels
- Department of Biology, Ecology Center, and Intermountain Herbarium, Utah State University, Logan, 84322, Utah, USA
| | - Eric Schuettpelz
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, 20560, DC, USA
| |
Collapse
|
27
|
Kim SH, Yang J, Cho MS, Stuessy TF, Crawford DJ, Kim SC. Chloroplast Genome Provides Insights into Molecular Evolution and Species Relationship of Fleabanes ( Erigeron: Tribe Astereae, Asteraceae) in the Juan Fernández Islands, Chile. PLANTS (BASEL, SWITZERLAND) 2024; 13:612. [PMID: 38475459 DOI: 10.3390/plants13050612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
Erigeron represents the third largest genus on the Juan Fernández Islands, with six endemic species, five of which occur exclusively on the younger Alejandro Selkirk Island with one species on both islands. While its continental sister species is unknown, Erigeron on the Juan Fernández Islands appears to be monophyletic and most likely evolved from South American progenitor species. We characterized the complete chloroplast genomes of five Erigeron species, including accessions of E. fernandezia and one each from Alejandro Selkirk and Robinson Crusoe Islands, with the purposes of elucidating molecular evolution and phylogenetic relationships. We found highly conserved chloroplast genomes in size, gene order and contents, and further identified several mutation hotspot regions. In addition, we found two positively selected chloroplast genes (ccsA and ndhF) among species in the islands. The complete plastome sequences confirmed the monophyly of Erigeron in the islands and corroborated previous phylogenetic relationships among species. New findings in the current study include (1) two major lineages, E. turricola-E. luteoviridis and E. fernandezia-E. ingae-E. rupicola, (2) the non-monophyly of E. fernandezia occurring on the two islands, and (3) the non-monophyly of the alpine species E. ingae complex.
Collapse
Affiliation(s)
- Seon-Hee Kim
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - JiYoung Yang
- Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Myong-Suk Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Tod F Stuessy
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel J Crawford
- Department of Ecology and Evolutionary Biology and the Biodiversity Institute, The University of Kansas, Lawrence, KS 66045, USA
| | - Seung-Chul Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
28
|
Moore‐Pollard ER, Jones DS, Mandel JR. Compositae-ParaLoss-1272: A complementary sunflower-specific probe set reduces paralogs in phylogenomic analyses of complex systems. APPLICATIONS IN PLANT SCIENCES 2024; 12:e11568. [PMID: 38369976 PMCID: PMC10873820 DOI: 10.1002/aps3.11568] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/30/2023] [Accepted: 11/12/2023] [Indexed: 02/20/2024]
Abstract
Premise A family-specific probe set for sunflowers, Compositae-1061, enables family-wide phylogenomic studies and investigations at lower taxonomic levels, but may lack resolution at genus to species levels, especially in groups complicated by polyploidy and hybridization. Methods We developed a Hyb-Seq probe set, Compositae-ParaLoss-1272, that targets orthologous loci in Asteraceae. We tested its efficiency across the family by simulating target enrichment sequencing in silico. Additionally, we tested its effectiveness at lower taxonomic levels in the historically complex genus Packera. We performed Hyb-Seq with Compositae-ParaLoss-1272 for 19 Packera taxa that were previously studied using Compositae-1061. The resulting sequences from each probe set, plus a combination of both, were used to generate phylogenies, compare topologies, and assess node support. Results We report that Compositae-ParaLoss-1272 captured loci across all tested Asteraceae members, had less gene tree discordance, and retained longer loci than Compositae-1061. Most notably, Compositae-ParaLoss-1272 recovered substantially fewer paralogous sequences than Compositae-1061, with only ~5% of the recovered loci reporting as paralogous, compared to ~59% with Compositae-1061. Discussion Given the complexity of plant evolutionary histories, assigning orthology for phylogenomic analyses will continue to be challenging. However, we anticipate Compositae-ParaLoss-1272 will provide improved resolution and utility for studies of complex groups and lower taxonomic levels in the sunflower family.
Collapse
Affiliation(s)
- Erika R. Moore‐Pollard
- Department of Biological SciencesUniversity of Memphis3700 Walker Ave.MemphisTennessee38152USA
| | - Daniel S. Jones
- Department of Biological SciencesAuburn University101 Rouse Life SciencesAuburnAlabama36849USA
| | - Jennifer R. Mandel
- Department of Biological SciencesUniversity of Memphis3700 Walker Ave.MemphisTennessee38152USA
| |
Collapse
|
29
|
Xia F, Li B, Song K, Wang Y, Hou Z, Li H, Zhang X, Li F, Yang L. Polyploid Genome Assembly Provides Insights into Morphological Development and Ascorbic Acid Accumulation of Sauropus androgynus. Int J Mol Sci 2023; 25:300. [PMID: 38203470 PMCID: PMC10778994 DOI: 10.3390/ijms25010300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Sauropus androgynus (S. androgynus) (2n = 4x = 52) is one of the most popular functional leafy vegetables in South and Southeast Asia. With its rich nutritional and pharmaceutical values, it has traditionally had widespread use for dietary and herbal purposes. Here, the genome of S. androgynus was sequenced and assembled, revealing a genome size of 1.55 Gb with 26 pseudo-chromosomes. Phylogenetic analysis traced back the divergence of Sauropus from Phyllanthus to approximately 29.67 million years ago (Mya). Genome analysis revealed that S. androgynus polyploidized around 20.51 Mya and shared a γ event about 132.95 Mya. Gene function analysis suggested that the expansion of pathways related to phloem development, lignin biosynthesis, and photosynthesis tended to result in the morphological differences among species within the Phyllanthaceae family, characterized by varying ploidy levels. The high accumulation of ascorbic acid in S. androgynus was attributed to the high expression of genes associated with the L-galactose pathway and recycling pathway. Moreover, the expanded gene families of S. androgynus exhibited multiple biochemical pathways associated with its comprehensive pharmacological activity, geographic adaptation and distinctive pleasurable flavor. Altogether, our findings represent a crucial genomic asset for S. androgynus, casting light on the intricate ploidy within the Phyllanthaceae family.
Collapse
Affiliation(s)
- Fagang Xia
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.X.); (Y.W.)
- Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bin Li
- Agricultural Big-Data Research Center, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (B.L.); (K.S.); (H.L.); (X.Z.)
| | - Kangkang Song
- Agricultural Big-Data Research Center, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (B.L.); (K.S.); (H.L.); (X.Z.)
| | - Yankun Wang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.X.); (Y.W.)
- Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhuangwei Hou
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China;
| | - Haozhen Li
- Agricultural Big-Data Research Center, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (B.L.); (K.S.); (H.L.); (X.Z.)
| | - Xiaohua Zhang
- Agricultural Big-Data Research Center, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (B.L.); (K.S.); (H.L.); (X.Z.)
| | - Fangping Li
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China;
| | - Long Yang
- Agricultural Big-Data Research Center, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (B.L.); (K.S.); (H.L.); (X.Z.)
| |
Collapse
|
30
|
Jin ZT, Hodel RGJ, Ma DK, Wang H, Liu GN, Ren C, Ge BJ, Fan Q, Jin SH, Xu C, Wu J, Liu BB. Nightmare or delight: Taxonomic circumscription meets reticulate evolution in the phylogenomic era. Mol Phylogenet Evol 2023; 189:107914. [PMID: 37666378 DOI: 10.1016/j.ympev.2023.107914] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
Phylogenetic studies in the phylogenomics era have demonstrated that reticulate evolution greatly impedes the accuracy of phylogenetic inference, and consequently can obscure taxonomic treatments. However, the systematics community lacks a broadly applicable strategy for taxonomic delimitation in groups characterized by pervasive reticulate evolution. The red-fruit genus, Stranvaesia, provides an ideal model to examine the influence of reticulation on generic circumscription, particularly where hybridization and allopolyploidy dominate the evolutionary history. In this study, we conducted phylogenomic analyses integrating data from hundreds of single-copy nuclear (SCN) genes and plastomes, and interrogated nuclear paralogs to clarify the inter/intra-generic relationship of Stranvaesia and its allies in the framework of Maleae. Analyses of phylogenomic discord and phylogenetic networks showed that allopolyploidization and introgression promoted the origin and diversification of the Stranvaesia clade, a conclusion further bolstered by cytonuclear and gene tree discordance. With a well-inferred phylogenetic backbone, we propose an updated generic delimitation of Stranvaesia and introduce a new genus, Weniomeles. This new genus is distinguished by its purple-black fruits, thorns trunk and/or branches, and a distinctive fruit core anatomy characterized by multilocular separated by a layer of sclereids and a cluster of sclereids at the top of the locules. Through this study, we highlight a broadly-applicable workflow that underscores the significance of reticulate evolution analyses in shaping taxonomic revisions from phylogenomic data.
Collapse
Affiliation(s)
- Ze-Tao Jin
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; State Key Laboratory of Plant Diversity and Specialty Crops / State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China
| | - Richard G J Hodel
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012, USA
| | - Dai-Kun Ma
- State Key Laboratory of Plant Diversity and Specialty Crops / State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Wang
- State Key Laboratory of Plant Diversity and Specialty Crops / State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China
| | | | - Chen Ren
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China
| | - Bin-Jie Ge
- Eastern China Conservation Center for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Qiang Fan
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Shui-Hu Jin
- College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China
| | - Chao Xu
- State Key Laboratory of Plant Diversity and Specialty Crops / State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China
| | - Jun Wu
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Bin-Bin Liu
- State Key Laboratory of Plant Diversity and Specialty Crops / State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China.
| |
Collapse
|
31
|
Yu Q, Yang FS, Chen YX, Wu H, Ickert-Bond SM, Wang XQ. Diploid species phylogeny and evolutionary reticulation indicate early radiation of Ephedra in the Tethys coast. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2619-2630. [PMID: 37837251 DOI: 10.1111/jipb.13573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 10/13/2023] [Indexed: 10/15/2023]
Abstract
Reconstructing a robust species phylogeny and disentangling the evolutionary and biogeographic history of the gymnosperm genus Ephedra, which has a large genome and rich polyploids, remain a big challenge. Here we reconstructed a transcriptome-based phylogeny of 19 diploid Ephedra species, and explored evolutionary reticulations in this genus represented by 50 diploid and polyploid species, using four low-copy nuclear and nine plastid genes. The diploid species phylogeny indicates that the Mediterranean species diverged first, and the remaining species split into three clades, including the American species (Clade A), E. rhytidosperma, and all other Asian species (Clade B). The single-gene trees placed E. rhytidosperma sister to Clade A, Clade B, or Clades A + B in similar proportions, suggesting that radiation and gene flow likely occurred in the early evolution of Ephedra. In addition, reticulate evolution occurred not only among the deep nodes, but also in the recently evolved South American species, which further caused difficulty in phylogenetic reconstruction. Moreover, we found that allopolyploid speciation was pervasive in Ephedra. Our study also suggests that Ephedra very likely originated in the Tethys coast during the late Cretaceous, and the South American Ephedra species have a single origin by dispersal from Mexico or North America.
Collapse
Affiliation(s)
- Qiong Yu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fu-Sheng Yang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ya-Xing Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| | - Hui Wu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Stefanie M Ickert-Bond
- Department of Biology and Wildlife & UA Museum of the North, University of Alaska Fairbanks (UAF), Fairbanks, AK, 99775, USA
| | - Xiao-Quan Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
32
|
Zhou W, Zhang L, He J, Chen W, Zhao F, Fu C, Li M. Transcriptome Shock in Developing Embryos of a Brassica napus and Brassica rapa Hybrid. Int J Mol Sci 2023; 24:16238. [PMID: 38003428 PMCID: PMC10671433 DOI: 10.3390/ijms242216238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Interspecific crosses that fuse the genomes of two different species may result in overall gene expression changes in the hybrid progeny, called 'transcriptome shock'. To better understand the expression pattern after genome merging during the early stages of allopolyploid formation, we performed RNA sequencing analysis on developing embryos of Brassica rapa, B. napus, and their synthesized allotriploid hybrids. Here, we show that the transcriptome shock occurs in the developing seeds of the hybrids. Of the homoeologous gene pairs, 17.1% exhibit expression bias, with an overall expression bias toward B. rapa. The expression level dominance also biases toward B. rapa, mainly induced by the expression change in homoeologous genes from B. napus. Functional enrichment analysis revealed significant differences in differentially expressed genes (DEGs) related to photosynthesis, hormone synthesis, and other pathways. Further study showed that significant changes in the expression levels of the key transcription factors (TFs) could regulate the overall interaction network in the developing embryo, which might be an essential cause of phenotype change. In conclusion, the present results have revealed the global changes in gene expression patterns in developing seeds of the hybrid between B. rapa and B. napus, and provided novel insights into the occurrence of transcriptome shock for harnessing heterosis.
Collapse
Affiliation(s)
- Weixian Zhou
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (W.Z.); (L.Z.); (J.H.); (W.C.); (F.Z.); (C.F.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Libin Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (W.Z.); (L.Z.); (J.H.); (W.C.); (F.Z.); (C.F.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Jianjie He
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (W.Z.); (L.Z.); (J.H.); (W.C.); (F.Z.); (C.F.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Wang Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (W.Z.); (L.Z.); (J.H.); (W.C.); (F.Z.); (C.F.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Feifan Zhao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (W.Z.); (L.Z.); (J.H.); (W.C.); (F.Z.); (C.F.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Chunhua Fu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (W.Z.); (L.Z.); (J.H.); (W.C.); (F.Z.); (C.F.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (W.Z.); (L.Z.); (J.H.); (W.C.); (F.Z.); (C.F.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| |
Collapse
|
33
|
Chen H, Zhang S, Du K, Kang X. Genome-wide identification, characterization, and expression analysis of CCT transcription factors in poplar. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108101. [PMID: 37922648 DOI: 10.1016/j.plaphy.2023.108101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 11/07/2023]
Abstract
The CCT [CONSTANS (CO), CO-like, and TIMING OF CAB EXPRESSION1 (TOC1)] gene family is involved in photoperiodic flowering and adaptation to different environments. In this study, 39 CCT family genes from the poplar genome were identified and characterized, including 18 COL, 7 PRR, and 14 CMF TFs. Phylogenetics analysis showed that the PtrCCT gene family could be classified into five classes (Classes I-V) that have close relationships with Arabidopsis thaliana. Eight pairs of PtrCCTs had collinear relationships through interchromosomal synteny analysis in poplar, suggesting segmental duplication played a vital role in the expansion of the poplar CCT gene family. Besides, synteny analyses of the CCT members among poplar and different species provided more clues for PtrCCT gene family evolution. Cis-acting elements in the promoters of PtrCCTs predicted their involvement in light responses, hormone responses, biotic/abiotic stress responses, and plant growth and development. Eight members of the PpnCCT gene family were differentially expressed in the apical buds and leaves of triploid poplar compared to diploids. We then focused on PpnCCT39 upregulated in triploid poplars and showed that PpnCCT39 was localized in the nucleus, chloroplast, and cytoplasm and could interact with CLPP1 in the chloroplast. Overexpression of PpnCCT39 in poplar increased chlorophyll contents and enhanced photosynthetic rate. This study provided comprehensive information for the CCT gene family and set up a basis for its function identification in poplar.
Collapse
Affiliation(s)
- Hao Chen
- National Key Laboratory of Forest Tree Genetics and Breeding, Beijing Forestry University, Beijing, 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Shuwen Zhang
- National Key Laboratory of Forest Tree Genetics and Breeding, Beijing Forestry University, Beijing, 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Kang Du
- National Key Laboratory of Forest Tree Genetics and Breeding, Beijing Forestry University, Beijing, 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Xiangyang Kang
- National Key Laboratory of Forest Tree Genetics and Breeding, Beijing Forestry University, Beijing, 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
34
|
Yang F, Ge J, Guo Y, Olmstead R, Sun W. Deciphering complex reticulate evolution of Asian Buddleja (Scrophulariaceae): insights into the taxonomy and speciation of polyploid taxa in the Sino-Himalayan region. ANNALS OF BOTANY 2023; 132:15-28. [PMID: 36722368 PMCID: PMC10550280 DOI: 10.1093/aob/mcad022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND AND AIMS Species of the genus Buddleja in Asia are mainly distributed in the Sino-Himalayan region and form a challenging taxonomic group, with extensive hybridization and polyploidization. A phylogenetic approach to unravelling the history of reticulation in this lineage will deepen our understanding of the speciation in biodiversity hotspots. METHODS For this study, we obtained 80 accessions representing all the species in the Asian Buddleja clade, and the ploidy level of each taxon was determined by flow cytometry analyses. Whole plastid genomes, nuclear ribosomal DNA, single nucleotide polymorphisms and a large number of low-copy nuclear genes assembled from genome skimming data were used to investigate the reticulate evolutionary history of Asian Buddleja. Complex cytonuclear conflicts were detected through a comparison of plastid and species trees. Gene tree incongruence was also analysed to detect any reticulate events in the history of this lineage. KEY RESULTS Six hybridization events were detected, which are able to explain the cytonuclear conflict in Asian Buddleja. Furthermore, PhyloNet analysis combining species ploidy data indicated several allopolyploid speciation events. A strongly supported species tree inferred from a large number of low-copy nuclear genes not only corrected some earlier misinterpretations, but also indicated that there are many Asian Buddleja species that have been lumped mistakenly. Divergent time estimation shows two periods of rapid diversification (8-10 and 0-3 Mya) in the Asian Buddleja clade, which might coincide with the final uplift of the Hengduan Mountains and Quaternary climate fluctuations, respectively. CONCLUSIONS This study presents a well-supported phylogenetic backbone for the Asian Buddleja species, elucidates their complex and reticulate evolutionary history and suggests that tectonic activity, climate fluctuations, polyploidization and hybridization together promoted the diversification of this lineage.
Collapse
Affiliation(s)
- Fengmao Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming 650201, Yunnan, China
| | - Jia Ge
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming 650201, Yunnan, China
| | - Yongjie Guo
- Germplasm Bank of Wild Species of China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Richard Olmstead
- Department of Biology and Burke Museum, University of Washington, Seattle, WA 98195, USA
| | - Weibang Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming 650201, Yunnan, China
| |
Collapse
|
35
|
Bock DG, Cai Z, Elphinstone C, González-Segovia E, Hirabayashi K, Huang K, Keais GL, Kim A, Owens GL, Rieseberg LH. Genomics of plant speciation. PLANT COMMUNICATIONS 2023; 4:100599. [PMID: 37050879 PMCID: PMC10504567 DOI: 10.1016/j.xplc.2023.100599] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/21/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Studies of plants have been instrumental for revealing how new species originate. For several decades, botanical research has complemented and, in some cases, challenged concepts on speciation developed via the study of other organisms while also revealing additional ways in which species can form. Now, the ability to sequence genomes at an unprecedented pace and scale has allowed biologists to settle decades-long debates and tackle other emerging challenges in speciation research. Here, we review these recent genome-enabled developments in plant speciation. We discuss complications related to identification of reproductive isolation (RI) loci using analyses of the landscape of genomic divergence and highlight the important role that structural variants have in speciation, as increasingly revealed by new sequencing technologies. Further, we review how genomics has advanced what we know of some routes to new species formation, like hybridization or whole-genome duplication, while casting doubt on others, like population bottlenecks and genetic drift. While genomics can fast-track identification of genes and mutations that confer RI, we emphasize that follow-up molecular and field experiments remain critical. Nonetheless, genomics has clarified the outsized role of ancient variants rather than new mutations, particularly early during speciation. We conclude by highlighting promising avenues of future study. These include expanding what we know so far about the role of epigenetic and structural changes during speciation, broadening the scope and taxonomic breadth of plant speciation genomics studies, and synthesizing information from extensive genomic data that have already been generated by the plant speciation community.
Collapse
Affiliation(s)
- Dan G Bock
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Zhe Cai
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Cassandra Elphinstone
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Eric González-Segovia
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | | | - Kaichi Huang
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Graeme L Keais
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Amy Kim
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Gregory L Owens
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
36
|
Banerjee AK, Tan F, Feng H, Liang X, Wang J, Yin M, Peng H, Lin Y, Zhang N, Huang Y. Invasive alien plants are phylogenetically distinct from other alien species across spatial and taxonomic scales in China. FRONTIERS IN PLANT SCIENCE 2023; 14:1075344. [PMID: 37745989 PMCID: PMC10513447 DOI: 10.3389/fpls.2023.1075344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 08/23/2023] [Indexed: 09/26/2023]
Abstract
Introduction Phylogenetic relatedness is one of the important factors in the community assembly process. Here, we aimed to understand the large-scale phylogenetic relationship between alien plant species at different stages of the invasion process and how these relationships change in response to the environmental filtering process at multiple spatial scales and different phylogenetic extents. Methods We identified the alien species in three invasion stages, namely invasive, naturalized, and introduced, in China. The occurrence records of the species were used to quantify two abundance-based phylogenetic metrics [the net relatedness index (NRI) and the nearest taxon index (NTI)] from a highly resolved phylogenetic tree. The metrics were compared between the three categories of alien species. Generalized linear models were used to test the effect of climate on the phylogenetic pattern. All analyses were conducted at four spatial scales and for three major angiosperm families. Results We observed significantly higher NRI and NTI values at finer spatial scales, indicating the formation of more clustered assemblages of phylogenetically closely related species in response to the environmental filtering process. Positive NTI values for the invasive and naturalized aliens suggested that the presence of a close relative in the community may help the successful naturalization and invasion of the introduced alien species. In the two-dimensional phylogenetic space, the invasive species communities significantly differed from the naturalized and introduced species, indicating that established alien species need to be phylogenetically different to become invasive. Positive phylogenetic measures for the invasive aliens across the spatial scales suggested that the presence of invasive aliens could facilitate the establishment of other invasive species. Phylogenetic relatedness was more influenced by temperature than precipitation, especially at a finer spatial scale. With decreased temperature, the invasive species showed a more clustered assemblage, indicating conservatism of their phylogenetic niche. The phylogenetic pattern was different at the family level, although there was a consistent tendency across families to form more clustered assemblages. Discussion Overall, our study showed that the community assemblage became more clustered with the progression of the invasion process. The phylogenetic measures varied at spatial and taxonomic scales, thereby highlighting the importance of assessing phylogenetic patterns at different gradients of the community assembly process.
Collapse
Affiliation(s)
- Achyut Kumar Banerjee
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Fengxiao Tan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hui Feng
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xinru Liang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiakai Wang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Minghui Yin
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hao Peng
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuting Lin
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Nannan Zhang
- Chinese Academy of Sciences Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, Sichuan, China
| | - Yelin Huang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
37
|
Scheunert A, Lautenschlager U, Ott T, Oberprieler C. Nano-Strainer: A workflow for the identification of single-copy nuclear loci for plant systematic studies, using target capture kits and Oxford Nanopore long reads. Ecol Evol 2023; 13:e10190. [PMID: 37475726 PMCID: PMC10354226 DOI: 10.1002/ece3.10190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/18/2023] [Accepted: 06/01/2023] [Indexed: 07/22/2023] Open
Abstract
In modern plant systematics, target enrichment enables simultaneous analysis of hundreds of genes. However, when dealing with reticulate or polyploidization histories, few markers may suffice, but often are required to be single-copy, a condition that is not necessarily met with commercial capture kits. Also, large genome sizes can render target capture ineffective, so that amplicon sequencing would be preferable; however, knowledge about suitable loci is often missing. Here, we present a comprehensive workflow for the identification of putative single-copy nuclear markers in a genus of interest, by mining a small dataset from target capture using a few representative taxa. The proposed pipeline assesses sequence variability contained in the data from targeted loci and assigns reads to their respective genes, via a combined BLAST/clustering procedure. Cluster consensus sequences are then examined based on four pre-defined criteria presumably indicative for absence of paralogy. This is done by calculating four specialized indices; loci are ranked according to their performance in these indices, and top-scoring loci are considered putatively single- or low copy. The approach can be applied to any probe set. As it relies on long reads, the present contribution also provides template workflows for processing Nanopore-based target capture data. Obtained markers are further tested and then entered into amplicon sequencing. For the detection of possibly remaining paralogy in these data, which might occur in groups with rampant paralogy, we also employ the long-read assembly tool canu. In diploid representatives of the young Compositae genus Leucanthemum, characterized by high levels of polyploidy, our approach resulted in successful amplification of 13 loci. Modifications to remove traces of paralogy were made in seven of these. A species tree from the markers correctly reproduced main relationships in the genus, however, at low resolution. The presented workflow has the potential to valuably support phylogenetic research, for example in polyploid plant groups.
Collapse
Affiliation(s)
- Agnes Scheunert
- Evolutionary and Systematic Botany Group, Institute of Plant SciencesUniversity of RegensburgRegensburgGermany
| | - Ulrich Lautenschlager
- Evolutionary and Systematic Botany Group, Institute of Plant SciencesUniversity of RegensburgRegensburgGermany
| | - Tankred Ott
- Evolutionary and Systematic Botany Group, Institute of Plant SciencesUniversity of RegensburgRegensburgGermany
| | - Christoph Oberprieler
- Evolutionary and Systematic Botany Group, Institute of Plant SciencesUniversity of RegensburgRegensburgGermany
| |
Collapse
|
38
|
Leal JL, Milesi P, Salojärvi J, Lascoux M. Phylogenetic Analysis of Allotetraploid Species Using Polarized Genomic Sequences. Syst Biol 2023; 72:372-390. [PMID: 36932679 PMCID: PMC10275558 DOI: 10.1093/sysbio/syad009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 10/14/2022] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
Phylogenetic analysis of polyploid hybrid species has long posed a formidable challenge as it requires the ability to distinguish between alleles of different ancestral origins in order to disentangle their individual evolutionary history. This problem has been previously addressed by conceiving phylogenies as reticulate networks, using a two-step phasing strategy that first identifies and segregates homoeologous loci and then, during a second phasing step, assigns each gene copy to one of the subgenomes of an allopolyploid species. Here, we propose an alternative approach, one that preserves the core idea behind phasing-to produce separate nucleotide sequences that capture the reticulate evolutionary history of a polyploid-while vastly simplifying its implementation by reducing a complex multistage procedure to a single phasing step. While most current methods used for phylogenetic reconstruction of polyploid species require sequencing reads to be pre-phased using experimental or computational methods-usually an expensive, complex, and/or time-consuming endeavor-phasing executed using our algorithm is performed directly on the multiple-sequence alignment (MSA), a key change that allows for the simultaneous segregation and sorting of gene copies. We introduce the concept of genomic polarization that, when applied to an allopolyploid species, produces nucleotide sequences that capture the fraction of a polyploid genome that deviates from that of a reference sequence, usually one of the other species present in the MSA. We show that if the reference sequence is one of the parental species, the polarized polyploid sequence has a close resemblance (high pairwise sequence identity) to the second parental species. This knowledge is harnessed to build a new heuristic algorithm where, by replacing the allopolyploid genomic sequence in the MSA by its polarized version, it is possible to identify the phylogenetic position of the polyploid's ancestral parents in an iterative process. The proposed methodology can be used with long-read and short-read high-throughput sequencing data and requires only one representative individual for each species to be included in the phylogenetic analysis. In its current form, it can be used in the analysis of phylogenies containing tetraploid and diploid species. We test the newly developed method extensively using simulated data in order to evaluate its accuracy. We show empirically that the use of polarized genomic sequences allows for the correct identification of both parental species of an allotetraploid with up to 97% certainty in phylogenies with moderate levels of incomplete lineage sorting (ILS) and 87% in phylogenies containing high levels of ILS. We then apply the polarization protocol to reconstruct the reticulate histories of Arabidopsis kamchatica and Arabidopsis suecica, two allopolyploids whose ancestry has been well documented. [Allopolyploidy; Arabidopsis; genomic polarization; homoeologs; incomplete lineage sorting; phasing; polyploid phylogenetics; reticulate evolution.].
Collapse
Affiliation(s)
- J Luis Leal
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - Pascal Milesi
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
- Science for Life Laboratory (SciLifeLab), Uppsala University, 75237 Uppsala, Sweden
| | - Jarkko Salojärvi
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, P.O. Box 65 (Viikinkaari 1), 00014 Helsinki, Finland
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Martin Lascoux
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
- Science for Life Laboratory (SciLifeLab), Uppsala University, 75237 Uppsala, Sweden
| |
Collapse
|
39
|
Hu L, Tate JA, Gardiner SE, MacKay M. Ploidy variation in Rhododendron subsection Maddenia and its implications for conservation. AOB PLANTS 2023; 15:plad016. [PMID: 37197711 PMCID: PMC10184449 DOI: 10.1093/aobpla/plad016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 04/06/2023] [Indexed: 05/19/2023]
Abstract
Polyploidy, which is common in plants, can confound taxon recognition and hence conservation assessments. In the taxonomically complex genus Rhododendron, 25 % of the over 1,300 taxa are considered under threat and 27 % Near Threatened or Data Deficient, with their taxonomy needing to be resolved urgently. Although ploidy levels of Rhododendron taxa range from diploid (2x) to dodecaploid (12x) according to previous reports, the extent of polyploidy across the genus has not been examined. We first summarized the taxonomic distribution of polyploids in the genus based on the literature. Then as a case study, we estimated ploidy levels of 47 taxa in subsection Maddenia (subgenus Rhododendron, section Rhododendron) using flow cytometry, together with verification of meiotic chromosome counts for representative taxa. The summary of reported ploidy in Rhododendron indicates that polyploidy is most common in subgenera Pentanthera and Rhododendron. In subsection Maddenia, all examined taxa are diploids except for the R. maddenii complex that shows a high ploidy variation (2-8x, 12x). We investigated ploidy level of 12 taxa in subsection Maddenia for the first time, and estimated genome sizes of two Rhododendron species. Knowledge of ploidy levels will inform phylogenetic analysis of unresolved species complexes. Overall, our study of subsection Maddenia provides a model for examining multiple issues including taxonomic complexity, ploidy variation and geographic distribution in relation to biodiversity conservation.
Collapse
Affiliation(s)
- Ling Hu
- Corresponding author’s e-mail address:
| | - Jennifer A Tate
- School of Natural Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Susan E Gardiner
- The New Zealand Institute for Plant and Food Research Limited, Fitzherbert Science Centre, Palmerston North 4472, New Zealand
| | - Marion MacKay
- School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| |
Collapse
|
40
|
Fleming JF, Valero‐Gracia A, Struck TH. Identifying and addressing methodological incongruence in phylogenomics: A review. Evol Appl 2023; 16:1087-1104. [PMID: 37360032 PMCID: PMC10286231 DOI: 10.1111/eva.13565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/07/2023] [Accepted: 05/17/2023] [Indexed: 06/28/2023] Open
Abstract
The availability of phylogenetic data has greatly expanded in recent years. As a result, a new era in phylogenetic analysis is dawning-one in which the methods we use to analyse and assess our data are the bottleneck to producing valuable phylogenetic hypotheses, rather than the need to acquire more data. This makes the ability to accurately appraise and evaluate new methods of phylogenetic analysis and phylogenetic artefact identification more important than ever. Incongruence in phylogenetic reconstructions based on different datasets may be due to two major sources: biological and methodological. Biological sources comprise processes like horizontal gene transfer, hybridization and incomplete lineage sorting, while methodological ones contain falsely assigned data or violations of the assumptions of the underlying model. While the former provides interesting insights into the evolutionary history of the investigated groups, the latter should be avoided or minimized as best as possible. However, errors introduced by methodology must first be excluded or minimized to be able to conclude that biological sources are the cause. Fortunately, a variety of useful tools exist to help detect such misassignments and model violations and to apply ameliorating measurements. Still, the number of methods and their theoretical underpinning can be overwhelming and opaque. Here, we present a practical and comprehensive review of recent developments in techniques to detect artefacts arising from model violations and poorly assigned data. The advantages and disadvantages of the different methods to detect such misleading signals in phylogenetic reconstructions are also discussed. As there is no one-size-fits-all solution, this review can serve as a guide in choosing the most appropriate detection methods depending on both the actual dataset and the computational power available to the researcher. Ultimately, this informed selection will have a positive impact on the broader field, allowing us to better understand the evolutionary history of the group of interest.
Collapse
|
41
|
Kantor A, Kučera J, Šlenker M, Breidy J, Dönmez AA, Marhold K, Slovák M, Svitok M, Zozomová-Lihová J. Evolution of hygrophytic plant species in the Anatolia-Caucasus region: insights from phylogenomic analyses of Cardamine perennials. ANNALS OF BOTANY 2023; 131:585-600. [PMID: 36656962 PMCID: PMC10147327 DOI: 10.1093/aob/mcad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/10/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Southwestern Asia is a significant centre of biodiversity and a cradle of diversification for many plant groups, especially xerophytic elements. In contrast, little is known about the evolution and diversification of its hygrophytic flora. To fill this gap, we focus on Cardamine (Brassicaceae) species that grow in wetlands over a wide altitudinal range. We aimed to elucidate their evolution, assess the extent of presumed historical gene flow between species, and draw inferences about intraspecific structure. METHODS We applied the phylogenomic Hyb-Seq approach, ecological niche analyses and multivariate morphometrics to a total of 85 Cardamine populations from the target region of Anatolia-Caucasus, usually treated as four to six species, and supplemented them with close relatives from Europe. KEY RESULTS Five diploids are recognized in the focus area, three of which occur in regions adjacent to the Black and/or Caspian Sea (C. penzesii, C. tenera, C. lazica), one species widely distributed from the Caucasus to Lebanon and Iran (C. uliginosa), and one western Anatolian entity (provisionally C. cf. uliginosa). Phylogenomic data suggest recent speciation during the Pleistocene, likely driven by both geographic separation (allopatry) and ecological divergence. With the exception of a single hybrid (allotetraploid) speciation event proven for C. wiedemanniana, an endemic of southern Turkey, no significant traces of past or present interspecific gene flow were observed. Genetic variation within the studied species is spatially structured, suggesting reduced gene flow due to geographic and ecological barriers, but also glacial survival in different refugia. CONCLUSIONS This study highlights the importance of the refugial regions of the Black and Caspian Seas for both harbouring and generating hygrophytic species diversity in Southwestern Asia. It also supports the significance of evolutionary links between Anatolia and the Balkan Peninsula. Reticulation and polyploidization played a minor evolutionary role here in contrast to the European relatives.
Collapse
Affiliation(s)
- Adam Kantor
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, 845 23 Bratislava, Slovakia
- Department of Botany, Faculty of Science, Charles University, 128 01Prague, Czechia
| | - Jaromír Kučera
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, 845 23 Bratislava, Slovakia
| | - Marek Šlenker
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, 845 23 Bratislava, Slovakia
| | - Joêlle Breidy
- National Genebank, Lebanese Agricultural Research Institute, Zahle 1801, Lebanon
| | - Ali A Dönmez
- Botany Section, Department of Biology, Faculty of Science, Hacettepe University, 06800 Beytepe-Ankara, Turkey
| | - Karol Marhold
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, 845 23 Bratislava, Slovakia
- Department of Botany, Faculty of Science, Charles University, 128 01Prague, Czechia
| | - Marek Slovák
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, 845 23 Bratislava, Slovakia
- Department of Botany, Faculty of Science, Charles University, 128 01Prague, Czechia
| | - Marek Svitok
- Department of Biology and General Ecology, Faculty of Ecology and Environmental Sciences, Technical University in Zvolen, 960 01Zvolen, Slovakia
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czechia
| | - Judita Zozomová-Lihová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, 845 23 Bratislava, Slovakia
| |
Collapse
|
42
|
Huber KT, Maher LJ. Autopolyploidy, Allopolyploidy, and Phylogenetic Networks with Horizontal Arcs. Bull Math Biol 2023; 85:40. [PMID: 37022524 PMCID: PMC10079759 DOI: 10.1007/s11538-023-01140-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/28/2023] [Indexed: 04/07/2023]
Abstract
Polyploidization is an evolutionary process by which a species acquires multiple copies of its complete set of chromosomes. The reticulate nature of the signal left behind by it means that phylogenetic networks offer themselves as a framework to reconstruct the evolutionary past of species affected by it. The main strategy for doing this is to first construct a so-called multiple-labelled tree and to then somehow derive such a network from it. The following question therefore arises: How much can be said about that past if such a tree is not readily available? By viewing a polyploid dataset as a certain vector which we call a ploidy (level) profile, we show that among other results, there always exists a phylogenetic network in the form of a beaded phylogenetic tree with additional arcs that realizes a given ploidy profile. Intriguingly, the two end vertices of almost all of these additional arcs can be interpreted as having co-existed in time thereby adding biological realism to our network, a feature that is, in general, not enjoyed by phylogenetic networks. In addition, we show that our network may be viewed as a generator of ploidy profile space, a novel concept similar to phylogenetic tree space that we introduce to be able to compare phylogenetic networks that realize one and the same ploidy profile. We illustrate our findings in terms of a publicly available Viola dataset.
Collapse
|
43
|
Freyman WA, Johnson MG, Rothfels CJ. homologizer: Phylogenetic phasing of gene copies into polyploid subgenomes. Methods Ecol Evol 2023. [DOI: 10.1111/2041-210x.14072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
| | - Matthew G. Johnson
- Department of Biological Sciences Texas Tech University Lubbock Texas USA
| | - Carl J. Rothfels
- University Herbarium and Department of Integrative Biology University of California Berkeley California USA
| |
Collapse
|
44
|
Geometric Morphometric Versus Genomic Patterns in a Large Polyploid Plant Species Complex. BIOLOGY 2023; 12:biology12030418. [PMID: 36979110 PMCID: PMC10045763 DOI: 10.3390/biology12030418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
Plant species complexes represent a particularly interesting example of taxonomically complex groups (TCGs), linking hybridization, apomixis, and polyploidy with complex morphological patterns. In such TCGs, mosaic-like character combinations and conflicts of morphological data with molecular phylogenies present a major problem for species classification. Here, we used the large polyploid apomictic European Ranunculus auricomus complex to study relationships among five diploid sexual progenitor species and 75 polyploid apomictic derivate taxa, based on geometric morphometrics using 11,690 landmarked objects (basal and stem leaves, receptacles), genomic data (97,312 RAD-Seq loci, 48 phased target enrichment genes, 71 plastid regions) from 220 populations. We showed that (1) observed genomic clusters correspond to morphological groupings based on basal leaves and concatenated traits, and morphological groups were best resolved with RAD-Seq data; (2) described apomictic taxa usually overlap within trait morphospace except for those taxa at the space edges; (3) apomictic phenotypes are highly influenced by parental subgenome composition and to a lesser extent by climatic factors; and (4) allopolyploid apomictic taxa, compared to their sexual progenitor, resemble a mosaic of ecological and morphological intermediate to transgressive biotypes. The joint evaluation of phylogenomic, phenotypic, reproductive, and ecological data supports a revision of purely descriptive, subjective traditional morphological classifications.
Collapse
|
45
|
Yao G, Zhang YQ, Barrett C, Xue B, Bellot S, Baker WJ, Ge XJ. A plastid phylogenomic framework for the palm family (Arecaceae). BMC Biol 2023; 21:50. [PMID: 36882831 PMCID: PMC9993706 DOI: 10.1186/s12915-023-01544-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Over the past decade, phylogenomics has greatly advanced our knowledge of angiosperm evolution. However, phylogenomic studies of large angiosperm families with complete species or genus-level sampling are still lacking. The palms, Arecaceae, are a large family with ca. 181 genera and 2600 species and are important components of tropical rainforests bearing great cultural and economic significance. Taxonomy and phylogeny of the family have been extensively investigated by a series of molecular phylogenetic studies in the last two decades. Nevertheless, some phylogenetic relationships within the family are not yet well-resolved, especially at the tribal and generic levels, with consequent impacts for downstream research. RESULTS Plastomes of 182 palm species representing 111 genera were newly sequenced. Combining these with previously published plastid DNA data, we were able to sample 98% of palm genera and conduct a plastid phylogenomic investigation of the family. Maximum likelihood analyses yielded a robustly supported phylogenetic hypothesis. Phylogenetic relationships among all five palm subfamilies and 28 tribes were well-resolved, and most inter-generic phylogenetic relationships were also resolved with strong support. CONCLUSIONS The inclusion of nearly complete generic-level sampling coupled with nearly complete plastid genomes strengthened our understanding of plastid-based relationships of the palms. This comprehensive plastid genome dataset complements a growing body of nuclear genomic data. Together, these datasets form a novel phylogenomic baseline for the palms and an increasingly robust framework for future comparative biological studies of this exceptionally important plant family.
Collapse
Affiliation(s)
- Gang Yao
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Yu-Qu Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Present Address: College of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Craig Barrett
- Department of Biology, West Virginia University, Morgantown, WV, USA
| | - Bine Xue
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | | | | | - Xue-Jun Ge
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
46
|
Wagner ND, Marinček P, Pittet L, Hörandl E. Insights into the Taxonomically Challenging Hexaploid Alpine Shrub Willows of Salix Sections Phylicifoliae and Nigricantes (Salicaceae). PLANTS (BASEL, SWITZERLAND) 2023; 12:1144. [PMID: 36904002 PMCID: PMC10005704 DOI: 10.3390/plants12051144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
The complex genomic composition of allopolyploid plants leads to morphologically diverse species. The traditional taxonomical treatment of the medium-sized, hexaploid shrub willows distributed in the Alps is difficult based on their variable morphological characters. In this study, RAD sequencing data, infrared-spectroscopy, and morphometric data are used to analyze the phylogenetic relationships of the hexaploid species of the sections Nigricantes and Phylicifoliae in a phylogenetic framework of 45 Eurasian Salix species. Both sections comprise local endemics as well as widespread species. Based on the molecular data, the described morphological species appeared as monophyletic lineages (except for S. phylicifolia s.str. and S. bicolor, which are intermingled). Both sections Phylicifoliae and Nigricantes are polyphyletic. Infrared-spectroscopy mostly confirmed the differentiation of hexaploid alpine species. The morphometric data confirmed the molecular results and supported the inclusion of S. bicolor into S. phylicifolia s.l., whereas the alpine endemic S. hegetschweileri is distinct and closely related to species of the section Nigricantes. The genomic structure and co-ancestry analyses of the hexaploid species revealed a geographical pattern for widespread S. myrsinifolia, separating the Scandinavian from the alpine populations. The newly described S. kaptarae is tetraploid and is grouped within S. cinerea. Our data reveal that both sections Phylicifoliae and Nigricantes need to be redefined.
Collapse
Affiliation(s)
- Natascha D. Wagner
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Untere Karspüle 2, D-37073 Göttingen, Germany
| | | | | | | |
Collapse
|
47
|
Joshi P, Ansari H, Dickson R, Ellison NW, Skema C, Tate JA. Polyploidy on islands - concerted evolution and gene loss amid chromosomal stasis. ANNALS OF BOTANY 2023; 131:33-44. [PMID: 35390127 PMCID: PMC9904340 DOI: 10.1093/aob/mcac051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 04/04/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS Polyploidy is an important process that often generates genomic diversity within lineages, but it can also cause changes that result in loss of genomic material. Island lineages, while often polyploid, typically show chromosomal stasis but have not been investigated in detail regarding smaller-scale gene loss. Our aim was to investigate post-polyploidization genome dynamics in a chromosomally stable lineage of Malvaceae endemic to New Zealand. METHODS We determined chromosome numbers and used fluorescence in situ hybridization to localize 18S and 5S rDNA. Gene sequencing of 18S rDNA, the internal transcribed spacers (ITS) with intervening 5.8S rDNA, and a low-copy nuclear gene, GBSSI-1, was undertaken to determine if gene loss occurred in the New Zealand lineage following polyploidy. KEY RESULTS The chromosome number for all species investigated was 2n = 42, with the first published report for the monotypic Australian genus Asterotrichion. The five species investigated all had two 5S rDNA signals localized interstitially on the long arm of one of the largest chromosome pairs. All species, except Plagianthus regius, had two 18S rDNA signals localized proximally on the short arm of one of the smallest chromosome pairs. Plagianthus regius had two additional 18S rDNA signals on a separate chromosome, giving a total of four. Sequencing of nuclear ribosomal 18S rDNA and the ITS cistron indicated loss of historical ribosomal repeats. Phylogenetic analysis of a low-copy nuclear gene, GBSSI-1, indicated that some lineages maintained three copies of the locus, while others have lost one or two copies. CONCLUSIONS Although island endemic lineages show chromosomal stasis, with no additional changes in chromosome number, they may undergo smaller-scale processes of gene loss and concerted evolution ultimately leading to further genome restructuring and downsizing.
Collapse
Affiliation(s)
- Prashant Joshi
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Helal Ansari
- AgResearch Grasslands Research Centre, Palmerston North, New Zealand
| | - Rowan Dickson
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | | | - Cynthia Skema
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
- Morris Arboretum of the University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
48
|
Freyman WA, Rothfels CJ. Phasing Gene Copies into Polyploid Subgenomes Using a Bayesian Phylogenetic Approach. Methods Mol Biol 2023; 2545:123-138. [PMID: 36720810 DOI: 10.1007/978-1-0716-2561-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This chapter describes the usage of homologizer to phase gene copies into polyploid subgenomes. Allopolyploids contain multiple copies of each genetic locus, where each copy potentially belongs to a different subgenome with its own distinct evolutionary history. If gene copies across different loci are incorrectly phased (i.e., assigned to the wrong subgenome), then the bifurcating tree assumption underlying multilocus phylogenetic inference and related analyses will be violated, leading to unsound results. homologizer is a highly flexible Bayesian method that uses a phylogenetic framework to infer the posterior probabilities of the phasing of gene copies into subgenomes. We describe how to prepare input data and other considerations needed to perform homologizer analyses and demonstrate how to visualize and interpret the results. We first walk through a basic example using homologizer to phase gene copies into polyploid subgenomes and then demonstrate how homologizer can be used as a hypothesis-testing tool to detect non-homeologous sequences such as hidden paralogs or allelic variation through the tools of Bayesian model comparison.
Collapse
Affiliation(s)
| | - Carl J Rothfels
- University Herbarium and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
49
|
Schafran P, Li FW, Rothfels CJ. PURC Provides Improved Sequence Inference for Polyploid Phylogenetics and Other Manifestations of the Multiple-Copy Problem. Methods Mol Biol 2023; 2545:189-206. [PMID: 36720814 DOI: 10.1007/978-1-0716-2561-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Inferring the true biological sequences from amplicon mixtures remains a difficult bioinformatics problem. The traditional approach is to cluster sequencing reads by similarity thresholds and treat the consensus sequence of each cluster as an "operational taxonomic unit" (OTU). Recently, this approach has been improved by model-based methods that correct PCR and sequencing errors in order to infer "amplicon sequence variants" (ASVs). To date, ASV approaches have been used primarily in metagenomics, but they are also useful for determining homeologs in polyploid organisms. To facilitate the usage of ASV methods among polyploidy researchers, we incorporated ASV inference alongside OTU clustering in PURC v2.0, a major update to PURC (Pipeline for Untangling Reticulate Complexes). In addition, PURC v2.0 features faster demultiplexing than the original version and has been updated to be compatible with Python 3. In this chapter we present results indicating that using the ASV approach is more likely to infer the correct biological sequences in comparison to the earlier OTU-based PURC and describe how to prepare sequencing data, run PURC v2.0 under several different modes, and interpret the output.
Collapse
Affiliation(s)
| | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, NY, USA
- Plant Biology Section, Cornell University, Ithaca, NY, USA
| | - Carl J Rothfels
- University Herbarium and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
50
|
Martin SL, Lujan Toro B, James T, Sauder CA, Laforest M. Insights from the genomes of 4 diploid Camelina spp. G3 (BETHESDA, MD.) 2022; 12:jkac182. [PMID: 35976116 PMCID: PMC9713399 DOI: 10.1093/g3journal/jkac182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 06/12/2022] [Indexed: 11/12/2022]
Abstract
Plant evolution has been a complex process involving hybridization and polyploidization making understanding the origin and evolution of a plant's genome challenging even once a published genome is available. The oilseed crop, Camelina sativa (Brassicaceae), has a fully sequenced allohexaploid genome with 3 unknown ancestors. To better understand which extant species best represent the ancestral genomes that contributed to C. sativa's formation, we sequenced and assembled chromosome level draft genomes for 4 diploid members of Camelina: C. neglecta C. hispida var. hispida, C. hispida var. grandiflora, and C. laxa using long and short read data scaffolded with proximity data. We then conducted phylogenetic analyses on regions of synteny and on genes described for Arabidopsis thaliana, from across each nuclear genome and the chloroplasts to examine evolutionary relationships within Camelina and Camelineae. We conclude that C. neglecta is closely related to C. sativa's sub-genome 1 and that C. hispida var. hispida and C. hispida var. grandiflora are most closely related to C. sativa's sub-genome 3. Further, the abundance and density of transposable elements, specifically Helitrons, suggest that the progenitor genome that contributed C. sativa's sub-genome 3 maybe more similar to the genome of C. hispida var. hispida than that of C. hispida var. grandiflora. These diploid genomes show few structural differences when compared to C. sativa's genome indicating little change to chromosome structure following allopolyploidization. This work also indicates that C. neglecta and C. hispida are important resources for understanding the genetics of C. sativa and potential resources for crop improvement.
Collapse
Affiliation(s)
- Sara L Martin
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0CA, Canada
| | - Beatriz Lujan Toro
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0CA, Canada
| | - Tracey James
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0CA, Canada
| | - Connie A Sauder
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0CA, Canada
| | - Martin Laforest
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada
| |
Collapse
|