1
|
Giolai M, Verweij W, Martin S, Pearson N, Nicholson P, Leggett RM, Clark MD. Measuring air metagenomic diversity in an agricultural ecosystem. Curr Biol 2024; 34:3778-3791.e4. [PMID: 39096906 DOI: 10.1016/j.cub.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/26/2024] [Accepted: 07/04/2024] [Indexed: 08/05/2024]
Abstract
All species shed DNA during life or in death, providing an opportunity to monitor biodiversity via environmental DNA (eDNA). In recent years, combining eDNA, high-throughput sequencing technologies, bioinformatics, and increasingly complete sequence databases has promised a non-invasive and non-destructive environmental monitoring tool. Modern agricultural systems are often large monocultures and so are highly vulnerable to disease outbreaks. Pest and pathogen monitoring in agricultural ecosystems is key for efficient and early disease prevention, lower pesticide use, and better food security. Although the air is rich in biodiversity, it has the lowest DNA concentration of all environmental media and yet is the route for windborne spread of many damaging crop pathogens. Our work suggests that ecosystems can be monitored efficiently using airborne nucleic acid information. Here, we show that the airborne DNA of microbes can be recovered, shotgun sequenced, and taxonomically classified, including down to the species level. We show that by monitoring a field growing key crops we can identify the presence of agriculturally significant pathogens and quantify their changing abundance over a period of 1.5 months, often correlating with weather variables. We add to the evidence that aerial eDNA can be used as a source for biomonitoring in terrestrial ecosystems, specifically highlighting agriculturally relevant species and how pathogen levels correlate with weather conditions. Our ability to detect dynamically changing levels of species and strains highlights the value of airborne eDNA in agriculture, monitoring biodiversity changes, and tracking taxa of interest.
Collapse
Affiliation(s)
- Michael Giolai
- Natural History Museum, London SW7 5BD, UK; Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00014, Finland
| | - Walter Verweij
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK; Enza Zaden, Enkhuizen 1602 DB, the Netherlands
| | - Samuel Martin
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | - Neil Pearson
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | - Paul Nicholson
- Crop Genetics Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | | |
Collapse
|
2
|
Chen Y, Liang Z, Li G, An T. Indoor/Outdoor airborne microbiome characteristics in residential areas across four seasons and its indoor purification. ENVIRONMENT INTERNATIONAL 2024; 190:108857. [PMID: 38954924 DOI: 10.1016/j.envint.2024.108857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/04/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
Bioaerosols are more likely to accumulate in the residential environment, and long-term inhalation may lead to a variety of diseases and allergies. Here, we studied the distribution, influencing factors and diffusion characteristics of indoor and outdoor microbiota pollution in six residential buildings in Guangzhou, southern China over a period of one year. The results showed that the particle sizes of bioaerosol were mainly in the range of inhalable particle size (<4.7 μm) with a small difference among four seasons (74.61 % ± 2.17 %). The microbial communities showed obvious seasonal differences with high abundance in summer, but no obvious geographical differences. Among them, the bacteria were more abundant than the fungi. The dominant microbes in indoor and outdoor environments were similar, with Anoxybacillu, Brevibacillus and Acinetobacter as the dominant bacteria, and Cladosporium, Penicillium and Alternaria as the dominant fungi. The airborne microbiomes were more sensitive to temperature and particulate matter (PM2.5, PM10) concentrations. Based on the Sloan neutral model, bacteria were more prone to random diffusion than fungi, and the airborne microbiome can be randomly distributed in indoor and outdoor environments and between the two environments in each season. Bioaerosol in indoor was mainly from outdoor. The health risk evaluation showed that the indoor inhalation risks were higher than those outdoor. The air purifier had a better removal efficiency on 1.1-4.7 μm microorganisms, and the removal efficiency on Gram-negative bacteria was better than that on Gram-positive bacteria. This study is of great significance for the risk assessment and control of residential indoor bioaerosol exposure.
Collapse
Affiliation(s)
- Yuying Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhishu Liang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
3
|
Roussin-Léveillée C, Rossi CAM, Castroverde CDM, Moffett P. The plant disease triangle facing climate change: a molecular perspective. TRENDS IN PLANT SCIENCE 2024; 29:895-914. [PMID: 38580544 DOI: 10.1016/j.tplants.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 04/07/2024]
Abstract
Variations in climate conditions can dramatically affect plant health and the generation of climate-resilient crops is imperative to food security. In addition to directly affecting plants, it is predicted that more severe climate conditions will also result in greater biotic stresses. Recent studies have identified climate-sensitive molecular pathways that can result in plants being more susceptible to infection under unfavorable conditions. Here, we review how expected changes in climate will impact plant-pathogen interactions, with a focus on mechanisms regulating plant immunity and microbial virulence strategies. We highlight the complex interactions between abiotic and biotic stresses with the goal of identifying components and/or pathways that are promising targets for genetic engineering to enhance adaptation and strengthen resilience in dynamically changing environments.
Collapse
Affiliation(s)
| | - Christina A M Rossi
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5, Canada
| | | | - Peter Moffett
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
4
|
Yue H, Sun X, Wang T, Zhang A, Han D, Wei G, Song W, Shu D. Host genotype-specific rhizosphere fungus enhances drought resistance in wheat. MICROBIOME 2024; 12:44. [PMID: 38433268 PMCID: PMC10910722 DOI: 10.1186/s40168-024-01770-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND The severity and frequency of drought are expected to increase substantially in the coming century and dramatically reduce crop yields. Manipulation of rhizosphere microbiomes is an emerging strategy for mitigating drought stress in agroecosystems. However, little is known about the mechanisms underlying how drought-resistant plant recruitment of specific rhizosphere fungi enhances drought adaptation of drought-sensitive wheats. Here, we investigated microbial community assembly features and functional profiles of rhizosphere microbiomes related to drought-resistant and drought-sensitive wheats by amplicon and shotgun metagenome sequencing techniques. We then established evident linkages between root morphology traits and putative keystone taxa based on microbial inoculation experiments. Furthermore, root RNA sequencing and RT-qPCR were employed to explore the mechanisms how rhizosphere microbes modify plant response traits to drought stresses. RESULTS Our results indicated that host plant signature, plant niche compartment, and planting site jointly contribute to the variation of soil microbiome assembly and functional adaptation, with a relatively greater effect of host plant signature observed for the rhizosphere fungi community. Importantly, drought-resistant wheat (Yunhan 618) possessed more diverse bacterial and fungal taxa than that of the drought-sensitive wheat (Chinese Spring), particularly for specific fungal species. In terms of microbial interkingdom association networks, the drought-resistant variety possessed more complex microbial networks. Metagenomics analyses further suggested that the enriched rhizosphere microbiomes belonging to the drought-resistant cultivar had a higher investment in energy metabolism, particularly in carbon cycling, that shaped their distinctive drought tolerance via the mediation of drought-induced feedback functional pathways. Furthermore, we observed that host plant signature drives the differentiation in the ecological role of the cultivable fungal species Mortierella alpine (M. alpina) and Epicoccum nigrum (E. nigrum). The successful colonization of M. alpina on the root surface enhanced the resistance of wheats in response to drought stresses via activation of drought-responsive genes (e.g., CIPK9 and PP2C30). Notably, we found that lateral roots and root hairs were significantly suppressed by co-colonization of a drought-enriched fungus (M. alpina) and a drought-depleted fungus (E. nigrum). CONCLUSIONS Collectively, our findings revealed host genotypes profoundly influence rhizosphere microbiome assembly and functional adaptation, as well as it provides evidence that drought-resistant plant recruitment of specific rhizosphere fungi enhances drought tolerance of drought-sensitive wheats. These findings significantly underpin our understanding of the complex feedbacks between plants and microbes during drought, and lay a foundation for steering "beneficial keystone biome" to develop more resilient and productive crops under climate change. Video Abstract.
Collapse
Affiliation(s)
- Hong Yue
- College of Agronomy, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xuming Sun
- College of Agronomy, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tingting Wang
- College of Agronomy, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ali Zhang
- College of Agronomy, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dejun Han
- College of Agronomy, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Gehong Wei
- College of Life Sciences, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China.
| | - Weining Song
- College of Agronomy, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Duntao Shu
- College of Life Sciences, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
5
|
Ren P, Sun A, Jiao X, Chen QL, Li F, He JZ, Hu HW. National-scale investigation reveals the dominant role of phyllosphere fungal pathogens in sorghum yield loss. ENVIRONMENT INTERNATIONAL 2024; 185:108511. [PMID: 38382404 DOI: 10.1016/j.envint.2024.108511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/06/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
Fungal plant pathogens threaten crop production and sustainable agricultural development. However, the environmental factors driving their diversity and nationwide biogeographic model remain elusive, impacting our capacity to predict their changes under future climate scenarios. Here, we analyzed potential fungal plant pathogens from 563 samples collected from 57 agricultural fields across China. Over 28.0% of fungal taxa in the phyllosphere were identified as potential plant pathogens, compared to 22.3% in the rhizosphere. Dominant fungal plant pathogen groups were Cladosporium (in the phyllosphere) and Fusarium (in the rhizosphere), with higher diversity observed in the phyllosphere than in rhizosphere soil. Deterministic processes played an important role in shaping the potential fungal plant pathogen community assembly in both habitats. Mean annual precipitation and temperature were the most important factor influencing phyllosphere fungal plant pathogen richness. Significantly negative relationships were found between fungal pathogen diversity and sorghum yield. Notably, compared to the rhizosphere, the phyllosphere fungal plant pathogen diversity played a more crucial role in sorghum yield. Together, our work provides novel insights into the factors governing the spatial patterns of fungal plant pathogens in the crop microbiome, and highlights the potential significance of aboveground phyllosphere fungal plant pathogens in crop productivity.
Collapse
Affiliation(s)
- Peixin Ren
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Anqi Sun
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Xiaoyan Jiao
- College of Resource and Environment, Shanxi Agricultural University, Taiyuan 030031, China
| | - Qing-Lin Chen
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Fangfang Li
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Ji-Zheng He
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Hang-Wei Hu
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
6
|
Jiang Z, Yao L, Zhu X, Hao G, Ding Y, Zhao H, Wang S, Wen CK, Xu X, Xin XF. Ethylene signaling modulates air humidity responses in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:653-668. [PMID: 37997486 DOI: 10.1111/tpj.16556] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023]
Abstract
Air humidity significantly impacts plant physiology. However, the upstream elements that mediate humidity sensing and adaptive responses in plants remain largely unexplored. In this study, we define high humidity-induced cellular features of Arabidopsis plants and take a quantitative phosphoproteomics approach to obtain a high humidity-responsive landscape of membrane proteins, which we reason are likely the early checkpoints of humidity signaling. We found that a brief high humidity exposure (i.e., 0.5 h) is sufficient to trigger extensive changes in membrane protein abundance and phosphorylation. Enrichment analysis of differentially regulated proteins reveals high humidity-sensitive processes such as 'transmembrane transport', 'response to abscisic acid', and 'stomatal movement'. We further performed a targeted screen of mutants, in which high humidity-responsive pathways/proteins are disabled, to uncover genes mediating high humidity sensitivity. Interestingly, ethylene pathway mutants (i.e., ein2 and ein3eil1) display a range of altered responses, including hyponasty, reactive oxygen species level, and responsive gene expression, to high humidity. Furthermore, we observed a rapid induction of ethylene biosynthesis genes and ethylene evolution after high humidity treatment. Our study sheds light on the potential early signaling events in humidity perception, a fundamental but understudied question in plant biology, and reveals ethylene as a key modulator of high humidity responses in plants.
Collapse
Affiliation(s)
- Zeyu Jiang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lingya Yao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiangmei Zhu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guodong Hao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanxia Ding
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hangwei Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shanshan Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chi-Kuang Wen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyan Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiu-Fang Xin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Chinese Academy of Sciences (CAS) and CAS John Innes Centre of Excellence for Plant and Microbial Sciences, Shanghai, China
| |
Collapse
|
7
|
Yao L, Jiang Z, Wang Y, Hu Y, Hao G, Zhong W, Wan S, Xin X. High air humidity dampens salicylic acid pathway and NPR1 function to promote plant disease. EMBO J 2023; 42:e113499. [PMID: 37728254 PMCID: PMC10620762 DOI: 10.15252/embj.2023113499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/21/2023] Open
Abstract
The occurrence of plant disease is determined by interactions among host, pathogen, and environment. Air humidity shapes various aspects of plant physiology and high humidity has long been known to promote numerous phyllosphere diseases. However, the molecular basis of how high humidity interferes with plant immunity to favor disease has remained elusive. Here we show that high humidity is associated with an "immuno-compromised" status in Arabidopsis plants. Furthermore, accumulation and signaling of salicylic acid (SA), an important defense hormone, are significantly inhibited under high humidity. NPR1, an SA receptor and central transcriptional co-activator of SA-responsive genes, is less ubiquitinated and displays a lower promoter binding affinity under high humidity. The cellular ubiquitination machinery, particularly the Cullin 3-based E3 ubiquitin ligase mediating NPR1 protein ubiquitination, is downregulated under high humidity. Importantly, under low humidity the Cullin 3a/b mutant plants phenocopy the low SA gene expression and disease susceptibility that is normally observed under high humidity. Our study uncovers a mechanism by which high humidity dampens a major plant defense pathway and provides new insights into the long-observed air humidity influence on diseases.
Collapse
Affiliation(s)
- Lingya Yao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Zeyu Jiang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Yiping Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Yezhou Hu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Guodong Hao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Weili Zhong
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Shiwei Wan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Xiu‐Fang Xin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- University of the Chinese Academy of SciencesBeijingChina
- Chinese Academy of Sciences (CAS) and CAS John Innes Centre of Excellence for Plant and Microbial SciencesShanghaiChina
| |
Collapse
|
8
|
Li S, Travadon R, Trouillas FP. Effects of Temperature on Spore Germination and Mycelial Growth of Calosphaeria pulchella, Cytospora sorbicola, and Eutypa lata Isolates Associated with Sweet Cherry Canker Diseases. PLANT DISEASE 2023; 107:3448-3456. [PMID: 37081630 DOI: 10.1094/pdis-12-22-2956-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Although fungal canker diseases constitute a limiting factor to orchard productivity and longevity, little is known about the effects of temperature on spore germination and mycelial growth of the fungal causal agents. Accordingly, the germination of spores and colony growth of Calosphaeria pulchella, Cytospora sorbicola, and Eutypa lata were evaluated after incubation on 2% water agar and 4% potato dextrose agar, respectively, at 5, 10, 15, 20, 25, 30, 35, and 40°C. Temperature optima for spore germination and mycelial growth were derived from nonlinear models fitted to germination rates and colony diameter data. The optimal temperatures for spore germination of Cal. pulchella were 28.5°C for ascospores and 29.2°C for conidia. The optimal temperatures for Cyt. sorbicola conidia and E. lata ascospore germination were 25.8 and 23.1°C, respectively. The germination of ascospores and conidia of Cal. pulchella at temperatures below 15°C required an incubation time of at least 72 h. Ascospores of E. lata and conidia of Cyt. sorbicola germinated at 10°C after 36 h. The optimal temperature for colony growth of Cal. pulchella was 24.6°C, whereas it was 21.7°C for both Cyt. sorbicola and E. lata. Our study indicates that temperature requirements for basic biological functions are higher for Cal. pulchella than for Cyt. sorbicola and E. lata. The overall higher temperatures of California relative to other cherry-producing regions in the United States or worldwide could explain the prevalence of Calosphaeria canker in the state. Conversely, Cyt. sorbicola and E. lata appear better adapted to cooler temperatures.
Collapse
Affiliation(s)
- Sampson Li
- Department of Plant Pathology, University of California, Davis, CA 95616
| | - Renaud Travadon
- Department of Plant Pathology, University of California, Davis, CA 95616
| | - Florent P Trouillas
- Department of Plant Pathology, University of California, Davis, CA 95616
- Kearney Agricultural Research and Extension Center, Parlier, CA 93648
| |
Collapse
|
9
|
Singh BK, Delgado-Baquerizo M, Egidi E, Guirado E, Leach JE, Liu H, Trivedi P. Climate change impacts on plant pathogens, food security and paths forward. Nat Rev Microbiol 2023; 21:640-656. [PMID: 37131070 PMCID: PMC10153038 DOI: 10.1038/s41579-023-00900-7] [Citation(s) in RCA: 116] [Impact Index Per Article: 116.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/04/2023]
Abstract
Plant disease outbreaks pose significant risks to global food security and environmental sustainability worldwide, and result in the loss of primary productivity and biodiversity that negatively impact the environmental and socio-economic conditions of affected regions. Climate change further increases outbreak risks by altering pathogen evolution and host-pathogen interactions and facilitating the emergence of new pathogenic strains. Pathogen range can shift, increasing the spread of plant diseases in new areas. In this Review, we examine how plant disease pressures are likely to change under future climate scenarios and how these changes will relate to plant productivity in natural and agricultural ecosystems. We explore current and future impacts of climate change on pathogen biogeography, disease incidence and severity, and their effects on natural ecosystems, agriculture and food production. We propose that amendment of the current conceptual framework and incorporation of eco-evolutionary theories into research could improve our mechanistic understanding and prediction of pathogen spread in future climates, to mitigate the future risk of disease outbreaks. We highlight the need for a science-policy interface that works closely with relevant intergovernmental organizations to provide effective monitoring and management of plant disease under future climate scenarios, to ensure long-term food and nutrient security and sustainability of natural ecosystems.
Collapse
Affiliation(s)
- Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia.
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith, New South Wales, Australia.
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain
- Unidad Asociada CSIC-UPO (BioFun), Universidad Pablo de Olavide, Sevilla, Spain
| | - Eleonora Egidi
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Emilio Guirado
- Multidisciplinary Institute for Environment Studies 'Ramon Margalef', University of Alicante, Alicante, Spain
| | - Jan E Leach
- Microbiome Newtork and Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Hongwei Liu
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Pankaj Trivedi
- Microbiome Newtork and Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
10
|
Gerling M, von der Waydbrink G, Verch G, Büttner C, Müller MEH. Between Habitats: Transfer of Phytopathogenic Fungi along Transition Zones from Kettle Hole Edges to Wheat Ears. J Fungi (Basel) 2023; 9:938. [PMID: 37755047 PMCID: PMC10532505 DOI: 10.3390/jof9090938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Kettle holes are able to increase the soil and air humidity around them. Therefore, they create a perfect habitat for phytopathogenic fungi of the genera Fusarium and Alternaria to develop, sporulate, and immigrate into neighboring agricultural fields. In our study, we establish transects from the edges of different kettle holes and field edges up to 50 m into the fields to analyze the abundance and diversity of pathogenic fungi in these transition zones by culture-dependent and culture-independent methods. However, in 2019 and 2020, low precipitation and higher temperatures compared to the long-time average were measured, which led to limited infections of weeds in the transition zones with Fusarium and Alternaria. Therefore, the hypothesized significantly higher infection of wheat plants next to the kettle holes by a strong spread of fungal spores was not detected. Infestation patterns of Fusarium and Alternaria fungi on weeds and wheat ears were spatially different. In total, 9 different Fusarium species were found in the transition zone. The species diversity at kettle holes differed from 0 to 6 species. The trend toward increased dryness in the northeast German agricultural landscape and its impact on the changing severity of fungal infections is discussed.
Collapse
Affiliation(s)
- Marina Gerling
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany
- Albrecht Daniel Thaer-Institute, Faculty of Life Science, Humboldt-Universität zu Berlin, 14195 Berlin, Germany
| | - Grit von der Waydbrink
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany
| | - Gernot Verch
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany
| | - Carmen Büttner
- Albrecht Daniel Thaer-Institute, Faculty of Life Science, Humboldt-Universität zu Berlin, 14195 Berlin, Germany
| | - Marina E. H. Müller
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany
| |
Collapse
|
11
|
Jokinen M, Sallinen S, Jones MM, Sirén J, Guilbault E, Susi H, Laine AL. The first arriving virus shapes within-host viral diversity during natural epidemics. Proc Biol Sci 2023; 290:20231486. [PMID: 37700649 PMCID: PMC10498040 DOI: 10.1098/rspb.2023.1486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/17/2023] [Indexed: 09/14/2023] Open
Abstract
Viral diversity has been discovered across scales from host individuals to populations. However, the drivers of viral community assembly are still largely unknown. Within-host viral communities are formed through co-infections, where the interval between the arrival times of viruses may vary. Priority effects describe the timing and order in which species arrive in an environment, and how early colonizers impact subsequent community assembly. To study the effect of the first-arriving virus on subsequent infection patterns of five focal viruses, we set up a field experiment using naïve Plantago lanceolata plants as sentinels during a seasonal virus epidemic. Using joint species distribution modelling, we find both positive and negative effects of early season viral infection on late season viral colonization patterns. The direction of the effect depends on both the host genotype and which virus colonized the host early in the season. It is well established that co-occurring viruses may change the virulence and transmission of viral infections. However, our results show that priority effects may also play an important, previously unquantified role in viral community assembly. The assessment of these temporal dynamics within a community ecological framework will improve our ability to understand and predict viral diversity in natural systems.
Collapse
Affiliation(s)
- Maija Jokinen
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, 8057 Zürich, Switzerland
| | - Suvi Sallinen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, PO Box 65, 00014, Finland
| | - Mirkka M. Jones
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, PO Box 65, 00014, Finland
- Institute of Biotechnology, HiLIFE-Helsinki Institute of Life Science, University of Helsinki, PO Box 65, 00014, Finland
| | - Jukka Sirén
- Institute of Biotechnology, HiLIFE-Helsinki Institute of Life Science, University of Helsinki, PO Box 65, 00014, Finland
| | - Emy Guilbault
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, PO Box 65, 00014, Finland
| | - Hanna Susi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, PO Box 65, 00014, Finland
| | - Anna-Liisa Laine
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, 8057 Zürich, Switzerland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, PO Box 65, 00014, Finland
| |
Collapse
|
12
|
Fan R, Liu Y, Bin Y, Huang J, Yi B, Tang X, Li Y, Cai Y, Yang Z, Yang M, Song J, Pan Q, Liu Z, Ghani MI, Hu X, Chen X. Identification of Colletotrichum aenigma as the new causal agent of leaf blight disease on Aucuba japonica Thunb., and screenings of effective fungicides for its sustainable management. Front Microbiol 2023; 14:1222844. [PMID: 37692385 PMCID: PMC10483284 DOI: 10.3389/fmicb.2023.1222844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023] Open
Abstract
Aucuba japonica Thunb is an evergreen woody ornamental plant with significant economic and ecological values. It also produces aucubin, showing a variety of biological activities. It is widely planted in the southwest region of China, including karst landscape areas in Guizhou Province. In January 2022, a serious leaf blight disease was observed on the leaves of A. japonica in the outdoor gardens of Guizhou University, Guiyang, Guizhou, China. The causal agent was identified as Colletotrichum aenigma through amplification and sequencing of the internal transcribed spacer (ITS) region, translation of the chitin synthase (CHS) and actin (ACT) genes, and morphological characterizations. Koch's postulates were confirmed by its pathogenicity on healthy leaves, including re-isolation and identification. To our knowledge, this is the first report of C. aenigma causing leaf blight on A. japonica worldwide. To identify pathogen characteristics that could be utilized for future disease management, the effects of temperature and light on mycelial growth, conidia production, and conidial germination, and the effects of humidity on conidial germination were studied. Optimal temperatures for mycelial growth of C. aenigma BY827 were 25-30°C, while 15°C and 35°C were favorable for conidia production. Concurrently, alternating 10-h light and 14-h dark, proved to be beneficial for mycelial growth and conidial germination. Additionally, conidial germination was enhanced at 90% humidity. In vitro screenings of ten chemical pesticides to assess their efficacy in suppressing C. aenigma representative strain BY827. Among them, difenoconazole showed the best inhibition rate, with an EC50 (concentration for 50% of maximal effect) value of 0.0148 μg/ml. Subsequently, field experiment results showed that difenoconazole had the highest control efficiency on A. japonica leaf blight (the decreasing rate of disease incidence and decreasing rate of disease index were 44.60 and 47.75%, respectively). Interestingly, we discovered that C. aenigma BY827 may develop resistance to mancozeb, which is not reported yet among Colletotrichum spp. strains. In conclusion, our study provided new insights into the causal agent of A. japonica leaf blight, and the effective fungicides evaluated provided an important basis and potential resource for the sustainable control of A. japonica leaf blight caused by C. aenigma in the field.
Collapse
Affiliation(s)
- Ruidong Fan
- College of Agriculture, College of Life Sciences, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Yanjiang Liu
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
- School of Ecology and Environment, Tibet University, Lhasa, China
| | - Yalan Bin
- College of Agriculture, College of Life Sciences, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Jingyi Huang
- College of Agriculture, College of Life Sciences, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Benlin Yi
- College of Agriculture, College of Life Sciences, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Xiaoli Tang
- College of Agriculture, College of Life Sciences, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Yingxue Li
- College of Agriculture, College of Life Sciences, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Yu Cai
- College of Agriculture, College of Life Sciences, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Ziyan Yang
- College of Agriculture, College of Life Sciences, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Mingxuan Yang
- College of Agriculture, College of Life Sciences, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Jiahao Song
- College of Agriculture, College of Life Sciences, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Qi Pan
- College of Agriculture, College of Life Sciences, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Zengliang Liu
- Microbiology Research Institute, Guangxi Agricultural Science Academy, Nanning, China
| | - Muhammad Imran Ghani
- College of Agriculture, College of Life Sciences, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Xiaojing Hu
- College of Agriculture, College of Life Sciences, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Xiaoyulong Chen
- College of Agriculture, College of Life Sciences, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
- School of Ecology and Environment, Tibet University, Lhasa, China
| |
Collapse
|
13
|
Labouyrie M, Ballabio C, Romero F, Panagos P, Jones A, Schmid MW, Mikryukov V, Dulya O, Tedersoo L, Bahram M, Lugato E, van der Heijden MGA, Orgiazzi A. Patterns in soil microbial diversity across Europe. Nat Commun 2023; 14:3311. [PMID: 37291086 PMCID: PMC10250377 DOI: 10.1038/s41467-023-37937-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 04/06/2023] [Indexed: 06/10/2023] Open
Abstract
Factors driving microbial community composition and diversity are well established but the relationship with microbial functioning is poorly understood, especially at large scales. We analysed microbial biodiversity metrics and distribution of potential functional groups along a gradient of increasing land-use perturbation, detecting over 79,000 bacterial and 25,000 fungal OTUs in 715 sites across 24 European countries. We found the lowest bacterial and fungal diversity in less-disturbed environments (woodlands) compared to grasslands and highly-disturbed environments (croplands). Highly-disturbed environments contain significantly more bacterial chemoheterotrophs, harbour a higher proportion of fungal plant pathogens and saprotrophs, and have less beneficial fungal plant symbionts compared to woodlands and extensively-managed grasslands. Spatial patterns of microbial communities and predicted functions are best explained when interactions among the major determinants (vegetation cover, climate, soil properties) are considered. We propose guidelines for environmental policy actions and argue that taxonomical and functional diversity should be considered simultaneously for monitoring purposes.
Collapse
Affiliation(s)
- Maëva Labouyrie
- Department of Plant and Microbial Biology, University of Zurich, Zürich, Switzerland
- European Commission, Joint Research Centre (JRC), Ispra, VA, Italy
- Plant-Soil-Interactions, Research Division Agroecology and Environment, Agroscope, Zürich, Switzerland
| | | | - Ferran Romero
- Plant-Soil-Interactions, Research Division Agroecology and Environment, Agroscope, Zürich, Switzerland
| | - Panos Panagos
- European Commission, Joint Research Centre (JRC), Ispra, VA, Italy
| | - Arwyn Jones
- European Commission, Joint Research Centre (JRC), Ispra, VA, Italy
| | | | - Vladimir Mikryukov
- Mycology and Microbiology Center, University of Tartu, Tartu, Estonia
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Olesya Dulya
- Mycology and Microbiology Center, University of Tartu, Tartu, Estonia
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Leho Tedersoo
- Mycology and Microbiology Center, University of Tartu, Tartu, Estonia
| | - Mohammad Bahram
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Emanuele Lugato
- European Commission, Joint Research Centre (JRC), Ispra, VA, Italy
| | - Marcel G A van der Heijden
- Department of Plant and Microbial Biology, University of Zurich, Zürich, Switzerland.
- Plant-Soil-Interactions, Research Division Agroecology and Environment, Agroscope, Zürich, Switzerland.
| | - Alberto Orgiazzi
- European Commission, Joint Research Centre (JRC), Ispra, VA, Italy.
| |
Collapse
|
14
|
Chaudhary S, Rajagopalan K, Kruger CE, Brady MP, Fraisse CW, Gustafson DI, Hall SA, Hoogenboom G, Melnick RL, Reyes J, Stöckle CO, Sulser TB. Climate analogs can catalyze cross-regional dialogs for US specialty crop adaptation. Sci Rep 2023; 13:9317. [PMID: 37291159 DOI: 10.1038/s41598-023-35887-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 05/25/2023] [Indexed: 06/10/2023] Open
Abstract
Communication theory suggests that interactive dialog rather than information transmission is necessary for climate change action, especially for complex systems like agriculture. Climate analogs-locations whose current climate is similar to a target location's future climate-have garnered recent interest as transmitting more relatable information; however, they have unexplored potential in facilitating meaningful dialogs, and whether the way the analogs are developed could make a difference. We developed climate context-specific analogs based on agriculturally-relevant climate metrics for US specialty crop production, and explored their potential for facilitating dialogs on climate adaptation options. Over 80% of US specialty crop counties had acceptable US analogs for the mid-twenty-first century, especially in the West and Northeast which had greater similarities in the crops produced across target-analog pairs. Western counties generally had analogs to the south, and those in other regions had them to the west. A pilot dialog of target-analog pairs showed promise in eliciting actionable adaptation insights, indicating potential value in incorporating analog-driven dialogs more broadly in climate change communication.
Collapse
Affiliation(s)
- Siddharth Chaudhary
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, USA
| | - Kirti Rajagopalan
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, USA.
| | - Chad E Kruger
- Center for Sustaining Agriculture & Natural Resources, Washington State University, Wenatchee, WA, USA
| | - Michael P Brady
- School of Economic Sciences, Washington State University, Pullman, WA, USA
| | - Clyde W Fraisse
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, USA
| | | | - Sonia A Hall
- Center for Sustaining Agriculture & Natural Resources, Washington State University, Wenatchee, WA, USA
| | - Gerrit Hoogenboom
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, USA
| | | | | | - Claudio O Stöckle
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, USA
| | - Timothy B Sulser
- International Food Policy Research Institute, Washington, DC, USA
| |
Collapse
|
15
|
Hoffmann A, Posirca AR, Lewin S, Verch G, Büttner C, Müller MEH. Environmental Filtering Drives Fungal Phyllosphere Community in Regional Agricultural Landscapes. PLANTS (BASEL, SWITZERLAND) 2023; 12:507. [PMID: 36771591 PMCID: PMC9919219 DOI: 10.3390/plants12030507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
To adapt to climate change, several agricultural strategies are currently being explored, including a shift in land use areas. Regional differences in microbiome composition and associated phytopathogens need to be considered. However, most empirical studies on differences in the crop microbiome focused on soil communities, with insufficient attention to the phyllosphere. In this study, we focused on wheat ears in three regions in northeastern Germany (Magdeburger Börde (MBB), Müncheberger Sander (MSA), Uckermärkisches Hügelland (UKH)) with different yield potentials, soil, and climatic conditions. To gain insight into the fungal community at different sites, we used a metabarcoding approach (ITS-NGS). Further, we examined the diversity and abundance of Fusarium and Alternaria using culture-dependent and culture-independent techniques. For each region, the prevalence of different orders rich in phytopathogenic fungi was determined: Sporidiobolales in MBB, Capnodiales and Pleosporales in MSA, and Hypocreales in UKH were identified as taxonomic biomarkers. Additionally, F. graminearum was found predominantly in UKH, whereas F. poae was more abundant in the other two regions. Environmental filters seem to be strong drivers of these differences, but we also discuss the possible effects of dispersal and interaction filters. Our results can guide shifting cultivation regions to be selected in the future concerning their phytopathogenic infection potential.
Collapse
Affiliation(s)
- Annika Hoffmann
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
- Phytomedicine, Albrecht Daniel Thaer Institute, Faculty of Life Science, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Alexandra-Raluca Posirca
- Phytomedicine, Albrecht Daniel Thaer Institute, Faculty of Life Science, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
- State Office for Rural Development, Agriculture and Land Reorganization (LELF) Brandenburg, Division P, 15236 Frankfurt (Oder), Germany
| | - Simon Lewin
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
| | - Gernot Verch
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
| | - Carmen Büttner
- Phytomedicine, Albrecht Daniel Thaer Institute, Faculty of Life Science, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Marina E. H. Müller
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
| |
Collapse
|
16
|
Abstract
The concept of one health highlights that human health is not isolated but connected to the health of animals, plants and environments. In this Review, we demonstrate that soils are a cornerstone of one health and serve as a source and reservoir of pathogens, beneficial microorganisms and the overall microbial diversity in a wide range of organisms and ecosystems. We list more than 40 soil microbiome functions that either directly or indirectly contribute to soil, plant, animal and human health. We identify microorganisms that are shared between different one health compartments and show that soil, plant and human microbiomes are perhaps more interconnected than previously thought. Our Review further evaluates soil microbial contributions to one health in the light of dysbiosis and global change and demonstrates that microbial diversity is generally positively associated with one health. Finally, we present future challenges in one health research and formulate recommendations for practice and evaluation.
Collapse
Affiliation(s)
- Samiran Banerjee
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA.
| | - Marcel G A van der Heijden
- Plant-Soil Interactions Group, Agroscope, Zurich, Switzerland. .,Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
17
|
Son S, Park SR. Climate change impedes plant immunity mechanisms. FRONTIERS IN PLANT SCIENCE 2022; 13:1032820. [PMID: 36523631 PMCID: PMC9745204 DOI: 10.3389/fpls.2022.1032820] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/14/2022] [Indexed: 06/02/2023]
Abstract
Rapid climate change caused by human activity is threatening global crop production and food security worldwide. In particular, the emergence of new infectious plant pathogens and the geographical expansion of plant disease incidence result in serious yield losses of major crops annually. Since climate change has accelerated recently and is expected to worsen in the future, we have reached an inflection point where comprehensive preparations to cope with the upcoming crisis can no longer be delayed. Development of new plant breeding technologies including site-directed nucleases offers the opportunity to mitigate the effects of the changing climate. Therefore, understanding the effects of climate change on plant innate immunity and identification of elite genes conferring disease resistance are crucial for the engineering of new crop cultivars and plant improvement strategies. Here, we summarize and discuss the effects of major environmental factors such as temperature, humidity, and carbon dioxide concentration on plant immunity systems. This review provides a strategy for securing crop-based nutrition against severe pathogen attacks in the era of climate change.
Collapse
|
18
|
Kumar R, Bahuguna RN, Tiwari M, Pal M, Chinnusamy V, Sreeman S, Muthurajan R, Krishna Jagadish SV. Walking through crossroads-rice responses to heat and biotic stress interactions. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:4065-4081. [PMID: 35713657 DOI: 10.1007/s00122-022-04131-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Rice, the most important source of calories for humans is prone to severe yield loss due to changing climate including heat stress. Additionally, rice encounters biotic stresses in conjunction with heat stress, which exacerbates the adverse effects, and exponentially increase such losses. Several investigations have identified biotic and heat stress-related quantitative trait loci (QTLs) that may contribute to improved tolerance to these stresses. However, a significant knowledge gap exists in identifying the genomic regions imparting tolerance against combined biotic and heat stress. Hereby, we are presenting a conceptual meta-analysis identifying genomic regions that may be promising candidates for enhancing combined biotic and heat stress tolerance in rice. Fourteen common genomic regions were identified along chromosomes 1, 2, 3, 4, 6, 10 and 12, which harbored 1265 genes related to heat stress and defense responses in rice. Further, the meta expression analysis revealed 24 differentially expressed genes (DEGs) involved in calcium-mediated stress signaling including transcription factors Myb, bHLH, ROS signaling, molecular chaperones HSP110 and pathogenesis related proteins. Additionally, we also proposed a hypothetical model based on GO and MapMan analysis representing the pathways intersecting heat and biotic stresses. These DEGs can be potential candidate genes for improving tolerance to combined biotic and heat stress in rice. We present a framework highlighting plausible connecting links (QTLs/genes) between rice response to heat stress and different biotic factors associated with yield, that can be extended to other crops.
Collapse
Affiliation(s)
- Ritesh Kumar
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Rajeev N Bahuguna
- Center for Advanced Studies on Climate Change, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, India
| | - Manish Tiwari
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Madan Pal
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Sheshshayee Sreeman
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India
| | - Raveendran Muthurajan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India.
| | - S V Krishna Jagadish
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA.
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India.
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India.
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
19
|
Baldrian P, Bell-Dereske L, Lepinay C, Větrovský T, Kohout P. Fungal communities in soils under global change. Stud Mycol 2022; 103:1-24. [PMID: 36760734 PMCID: PMC9886077 DOI: 10.3114/sim.2022.103.01] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/16/2022] [Indexed: 11/07/2022] Open
Abstract
Soil fungi play indispensable roles in all ecosystems including the recycling of organic matter and interactions with plants, both as symbionts and pathogens. Past observations and experimental manipulations indicate that projected global change effects, including the increase of CO2 concentration, temperature, change of precipitation and nitrogen (N) deposition, affect fungal species and communities in soils. Although the observed effects depend on the size and duration of change and reflect local conditions, increased N deposition seems to have the most profound effect on fungal communities. The plant-mutualistic fungal guilds - ectomycorrhizal fungi and arbuscular mycorrhizal fungi - appear to be especially responsive to global change factors with N deposition and warming seemingly having the strongest adverse effects. While global change effects on fungal biodiversity seem to be limited, multiple studies demonstrate increases in abundance and dispersal of plant pathogenic fungi. Additionally, ecosystems weakened by global change-induced phenomena, such as drought, are more vulnerable to pathogen outbreaks. The shift from mutualistic fungi to plant pathogens is likely the largest potential threat for the future functioning of natural and managed ecosystems. However, our ability to predict global change effects on fungi is still insufficient and requires further experimental work and long-term observations. Citation: Baldrian P, Bell-Dereske L, Lepinay C, Větrovský T, Kohout P (2022). Fungal communities in soils under global change. Studies in Mycology 103: 1-24. doi: 10.3114/sim.2022.103.01.
Collapse
Affiliation(s)
- P. Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeòská 1083, 142 20 Prague, Czech Republic,*Corresponding author: Petr Baldrian,
| | - L. Bell-Dereske
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeòská 1083, 142 20 Prague, Czech Republic
| | - C. Lepinay
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeòská 1083, 142 20 Prague, Czech Republic
| | - T. Větrovský
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeòská 1083, 142 20 Prague, Czech Republic
| | - P. Kohout
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeòská 1083, 142 20 Prague, Czech Republic
| |
Collapse
|
20
|
Chang Y, Wang Y, Mondo S, Ahrendt S, Andreopoulos W, Barry K, Beard J, Benny GL, Blankenship S, Bonito G, Cuomo C, Desiro A, Gervers KA, Hundley H, Kuo A, LaButti K, Lang BF, Lipzen A, O’Donnell K, Pangilinan J, Reynolds N, Sandor L, Smith ME, Tsang A, Grigoriev IV, Stajich JE, Spatafora JW. Evolution of zygomycete secretomes and the origins of terrestrial fungal ecologies. iScience 2022; 25:104840. [PMID: 35996588 PMCID: PMC9391592 DOI: 10.1016/j.isci.2022.104840] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/09/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022] Open
Abstract
Fungi survive in diverse ecological niches by secreting proteins and other molecules into the environment to acquire food and interact with various biotic and abiotic stressors. Fungal secretome content is, therefore, believed to be tightly linked to fungal ecologies. We sampled 132 genomes from the early-diverging terrestrial fungal lineage zygomycetes (Mucoromycota and Zoopagomycota) and characterized their secretome composition. Our analyses revealed that phylogeny played an important role in shaping the secretome composition of zygomycete fungi with trophic mode contributing a smaller amount. Reconstruction of the evolution of secreted digestive enzymes revealed lineage-specific expansions, indicating that Mucoromycota and Zoopagomycota followed different trajectories early in their evolutionary history. We identified the presence of multiple pathogenicity-related proteins in the lineages known as saprotrophs, suggesting that either the ecologies of these fungi are incompletely known, and/or that these pathogenicity-related proteins have important functions associated with saprotrophic ecologies, both of which invite further investigation.
Collapse
Affiliation(s)
- Ying Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
- Division of Science, Yale-NUS College, Singapore 138527, Singapore
| | - Yan Wang
- Department of Microbiology and Plant Pathology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Stephen Mondo
- US Department of Energy (DOE) Joint Genome Institute (JGI), Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
| | - Steven Ahrendt
- US Department of Energy (DOE) Joint Genome Institute (JGI), Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
| | - William Andreopoulos
- US Department of Energy (DOE) Joint Genome Institute (JGI), Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
| | - Kerrie Barry
- US Department of Energy (DOE) Joint Genome Institute (JGI), Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
| | - Jeff Beard
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Gerald L. Benny
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
| | - Sabrina Blankenship
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Gregory Bonito
- Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Christina Cuomo
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge MA 02142, USA
| | - Alessandro Desiro
- Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Kyle A. Gervers
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Hope Hundley
- US Department of Energy (DOE) Joint Genome Institute (JGI), Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
| | - Alan Kuo
- US Department of Energy (DOE) Joint Genome Institute (JGI), Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
| | - Kurt LaButti
- US Department of Energy (DOE) Joint Genome Institute (JGI), Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
| | - B. Franz Lang
- Robert Cedergren Centre for Bioinformatics and Genomics, Département de Biochimie, Université de Montréal, Montreal, QC, Canada
| | - Anna Lipzen
- US Department of Energy (DOE) Joint Genome Institute (JGI), Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
| | - Kerry O’Donnell
- National Center for Agricultural Utilization Research, US Department of Agriculture, Agricultural Research Service, Peoria, IL 61604, USA
| | - Jasmyn Pangilinan
- US Department of Energy (DOE) Joint Genome Institute (JGI), Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
| | - Nicole Reynolds
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
| | - Laura Sandor
- US Department of Energy (DOE) Joint Genome Institute (JGI), Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
| | - Matthew E. Smith
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, Montréal, QC H4B 1R6, Canada
| | - Igor V. Grigoriev
- US Department of Energy (DOE) Joint Genome Institute (JGI), Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jason E. Stajich
- Department of Microbiology and Plant Pathology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Joseph W. Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
21
|
Liu Y, He F. Warming shifts soil microbial communities and tropical tree seedling mortality. Ecology 2022; 103:e3810. [PMID: 35796422 DOI: 10.1002/ecy.3810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 05/19/2022] [Accepted: 06/02/2022] [Indexed: 11/09/2022]
Abstract
Plant-soil feedback (PSF), regulated by both mycorrhizae and soil-borne pathogens, is a primary mechanism maintaining high tree species diversity in the tropics. But how warming actually affects PSF is not well understood. We conducted a field warming experiment to test PSF on seedling mortality of two tree species: a rhizobia-associated tree (Ormosia semicastrata, Fabaceae) suffering from host-specific soil-borne pathogens and an ectomycorrhizal fungi-associated tree (Cyclobalanopsis patelliormis, Fagaceae) with low susceptibility to soil-borne pathogens. Soil fungi from the warming versus control seedling plots were identified by molecular sequencing. Results showed that the elevated temperature lowered seedling mortality of O. semicastrata, but had no effect on C. patelliormis seedlings. This indicates that warming weakened the negative PSF on O. semicastrata, presumably due to the observed decrease of the relative abundance of plant-pathogenic fungi and increase of ectomycorrhizal fungi but did not affect the PSF on C. patelliormis. The differential warming effects on seedling mortality of species with different microbial associations afford an example showcasing how the change in soil-borne microbes in response to global warming would in turn, through PSF, alters tropical tree species composition and diversity. This study helps shed mechanistic light on the debate of biodiversity change as driven by climate change.
Collapse
Affiliation(s)
- Yu Liu
- ECNU-Alberta Joint Lab for Biodiversity Study, Tiantong National Station for Forest Ecosystem Research, School of Ecology and Environmental Sciences, East China Normal University, Shanghai, China.,Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Fangliang He
- ECNU-Alberta Joint Lab for Biodiversity Study, Tiantong National Station for Forest Ecosystem Research, School of Ecology and Environmental Sciences, East China Normal University, Shanghai, China.,Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
22
|
Cao D, Lou Y, Jiang X, Zhang D, Liu J. Fungal Diversity in Barley Under Different Storage Conditions. Front Microbiol 2022; 13:895975. [PMID: 35814699 PMCID: PMC9257103 DOI: 10.3389/fmicb.2022.895975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/11/2022] [Indexed: 11/21/2022] Open
Abstract
The diversity of fungi in barley in simulated storage environments was analyzed. Barley was stored at different temperatures (15, 25, 35°C) and relative humidity (55, 65, 75, 85 RH) for 180 and 360 days. Alpha diversity, beta diversity, species composition, and species differences were analyzed using Illumina HiSeq technology. The fungal communities in all barley samples before and after storage belonged to 3 phyla, 18 classes, 39 orders, 71 families, 103 genera, and 152 species. The relative abundance of the dominant phylum Ascomycota was 77.98–99.19%. The relative abundance of Basidiomycota was 0.77–21.96%. At the genus level, the dominant genera of fungi in barley initially included Fusarium, Aspergillus, Microdochium, Alternaria, and Epicoccum. After 360 days of storage, the dominant genera became Epicoccum, Alternaria, Bipolar, Cladosporium, Fusarium, and Aspergillus. According to Venn diagrams and principal coordinates analysis, the fungal community diversity in barley initially was much higher than in barley stored at different temperatures and humidity. The application of PLS-DA could accurately distinguish between barley stored for 180 and 360 days. Some high-temperature and high-humidity environments accelerated storage. The dominant genera differed in different storage conditions and constantly changed with increasing storage duration. Epicoccum was one of the dominant genera after longer storage periods. This study provides theoretical support for optimizing safe storage conditions in barley.
Collapse
Affiliation(s)
- Dongmei Cao
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Agro-Products Processing and Quality Safety of Heilongjiang Province, Daqing, China
- Heilongjiang Engineering Research Center for Coarse Cereals Processing and Quality Safety, Daqing, China
| | - Yuhao Lou
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xiujie Jiang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Dongjie Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Agro-Products Processing and Quality Safety of Heilongjiang Province, Daqing, China
- Heilongjiang Engineering Research Center for Coarse Cereals Processing and Quality Safety, Daqing, China
- Heilongjiang Province Cultivating Collaborative Innovation Center for the Beidahuang Modern Agricultural Industry Technology, Daqing, China
- *Correspondence: Dongjie Zhang,
| | - Junmei Liu
- College of Food Science, Jilin Agricultural University, Daqing, China
- Junmei Liu,
| |
Collapse
|
23
|
Bebber DP. Weather does influence fungal and oomycete crop disease outbreaks, but ProMED-mail reports don't prove it. THE NEW PHYTOLOGIST 2022; 234:1557-1558. [PMID: 35397171 PMCID: PMC9325474 DOI: 10.1111/nph.18101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
|
24
|
Zhu Y, Xiong C, Wei Z, Chen Q, Ma B, Zhou S, Tan J, Zhang L, Cui H, Duan G. Impacts of global change on the phyllosphere microbiome. THE NEW PHYTOLOGIST 2022; 234:1977-1986. [PMID: 34921429 PMCID: PMC9306672 DOI: 10.1111/nph.17928] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/08/2021] [Indexed: 05/21/2023]
Abstract
Plants form complex interaction networks with diverse microbiomes in the environment, and the intricate interplay between plants and their associated microbiomes can greatly influence ecosystem processes and functions. The phyllosphere, the aerial part of the plant, provides a unique habitat for diverse microbes, and in return the phyllosphere microbiome greatly affects plant performance. As an open system, the phyllosphere is subjected to environmental perturbations, including global change, which will impact the crosstalk between plants and their microbiomes. In this review, we aim to provide a synthesis of current knowledge of the complex interactions between plants and the phyllosphere microbiome under global changes and to identify future priority areas of research on this topic.
Collapse
Affiliation(s)
- Yong‐Guan Zhu
- Key Laboratory of Urban Environment and HealthInstitute of Urban EnvironmentChinese Academy of SciencesXiamen361021China
- State Key Laboratory of Urban and Regional EcologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085China
| | - Chao Xiong
- State Key Laboratory of Urban and Regional EcologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085China
| | - Zhong Wei
- Key Laboratory of Plant ImmunityJiangsu Provincial Key Laboratory for Organic Solid Waste UtilizationJiangsu Collaborative Innovation Center for Solid Organic Waste Resource UtilizationNational Engineering Research Center for Organic‐Based FertilizersNanjing Agricultural UniversityWeigang, Nanjing210095China
| | - Qing‐Lin Chen
- Faculty of Veterinary and Agricultural SciencesThe University of MelbourneParkvilleVic3010Australia
| | - Bin Ma
- Zhejiang Provincial Key Laboratory of Agricultural Resources and EnvironmentCollege of Environmental and Natural Resource SciencesZhejiang UniversityHangzhou310058China
- Hangzhou Innovation CenterZhejiang UniversityHangzhou311200China
| | - Shu‐Yi‐Dan Zhou
- Key Laboratory of Urban Environment and HealthInstitute of Urban EnvironmentChinese Academy of SciencesXiamen361021China
| | - Jiaqi Tan
- Department of Biological SciencesLouisiana State UniversityBaton RougeLA70803USA
| | - Li‐Mei Zhang
- State Key Laboratory of Urban and Regional EcologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085China
| | - Hui‐Ling Cui
- State Key Laboratory of Urban and Regional EcologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085China
| | - Gui‐Lan Duan
- State Key Laboratory of Urban and Regional EcologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085China
| |
Collapse
|
25
|
Zhang P, Luan M, Li X, Lian Z, Zhao X. The distribution of soil fungal communities along an altitudinal gradient in an alpine meadow. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
26
|
Tojo M, Fujii N, Yagi H, Yamashita Y, Tokura K, Kida K, Hakoda A, Herrero ML, Hoshino T, Uchida M. Identification and Isolation Pattern of Globisporangium spp. from a Sanionia Moss Colony in Ny-Ålesund, Spitsbergen Is., Norway from 2006 to 2018. Microorganisms 2021; 9:microorganisms9091912. [PMID: 34576807 PMCID: PMC8467116 DOI: 10.3390/microorganisms9091912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
Globisporangium spp. are soil-inhabiting oomycetes distributed worldwide, including in polar regions. Some species of the genus are known as important plant pathogens. This study aimed to clarify the species construction of Globisporangium spp. and their long-term isolation pattern in Sanionia moss in Ny-Ålesund, Spitsbergen Is., Norway. Globisporangium spp. were isolated at two-year intervals between 2006 and 2018 at a Sanionia moss colony, Ny-Ålesund, Spitsbergen Is., Norway. The isolates were obtained by using three agar media and were identified based on sequences of the rDNA-ITS region and cultural characteristics. Most of the Globisporangium isolates obtained during the survey were identified into six species. All six species were grown at 0 °C on an agar plate and used to infect Sanionia moss at 4 and/or 10 °C under an in vitro inoculation test. The total isolation frequency of Globisporangium gradually decreased throughout the survey period. The isolation frequency varied among the six species, and four of the species that showed a high frequency in 2006 were rarely isolated after 2016. The results suggested that Globisporangium inhabiting Sanionia moss in Ny-Ålesund has a unique composition of species and that most of the species reduced their population over the recent decade.
Collapse
Affiliation(s)
- Motoaki Tojo
- Laboratory of Plant Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Gakuen-Cho 1-1, Sakai, Osaka 599-8531, Japan; (N.F.); (H.Y.); (Y.Y.); (K.T.); (K.K.); (A.H.)
- Correspondence:
| | - Natsumi Fujii
- Laboratory of Plant Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Gakuen-Cho 1-1, Sakai, Osaka 599-8531, Japan; (N.F.); (H.Y.); (Y.Y.); (K.T.); (K.K.); (A.H.)
| | - Hironori Yagi
- Laboratory of Plant Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Gakuen-Cho 1-1, Sakai, Osaka 599-8531, Japan; (N.F.); (H.Y.); (Y.Y.); (K.T.); (K.K.); (A.H.)
| | - Yuki Yamashita
- Laboratory of Plant Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Gakuen-Cho 1-1, Sakai, Osaka 599-8531, Japan; (N.F.); (H.Y.); (Y.Y.); (K.T.); (K.K.); (A.H.)
| | - Katsuyuki Tokura
- Laboratory of Plant Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Gakuen-Cho 1-1, Sakai, Osaka 599-8531, Japan; (N.F.); (H.Y.); (Y.Y.); (K.T.); (K.K.); (A.H.)
| | - Kenichi Kida
- Laboratory of Plant Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Gakuen-Cho 1-1, Sakai, Osaka 599-8531, Japan; (N.F.); (H.Y.); (Y.Y.); (K.T.); (K.K.); (A.H.)
| | - Akiho Hakoda
- Laboratory of Plant Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Gakuen-Cho 1-1, Sakai, Osaka 599-8531, Japan; (N.F.); (H.Y.); (Y.Y.); (K.T.); (K.K.); (A.H.)
| | - María-Luz Herrero
- Norwegian Institute of Bioeconomy Research (NIBIO), P.O. Box 115, NO-1431 Ås, Norway;
| | - Tamotsu Hoshino
- Department of Life and Environmental Science, Faculty of Engineering, Hachinohe Institute of Technology 88-1, Obiraki, Myo, Hachinohe 031-8501, Japan;
| | - Masaki Uchida
- National Institute of Polar Research (NIPR), 10-3 Midori-cho, Tachikawa, Tokyo 190-8518, Japan;
| |
Collapse
|