1
|
Ji J, Han X, Zang L, Li Y, Lin L, Hu D, Sun S, Ren Y, Maker G, Lu Z, Wang L. Integrative multi-omics data provide insights into the biosynthesis of furanocoumarins and mechanisms regulating their accumulation in Angelica dahurica. Commun Biol 2025; 8:649. [PMID: 40269101 PMCID: PMC12019236 DOI: 10.1038/s42003-025-08076-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 04/10/2025] [Indexed: 04/25/2025] Open
Abstract
Furocoumarins (FCs), important natural compounds with biodefense roles and pharmacological activities, are notably abundant in medicinal plant Angelica dahurica. However, its accumulation patterns over development stages in FC-enriched tissue, biosynthetic pathways, and regulatory mechanisms in A. dahurica remain elusive. Here, we quantified the concentration dynamics of 17 coumarins across six developmental stages of root and found a gradual decrease in FC concentration as the roots develop. Using a de-novo assembled chromosome-level genome for A. dahurica, we conducted integrative multi-omics analyses to screen out candidate genes to fill in the sole missing step in the biosynthesis of imperatorin and isoimperatorin. This revealed that CYP71AZ18 catalyzes hydroxylation at the C-5 position of psoralen to generate bergaptol, while CYP71AZ19 and CYP83F95 catalyze hydroxylation at the C-8 position to produce xanthotoxol, notably indicating that a single step is catalyzed by two genes from distinct CYP450 subfamilies in this species. CYP71AZ19 originated from a proximal duplication event of CYP71AZ18, specific to A. dahurica, and subsequently underwent neofunctionalization. Accessible chromatin regions (ACRs), especially proximal ACRs, correlated with high gene expression levels, and the three validated genes exhibited strong signals of ACRs, showing the importance of chromosomal accessibility in regulating metabolite biosynthesis.
Collapse
Grants
- 32300223, 32070242, and 82373837 National Natural Science Foundation of China (National Science Foundation of China)
- National Key Research and Development Program of China, grant 2023YFA0915800; Shenzhen Fundamental Research Program, grant 20220817165436004; Shenzhen Science and Technology Program, grant KQTD2016113010482651; Key Project at Central Government Level (The ability establishment of sustainable use for valuable Chinese medicine resources), grant 2060302; Special Funds for Science Technology Innovation and Industrial Development of Shenzhen Dapeng New District, grants RC201901-05 and PT201901-19; Basic and Applied Basic Research Fund of Guangdong, grant 2020A1515110912; Science, Technology, and Innovation Commission of Shenzhen Municipality of China, grant ZDSYS20200811142605017
Collapse
Affiliation(s)
- Jiaojiao Ji
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xiaoxu Han
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- College of Environmental and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | - Lanlan Zang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yushan Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liqun Lin
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Donghua Hu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shichao Sun
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yonglin Ren
- College of Environmental and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | - Garth Maker
- College of Environmental and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | - Zefu Lu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Li Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
- Kunpeng Institute of Modern Agriculture at Foshan 528000, Foshan, China.
| |
Collapse
|
2
|
Zou JL, Li HY, Nie B, Wang ZL, Zhao CX, Tian YG, Lin LQ, Xu WZ, Hou ZW, Sun WK, Han XX, Zhang M, Wang HT, Li QY, Wang L, Ye M. Complete biosynthetic pathway of furochromones in Saposhnikovia divaricata and its evolutionary mechanism in Apiaceae plants. Nat Commun 2025; 16:3109. [PMID: 40169603 PMCID: PMC11961743 DOI: 10.1038/s41467-025-58498-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 03/18/2025] [Indexed: 04/03/2025] Open
Abstract
Furochromones are specific bioactive secondary metabolites of many Apiaceae plants. Their biosynthesis remains largely unexplored. In this work, we dissect the complete biosynthetic pathway of major furochromones in the medicinal plant Saposhnikovia divaricata by characterizing prenyltransferase, peucenin cyclase, methyltransferase, hydroxylase, and glycosyltransferases. De novo biosynthesis of prim-O-glucosylcimifugin and 5-O-methylvisamminoside is realized in Nicotiana benthamiana leaves. Through comparative genomic and transcriptomic analyses, we further find that proximal duplication and high expression of a pentaketide chromone synthase gene SdPCS, together with the presence of a lineage-specific peucenin cyclase gene SdPC, lead to the predominant accumulation of furochromones in the roots of S. divaricata among surveyed Apiaceae plants. This study paves the way for metabolic engineering production of furochromones, and sheds light into evolutionary mechanisms of furochromone biosynthesis among Apiaceae plants.
Collapse
Affiliation(s)
- Jian-Lin Zou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Hong-Ye Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Bao Nie
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Zi-Long Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Chun-Xue Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Yun-Gang Tian
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Li-Qun Lin
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Wei-Zhe Xu
- Civil Aviation Medicine Center, Civil Aviation Administration of China, A-1 Gaojing, Beijing, 100123, China
| | - Zhuang-Wei Hou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Wen-Kai Sun
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Xiao-Xu Han
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Meng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Hao-Tian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Qing-Yan Li
- Civil Aviation Medicine Center, Civil Aviation Administration of China, A-1 Gaojing, Beijing, 100123, China
| | - Li Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China.
| |
Collapse
|
3
|
Hu B, Zhou J, Li J, Chen J, Du G, Zhong F, Zhao Y, Zhao X. Efficient Biosynthesis of Furanocoumarin Intermediate Marmesin by Engineered Escherichia coli. ACS Synth Biol 2025; 14:954-966. [PMID: 40014795 DOI: 10.1021/acssynbio.4c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Marmesin, a plant dihydrofuranocoumarin, is an important intermediate in the synthesis of linear furanocoumarins and exhibits a variety of pharmacological activities. However, due to the lack of efficient prenyltransferases, the incompatibility of redox partners for P450 enzymes, and the insufficient supply of precursor (DMAPP), the microbial synthesis of marmesin remained at an extremely low level. Here, we report the efficient biosynthesis of marmesin in Escherichia coli by screening the robust 6-prenyltransferase PpPT1 and marmesin synthase PpDCΔ2-29 from Peucedanum praeruptorum. Next, the activities of PpPT1 and PpDCΔ2-29 were enhanced using fusion protein tags and redox partner engineering, respectively. In addition, the synthesis of marmesin was further improved by strengthening the methylerythritol phosphate (MEP) pathway to increase the availability of DMAPP and by optimizing the modular pathway in the engineered strain. Finally, the titer of marmesin reached 203.69 mg L-1 in the fed-batch fermentation with a molar conversion rate of umbelliferone of 81.4%, which is the highest titer for marmesin production using engineered microorganisms. The applied strategy and marmesin-producing strain constructed in this study lay the foundation for the green production of valuable complex furanocoumarins.
Collapse
Affiliation(s)
- Baodong Hu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Fang Zhong
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yucheng Zhao
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Xinrui Zhao
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
4
|
Bouillé A, Larbat R, Kumari R, Olry A, Charles C, Nelson DR, Thornton J, Villard C, Hehn A. Lineage-specific patterns in the Moraceae family allow identification of convergent P450 enzymes involved in furanocoumarin biosynthesis. THE NEW PHYTOLOGIST 2025; 245:2085-2102. [PMID: 39776411 DOI: 10.1111/nph.20381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025]
Abstract
Specialized metabolites are molecules involved in plants' interaction with their environment. Elucidating their biosynthetic pathways is a challenging but rewarding task, leading to societal applications and ecological insights. Furanocoumarins emerged multiple times in Angiosperms, raising the question of how different enzymes evolved into catalyzing identical reactions. To identify enzymes producing lineage-specific metabolites, an evolutionary-based approach was developed and applied to furanocoumarin biosynthesis in Ficus carica (Moraceae). This led to the characterization of CYP71B129-131a, three P450 enzymes whose evolution of the function was investigated using phylogenetics, structural comparisons and site-directed mutagenesis. CYP71B129 and CYP71B130,131a were found to hydroxylate umbelliferone (coumarin) and xanthotoxin (furanocoumarin), respectively. Results suggest that CYP71Bs xanthotoxin hydroxylase activity results from duplications and functional divergence of umbelliferone hydroxylase genes. Structural comparisons highlighted an amino acid affecting CYP71Bs substrate specificity, which may play a key role in allowing xanthotoxin hydroxylation in several P450 subfamilies. CYP71B130-131a characterization validates the proposed enzyme-discovery approach, which can be applied to different pathways and help to avoid the classic bottlenecks of specialized metabolism elucidation. The CYP71Bs also exemplify how furanocoumarin-biosynthetic enzymes can stem from coumarin-biosynthetic ones and provides insights into the molecular mechanisms underlying the multiple emergences of xanthotoxin hydroxylation in distant P450 subfamilies.
Collapse
Affiliation(s)
| | - Romain Larbat
- Institut Agro, University of Angers, INRAE, IRHS, SFR QUASAV, F-49000, Angers, France
| | - Rashmi Kumari
- European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, CB10 1SD, Cambridge, UK
| | - Alexandre Olry
- Université de Lorraine, INRAE, LAE, 54000, Nancy, France
| | | | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, 38163, TN, USA
| | - Janet Thornton
- European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, CB10 1SD, Cambridge, UK
| | - Cloé Villard
- Biosystematics Group, Wageningen University and Research, Wageningen, 6708 PB, the Netherlands
| | - Alain Hehn
- Université de Lorraine, INRAE, LAE, 54000, Nancy, France
| |
Collapse
|
5
|
Goldenberg L, Ghuge SA, Doron-Faigenboim A, Carmeli-Weissberg M, Shaya F, Rozen A, Dahan Y, Plesser E, Kelly G, Yaniv Y, Arad T, Ophir R, Sherman A, Carmi N, Eyal Y. A 2OGD multi-gene cluster encompasses functional and tissue specificity that direct furanocoumarin and pyranocoumarin biosynthesis in citrus. THE NEW PHYTOLOGIST 2025; 245:1547-1562. [PMID: 39775733 DOI: 10.1111/nph.20322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/10/2024] [Indexed: 01/11/2025]
Abstract
Furanocoumarins (FCs) are plant defence compounds derived from the phenylpropanoid pathway via the coumarin umbelliferone that harbour some therapeutic benefits yet are the underlying cause of 'grapefruit-drug interactions' in humans. Most of the pathway genes have not been identified in citrus. We employed a genetic/Omics approach on citrus ancestral species and F1 populations of mandarin × grapefruit and mandarin × pummelo. Enzyme specificity was characterized by In vivo 2-oxoglutarate-dependent dioxygenase family (2OGD) activity assays. We identified a 2OGD multi-gene cluster involved in coumarin/FC/pyranocoumarin biosynthesis; Species lacking FCs in leaves/fruit were homozygous for a 655-base solo-LTR frame-disrupting insertion within one dual specificity C2'H/F6'H encoding 2OGD gene, demonstrating that integrity of this gene is fully correlated with the capacity to biosynthesize metabolites of the extended FC pathway in leaves/fruit. A second 2OGD is the prominent gene expressed in citrus roots, which contain a unique pattern of extended FC pathway metabolites, including the predominant pyranocoumarins. A third 2OGD gene encodes a single activity F6'H, which appears to be induced at the transcript level by citrus pathogens. The results provide insights into the genetic basis underlying the difference between citrus fruit FC producers (grapefruit and pummelo) and nonproducers (mandarin and orange) and provide a gene target to breed for FC-free varieties by marker-assisted breeding or genome editing.
Collapse
Affiliation(s)
- Livnat Goldenberg
- Department of Fruit Tree Sciences, The Volcani Center ARO, 68 HaMaccabim Road, Rishon LeZion, 7505101, Israel
| | - Sandip Annasaheb Ghuge
- Department of Fruit Tree Sciences, The Volcani Center ARO, 68 HaMaccabim Road, Rishon LeZion, 7505101, Israel
| | - Adi Doron-Faigenboim
- Department of Vegetable and Field Crops, The Volcani Center ARO, 68 HaMaccabim Road, Rishon LeZion, 7505101, Israel
| | - Mira Carmeli-Weissberg
- Metabolomics Center, The Volcani Center ARO, 68 HaMaccabim Road, Rishon LeZion, 7505101, Israel
| | - Felix Shaya
- Metabolomics Center, The Volcani Center ARO, 68 HaMaccabim Road, Rishon LeZion, 7505101, Israel
| | - Ada Rozen
- Department of Fruit Tree Sciences, The Volcani Center ARO, 68 HaMaccabim Road, Rishon LeZion, 7505101, Israel
| | - Yardena Dahan
- Department of Fruit Tree Sciences, The Volcani Center ARO, 68 HaMaccabim Road, Rishon LeZion, 7505101, Israel
| | - Elena Plesser
- Department of Fruit Tree Sciences, The Volcani Center ARO, 68 HaMaccabim Road, Rishon LeZion, 7505101, Israel
| | - Gilor Kelly
- Department of Fruit Tree Sciences, The Volcani Center ARO, 68 HaMaccabim Road, Rishon LeZion, 7505101, Israel
| | - Yossi Yaniv
- Department of Fruit Tree Sciences, The Volcani Center ARO, 68 HaMaccabim Road, Rishon LeZion, 7505101, Israel
| | - Tal Arad
- Department of Fruit Tree Sciences, The Volcani Center ARO, 68 HaMaccabim Road, Rishon LeZion, 7505101, Israel
| | - Ron Ophir
- Department of Fruit Tree Sciences, The Volcani Center ARO, 68 HaMaccabim Road, Rishon LeZion, 7505101, Israel
| | - Amir Sherman
- Department of Fruit Tree Sciences, The Volcani Center ARO, 68 HaMaccabim Road, Rishon LeZion, 7505101, Israel
| | - Nir Carmi
- Department of Fruit Tree Sciences, The Volcani Center ARO, 68 HaMaccabim Road, Rishon LeZion, 7505101, Israel
| | - Yoram Eyal
- Department of Fruit Tree Sciences, The Volcani Center ARO, 68 HaMaccabim Road, Rishon LeZion, 7505101, Israel
| |
Collapse
|
6
|
Han J, Munakata R, Takahashi H, Koeduka T, Kubota M, Moriyoshi E, Hehn A, Sugiyama A, Yazaki K. Catalytic mechanism underlying the regiospecificity of coumarin-substrate transmembrane prenyltransferases in Apiaceae. PLANT & CELL PHYSIOLOGY 2025; 66:1-14. [PMID: 39575581 PMCID: PMC11775389 DOI: 10.1093/pcp/pcae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/16/2024] [Accepted: 11/22/2024] [Indexed: 01/30/2025]
Abstract
Plant membrane-bound prenyltransferases (PTs) catalyze the transfer of prenyl groups to acceptor substrates, phenols, using prenyl diphosphates as the donor substrate. The presence of prenyl residues in the reaction products, prenylated phenols, is key to the expression of a variety of physiological activities. Plant PTs generally exhibit high specificities for both substrate recognition and prenylation sites, while the molecular mechanism involved in these enzymatic properties is largely unknown. In this study, we performed a systematic biochemical analysis to elucidate the catalytic mechanism responsible for the reaction specificity of plant PTs. Using two representative PTs, PsPT1 and PsPT2, from parsnip (Pastinaca sativa, Apiaceae), which differ only in the regiospecificity of the prenylation site, we performed domain swapping and site-directed mutagenesis of these PTs, followed by detailed enzymatic analysis combined with 3D modeling. As a result, we discovered the domains that control prenylation site specificity and further defined key amino acid residues responsible for the catalytic mechanism. In addition, we showed that the control mechanism of prenylation specificity revealed here is also highly conserved among coumarin-substrate PTs. These data suggest that the regulatory domain revealed here is commonly involved in prenylation regiospecificity in Apiaceae PTs.
Collapse
Affiliation(s)
- Junwen Han
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Ryosuke Munakata
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Hironobu Takahashi
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihama, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Takao Koeduka
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1, Yoshida, Yamaguchi City, Yamaguchi 753-8511, Japan
| | - Mayumi Kubota
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1, Yoshida, Yamaguchi City, Yamaguchi 753-8511, Japan
| | - Eiko Moriyoshi
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Alain Hehn
- Université de Lorraine, INRAE, LAE, Nancy F54000, France
| | - Akifumi Sugiyama
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Kazufumi Yazaki
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
7
|
Wang H, Yang Y, Abe I. Modifications of Prenyl Side Chains in Natural Product Biosynthesis. Angew Chem Int Ed Engl 2024; 63:e202415279. [PMID: 39363683 DOI: 10.1002/anie.202415279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024]
Abstract
In recent years, there has been a growing interest in understanding the enzymatic machinery responsible for the modifications of prenyl side chains and elucidating their roles in natural product biosynthesis. This interest stems from the pivotal role such modifications play in shaping the structural and functional diversity of natural products, as well as from their potential applications to synthetic biology and drug discovery. In addition to contributing to the diversity and complexity of natural products, unique modifications of prenyl side chains are represented by several novel biosynthetic mechanisms. Representative unique examples of epoxidation, dehydrogenation, oxidation of methyl groups to carboxyl groups, unusual C-C bond cleavage and oxidative cyclization are summarized and discussed. By revealing the intriguing chemistry and enzymology behind these transformations, this comprehensive and comparative review will guide future efforts in the discovery, characterization and application of modifications of prenyl side chains in natural product biosynthesis.
Collapse
Affiliation(s)
- Huibin Wang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yi Yang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
8
|
Huang XC, Tang H, Wei X, He Y, Hu S, Wu JY, Xu D, Qiao F, Xue JY, Zhao Y. The gradual establishment of complex coumarin biosynthetic pathway in Apiaceae. Nat Commun 2024; 15:6864. [PMID: 39127760 PMCID: PMC11316762 DOI: 10.1038/s41467-024-51285-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
Complex coumarins (CCs) represent characteristic metabolites found in Apiaceae plants, possessing significant medical value. Their essential functional role is likely as protectants against pathogens and regulators responding to environmental stimuli. Utilizing genomes and transcriptomes from 34 Apiaceae plants, including our recently sequenced Peucedanum praeruptorum, we conduct comprehensive phylogenetic analyses to reconstruct the detailed evolutionary process of the CC biosynthetic pathway in Apiaceae. Our results show that three key enzymes - p-coumaroyl CoA 2'-hydroxylase (C2'H), C-prenyltransferase (C-PT), and cyclase - originated successively at different evolutionary nodes within Apiaceae through various means of gene duplications: ectopic and tandem duplications. Neofunctionalization endows these enzymes with novel functions necessary for CC biosynthesis, thus completing the pathway. Candidate genes are cloned for heterologous expression and subjected to in vitro enzymatic assays to test our hypothesis regarding the origins of the key enzymes, and the results precisely validate our evolutionary inferences. Among the three enzymes, C-PTs are likely the primary determinant of the structural diversity of CCs (linear/angular), due to divergent activities evolved to target different positions (C-6 or C-8) of umbelliferone. A key amino acid variation (Ala161/Thr161) is identified and proven to play a crucial role in the alteration of enzymatic activity, possibly resulting in distinct binding forms between enzymes and substrates, thereby leading to different products. In conclusion, this study provides a detailed trajectory for the establishment and evolution of the CC biosynthetic pathway in Apiaceae. It explains why only a portion, not all, of Apiaceae plants can produce CCs and reveals the mechanisms of CC structural diversity among different Apiaceae plants.
Collapse
Affiliation(s)
- Xin-Cheng Huang
- College of Horticulture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Huanying Tang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Xuefen Wei
- College of Horticulture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yuedong He
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Shuaiya Hu
- College of Horticulture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jia-Yi Wu
- College of Horticulture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Dingqiao Xu
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, China
| | - Fei Qiao
- National Key Laboratory for Tropical Crop Breeding, Sanya, 572024, Hainan, China.
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China.
| | - Jia-Yu Xue
- College of Horticulture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| | - Yucheng Zhao
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China.
- Medical Botanical Garden, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
9
|
Li Q, Dai Y, Huang XC, Sun L, Wang K, Guo X, Xu D, Wan D, An L, Wang Z, Tang H, Qi Q, Zeng H, Qin M, Xue JY, Zhao Y. The chromosome-scale assembly of the Notopterygium incisum genome provides insight into the structural diversity of coumarins. Acta Pharm Sin B 2024; 14:3760-3773. [PMID: 39220882 PMCID: PMC11365381 DOI: 10.1016/j.apsb.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/17/2024] [Accepted: 04/03/2024] [Indexed: 09/04/2024] Open
Abstract
Coumarins, derived from the phenylpropanoid pathway, represent one of the primary metabolites found in angiosperms. The alignment of the tetrahydropyran (THP) and tetrahydrofuran (THF) rings with the lactone structure results in the formation of at least four types of complex coumarins. However, the mechanisms underlying the structural diversity of coumarin remain poorly understood. Here, we report the chromosome-level genome assembly of Notopterygium incisum, spanning 1.64 Gb, with a contig N50 value of 22.7 Mb and 60,021 annotated protein-coding genes. Additionally, we identified the key enzymes responsible for shaping the structural diversity of coumarins, including two p-coumaroyl CoA 2'-hydroxylases crucial for simple coumarins basic skeleton architecture, two UbiA prenyltransferases responsible for angular or linear coumarins biosynthesis, and five CYP736 cyclases involved in THP and THF ring formation. Notably, two bifunctional enzymes capable of catalyzing both demethylsuberosin and osthenol were identified for the first time. Evolutionary analysis implies that tandem and ectopic duplications of the CYP736 subfamily, specifically arising in the Apiaceae, contributed to the structural diversity of coumarins in N. incisum. Conclusively, this study proposes a parallel evolution scenario for the complex coumarin biosynthetic pathway among different angiosperms and provides essential synthetic biology elements for the heterologous industrial production of coumarins.
Collapse
Affiliation(s)
- Qien Li
- Tibetan Medicine Research Center of Qinghai University, Tibetan Medical College, Qinghai University, Xining 810016, China
| | - Yiqun Dai
- School of Pharmacy, Bengbu Medical University, Bengbu 233030, China
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xin-Cheng Huang
- College of Horticulture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Lanlan Sun
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Kaixuan Wang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao Guo
- Tibetan Medicine Research Center of Qinghai University, Tibetan Medical College, Qinghai University, Xining 810016, China
| | - Dingqiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Digao Wan
- Tibetan Medicine Research Center of Qinghai University, Tibetan Medical College, Qinghai University, Xining 810016, China
| | - Latai An
- Tibetan Medicine Research Center of Qinghai University, Tibetan Medical College, Qinghai University, Xining 810016, China
| | - Zixuan Wang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Huanying Tang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qi Qi
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Huihui Zeng
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Minjian Qin
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jia-Yu Xue
- College of Horticulture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Yucheng Zhao
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
10
|
Wang Y, Liu X, Chen S, Wang Q, Jin B, Wang L. Functions, accumulation, and biosynthesis of important secondary metabolites in the fig tree ( Ficus carica). FRONTIERS IN PLANT SCIENCE 2024; 15:1397874. [PMID: 39022605 PMCID: PMC11253076 DOI: 10.3389/fpls.2024.1397874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024]
Abstract
Ficus carica is an economically important horticultural plant. Due to its abundant secondary metabolites, F. carica has gained interest for its applications in medicine and as a nutritional supplement. Both external and internal factors affect the accumulation of secondary metabolites in F. carica. The assembly of the F. carica genome has facilitated functional analysis of key genes and transcription factors associated with the biosynthesis of secondary metabolites, particularly anthocyanin. In this review, we summarize the various types and functions of secondary metabolites, with a particular focus on flavonoids, coumarins, and terpenes. We also explore the factors influencing their biosynthesis and accumulation, including varieties, tissue, environmental factors (e.g., light), stresses (e.g., high temperature, low temperature, drought, nutrient deficiencies, salinity), hormonal treatments, and developmental factors. Furthermore, we discuss the involvement of structural genes and transcription factors in the biosynthesis of secondary metabolites, specifically anthocyanin and furanocoumarins, knowledge of which will promote the breeding and genetic engineering of novel F. carica varieties.
Collapse
Affiliation(s)
| | | | | | | | | | - Li Wang
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, China
| |
Collapse
|
11
|
Kaixuan W, Zeng H, Yiqun D, Zixuan W, Huanying T, Li J, Xingchen L, Jiang N, Xie G, Zhu Y, Zhao Y, Qin M. Three types of enzymes complete the furanocoumarins core skeleton biosynthesis in Angelica sinensis. PHYTOCHEMISTRY 2024:114102. [PMID: 38641144 DOI: 10.1016/j.phytochem.2024.114102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/28/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
Furanocoumarins (FCs) are widely distributed secondary metabolites found in higher plants, including Apiaceae, Rutaceae, Moraceae, and Fabaceae. They play a crucial role in the physiological functions of plants and are well-known for their diverse pharmacological activities. As a representative plant of the Apiaceae family, Angelica sinensis is highly valued for its medicinal properties and FCs are one of the main ingredients of A. sinensis. However, the biosynthetic mechanism of FCs in A. sinensis remains poorly understood. In this study, we successfully cloned and verified three types of enzymes using genome analysis and in vitro functional verification, which complete the biosynthesis of the FCs core skeleton in A. sinensis. It includes a p-coumaroyl CoA 2'-hydroxylase (AsC2'H) responsible for umbelliferone formation, two UbiA prenyltransferases (AsPT1 and AsPT2) that convert umbelliferone to demethylsuberosin (DMS) and osthenol, respectively, and two CYP736 subfamily cyclases (AsDC and AsOD) that catalyze the formation of FCs core skeleton. Interestingly, AsOD was demonstrated to be a bifunctional cyclase and could catalyze both DMS and osthenol, but had a higher affinity to osthenol. The characterization of these enzymes elucidates the molecular mechanism of FCs biosynthesis, providing new insights and technologies for understanding the diverse origins of FCs biosynthesis.
Collapse
Affiliation(s)
- Wang Kaixuan
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Huihui Zeng
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Dai Yiqun
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Wang Zixuan
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Tang Huanying
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Junde Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Lu Xingchen
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Neng Jiang
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi, PR China
| | - Guoyong Xie
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yan Zhu
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yucheng Zhao
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Medical Botanical Garden, China Pharmaceutical University, Nanjing 210014, China.
| | - Minjian Qin
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Medical Botanical Garden, China Pharmaceutical University, Nanjing 210014, China.
| |
Collapse
|
12
|
Liang X, Wang H, Xu W, Liu X, Zhao C, Chen J, Wang D, Xu S, Cao J, Sun C, Wang Y. Metabolome and Transcriptome Analysis Revealed the Basis of the Difference in Antioxidant Capacity in Different Tissues of Citrus reticulata 'Ponkan'. Antioxidants (Basel) 2024; 13:243. [PMID: 38397841 PMCID: PMC10886001 DOI: 10.3390/antiox13020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/29/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Citrus is an important type of fruit, with antioxidant bioactivity. However, the variations in the antioxidant ability of different tissues in citrus and its metabolic and molecular basis remain unclear. Here, we assessed the antioxidant capacities of 12 tissues from Citrus reticulata 'Ponkan', finding that young leaves and root exhibited the strongest antioxidant capacity. Secondary metabolites accumulated differentially in parts of the citrus plant, of which flavonoids were enriched in stem, leaf, and flavedo; phenolic acids were enriched in the albedo, while coumarins were enriched in the root, potentially explaining the higher antioxidant capacities of these tissues. The spatially specific accumulation of metabolites was related to the expression levels of biosynthesis-related genes such as chalcone synthase (CHS), chalcone isomerase (CHI), flavone synthase (FNS), O-methyltransferase (OMT), flavonoid-3'-hydroxylase (F3'H), flavonoid-6/8-hydroxylase (F6/8H), p-coumaroyl CoA 2'-hydroxylase (C2'H), and prenyltransferase (PT), among others, in the phenylpropane pathway. Weighted gene co-expression network analysis (WGCNA) identified modules associated with flavonoids and coumarin content, among which we identified an OMT involved in coumarin O-methylation, and related transcription factors were predicted. Our study identifies key genes and metabolites influencing the antioxidant capacity of citrus, which could contribute to the enhanced understanding and utilization of bioactive citrus components.
Collapse
Affiliation(s)
- Xiao Liang
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou 310058, China; (X.L.); (H.W.); (W.X.); (X.L.); (C.Z.); (J.C.); (J.C.); (C.S.)
| | - Huixin Wang
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou 310058, China; (X.L.); (H.W.); (W.X.); (X.L.); (C.Z.); (J.C.); (J.C.); (C.S.)
| | - Wanhua Xu
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou 310058, China; (X.L.); (H.W.); (W.X.); (X.L.); (C.Z.); (J.C.); (J.C.); (C.S.)
| | - Xiaojuan Liu
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou 310058, China; (X.L.); (H.W.); (W.X.); (X.L.); (C.Z.); (J.C.); (J.C.); (C.S.)
| | - Chenning Zhao
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou 310058, China; (X.L.); (H.W.); (W.X.); (X.L.); (C.Z.); (J.C.); (J.C.); (C.S.)
| | - Jiebiao Chen
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou 310058, China; (X.L.); (H.W.); (W.X.); (X.L.); (C.Z.); (J.C.); (J.C.); (C.S.)
| | - Dengliang Wang
- Citrus Research Institute, Quzhou Academy of Agricultural Sciences, Quzhou 324000, China;
| | - Shuting Xu
- Hangzhou Agriculture Technology Extension Center, Hangzhou 310058, China;
| | - Jinping Cao
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou 310058, China; (X.L.); (H.W.); (W.X.); (X.L.); (C.Z.); (J.C.); (J.C.); (C.S.)
| | - Chongde Sun
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou 310058, China; (X.L.); (H.W.); (W.X.); (X.L.); (C.Z.); (J.C.); (J.C.); (C.S.)
| | - Yue Wang
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou 310058, China; (X.L.); (H.W.); (W.X.); (X.L.); (C.Z.); (J.C.); (J.C.); (C.S.)
| |
Collapse
|
13
|
Zhao Y, He Y, Han L, Zhang L, Xia Y, Yin F, Wang X, Zhao D, Xu S, Qiao F, Xiao Y, Kong L. Two types of coumarins-specific enzymes complete the last missing steps in pyran- and furanocoumarins biosynthesis. Acta Pharm Sin B 2024; 14:869-880. [PMID: 38322336 PMCID: PMC10840424 DOI: 10.1016/j.apsb.2023.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 02/08/2024] Open
Abstract
Pyran- and furanocoumarins are key representatives of tetrahydropyrans and tetrahydrofurans, respectively, exhibiting diverse physiological and medical bioactivities. However, the biosynthetic mechanisms for their core structures remain poorly understood. Here we combined multiomics analyses of biosynthetic enzymes in Peucedanum praeruptorum and in vitro functional verification and identified two types of key enzymes critical for pyran and furan ring biosynthesis in plants. These included three distinct P. praeruptorum prenyltransferases (PpPT1-3) responsible for the prenylation of the simple coumarin skeleton 7 into linear or angular precursors, and two novel CYP450 cyclases (PpDC and PpOC) crucial for the cyclization of the linear/angular precursors into either tetrahydropyran or tetrahydrofuran scaffolds. Biochemical analyses of cyclases indicated that acid/base-assisted epoxide ring opening contributed to the enzyme-catalyzed tetrahydropyran and tetrahydrofuran ring refactoring. The possible acid/base-assisted catalytic mechanisms of the identified cyclases were theoretically investigated and assessed using site-specific mutagenesis. We identified two possible acidic amino acids Glu303 in PpDC and Asp301 in PpOC as vital in the catalytic process. This study provides new enzymatic tools in the epoxide formation/epoxide-opening mediated cascade reaction and exemplifies how plants become chemically diverse in terms of enzyme function and catalytic process.
Collapse
Affiliation(s)
- Yucheng Zhao
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yuedong He
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Liangliang Han
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Libo Zhang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yuanzheng Xia
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Fucheng Yin
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaobing Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Deqing Zhao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 517317, China
| | - Sheng Xu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Fei Qiao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 517317, China
| | - Yibei Xiao
- Department of Pharmacology, School of Pharmacy, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
14
|
Bartnik M. Methoxyfuranocoumarins of Natural Origin-Updating Biological Activity Research and Searching for New Directions-A Review. Curr Issues Mol Biol 2024; 46:856-883. [PMID: 38275669 PMCID: PMC10813879 DOI: 10.3390/cimb46010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Plant secondary metabolites, including furanocoumarins, have attracted attention for decades as active molecules with therapeutic potential, especially those occurring in a limited number of species as evolutionarily specific and chemotaxonomically important. The most famous methoxyfuranocoumarins (MFCs), bergapten, xanthotoxin, isopimpinellin, phellopterin, byakangelicol, byakangelicin, isobergapten, pimpinellin, sphondin, as well as rare ones such as peucedanin and 8-methoxypeucedanin, apaensin, cnidilin, moellendorffiline and dahuribiethrins, have recently been investigated for their various biological activities. The α-glucosidase inhibitory activity and antioxidant potential of moellendorffiline, the antiproliferative and proapoptotic properties of non-UV-activated bergapten and xanthotoxin, the effect of MFC on the activity of tyrosinase, acetyl- and butylcholinesterase, and the role of these compounds as adjuvants in anticancer and antibacterial tests have been confirmed. The anticonvulsant effects of halfordin, the antidepressant effects of xanthotoxin, and the antiadipogenic, neuroprotective, anti-amyloid-β, and anti-inflammatory (via increasing SIRT 1 protein expression) properties of phellopterin, as well as the activity of sphondin against hepatitis B virus, have also attracted interest. It is worth paying attention to the agonistic effect of xanthotoxin on bitter taste receptors (TAS2Rs) on cardiomyocytes, which may be important in the future treatment of tachycardia, as well as the significant anti-inflammatory activity of dahuribiethrins. It should be emphasized that MFCs, although in many cases isolated for the first time many years ago, are still of great interest as bioactive molecules. The aim of this review is to highlight key recent developments in the study of the diverse biological activities of MFCs and attempt to highlight promising directions for their further research. Where possible, descriptions of the mechanisms of action of MFC are provided, which is related to the constantly discovered therapeutic potential of these molecules. The review covers the results of experiments from the last ten years (2014-2023) conducted on isolated natural cMFCs and includes the activity of molecules that have not been activated by UV rays.
Collapse
Affiliation(s)
- Magdalena Bartnik
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, Chodźki 1 Street, 20-093 Lublin, Poland
| |
Collapse
|
15
|
Schelkunov MI, Shtratnikova VY, Klepikova AV, Makarenko MS, Omelchenko DO, Novikova LA, Obukhova EN, Bogdanov VP, Penin AA, Logacheva MD. The genome of the toxic invasive species Heracleum sosnowskyi carries an increased number of genes despite absence of recent whole-genome duplications. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:449-463. [PMID: 37846604 DOI: 10.1111/tpj.16500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023]
Abstract
Heracleum sosnowskyi, belonging to a group of giant hogweeds, is a plant with large effects on ecosystems and human health. It is an invasive species that contributes to the deterioration of grassland ecosystems. The ability of H. sosnowskyi to produce linear furanocoumarins (FCs), photosensitizing compounds, makes it very dangerous. At the same time, linear FCs are compounds with high pharmaceutical value used in skin disease therapies. Despite this high importance, it has not been the focus of genetic and genomic studies. Here, we report a chromosome-scale assembly of Sosnowsky's hogweed genome. Genomic analysis revealed an unusually high number of genes (55106) in the hogweed genome, in contrast to the 25-35 thousand found in most plants. However, we did not find any traces of recent whole-genome duplications not shared with its confamiliar, Daucus carota (carrot), which has approximately thirty thousand genes. The analysis of the genomic proximity of duplicated genes indicates on tandem duplications as a main reason for this increase. We performed a genome-wide search of the genes of the FC biosynthesis pathway and surveyed their expression in aboveground plant parts. Using a combination of expression data and phylogenetic analysis, we found candidate genes for psoralen synthase and experimentally showed the activity of one of them using a heterologous yeast expression system. These findings expand our knowledge on the evolution of gene space in plants and lay a foundation for further analysis of hogweed as an invasive plant and as a source of FCs.
Collapse
Affiliation(s)
- Mikhail I Schelkunov
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Viktoria Yu Shtratnikova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Anna V Klepikova
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Maksim S Makarenko
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Denis O Omelchenko
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Lyudmila A Novikova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | - Viktor P Bogdanov
- Life Sciences Research Center, Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
| | - Aleksey A Penin
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Maria D Logacheva
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
- Skolkovo Institute of Science and Technology, Moscow, Russia
| |
Collapse
|
16
|
Ono E, Murata J. Exploring the Evolvability of Plant Specialized Metabolism: Uniqueness Out Of Uniformity and Uniqueness Behind Uniformity. PLANT & CELL PHYSIOLOGY 2023; 64:1449-1465. [PMID: 37307423 PMCID: PMC10734894 DOI: 10.1093/pcp/pcad057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/28/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
The huge structural diversity exhibited by plant specialized metabolites has primarily been considered to result from the catalytic specificity of their biosynthetic enzymes. Accordingly, enzyme gene multiplication and functional differentiation through spontaneous mutations have been established as the molecular mechanisms that drive metabolic evolution. Nevertheless, how plants have assembled and maintained such metabolic enzyme genes and the typical clusters that are observed in plant genomes, as well as why identical specialized metabolites often exist in phylogenetically remote lineages, is currently only poorly explained by a concept known as convergent evolution. Here, we compile recent knowledge on the co-presence of metabolic modules that are common in the plant kingdom but have evolved under specific historical and contextual constraints defined by the physicochemical properties of each plant specialized metabolite and the genetic presets of the biosynthetic genes. Furthermore, we discuss a common manner to generate uncommon metabolites (uniqueness out of uniformity) and an uncommon manner to generate common metabolites (uniqueness behind uniformity). This review describes the emerging aspects of the evolvability of plant specialized metabolism that underlie the vast structural diversity of plant specialized metabolites in nature.
Collapse
Affiliation(s)
- Eiichiro Ono
- Suntory Global Innovation Center Ltd. (SIC), 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto, 619-0284 Japan
| | - Jun Murata
- Bioorganic Research Institute (SUNBOR), Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto, 619-0284 Japan
| |
Collapse
|
17
|
He Y, Zhang J, He Y, Liu H, Wang C, Guan G, Zhao Y, Tian Y, Zhong X, Lu X. Two O-methyltransferases are responsible for multiple O-methylation steps in the biosynthesis of furanocoumarins from Angelicadecursiva. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108142. [PMID: 39492167 DOI: 10.1016/j.plaphy.2023.108142] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 11/05/2024]
Abstract
Angelica decursiva, an important traditional medicinal plant, possesses a unique pharmacological activity. Its principal active ingredients are coumarins, including scopoletin, bergapten, and imperatorin. However, the enzymes catalyzing the critical step of coumarins biosynthesis pathway remain unidentified. This study initially screened 14 candidate O-methyltransferases (OMTs) through transcriptomics and metabolic determination. Combined with gene expression profile and biochemical assays, two OMTs (AdOMT1 and AdOMT2) were identified to be responsible for the O-methylation of coumarins in A. decursiva. AdOMT1 showed higher catalytic efficiency for bergaptol (Kcat/Km = 3123.70), while AdOMT2 exhibited higher substrate and catalytic promiscuity, allowing it to catalyze the methylation of various coumarins, phenylpropanes, and flavonoids. Based on molecular docking and site-specific mutagenesis determined that His126/Asn132, Phe171/Phe177, Trp261/Trp267, and Asn312/Ile317 were the key catalytic residues of AdOMT1 and AdOMT2 for the O-methylation of bergaptol and xanthotoxol. Further phylogenetic analysis confirmed the reasons for the catalytic functional differentiation of AdOMT1 and AdOMT2. This study provides a basis for exploring the coumarins O-methylation mechanism and plays a critical role in diversifying the structures used in coumarins drug discovery.
Collapse
Affiliation(s)
- Yuedong He
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Jing Zhang
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Yuewei He
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Huhu Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Chong Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Guiping Guan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Yucheng Zhao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Yun Tian
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| | - Xiaohong Zhong
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| | - Xiangyang Lu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| |
Collapse
|
18
|
Wang Z, Zhou Y, Wang Y, Yan X. Reconstitution and Optimization of the Marmesin Biosynthetic Pathway in Yeast. ACS Synth Biol 2023; 12:2922-2933. [PMID: 37767718 DOI: 10.1021/acssynbio.3c00267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Marmesin is essential in plant defense systems and exhibits various biological activities. In this study, we reconstituted the marmesin biosynthetic pathway in the Saccharomyces cerevisiae BY4741 chassis. We engineered the aromatic amino acid (AAA) biosynthetic pathways by introducing Escherichia coli-derived ppsA to improve the availability of the AAA precursor phosphoenolpyruvate, overexpressing the feedback inhibition resistance genes ARO4K229L and ARO7G141S to direct the metabolic flux toward the tyrosine branch, and deleting ARO10, PDC5, and PDC6 to reduce the byproducts from the Ehrlich pathway. The umbelliferone 6-dimethylallyltransferase (U6DT) and marmesin synthase (MS) involved in marmesin synthesis were optimized to increase marmesin production. Marmesin production was improved by truncating the transmembrane domains of PcU6DT, FcMS, and AtCPR1 and increasing the copy numbers of the genes encoding the truncated enzymes. Finally, a marmesin titer of 27.7 mg/L was obtained in shake flasks using the engineered yeast strain MU5. The constructed marmesin-producing strain provides the foundation for the green and large-scale production of pharmaceutically important furanocoumarins.
Collapse
Affiliation(s)
- Zhaoxin Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Ying Zhou
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuefei Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Xiaohui Yan
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
19
|
Tao M, Liu S, Li Y, Liu A, Tian J, Liu Y, Fu H, Zhu W. Molecular characterization of a feruloyl-CoA 6'-hydroxylase involved in coumarin biosynthesis in Clematis terniflora DC. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:162-170. [PMID: 36709578 DOI: 10.1016/j.plaphy.2023.01.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/05/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Coumarin is an important secondary metabolite that affects plant physiology. It is a lactone of cis-o-hydroxycinnamic acid and widely exists in medicinal plants. Clematis terniflora DC. is a plant belonging to Ranunculaceae and is rich in variety of coumarins. Feruloyl-CoA 6'-hydroxylase has been reported as a key enzyme in the formation of coumarin basic skeleton only in some common plants, however, its evidence in other species is still lacking especially for the biosynthesis of coumarins in C. terniflora. In the present study, we identified a feruloyl-CoA 6'-hydroxylase CtF6'H in C. terniflora, and functional characterization indicated that CtF6'H could hydroxylate feruloyl-CoA to 6-hydroxyferuloyl-CoA. Furthermore, the expression level of CtF6'H was differed among different tissues in C. terniflora, while under UV-B radiation, the level of CtF6'H was increased in the leaves. Biochemical characteristics and subcellular location showed that CtF6'H was mainly present in the cytosol. The crystal structure of CtF6'H was simulated by homology modeling to predict the potential residues affecting enzyme activity. This study provides the additional evidence of feruloyl-CoA 6'-hydroxylase in different plant species and enriches our understanding of biosynthetic mechanism of coumarin in C. terniflora.
Collapse
Affiliation(s)
- Minglei Tao
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China; College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027, China
| | - Shengzhi Liu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027, China
| | - Yaohan Li
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027, China
| | - Amin Liu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027, China
| | - Jingkui Tian
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Yuchang Liu
- International Center of Zhejiang Fuyang High School, Hangzhou, 311400, China
| | - Hongwei Fu
- College of Life Science, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Wei Zhu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China.
| |
Collapse
|
20
|
Han X, Li C, Sun S, Ji J, Nie B, Maker G, Ren Y, Wang L. The chromosome-level genome of female ginseng (Angelica sinensis) provides insights into molecular mechanisms and evolution of coumarin biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1224-1237. [PMID: 36259135 DOI: 10.1111/tpj.16007] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Coumarins are natural products with important medicinal values, and include simple coumarins, furanocoumarins and pyranocoumarins. Female ginseng (Angelica sinensis) is a renowned herb with abundant coumarins, originated in China and known for the treatment of female ailments for thousands of years. The molecular basis of simple coumarin biosynthesis in A. sinensis and the evolutionary history of the genes involved in furanocoumarin biosynthesis are largely unknown. Here, we generated the first chromosome-scale genome of A. sinensis. It has a genome size of 2.37 Gb, which was generated by combining PacBio and Hi-C sequencing technologies. The genome was predicted to contain 43 202 protein-coding genes dispersed mainly on 11 pseudochromosomes. We not only provided evidence for whole-genome duplication (WGD) specifically occurring in the Apioideae subfamily, but also demonstrated the vital role of tandem duplication for phenylpropanoid biosynthesis in A. sinensis. Combined analyses of transcriptomic and metabolomic data revealed key genes and candidate transcription factors regulating simple coumarin biosynthesis. Furthermore, phylogenomic synteny network analyses suggested prenyltransferase genes involved in furanocoumarin biosynthesis evolved independently in the Moraceae, Fabaceae, Rutaceae and Apiaceae after ζ and ε WGD. Our work sheds light on coumarin biosynthesis, and provides a benchmark for accelerating genetic research and molecular breeding in A. sinensis.
Collapse
Affiliation(s)
- Xiaoxu Han
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
- College of Science, Health, Engineering and Education, Murdoch University, 6150, Western Australia, Murdoch, 90 South Street, Australia
| | - Cheng Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Shichao Sun
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Jiaojiao Ji
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Bao Nie
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Garth Maker
- College of Science, Health, Engineering and Education, Murdoch University, 6150, Western Australia, Murdoch, 90 South Street, Australia
| | - Yonglin Ren
- College of Science, Health, Engineering and Education, Murdoch University, 6150, Western Australia, Murdoch, 90 South Street, Australia
| | - Li Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
- Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, 528200, Foshan, China
| |
Collapse
|
21
|
Rodrigues JL, Gomes D, Rodrigues LR. Challenges in the Heterologous Production of Furanocoumarins in Escherichia coli. Molecules 2022; 27:molecules27217230. [PMID: 36364054 PMCID: PMC9656933 DOI: 10.3390/molecules27217230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 12/02/2022] Open
Abstract
Coumarins and furanocoumarins are plant secondary metabolites with known biological activities. As they are present in low amounts in plants, their heterologous production emerged as a more sustainable and efficient approach to plant extraction. Although coumarins biosynthesis has been positively established, furanocoumarin biosynthesis has been far more challenging. This study aims to evaluate if Escherichia coli could be a suitable host for furanocoumarin biosynthesis. The biosynthetic pathway for coumarins biosynthesis in E. coli was effectively constructed, leading to the production of umbelliferone, esculetin and scopoletin (128.7, 17.6, and 15.7 µM, respectively, from tyrosine). However, it was not possible to complete the pathway with the enzymes that ultimately lead to furanocoumarins production. Prenyltransferase, psoralen synthase, and marmesin synthase did not show any activity when expressed in E. coli. Several strategies were tested to improve the enzymes solubility and activity with no success, including removing potential N-terminal transit peptides and expression of cytochrome P450 reductases, chaperones and/or enzymes to increase dimethylallylpyrophosphate availability. Considering the results herein obtained, E. coli does not seem to be an appropriate host to express these enzymes. However, new alternative microbial enzymes may be a suitable option for reconstituting the furanocoumarins pathway in E. coli. Nevertheless, until further microbial enzymes are identified, Saccharomyces cerevisiae may be considered a preferred host as it has already been proven to successfully express some of these plant enzymes.
Collapse
Affiliation(s)
- Joana L. Rodrigues
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: ; Tel.: +35-125-360-4423
| | - Daniela Gomes
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Lígia R. Rodrigues
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
22
|
Zhang Y, Bai P, Zhuang Y, Liu T. Two O-Methyltransferases Mediate Multiple Methylation Steps in the Biosynthesis of Coumarins in Cnidium monnieri. JOURNAL OF NATURAL PRODUCTS 2022; 85:2116-2121. [PMID: 35930697 DOI: 10.1021/acs.jnatprod.2c00410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Coumarins with methoxy groups such as osthole (1), xanthotoxin (2), bergapten (3), and isopimpinellin (4) are typical bioactive ingredients of many medicinal plants. The methylation steps remain widely unknown. Herein, we report the discovery of two methyltransferases in the biosynthesis of O-methyl coumarins in Cnidium monnieri by transcriptome mining, heterologous expression, and in vitro enzymatic assays. The results reveal that (i) CmOMT1 catalyzes the methylation of osthenol (8) as the final step in the biosynthesis of 1, (ii) CmOMT2 shows the highest efficiency and preference for methylating xanthotoxol (11) to form 2, and (iii) CmOMT1 and CmOMT2 also efficiently transform bergaptol (10) and 8-hydroxybergapten (13) into 3 or 4, suggesting the CmOMTs mediate multistep methylations in the biosynthesis of linear furanocoumarins in C. monnieri.
Collapse
Affiliation(s)
- Yanchen Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Penggang Bai
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yibin Zhuang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Tao Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
23
|
Liu S, Zhong Z, Sun Z, Tian J, Sulaiman K, Shawky E, Fu H, Zhu W. De novo Transcriptome Analysis Revealed the Putative Pathway Genes Involved in Biosynthesis of Moracins in Morus alba L. ACS OMEGA 2022; 7:11343-11352. [PMID: 35415355 PMCID: PMC8992258 DOI: 10.1021/acsomega.2c00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Moracins, a kind of 2-phenyl-benzofuran compound from Moraceae, serve as phytoalexins with antimicrobial, anti-inflammatory, antitumor, and antidiabetes activities and respond to biotic and abiotic stresses, while their biosynthetic pathway and regulatory mechanism remain unclear. Here, we report a de novo transcriptome sequencing for different tissues of seedlings, as well as leaves under different stresses, in M. alba L. A total of 88 282 unigenes were assembled with an average length of 937 bp, and 82.2% of them were annotated. On the basis of the differential expression analysis and enzymatic activity assays in vitro, moracins were traced to the phenylpropanoid pathway, and a putative biosynthetic pathway of moracins was proposed. Unigenes coding key enzymes in the pathway were identified and their expression levels were verified by real-time quantitative reverse transcription PCR (qRT-PCR). Particularly, a p-coumaroyl CoA 2'-hydroxylase was presumed to be involved in the biosynthesis of stilbenes and deoxychalcones in mulberry. Additionally, the transcription factors that might participate in the regulation of moracin biosynthesis were obtained by coexpression analysis. These results shed light on the putative biosynthetic pathway of moracins, providing a basis for further investigation in functional characterization and transcriptional regulation of moracin biosynthesis in mulberry.
Collapse
Affiliation(s)
- Shengzhi Liu
- College
of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Zhuoheng Zhong
- College
of Life Sciences and Medicine, Zhejiang
Sci-Tech University, Hangzhou 310018, China
| | - Zijian Sun
- College
of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Jingkui Tian
- The
Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang
Cancer Hospital), Institute of Basic Medicine
and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310002, China
| | - Kaisa Sulaiman
- The
Xinjiang Uygur Autonomous Region National Institute of Traditional
Chinese Medicine, Urumchi, Xinjiang 830092, China
| | - Eman Shawky
- Department
of Pharmacognosy, Faculty of Pharmacy, Alexandria
University, Alexandria 21521, Egypt
| | - Hongwei Fu
- College
of Life Sciences and Medicine, Zhejiang
Sci-Tech University, Hangzhou 310018, China
| | - Wei Zhu
- The
Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang
Cancer Hospital), Institute of Basic Medicine
and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310002, China
| |
Collapse
|
24
|
Steele TS, Brunson JK, Maeno Y, Terada R, Allen AE, Yotsu-Yamashita M, Chekan JR, Moore BS. Domoic acid biosynthesis in the red alga Chondria armata suggests a complex evolutionary history for toxin production. Proc Natl Acad Sci U S A 2022; 119:e2117407119. [PMID: 35110408 PMCID: PMC8833176 DOI: 10.1073/pnas.2117407119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/10/2021] [Indexed: 12/04/2022] Open
Abstract
Domoic acid (DA), the causative agent of amnesic shellfish poisoning, is produced by select organisms within two distantly related algal clades: planktonic diatoms and red macroalgae. The biosynthetic pathway to isodomoic acid A was recently solved in the harmful algal bloom-forming diatom Pseudonitzschia multiseries, establishing the genetic basis for the global production of this potent neurotoxin. Herein, we sequenced the 507-Mb genome of Chondria armata, the red macroalgal seaweed from which DA was first isolated in the 1950s, identifying several copies of the red algal DA (rad) biosynthetic gene cluster. The rad genes are organized similarly to the diatom DA biosynthesis cluster in terms of gene synteny, including a cytochrome P450 (CYP450) enzyme critical to DA production that is notably absent in red algae that produce the simpler kainoid neurochemical, kainic acid. The biochemical characterization of the N-prenyltransferase (RadA) and kainoid synthase (RadC) enzymes support a slightly altered DA biosynthetic model in C. armata via the congener isodomoic acid B, with RadC behaving more like the homologous diatom enzyme despite higher amino acid similarity to red algal kainic acid synthesis enzymes. A phylogenetic analysis of the rad genes suggests unique origins for the red macroalgal and diatom genes in their respective hosts, with native eukaryotic CYP450 neofunctionalization combining with the horizontal gene transfer of N-prenyltransferases and kainoid synthases to establish DA production within the algal lineages.
Collapse
Affiliation(s)
- Taylor S Steele
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - John K Brunson
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, CA 92037
| | - Yukari Maeno
- Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Ryuta Terada
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan
| | - Andrew E Allen
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, CA 92037
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037
| | - Mari Yotsu-Yamashita
- Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Jonathan R Chekan
- Department of Chemistry and Biochemistry, University of North Carolina Greensboro, Greensboro, NC 27412;
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093;
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|