1
|
Hafner BD, Pietz O, King WL, Scharfetter JB, Bauerle TL. Early developmental shifts in root exudation profiles of five Zea mays L. genotypes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 354:112439. [PMID: 39988132 DOI: 10.1016/j.plantsci.2025.112439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/25/2025] [Accepted: 02/21/2025] [Indexed: 02/25/2025]
Abstract
Root exudates impact soil-plant-microbe interactions and play important roles in ecosystem functioning and plant growth. During early plant development the root rhizosphere may change drastically. For maize (Zea mays L.), one of the world's most important crop species, little is known about root exudation patterns during early plant development. We determined abundance and composition of root exudation among maize genotypes from five inbred lines across three early plant development stages (Emergence, V1-2, and V3-4). We characterized the exudates for non-purgeable organic carbon and performed non-targeted metabolomics with high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). Across all genotypes, plant development stage had a significant influence on both abundance and composition of exudates. Exudation rates (mg C per cm2 root area d-1) were highest in the emergence stage and logarithmically decreased with plant development. In the emergence stage, the roots released predominantly sugars (most indicative: glucose and fructose) and the metabolite richness was generally higher than in later stages. Secondary compounds (e.g. phenolics, benzoxazinoids, or mucilage) increased significantly in later development stages. Differences in the composition of exudates between genotypes may be related to their respective development strategies, with genotypes accumulating more biomass releasing relatively more compounds related to root establishment (growth and rhizosphere development, e.g. mucilage, fatty and organic acids) and slower developing genotypes relatively more metabolites related to maintenance and defense (e.g. phenolics). Our results shed light onto the early dynamics of maize root exudation and rhizosphere establishment, over a phenotypical spectrum of genotypes.
Collapse
Affiliation(s)
- Benjamin D Hafner
- Soil Biophysics & Environmental Systems, Technical University of Munich, Freising, Germany; School of Integrative Plant Science, Cornell University, Ithaca, USA.
| | - Olivia Pietz
- School of Integrative Plant Science, Cornell University, Ithaca, USA; School of Engineering and Applied Science, Harvard University, Cambridge, USA
| | - William L King
- School of Integrative Plant Science, Cornell University, Ithaca, USA; School of Biological Sciences, University of Southampton, Southampton, UK
| | | | - Taryn L Bauerle
- School of Integrative Plant Science, Cornell University, Ithaca, USA
| |
Collapse
|
2
|
Brunn M, Mueller CW, Chari NR, Meier IC, Obersteiner S, Phillips RP, Taylor B, Tumber-Dávila SJ, Ullah S, Klein T. Tree carbon allocation to root exudates: implications for carbon budgets, soil sequestration and drought response. TREE PHYSIOLOGY 2025; 45:tpaf026. [PMID: 40037284 DOI: 10.1093/treephys/tpaf026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/07/2025] [Accepted: 02/23/2025] [Indexed: 03/06/2025]
Abstract
Root carbon (C) exudation plays a central role in nutrient acquisition, microbially mediated organic matter decomposition and many other critical ecosystem processes. While it is well known that roots respond strongly to belowground resources, we have a limited quantitative understanding about C allocation to exudates and its fate in soil under changing water availability. This review synthesizes the importance of exudate C fluxes, summarizes studies quantifying mass-specific exudation rate (SER), total exudation rate (TER) and root exudate fraction (REF; the proportion of TER in a plant's C allocation), examines drought effects and highlights key research priorities to advance the understanding of C allocation to exudates in forest ecosystems. On average, SER is often <1 mg C gdry root-1 day-1, TER is 3.8 Pg C year-1 and REF varies between 1 and 17% of net primary production. Spatiotemporal variations in exudation, including seasonal and daily patterns and subsoil exudation, remain critical knowledge gaps. We show that many studies report a 1.2- to 11-fold increase in SER and REF in response to drought. However, TER often remains unchanged, suggesting that absolute exudate C inputs to the soil may stay constant under drought conditions. Disentangling the individual impacts of soil and air drought as well as drought legacy impacts on ecosystem C dynamics are overlooked aspects. By estimating the differences in rhizosphere formation and exudation across various forest biomes, we find that exudate-affected soil volumes are highest in tropical forests and lowest in boreal forests. While current research emphasizes significant C allocation from the canopy to soil via exudates, understanding exudation dynamics and biome-specific responses to drought by using standardized protocols is essential. Expanding these insights is critical for comprehending the role of root exudates in soil organic matter formation, ecosystem resilience and adaptation to climate change.
Collapse
Affiliation(s)
- Melanie Brunn
- IES, Institute for Environmental Sciences, University of Kaiserslautern-Landau (RPTU), Fortstraße 7, 76829 Landau, Germany
- IfIN, Institute for Integrated Natural Sciences, Universität Koblenz, Universitätsstraße 1, 56070 Koblenz, Germany
| | - Carsten W Mueller
- Institute of Ecology, Chair of Soil Science, Technische Universität Berlin, Ernst-Reuter-Platz 1, 10587 Berlin, Germany
- Department for Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, 1350 København K, Copenhagen, Denmark
| | - Nikhil R Chari
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St., Cambridge, MA, USA
| | - Ina C Meier
- Functional Forest Ecology, Universität Hamburg, Ohnhorststraße 18, 22609 Hamburg, Hamburg, Germany
| | - Sophie Obersteiner
- Department of Plant and Environmental Sciences, Nella and Leon Benoziyo Building for Biological Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Richard P Phillips
- Department of Biology, Indiana University, 1001 E. Third St., Bloomington, IN 47405, USA
| | - Benton Taylor
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St., Cambridge, MA, USA
| | - Shersingh Joseph Tumber-Dávila
- Department of Environmental Studies, Dartmouth College, 38 College St, Hanover, NH 03755, USA
- Harvard Forest, Harvard University, 324 North Main Street, Petersham, MA 01366-9504, USA
| | - Sami Ullah
- School of Geography, Earth and Environmental Sciences & Birmingham Institute of Forest Research, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
| | - Tamir Klein
- Department of Plant and Environmental Sciences, Nella and Leon Benoziyo Building for Biological Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
3
|
Audisio M, Muhr J, Polle A. Ectomycorrhizal fungi of Douglas-fir retain newly assimilated carbon derived from neighboring European beech. THE NEW PHYTOLOGIST 2024; 243:1980-1990. [PMID: 38952235 DOI: 10.1111/nph.19943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024]
Abstract
Ectomycorrhizal (ECM) fungi distribute tree-derived carbon (C) via belowground hyphal networks in forest ecosystems. Here, we asked the following: (1) Is C transferred belowground to a neighboring tree retained in fungal structures or transported within the recipient tree? (2) Is the overlap of ectomycorrhizal fungi in mycorrhizal networks related to the amount of belowground C transfer? We used potted sapling pairs of European beech (Fagus sylvatica) and North-American Douglas-fir (Pseudotsuga menziesii) for 13CO2 pulse-labeling. We compared 13C transfer from beech (donor) to either beech or Douglas-fir (recipient) and identified the ECM species. We measured the 13C enrichment in soil, plant tissues, and ECM fractions of fungal-containing parts and plant transport tissues. In recipients, only fungal-containing tissue of ectomycorrhizas was significantly enriched in 13C and not the plant tissue. Douglas-fir recipients shared on average one ECM species with donors and had a lower 13C enrichment than beech recipients, which shared on average three species with donors. Our results support that recently assimilated C transferred belowground is shared among fungi colonizing tree roots but not among trees. In mixed forests with beech and Douglas-fir, the links for C movement might be hampered due to low mycorrhizal overlap with consequences for soil C cycling.
Collapse
Affiliation(s)
- Michela Audisio
- Forest Botany and Tree Physiology, University of Göttingen, Büsgenweg 2, Göttingen, 37077, Germany
| | - Jan Muhr
- Forest Botany and Tree Physiology, University of Göttingen, Büsgenweg 2, Göttingen, 37077, Germany
- Laboratory for Radio-isotopes, University of Göttingen, Büsgenweg 2, Göttingen, 37077, Germany
| | - Andrea Polle
- Forest Botany and Tree Physiology, University of Göttingen, Büsgenweg 2, Göttingen, 37077, Germany
- Laboratory for Radio-isotopes, University of Göttingen, Büsgenweg 2, Göttingen, 37077, Germany
- Centre for Sustainable Land Use, University of Göttingen, Göttingen, 37077, Germany
| |
Collapse
|
4
|
Sell M, Rohula-Okunev G, Kupper P, Ostonen I. Adapting to climate change: responses of fine root traits and C exudation in five tree species with different light-use strategy. FRONTIERS IN PLANT SCIENCE 2024; 15:1389569. [PMID: 39086915 PMCID: PMC11289846 DOI: 10.3389/fpls.2024.1389569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024]
Abstract
Trees that are categorised by their light requirements have similarities in their growth strategies and adaptation mechanisms. We aimed to understand the complex responses of elevated air humidity on whole tree fine root carbon (C) exudation (ExC) and respiration rate, morphology, and functional distribution in species with different light requirements. Three light-demanding (LD) species, Populus × wettsteinii, Betula pendula, and Pinus sylvestris, and two shade-tolerant species, Picea abies and Tilia cordata saplings were grown in growth chambers under moderate and elevated air relative humidity (eRH) at two different inorganic nitrogen sources with constant air temperature and light availability. The proportion of assimilated carbon released by ExC, and respiration decreased at eRH; up to about 3 and 27%, respectively. There was an indication of a trade-off between fine root released C and biomass allocation. The elevated air humidity changed the tree biomass allocation and fine root morphology, and the responses were species-specific. The specific fine root area and absorptive root proportion were positively related to canopy net photosynthesis and leaf nitrogen concentration across tree species. The variation in ExC was explained by the trees' light-use strategy (p < 0.05), showing higher exudation rates in LD species. The LD species had a higher proportion of pioneer root tips, which related to the enhanced ExC. Our findings highlight the significant role of fine root functional distribution and morphological adaptation in determining rhizosphere C fluxes in changing environmental conditions such as the predicted increase of air humidity in higher latitudes.
Collapse
Affiliation(s)
- Marili Sell
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | | | | | | |
Collapse
|
5
|
Gao Y, Wang H, Yang F, Dai X, Meng S, Hu M, Kou L, Fu X. Relationships between root exudation and root morphological and architectural traits vary with growing season. TREE PHYSIOLOGY 2024; 44:tpad118. [PMID: 37738586 PMCID: PMC10849755 DOI: 10.1093/treephys/tpad118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Plants allocate a substantial amount of C belowground for root exudates and for the construction and adjustment of root morphological and architectural traits. What relationships exist between root exudates and other root traits and these relationships change with growing season, however, remain unclear. We quantified the root exudation rate and root morphological traits, including total root length (RL), total root surface area (RS), root diameter (RD), specific root length (SRL), specific root area (SRA) and root tissue density (RTD), and architectural traits, such as branching intensity (BI), and investigated their associations during the rapidly growing season (April and August) and the slowly growing season (December) of three common native tree species, Liquidambar formosana, Michelia maudiae and Schima superba, in subtropical China. We found that the linkages of RD, SRL, SRA, RTD and BI did not change with the growing season, reflecting their highly conservative relationships. The root exudation rate varied significantly with growing season (P < 0.05) and produced various associations with other root traits at different growing seasons. During the rapidly growing season (i.e., April), the exudation rate was the highest and was positively correlated with RL. The exudation rate was the lowest during the slowly growing season (i.e., December) and was negatively associated with RL, RS and RTD. Our findings demonstrate the seasonality of the linkages of root exudation rate with other root traits, which highlights the highly plastic and complex associations of belowground root traits. These findings help to deepen our understanding of plant nutrient acquisition strategies.
Collapse
Affiliation(s)
- Yuqiu Gao
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China
- School of Water Conservancy and Environment, University of Jinan, No. 336 West Nanxinzhuang Road, Shizhong District, Jinan 250022, China
| | - Huimin Wang
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, No. 80 Zhongguancun East Road, Haidian District, Beijing 100190, China
| | - Fengting Yang
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, No. 80 Zhongguancun East Road, Haidian District, Beijing 100190, China
| | - Xiaoqin Dai
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, No. 80 Zhongguancun East Road, Haidian District, Beijing 100190, China
| | - Shengwang Meng
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, No. 80 Zhongguancun East Road, Haidian District, Beijing 100190, China
| | - Mingyuan Hu
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, No. 80 Zhongguancun East Road, Haidian District, Beijing 100190, China
| | - Liang Kou
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, No. 80 Zhongguancun East Road, Haidian District, Beijing 100190, China
| | - Xiaoli Fu
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, No. 80 Zhongguancun East Road, Haidian District, Beijing 100190, China
| |
Collapse
|
6
|
Rog I, Hilman B, Fox H, Yalin D, Qubaja R, Klein T. Increased belowground tree carbon allocation in a mature mixed forest in a dry versus a wet year. GLOBAL CHANGE BIOLOGY 2024; 30:e17172. [PMID: 38343030 DOI: 10.1111/gcb.17172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 02/15/2024]
Abstract
Tree species differ in their carbon (C) allocation strategies during environmental change. Disentangling species-specific strategies and contribution to the C balance of mixed forests requires observations at the individual tree level. We measured a complete set of C pools and fluxes at the tree level in five tree species, conifers and broadleaves, co-existing in a mature evergreen mixed Mediterranean forest. Our study period included a drought year followed by an above-average wet year, offering an opportunity to test the effect of water availability on tree C allocation. We found that in comparison to the wet year, C uptake was lower in the dry year, C use was the same, and allocation to belowground sinks was higher. Among the five major C sinks, respiration was the largest (ca. 60%), while root exudation (ca. 10%) and reproduction (ca. 2%) were those that increased the most in the dry year. Most trees relied on stored starch for maintaining a stable soluble sugars balance, but no significant differences were detected in aboveground storage between dry and wet years. The detailed tree-level analysis of nonstructural carbohydrates and δ13 C dynamics suggest interspecific differences in C allocation among fluxes and tissues, specifically in response to the varying water availability. Overall, our findings shed light on mixed forest physiological responses to drought, an increasing phenomenon under the ongoing climate change.
Collapse
Affiliation(s)
- Ido Rog
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Boaz Hilman
- Department of Biogeochemical Processes, Max-Planck Institute for Biogeochemistry, Jena, Germany
- The Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hagar Fox
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - David Yalin
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Rafat Qubaja
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Tamir Klein
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
7
|
Xu S, Wang J, Sayer EJ, Lam SK, Lai DYF. Precipitation change affects forest soil carbon inputs and pools: A global meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168171. [PMID: 37923258 DOI: 10.1016/j.scitotenv.2023.168171] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/09/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
The impacts of precipitation change on forest carbon (C) storage will have global consequences, as forests play a major role in sequestering anthropogenic CO2. Although forest soils are one of the largest terrestrial C pools, there is great uncertainty around the response of forest soil organic carbon (SOC) to precipitation change, which limits our ability to predict future forest C storage. To address this, we conducted a meta-analysis to determine the effect of drought and irrigation experiments on SOC pools, plant C inputs and the soil environment based on 161 studies across 139 forest sites worldwide. Overall, forest SOC content was not affected by precipitation change, but both drought and irrigation altered plant C inputs and soil properties associated with SOC formation and storage. Drought may enhance SOC stability by altering soil aggregate fractions, but the effect of irrigation on SOC fractions remains unexplored. The apparent insensitivity of SOC to precipitation change can be explained by the short duration of most experiments and by biome-specific responses of C inputs and pools to drought or irrigation. Importantly, we demonstrate that SOC content is more likely to decline under irrigation at drier temperate sites, but that dry forests are currently underrepresented across experimental studies. Thus, our meta-analysis advances research into the impacts of precipitation change in forests by revealing important differences among forest biomes, which are likely linked to plant adaptation to extant conditions. We further demonstrate important knowledge gaps around how precipitation change will affect SOC stability, as too few studies currently consider distinct soil C pools. To accurately predict future SOC storage in forests, there is an urgent need for coordinated studies of different soil C pools and fractions across existing sites, as well as new experiments in underrepresented forest types.
Collapse
Affiliation(s)
- Shan Xu
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Junjian Wang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Emma J Sayer
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom; Smithsonian Tropical Research Institute, P.O. Box 0843-03092, Balboa, Ancon, Panama, Republic of Panama
| | - Shu Kee Lam
- School of Agriculture and Food, University of Melbourne, Melbourne, Australia
| | - Derrick Y F Lai
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; Centre for Environmental Policy and Resource Management, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| |
Collapse
|
8
|
Xia H, Zhang T, Li X, He T, Wang X, Zhang J, Zhang K. Effects of drought and nutrient deficiencies on the allocation of recently fixed carbon in a plant-soil-microbe system. TREE PHYSIOLOGY 2023; 43:1903-1916. [PMID: 37584459 DOI: 10.1093/treephys/tpad098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/18/2023] [Accepted: 08/08/2023] [Indexed: 08/17/2023]
Abstract
Carbon (C) allocation plays an important role in plant adaptation to water and nutrient stresses. However, the effects of drought and nutrient deficiencies on the allocation of recently fixed C in the plant-soil-microbe system remain largely unknown. Herein, we studied the response of C allocation of Sophora moorcroftiana (an indigenous pioneer shrub in Tibet) to drought, nitrogen (N) deficiency and phosphorus (P) deficiency using a microcosm experiment. The 13CO2 continuous labeling was used to trace C allocation in the plant-soil-microbe system. We found that drought significantly reduced plant 13C, but it increased 13C accumulation in soil. The decreased plant 13C under drought was attributed to the decrease of 13C in stem and root rather than that in leaf. The excess 13C fraction in the microbial biomass (MB13C) was reduced by N deficiency, but it was not affected by the combination of drought and N deficiency, indicating that drought weakened the effects of N deficiency on MB13C. By contrast, MB13C increased under the combination of drought and P deficiency, suggesting that drought enhanced the effects of P deficiency on MB13C. Drought and nutrient deficiencies regulated the belowground 13C allocation. Specifically, drought and P deficiency increased the allocation of 13C to root and N deficiency regulated the allocation of 13C to microbial biomass C and dissolved organic C in soil. Notably, soil 13C decreased with increasing plant 13C, while MB13C first decreased and then increased with increasing plant 13C. Overall, our study demonstrated that drought and nutrient deficiencies interactively affected C allocation in a plant-soil-microbe system and provided insights into C allocation strategies in response to multiple resource (water and nutrient) stresses under environmental changes.
Collapse
Affiliation(s)
- Huijuan Xia
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, No. 201 Jiufeng 1 Road, East Lake High-Tech Development Zone, Wuhan 430074, P.R. China
| | - Tiantian Zhang
- College of Science, Tibet University, No. 10 Zangda East Road, Chengguan District, Lhasa 850000, P.R. China
| | - Xinshuai Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, No. 201 Jiufeng 1 Road, East Lake High-Tech Development Zone, Wuhan 430074, P.R. China
| | - Tiehu He
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, No. 201 Jiufeng 1 Road, East Lake High-Tech Development Zone, Wuhan 430074, P.R. China
| | - Xia Wang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, No. 201 Jiufeng 1 Road, East Lake High-Tech Development Zone, Wuhan 430074, P.R. China
| | - Jiehao Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, No. 201 Jiufeng 1 Road, East Lake High-Tech Development Zone, Wuhan 430074, P.R. China
| | - Kerong Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, No. 201 Jiufeng 1 Road, East Lake High-Tech Development Zone, Wuhan 430074, P.R. China
- College of Science, Tibet University, No. 10 Zangda East Road, Chengguan District, Lhasa 850000, P.R. China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, The Chinese Academy of Sciences & Hubei Province, No. 201 Jiufeng 1 Road, East Lake High-Tech Development Zone, Wuhan 430074, P.R. China
| |
Collapse
|
9
|
Yang H, Zhang P, Wang Q, Deng S, He X, Zhang X, Wang R, Feng Q, Yin H. Temperature rather than N availability determines root exudation of alpine coniferous forests on the eastern Tibetan Plateau along elevation gradients. TREE PHYSIOLOGY 2023; 43:1479-1492. [PMID: 37209171 DOI: 10.1093/treephys/tpad067] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Root exudation fulfills fundamental roles in regulating carbon (C)-nutrient cycling in forest ecosystems, yet the main ecological drivers of root exudation and underlying mechanisms in forests under natural gradients remain poorly understood. Here, we investigated the intraspecific variation of root exudation rates in two alpine coniferous forests (Abies faxoniana Rehder et Wilson and Abies georgei Orr) along two elevation gradients on the eastern Tibetan Plateau. Meanwhile, the fine root traits and associated climate and soil parameters were assessed to examine the effects of elevation-dependent changes in climatic and soil nutrient conditions on root exudation. Results showed that root exudation rates decreased with increasing elevation and were positively correlated with mean air temperature. However, the relationships of root exudation with soil moisture and soil nitrogen availability were not significant. The structural equation model (SEM) further revealed that air temperature affected root exudation both directly and indirectly through the effects on fine root morphology and biomass, implying that the adaption of root C allocation and fine root morphological traits to low temperatures primarily resulted in declined root exudation at higher elevations. These results highlight the perceived importance of temperature in determining the elevational variation of root exudation in alpine coniferous forests, which has foreseeably great implications for the exudate-mediated ecosystem C and nutrient processes in the face of drastic warming on the eastern Tibetan Plateau.
Collapse
Affiliation(s)
- Han Yang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province & China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4 South Renmin Road, Wuhou District, Chengdu, Sichuan 610041, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Peipei Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province & China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4 South Renmin Road, Wuhou District, Chengdu, Sichuan 610041, China
| | - Qitong Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province & China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4 South Renmin Road, Wuhou District, Chengdu, Sichuan 610041, China
| | - Shaojun Deng
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province & China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4 South Renmin Road, Wuhou District, Chengdu, Sichuan 610041, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Xi He
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province & China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4 South Renmin Road, Wuhou District, Chengdu, Sichuan 610041, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Xinjun Zhang
- Institute of Tibet Plateau Ecology & Key Laboratory of Forest Ecology in Tibet Plateau, Tibet Agriculture & Animal Husbandry University, No. 8 Xueyuan Road, Bayi District, Nyingchi, Tibet 860000, China
| | - Ruihong Wang
- Institute of Tibet Plateau Ecology & Key Laboratory of Forest Ecology in Tibet Plateau, Tibet Agriculture & Animal Husbandry University, No. 8 Xueyuan Road, Bayi District, Nyingchi, Tibet 860000, China
| | - Qiuhong Feng
- Sichuan Wolong Forest Ecosystem Research Station, Sichuan Academy of Forestry, No. 18 Xinghui West Road, Jinniu District, Chengdu, Sichuan 610081, China
| | - Huajun Yin
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province & China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4 South Renmin Road, Wuhou District, Chengdu, Sichuan 610041, China
| |
Collapse
|
10
|
Solly EF, Jaeger ACH, Barthel M, Werner RA, Zürcher A, Hagedorn F, Six J, Hartmann M. Water limitation intensity shifts carbon allocation dynamics in Scots pine mesocosms. PLANT AND SOIL 2023; 490:499-519. [PMID: 37780069 PMCID: PMC10533586 DOI: 10.1007/s11104-023-06093-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/23/2023] [Indexed: 10/03/2023]
Abstract
Background and aims Tree species worldwide suffer from extended periods of water limitation. These conditions not only affect the growth and vitality of trees but also feed back on the cycling of carbon (C) at the plant-soil interface. However, the impact of progressing water loss from soils on the transfer of assimilated C belowground remains unresolved. Methods Using mesocosms, we assessed how increasing levels of water deficit affect the growth of Pinus sylvestris saplings and performed a 13C-CO2 pulse labelling experiment to trace the pathway of assimilated C into needles, fine roots, soil pore CO2, and phospholipid fatty acids of soil microbial groups. Results With increasing water limitation, trees partitioned more biomass belowground at the expense of aboveground growth. Moderate levels of water limitation barely affected the uptake of 13C label and the transit time of C from needles to the soil pore CO2. Comparatively, more severe water limitation increased the fraction of 13C label that trees allocated to fine roots and soil fungi while a lower fraction of 13CO2 was readily respired from the soil. Conclusions When soil water becomes largely unavailable, C cycling within trees becomes slower, and a fraction of C allocated belowground may accumulate in fine roots or be transferred to the soil and associated microorganisms without being metabolically used. Supplementary Information The online version contains supplementary material available at 10.1007/s11104-023-06093-5.
Collapse
Affiliation(s)
- Emily F. Solly
- Department of Environmental Systems Science, Sustainable Agroecosystems Group, ETH Zürich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Astrid C. H. Jaeger
- Department of Environmental Systems Science, Sustainable Agroecosystems Group, ETH Zürich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Matti Barthel
- Department of Environmental Systems Science, Sustainable Agroecosystems Group, ETH Zürich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Roland A. Werner
- Department of Environmental Systems Science, Grassland Sciences Group, ETH Zurich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Alois Zürcher
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Biogeochemistry Group, Zürcherstrasse 111, Birmensdorf, 8903 Switzerland
| | - Frank Hagedorn
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Biogeochemistry Group, Zürcherstrasse 111, Birmensdorf, 8903 Switzerland
| | - Johan Six
- Department of Environmental Systems Science, Sustainable Agroecosystems Group, ETH Zürich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Martin Hartmann
- Department of Environmental Systems Science, Sustainable Agroecosystems Group, ETH Zürich, Universitätstrasse 2, 8092 Zurich, Switzerland
| |
Collapse
|
11
|
Rowland L, Ramírez-Valiente JA, Hartley IP, Mencuccini M. How woody plants adjust above- and below-ground traits in response to sustained drought. THE NEW PHYTOLOGIST 2023. [PMID: 37306017 DOI: 10.1111/nph.19000] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/01/2023] [Indexed: 06/13/2023]
Abstract
Future increases in drought severity and frequency are predicted to have substantial impacts on plant function and survival. However, there is considerable uncertainty concerning what drought adjustment is and whether plants can adjust to sustained drought. This review focuses on woody plants and synthesises the evidence for drought adjustment in a selection of key above-ground and below-ground plant traits. We assess whether evaluating the drought adjustment of single traits, or selections of traits that operate on the same plant functional axis (e.g. photosynthetic traits) is sufficient, or whether a multi-trait approach, integrating across multiple axes, is required. We conclude that studies on drought adjustments in woody plants might overestimate the capacity for adjustment to drier environments if spatial studies along gradients are used, without complementary experimental approaches. We provide evidence that drought adjustment is common in above-ground and below-ground traits; however, whether this is adaptive and sufficient to respond to future droughts remains uncertain for most species. To address this uncertainty, we must move towards studying trait integration within and across multiple axes of plant function (e.g. above-ground and below-ground) to gain a holistic view of drought adjustments at the whole-plant scale and how these influence plant survival.
Collapse
Affiliation(s)
- Lucy Rowland
- Geography, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4RJ, UK
| | | | - Iain P Hartley
- Geography, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4RJ, UK
| | - Maurizio Mencuccini
- CREAF, Campus de Bellaterra (UAB), Cerdanyola del Vallés, Barcelona, 08193, Spain
- ICREA, Barcelona, 08010, Spain
| |
Collapse
|
12
|
Zheng C, Bochmann H, Liu Z, Kant J, Schrey SD, Wojciechowski T, Postma JA. Plant root plasticity during drought and recovery: What do we know and where to go? FRONTIERS IN PLANT SCIENCE 2023; 14:1084355. [PMID: 37008469 PMCID: PMC10061088 DOI: 10.3389/fpls.2023.1084355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
AIMS Drought stress is one of the most limiting factors for agriculture and ecosystem productivity. Climate change exacerbates this threat by inducing increasingly intense and frequent drought events. Root plasticity during both drought and post-drought recovery is regarded as fundamental to understanding plant climate resilience and maximizing production. We mapped the different research areas and trends that focus on the role of roots in plant response to drought and rewatering and asked if important topics were overlooked. METHODS We performed a comprehensive bibliometric analysis based on journal articles indexed in the Web of Science platform from 1900-2022. We evaluated a) research areas and temporal evolution of keyword frequencies, b) temporal evolution and scientific mapping of the outputs over time, c) trends in the research topics analysis, d) marked journals and citation analysis, and e) competitive countries and dominant institutions to understand the temporal trends of root plasticity during both drought and recovery in the past 120 years. RESULTS Plant physiological factors, especially in the aboveground part (such as "photosynthesis", "gas-exchange", "abscisic-acid") in model plants Arabidopsis, crops such as wheat and maize, and trees were found to be the most popular study areas; they were also combined with other abiotic factors such as salinity, nitrogen, and climate change, while dynamic root growth and root system architecture responses received less attention. Co-occurrence network analysis showed that three clusters were classified for the keywords including 1) photosynthesis response; 2) physiological traits tolerance (e.g. abscisic acid); 3) root hydraulic transport. Thematically, themes evolved from classical agricultural and ecological research via molecular physiology to root plasticity during drought and recovery. The most productive (number of publications) and cited countries and institutions were situated on drylands in the USA, China, and Australia. In the past decades, scientists approached the topic mostly from a soil-plant hydraulic perspective and strongly focused on aboveground physiological regulation, whereas the actual belowground processes seemed to have been the elephant in the room. There is a strong need for better investigation into root and rhizosphere traits during drought and recovery using novel root phenotyping methods and mathematical modeling.
Collapse
Affiliation(s)
- Congcong Zheng
- Institute of Bio- and Geosciences – Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
- Faculty of Agriculture, University of Bonn, Bonn, Germany
| | - Helena Bochmann
- Institute of Bio- and Geosciences – Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
- Faculty of Agriculture, University of Bonn, Bonn, Germany
| | - Zhaogang Liu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Josefine Kant
- Institute of Bio- and Geosciences – Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Silvia D. Schrey
- Institute of Bio- and Geosciences – Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Tobias Wojciechowski
- Institute of Bio- and Geosciences – Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Johannes Auke Postma
- Institute of Bio- and Geosciences – Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
13
|
Hikino K, Danzberger J, Riedel VP, Hesse BD, Hafner BD, Gebhardt T, Rehschuh R, Ruehr NK, Brunn M, Bauerle TL, Landhäusser SM, Lehmann MM, Rötzer T, Pretzsch H, Buegger F, Weikl F, Pritsch K, Grams TEE. Dynamics of initial carbon allocation after drought release in mature Norway spruce-Increased belowground allocation of current photoassimilates covers only half of the carbon used for fine-root growth. GLOBAL CHANGE BIOLOGY 2022; 28:6889-6905. [PMID: 36039835 DOI: 10.1111/gcb.16388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
After drought events, tree recovery depends on sufficient carbon (C) allocation to the sink organs. The present study aimed to elucidate dynamics of tree-level C sink activity and allocation of recent photoassimilates (Cnew ) and stored C in c. 70-year-old Norway spruce (Picea abies) trees during a 4-week period after drought release. We conducted a continuous, whole-tree 13 C labeling in parallel with controlled watering after 5 years of experimental summer drought. The fate of Cnew to growth and CO2 efflux was tracked along branches, stems, coarse- and fine roots, ectomycorrhizae and root exudates to soil CO2 efflux after drought release. Compared with control trees, drought recovering trees showed an overall 6% lower C sink activity and 19% less allocation of Cnew to aboveground sinks, indicating a low priority for aboveground sinks during recovery. In contrast, fine-root growth in recovering trees was seven times greater than that of controls. However, only half of the C used for new fine-root growth was comprised of Cnew while the other half was supplied by stored C. For drought recovery of mature spruce trees, in addition to Cnew , stored C appears to be critical for the regeneration of the fine-root system and the associated water uptake capacity.
Collapse
Affiliation(s)
- Kyohsuke Hikino
- Professorship for Land Surface-Atmosphere Interactions, Ecophysiology of Plants, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Jasmin Danzberger
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Vincent P Riedel
- Professorship for Land Surface-Atmosphere Interactions, Ecophysiology of Plants, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Benjamin D Hesse
- Professorship for Land Surface-Atmosphere Interactions, Ecophysiology of Plants, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Benjamin D Hafner
- School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Timo Gebhardt
- Professorship for Land Surface-Atmosphere Interactions, Ecophysiology of Plants, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Romy Rehschuh
- Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research-Atmospheric Environmental Research (KIT/IMK-IFU), Garmisch-Partenkirchen, Germany
- Institute of General Ecology and Environmental Protection, Technische Universität Dresden, Pienner Str. 7, Tharandt, 01737, Germany
| | - Nadine K Ruehr
- Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research-Atmospheric Environmental Research (KIT/IMK-IFU), Garmisch-Partenkirchen, Germany
| | - Melanie Brunn
- Institute for Environmental Sciences, University Koblenz-Landau, Landau, Germany
| | - Taryn L Bauerle
- School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Simon M Landhäusser
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Marco M Lehmann
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Forest Dynamics, Birmensdorf, Switzerland
| | - Thomas Rötzer
- Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Hans Pretzsch
- Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Franz Buegger
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Fabian Weikl
- Professorship for Land Surface-Atmosphere Interactions, Ecophysiology of Plants, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Karin Pritsch
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Thorsten E E Grams
- Professorship for Land Surface-Atmosphere Interactions, Ecophysiology of Plants, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
14
|
Obersteiner S, Klein T. Closing in on the last frontier: C allocation in the rhizosphere. GLOBAL CHANGE BIOLOGY 2022; 28:6835-6837. [PMID: 36107494 PMCID: PMC9826461 DOI: 10.1111/gcb.16432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
Increased belowground C allocation of trees, especially enhanced rhizodeposition, might lead to long-term C sequestration in forest soil. Microbes are crucial players in this complex process of forming stable soil organic carbon (SOC). Hence, research must be accelerated to understand the complex rhizosphere processes and their effect on stable SOC formation. This is a commentary on Hikino et al., 2022, https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.16388.
Collapse
Affiliation(s)
- Sophie Obersteiner
- Plant & Environmental Sciences DepartmentWeizmann Institute of ScienceRehovotIsrael
| | - Tamir Klein
- Plant & Environmental Sciences DepartmentWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
15
|
Pastore MA. Bringing the underground to the surface: Climate change stressors negatively affect plant growth, with contrasting above and belowground physiological responses. PLANT, CELL & ENVIRONMENT 2022; 45:2267-2270. [PMID: 35706391 PMCID: PMC9546244 DOI: 10.1111/pce.14379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Melissa A. Pastore
- Rubenstein School of Environment and Natural ResourcesUniversity of VermontBurlingtonVermontUSA
- Gund Institute for EnvironmentUniversity of VermontBurlingtonVermontUSA
| |
Collapse
|