1
|
Meng L, Zhou H, Tan L, Li Q, Hou Y, Li W, Kafle S, Liang J, Aryal R, Liang Z, Xin H. VaWRKY65 contributes to cold tolerance through dual regulation of soluble sugar accumulation and reactive oxygen species scavenging in Vitis amurensis. HORTICULTURE RESEARCH 2025; 12:uhae367. [PMID: 40078721 PMCID: PMC11896968 DOI: 10.1093/hr/uhae367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/23/2024] [Indexed: 03/14/2025]
Abstract
Although the significance of some plant WRKYs in response to cold stress have been identified, the molecular mechanisms of most WRKYs remain unclear in grapevine. In this study, we demonstrate that cold-induced expression of VaBAM3 in Vitis amurensis executes a beneficial role in enhancing resistance by the regulating starch decomposition. VaWRKY65 was identified as an upstream transcriptional activator of VaBAM3 through yeast one-hybrid library screening and validated to directly interact with the W-box region inside the VaBAM3 promoter. Transgenic Arabidopsis thaliana plants and grapevine roots overexpression VaWRKY65 exhibited improved cold tolerance along with higher BAM activity and soluble sugar levels, whereas opposite changes were observed in VaWRKY65 knockdown lines created by virus-induced gene silencing (VIGS) in grapevine plants and in the knockout wrky65 mutants generated by CRISPR/Cas9 technology in grapevine roots. The transcriptome data show that overexpression of VaWRKY65 led to significant alteration of a diverse set of stress-related genes at the transcriptional level. One of the genes, Peroxidase 36 (VaPOD36), was further verified as a direct target of VaWRKY65. Consistently, VaWRKY65-overexpressing plants had higher VaPOD36 transcript levels and POD activity but a reduced ROS level, while silencing VaWRKY65 results in contrary changes. Collectively, these results reveal that VaWRKY65 enhanced cold tolerance through modulating soluble sugars produced from starch breakdown and ROS scavenging.
Collapse
Affiliation(s)
- Lin Meng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, No. 201, Jiufeng 1st Road, Donghu New Technology Development Zone, Wuhan 430074, China
| | - Huimin Zhou
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, No. 201, Jiufeng 1st Road, Donghu New Technology Development Zone, Wuhan 430074, China
- University of Chinese Academy of Sciences, No.19A, yuquan Road, Shijingshan Zone, Beijing 100049, China
| | - Lisha Tan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, No. 201, Jiufeng 1st Road, Donghu New Technology Development Zone, Wuhan 430074, China
| | - Qingyun Li
- University of Chinese Academy of Sciences, No.19A, yuquan Road, Shijingshan Zone, Beijing 100049, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, No. 201, Jiufeng 1st Road, Donghu New Technology Development Zone, Wuhan 430074, China
| | - Yujun Hou
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, No. 201, Jiufeng 1st Road, Donghu New Technology Development Zone, Wuhan 430074, China
- University of Chinese Academy of Sciences, No.19A, yuquan Road, Shijingshan Zone, Beijing 100049, China
| | - Wenjuan Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, No. 201, Jiufeng 1st Road, Donghu New Technology Development Zone, Wuhan 430074, China
- University of Chinese Academy of Sciences, No.19A, yuquan Road, Shijingshan Zone, Beijing 100049, China
| | - Subash Kafle
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, No. 201, Jiufeng 1st Road, Donghu New Technology Development Zone, Wuhan 430074, China
- University of Chinese Academy of Sciences, No.19A, yuquan Road, Shijingshan Zone, Beijing 100049, China
| | - Ju Liang
- Turpan Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Science, No. 845, munaer Road, Gaochang Zone, Turpan 838000, China
| | - Rishi Aryal
- Department of Horticultural Science, North Carolina State University, 2721 Founders Drive, Raleigh, NC 27695, USA
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Science, No. 20, nanxincun, xiangshan, Haiding Zone, Beijing 100093, China
| | - Haiping Xin
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, No. 201, Jiufeng 1st Road, Donghu New Technology Development Zone, Wuhan 430074, China
| |
Collapse
|
2
|
Kang H, Thomas HR, Xia X, Shi H, Zhang L, Hong J, Shi K, Zhou J, Yu J, Zhou Y. An integrative overview of cold response and regulatory pathways in horticultural crops. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:1028-1059. [PMID: 40213955 DOI: 10.1111/jipb.13903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 03/10/2025] [Indexed: 04/24/2025]
Abstract
Global climate change challenges agricultural production, as extreme temperature fluctuations negatively affect crop growth and yield. Low temperature (LT) stress impedes photosynthesis, disrupts metabolic processes, and compromises the integrity of cell membranes, ultimately resulting in diminished yield and quality. Notably, many tropical or subtropical horticultural plants are particularly susceptible to LT stress. To address these challenges, it is imperative to understand the mechanisms underlying cold tolerance in horticultural crops. This review summarizes recent advances in the physiological and molecular mechanisms that enable horticultural crops to withstand LT stress, emphasizing discrepancies between horticultural crops and model systems. These mechanisms include C-repeat binding factor-dependent transcriptional regulation, post-translational modifications, epigenetic control, and metabolic regulation. Reactive oxygen species, plant hormones, and light signaling pathways are integrated into the cold response network. Furthermore, technical advances for improving cold tolerance are highlighted, including genetic improvement, the application of light-emitting diodes, the utility of novel plant growth regulators, and grafting. Finally, prospective directions for fundamental research and practical applications to boost cold tolerance are discussed.
Collapse
Affiliation(s)
- Huijia Kang
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Hannah Rae Thomas
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Xiaojian Xia
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Huanran Shi
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Limeng Zhang
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Jiachen Hong
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Kai Shi
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Jie Zhou
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Yanhong Zhou
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, 572025, China
- Key Laboratory of Horticultural Plant Growth and Development, Agricultural and Rural Ministry of China, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
3
|
Li X, Schmitz RJ. Cis-regulatory dynamics in plant domestication. Trends Genet 2025:S0168-9525(25)00046-0. [PMID: 40140332 DOI: 10.1016/j.tig.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/12/2025] [Accepted: 02/26/2025] [Indexed: 03/28/2025]
Abstract
Cis-regulatory elements (CREs) are critical sequence determinants for spatiotemporal control of gene expression. Genetic variants within CREs have driven phenotypic transitions from wild to cultivated plants during domestication. This review summarizes our current understanding of genetic variants within CREs involved in plant domestication. We also propose avenues for studies to expand our understanding of both CRE biology and domestication processes, such as examining primary mechanisms that generate CRE genetic variants during plant domestication and investigating the roles of CREs in domestication syndrome. Additionally, we discuss existing challenges and highlight future opportunities for exploring CREs in plant domestication, emphasizing the potential of modifying CREs to contribute to crop improvement.
Collapse
Affiliation(s)
- Xiang Li
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
4
|
Chen G, Zhou Y, Zhang D, Chen F, Qin X, Cai H, Gu H, Yue Y, Wang L, Liu G. Analysis of WRKY Gene Family in Acer fabri and Their Expression Patterns Under Cold Stress. Genes (Basel) 2025; 16:344. [PMID: 40149495 PMCID: PMC11942518 DOI: 10.3390/genes16030344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES The WRKY gene family plays a critical role in plant stress responses; however, its function in Acer fabri (A. fabri) under cold stress conditions remains poorly understood. This study aims to identify WRKY genes in A. fabri, analyze their structural characteristics, and investigate their expression patterns under cold stress, thereby establishing a foundation for further exploration of their roles in cold stress responses. METHODS Using transcriptional data from A. fabri subjected to cold stress, we identified 46 WRKY family genes. We employed bioinformatics tools to conduct a comprehensive analysis of the physical and chemical properties of these genes, predict their subcellular localization, and construct a phylogenetic tree. A heatmap was generated to visualize the expression levels of WRKY genes across different treatment conditions. To validate our findings, qRT-PCR was performed on 10 highly expressed WRKY genes to analyze their temporal expression patterns during cold stress exposure. RESULTS The analysis revealed that WRKY genes in A. fabri are predominantly localized to the nucleus, with protein lengths ranging from 55 to 1027 amino acids. Notably, all WRKY genes possessed the conserved WRKYGQK domain. Under cold stress conditions, the WRKY gene expression exhibited a general trend of increasing followed by decreasing, with peak expression observed at 24 h post-treatment. qRT-PCR analysis corroborated this pattern for the selected genes. CONCLUSIONS This study represents the first comprehensive structural and expression analysis of the A. fabri WRKY gene family under cold stress conditions. Our findings provide valuable insights into their potential roles in plant cold stress responses, and lay the groundwork for future investigations into the molecular mechanisms underlying WRKY-mediated cold stress tolerance in A. fabri.
Collapse
Affiliation(s)
- Gongwei Chen
- School of Landscape Architecture, Jiangsu Vocational College of Agriculture and Forestry, No. 19 Wenchang East Road, Jurong 212400, China; (G.C.); (H.C.)
- Key Laboratory of Landscape Architecture, College of Landscape Architecture, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China; (Y.Z.); (D.Z.); (F.C.); (X.Q.); (H.G.); (Y.Y.)
| | - Yixiao Zhou
- Key Laboratory of Landscape Architecture, College of Landscape Architecture, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China; (Y.Z.); (D.Z.); (F.C.); (X.Q.); (H.G.); (Y.Y.)
| | - Dandan Zhang
- Key Laboratory of Landscape Architecture, College of Landscape Architecture, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China; (Y.Z.); (D.Z.); (F.C.); (X.Q.); (H.G.); (Y.Y.)
| | - Fengyuan Chen
- Key Laboratory of Landscape Architecture, College of Landscape Architecture, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China; (Y.Z.); (D.Z.); (F.C.); (X.Q.); (H.G.); (Y.Y.)
| | - Xuyang Qin
- Key Laboratory of Landscape Architecture, College of Landscape Architecture, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China; (Y.Z.); (D.Z.); (F.C.); (X.Q.); (H.G.); (Y.Y.)
| | - Hongyu Cai
- School of Landscape Architecture, Jiangsu Vocational College of Agriculture and Forestry, No. 19 Wenchang East Road, Jurong 212400, China; (G.C.); (H.C.)
| | - Heng Gu
- Key Laboratory of Landscape Architecture, College of Landscape Architecture, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China; (Y.Z.); (D.Z.); (F.C.); (X.Q.); (H.G.); (Y.Y.)
| | - Yuanzheng Yue
- Key Laboratory of Landscape Architecture, College of Landscape Architecture, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China; (Y.Z.); (D.Z.); (F.C.); (X.Q.); (H.G.); (Y.Y.)
| | - Lianggui Wang
- Key Laboratory of Landscape Architecture, College of Landscape Architecture, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China; (Y.Z.); (D.Z.); (F.C.); (X.Q.); (H.G.); (Y.Y.)
| | - Guohua Liu
- School of Landscape Architecture, Jiangsu Vocational College of Agriculture and Forestry, No. 19 Wenchang East Road, Jurong 212400, China; (G.C.); (H.C.)
| |
Collapse
|
5
|
Fan B, Ren M, Chen G, Zhou X, Cheng G, Yang J, Sun H. Exploring the Roles of the Plant AT-Rich Sequence and Zinc-Binding ( PLATZ) Gene Family in Tomato ( Solanum lycopersicum L.) Under Abiotic Stresses. Int J Mol Sci 2025; 26:1682. [PMID: 40004146 PMCID: PMC11855065 DOI: 10.3390/ijms26041682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
PLATZ transcription factors represent a novel class of zinc finger proteins unique to plants and play critical roles in plant growth and stress responses. This study performs a bioinformatic analysis on the PLATZ transcription factor family in tomato. In the tomato genome, 20 PLATZ transcription factors were identified, distributed across nine chromosomes, including two tandem duplication clusters and two segmental duplication events. Phylogenetic analysis classified tomato PLATZ family members into five subgroups, with consistent gene structures and motif distributions within the same subfamily. The stress-responsive and hormone signaling elements were widely distributed in the promoters of SlPLATZs. The qRT-PCR results showed that most tested SlPLATZs were highly expressed in flowers and significantly expressed under different abiotic stresses (PEG, low temperature, and salt treatments) and hormone treatments (ABA and SA). In addition, we determined that SlPLATZ13/17/18/19 showed transcriptional inhibitory activities via yeast and dual-luciferase reporter assays. The interactions between SlPLATZ17, SlDREB2, and SlDREB31 were preliminarily confirmed via yeast two-hybrid assays. Overall, this study provides a valuable theoretical foundation for functional function research on PLATZ transcription factors, particularly in response to abiotic stresses.
Collapse
Affiliation(s)
- Bei Fan
- College of Life Sciences, Yan’an University, Yan’an 716000, China; (B.F.); (M.R.); (G.C.); (G.C.)
| | - Min Ren
- College of Life Sciences, Yan’an University, Yan’an 716000, China; (B.F.); (M.R.); (G.C.); (G.C.)
| | - Guoliang Chen
- College of Life Sciences, Yan’an University, Yan’an 716000, China; (B.F.); (M.R.); (G.C.); (G.C.)
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan’an University, Yan’an 716000, China
| | - Xue Zhou
- Yan’an Academy of Agricultural Sciences, Agriculture and Rural Bureau of Yan’an City, Yan’an 716000, China;
| | - Guoting Cheng
- College of Life Sciences, Yan’an University, Yan’an 716000, China; (B.F.); (M.R.); (G.C.); (G.C.)
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan’an University, Yan’an 716000, China
| | - Jinyu Yang
- College of Life Sciences, Yan’an University, Yan’an 716000, China; (B.F.); (M.R.); (G.C.); (G.C.)
| | - Huiru Sun
- College of Life Sciences, Yan’an University, Yan’an 716000, China; (B.F.); (M.R.); (G.C.); (G.C.)
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan’an University, Yan’an 716000, China
| |
Collapse
|
6
|
Xie H, Zeng J, Feng W, Gao W, Lai Z, Liu S. Differential Expression of Amaranth AtrDODA Gene Family Members in Betalain Synthesis and Functional Analysis of AtrDODA1-1 Promoter. PLANTS (BASEL, SWITZERLAND) 2025; 14:454. [PMID: 39943016 PMCID: PMC11821215 DOI: 10.3390/plants14030454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/25/2025] [Accepted: 02/01/2025] [Indexed: 02/16/2025]
Abstract
Betalains differ from anthocyanins, and they cannot coexist in the same plant under natural conditions. The L-DOPA 4,5-dioxygenase encoded by the DODA gene is a key step in the pathway of betalain biosynthesis in Caryophyllales plants. Amaranth is an important resource for the study and extraction of betalains. In order to clarify the function of AtrDODA family genes in betalain biosynthesis, we screened out three AtrDODA family gene members associated with betalains based on a genome database and RNA-seq databases of Amaranthus tricolor. Their characterization and expression pattern were further analyzed. The result of subcellular localization showed that all three AtrDODA members were located in the nucleus. Betacyanin and betaxanthin were promoted by paclobutrazol treatment in the leaves and stems of 'Suxian No.1' (red), while they were inhibited by gibberellin and darkness, which were consistent with the gene expression pattern of AtrDODAs. After heterologous transformation of the AtrDODA1-1 promoter into tobacco with GUS staining analysis, the promoter activity of AtrDODA1-1 of 'Suxian No.1' (red) amaranth was significantly higher than that of 'Suxian No.2' (green) amaranth. Furthermore, we analyzed the promoter activity of AtrDODA1-1 by GUS staining and qRT-PCR after sprayed exogenous MeJA and GA3 on the AtrDODA1-1 promoter transformed tobacco plants. The results showed that AtrDODA1-1 responded to plant hormones. This study could lay a foundation for revealing the biological functions of the amaranth DODA gene family, and provide new clues for the molecular mechanism of betalain synthesis.
Collapse
Affiliation(s)
- Huiying Xie
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.X.); (W.F.); (W.G.); (Z.L.)
| | - Jiajing Zeng
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China;
| | - Wenli Feng
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.X.); (W.F.); (W.G.); (Z.L.)
| | - Wei Gao
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.X.); (W.F.); (W.G.); (Z.L.)
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.X.); (W.F.); (W.G.); (Z.L.)
| | - Shengcai Liu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.X.); (W.F.); (W.G.); (Z.L.)
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
7
|
Zhang W, Ma Y, Huang Y, He M, Zhang X, Xu L, Wang Y, Liu L, Zhu Y. Genome-wide characterization of RsHDAC gene members unravels a positive role of RsHDA9 in thermotolerance in radish (Raphanus sativus L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109439. [PMID: 39721191 DOI: 10.1016/j.plaphy.2024.109439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Radish is an economically important root vegetable crop worldwide. Histone deacetylases (HDACs), one of the most important epigenetic regulators, play prominent roles in plant growth and development as well as abiotic stress responses. Nevertheless, the systematical characterization and critical roles of HDAC gene members in thermogenesis remains elusive in radish. Herein, a total of 21 RsHDAC genes were identified from the radish genome. Among them, two RsSRTs, six RsHDTs and 13 RsHDAs were classified into the SIR2, HD2 and RPD3/HDA1subfamily, respectively. The RNA-seq analysis indicated that three RsHDAs (RsHDA6.1, RsHDA6.2 and RsHDA19) and five RsHDTs exhibited high expression in vascular cambium of radish taproot. Both the RsHDT3 and RsHDA9 showed dramatically up-regulated expression under heat, salt and three heavy metals treatments. Moreover, the transient LUC reporter assay revealed that the promoter activity of the nucleus-localized RsHDA9 was intensely induced by heat stress. Intriguingly, overexpression of RsHDA9 promoted thermotolerance via enhancing proline accumulation and scavenging of reactive oxygen species in radish cotyledons, whereas the supplement of trichostatin A (TSA) led to the opposite phenotype. Notably, RsWRKY26 bound to the RsHDA9 promoter and activated its transcription to achieve enhancing thermotolerance in radish. Collectively, these findings would facilitate deciphering molecular mechanism underlying RsHDA9-mediated regulatory network of thermogenesis in radish.
Collapse
Affiliation(s)
- Weilan Zhang
- Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Sanya Institute, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yingfei Ma
- Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Sanya Institute, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yudi Huang
- Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Sanya Institute, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Min He
- Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Sanya Institute, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaoli Zhang
- Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Sanya Institute, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Liang Xu
- Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Sanya Institute, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Yan Wang
- Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Sanya Institute, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Liwang Liu
- Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Sanya Institute, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yuelin Zhu
- Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Sanya Institute, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
8
|
Liu X, Shang C, Duan P, Yang J, Wang J, Sui D, Chen G, Li X, Li G, Hu S, Hu X. The SlWRKY42-SlMYC2 module synergistically enhances tomato saline-alkali tolerance by activating the jasmonic acid signaling and spermidine biosynthesis pathway. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025. [PMID: 39873954 DOI: 10.1111/jipb.13839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 12/14/2024] [Indexed: 01/30/2025]
Abstract
Tomato (Solanum lycopersicum) is an important crop but frequently experiences saline-alkali stress. Our previous studies have shown that exogenous spermidine (Spd) could significantly enhance the saline-alkali resistance of tomato seedlings, in which a high concentration of Spd and jasmonic acid (JA) exerted important roles. However, the mechanism of Spd and JA accumulation remains unclear. Herein, SlWRKY42, a Group II WRKY transcription factor, was identified in response to saline-alkali stress. Overexpression of SlWRKY42 improved tomato saline-alkali tolerance. Meanwhile, SlWRKY42 knockout mutants, exhibited an opposite phenotype. RNA-sequencing data also indicated that SlWRKY42 regulated the expression of genes involved in JA signaling and Spd synthesis under saline-alkali stress. SlWRKY42 is directly bound to the promoters of SlSPDS2 and SlNHX4 to promote Spd accumulation and ionic balance, respectively. SlWRKY42 interacted with SlMYC2. Importantly, SlMYC2 is also bound to the promoter of SlSPDS2 to promote Spd accumulation and positively regulated saline-alkali tolerance. Furthermore, the interaction of SlMYC2 with SlWRKY42 boosted SlWRKY42's transcriptional activity on SlSPDS2, ultimately enhancing the tomato's saline-alkali tolerance. Overall, our findings indicated that SlWRKY42 and SlMYC2 promoted saline-alkali tolerance by the Spd biosynthesis pathway. Thus, this provides new insight into the mechanisms of plant saline-alkali tolerance responses triggered by polyamines (PAs).
Collapse
Affiliation(s)
- Xiaoyan Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Chunyu Shang
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Pengyu Duan
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Jianyu Yang
- Tianjin Agricultural University, Tianjin, 300380, China
| | - Jianbin Wang
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Dan Sui
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Guo Chen
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Xiaojing Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling, 712100, China
| | - Guobin Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling, 712100, China
| | - Songshen Hu
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling, 712100, China
| | - Xiaohui Hu
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling, 712100, China
| |
Collapse
|
9
|
Yang M, Lei C, Ma C, Hou X, Yao M, Mi L, Liu E, Xu L, Wang S, Liu C, Chen Q, Xin D, Xu C, Wang J. GmWRKY33a is a hub gene responsive to brassinosteroid signaling that suppresses nodulation in soybean ( Glycine max). FRONTIERS IN PLANT SCIENCE 2025; 15:1507307. [PMID: 39886690 PMCID: PMC11779726 DOI: 10.3389/fpls.2024.1507307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/16/2024] [Indexed: 02/01/2025]
Abstract
Brassinosteroids (BRs) are key phytohormones influencing soybean development, yet their role in symbiosis remains unclear. Here, the RNA-Seq was used to identify important gene associated with BRs and symbiotic nitrogen fixation, and the function of candidate gene was verified by transgenic hairy roots. The result shows that the RNA-Seq analysis was conducted in which BR signaling was found to suppress nodule formation and many DEGs enriched in immunity-related pathways. WGCNA analyses led to the identification of GmWRKY33a as being responsive to BR signaling in the context of symbiosis establishment. Transgenic hairy roots analyses indicated that GmWRKY33a served as a negative regulator of the establishment of symbiosis. The qRT-PCR analysis confirmed that BR signaling upregulates GmWRKY33a, leading to nodulation suppression and activation of soybean immune responses. In summary, our research revealed that BR suppresses root nodule formation by modulating the immune signaling pathway in soybean roots. We further identified that GmWRKY33a, a crucial transcription factor in BR signaling, plays a negative role in the symbiotic establishment.
Collapse
Affiliation(s)
- Mingliang Yang
- Heilongjiang Green Food Science Research Institute, Northeast Agricultural University, Harbin, Heilongjiang, China
- National Key Laboratory of Smart Farm Technologies and Systems, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Chengjun Lei
- Heilongjiang Green Food Science Research Institute, Northeast Agricultural University, Harbin, Heilongjiang, China
- National Key Laboratory of Smart Farm Technologies and Systems, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Chao Ma
- Heilongjiang Green Food Science Research Institute, Northeast Agricultural University, Harbin, Heilongjiang, China
- National Key Laboratory of Smart Farm Technologies and Systems, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiuming Hou
- Heilongjiang Green Food Science Research Institute, Northeast Agricultural University, Harbin, Heilongjiang, China
- National Key Laboratory of Smart Farm Technologies and Systems, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Mingming Yao
- Heilongjiang Green Food Science Research Institute, Northeast Agricultural University, Harbin, Heilongjiang, China
- National Key Laboratory of Smart Farm Technologies and Systems, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Liang Mi
- Heilongjiang Green Food Science Research Institute, Northeast Agricultural University, Harbin, Heilongjiang, China
- National Key Laboratory of Smart Farm Technologies and Systems, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Enliang Liu
- Grain Crops Institute, XinJiang Academy of Agricultural Sciences, Urumqi, Xinjiang Uygur, China
| | - Linli Xu
- Grain Crops Institute, XinJiang Academy of Agricultural Sciences, Urumqi, Xinjiang Uygur, China
| | - Shukun Wang
- Heilongjiang Green Food Science Research Institute, Northeast Agricultural University, Harbin, Heilongjiang, China
- National Key Laboratory of Smart Farm Technologies and Systems, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Chunyan Liu
- Heilongjiang Green Food Science Research Institute, Northeast Agricultural University, Harbin, Heilongjiang, China
- National Key Laboratory of Smart Farm Technologies and Systems, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Qingshan Chen
- Heilongjiang Green Food Science Research Institute, Northeast Agricultural University, Harbin, Heilongjiang, China
- National Key Laboratory of Smart Farm Technologies and Systems, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Dawei Xin
- Heilongjiang Green Food Science Research Institute, Northeast Agricultural University, Harbin, Heilongjiang, China
- National Key Laboratory of Smart Farm Technologies and Systems, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Chang Xu
- Heilongjiang Green Food Science Research Institute, Northeast Agricultural University, Harbin, Heilongjiang, China
- National Key Laboratory of Smart Farm Technologies and Systems, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jinhui Wang
- Heilongjiang Green Food Science Research Institute, Northeast Agricultural University, Harbin, Heilongjiang, China
- National Key Laboratory of Smart Farm Technologies and Systems, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
10
|
Xiaoqi C, Kang N, Pei X. Enhancing medicinal proteins production in plant bioreactors: A focal review on promoters. Fitoterapia 2025; 180:106338. [PMID: 39667679 DOI: 10.1016/j.fitote.2024.106338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/01/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024]
Abstract
The use of plant bioreactors for the production of medicinal proteins has emerged as a promising and cost-effective alternative to traditional microbial and mammalian cell culture systems. This review provides a focused examination of the critical role of promoters in enhancing the production of therapeutic proteins within plant-based platforms. We discuss the latest advancements in promoter discovery, modification, and optimization for the expression of medicinal proteins in plants. The review highlights the challenges and opportunities associated with various types of promoters, including constitutive, tissue-specific, and inducible promoters, and their impact on medicinal protein yield and quality. Case studies are presented to illustrate the successful application of these promoter engineering techniques in plant bioreactors, emphasizing the potential for scalable and sustainable production of pharmaceutical proteins. Additionally, we explore the strategies for improving promoter function. This review is intended to guide researchers and industry professionals in the selection and design of promoters for the enhanced production of medicinal proteins in plant bioreactors.
Collapse
Affiliation(s)
- Cai Xiaoqi
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, PR China
| | - Ning Kang
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, PR China
| | - Xu Pei
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, PR China.
| |
Collapse
|
11
|
Chen Y, Zhang J. Multiple functions and regulatory networks of WRKY33 and its orthologs. Gene 2024; 931:148899. [PMID: 39209179 DOI: 10.1016/j.gene.2024.148899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Arabidopsis thaliana WRKY33 is currently one of the most studied members of the Group I WRKY transcription factor family. Research has confirmed that WRKY33 is involved in the regulation of various biological and abiotic stresses and occupies a central position in the regulatory network. The functional studies of orthologous genes of WRKY33 from other species are also receiving increasing attention. In this article, we summarized thirty-eight orthologous genes of AtWKRY33 from twenty-five different species. Their phylogenetic relationship and conserved WRKY domain were analyzed and compared. Similar to AtWKRY33, the well-studied orthologous gene members from rice and tomato also have multiple functions. In addition to playing important regulatory roles in responding to their specific pathogens, they are also involved in regulating various abiotic stresses and development. AtWKRY33 exerts its multiple functions through a complex regulatory network. Upstream transcription factors or other regulatory factors activate or inhibit the expression of AtWKRY33 at the chromatin and transcriptional levels. Interacting proteins affect the transcriptional activity of AtWKRY33 through phosphorylation, ubiquitination, SUMOylation, competition, or cooperation. The downstream genes are diverse and include three major categories: transcription factors, synthesis, metabolism, and signal transduction of various hormones, and disease resistance genes. In the regulatory network of AtWRKY33 orthologs, many conserved regulatory characteristics have been discovered, such as self-activation and phosphorylation by MAP kinases. This can provide a comparative reference for further studying the functions of other orthologous genes of AtWKRY33.
Collapse
Affiliation(s)
- Yanhong Chen
- School of Life Sciences, Nantong University, Nantong, China; Key Laboratory of Landscape Plant Genetics and Breeding, Nantong, China.
| | - Jian Zhang
- School of Life Sciences, Nantong University, Nantong, China; Key Laboratory of Landscape Plant Genetics and Breeding, Nantong, China
| |
Collapse
|
12
|
Zheng X, Yang H, Zou J, Jin W, Qi Z, Yang P, Yu J, Zhou J. SnRK1α1-mediated RBOH1 phosphorylation regulates reactive oxygen species to enhance tolerance to low nitrogen in tomato. THE PLANT CELL 2024; 37:koae321. [PMID: 39667074 DOI: 10.1093/plcell/koae321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/29/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Nitrogen is essential for plant growth and development. SNF1-related protein kinase 1 (SnRK1) is an evolutionarily conserved protein kinase pivotal for regulating plant responses to nutrient deficiency. Here, we discovered that the expression and activity of the SnRK1 α-catalytic subunit (SnRK1α1) increased in response to low-nitrogen stress. SnRK1α1 overexpression enhanced seedling tolerance, nitrate uptake capacity, apoplastic reactive oxygen species (ROS) accumulation, and NADPH oxidase activity in tomato (Solanum lycopersicum L.) under low-nitrogen stress compared to wild type plants, while snrk1α1 mutants exhibited the opposite phenotypes. Mutation of the NADPH oxidase gene Respiratory burst oxidase homolog 1 (RBOH1) suppressed numerous nitrate uptake and metabolism genes during low-nitrogen stress. rboh1 mutants displayed lower NADPH oxidase activity, apoplastic ROS production, and seedling tolerance to low nitrogen. Silencing RBOH1 expression also compromised SnRK1α1-mediated seedling tolerance to low-nitrogen stress. SnRK1α1 interacts with and activates RBOH1 through phosphorylation of three N-terminal serine residues, leading to increased apoplastic ROS production and enhanced tolerance to low nitrogen conditions. Furthermore, RBOH1-dependent ROS oxidatively modified the transcription factor TGA4 at residue Cys-334, which increased NRT1.1 and NRT2.1 expression under low-nitrogen stress. These findings reveal a SnRK1α1-mediated signaling pathway and highlight the essential role of RBOH1-dependent ROS production in enhancing plant tolerance to low nitrogen.
Collapse
Affiliation(s)
- Xuelian Zheng
- Department of Horticulture, Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310058, China
| | - Hongfei Yang
- Department of Horticulture, Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310058, China
| | - Jinping Zou
- Department of Horticulture, Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310058, China
| | - Weiduo Jin
- Department of Horticulture, Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310058, China
| | - Zhenyu Qi
- Agricultural Experiment Station, Zhejiang University, Hangzhou 310058, China
| | - Ping Yang
- Agricultural Experiment Station, Zhejiang University, Hangzhou 310058, China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310058, China
| | - Jie Zhou
- Department of Horticulture, Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310058, China
| |
Collapse
|
13
|
Thoris K, Correa Marrero M, Fiers M, Lai X, Zahn I, Jiang X, Mekken M, Busscher S, Jansma S, Nanao M, de Ridder D, van Dijk AJ, Angenent G, Immink RH, Zubieta C, Bemer M. Uncoupling FRUITFULL's functions through modification of a protein motif identified by co-ortholog analysis. Nucleic Acids Res 2024; 52:13290-13304. [PMID: 39475190 PMCID: PMC11602133 DOI: 10.1093/nar/gkae963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/04/2024] [Accepted: 10/15/2024] [Indexed: 11/29/2024] Open
Abstract
Many plant transcription factors (TFs) are multifunctional and regulate growth and development in more than one tissue. These TFs can generally associate with different protein partners depending on the tissue type, thereby regulating tissue-specific target gene sets. However, how interaction specificity is ensured is still largely unclear. Here, we examine protein-protein interaction specificity using subfunctionalized co-orthologs of the FRUITFULL (FUL) subfamily of MADS-domain TFs. In Arabidopsis, FUL is multifunctional, playing important roles in flowering and fruiting, whereas these functions have partially been divided in the tomato co-orthologs FUL1 and FUL2. By linking protein sequence and function, we discovered a key amino acid motif that determines interaction specificity of MADS-domain TFs, which in Arabidopsis FUL determines the interaction with AGAMOUS and SEPALLATA proteins, linked to the regulation of a subset of targets. This insight offers great opportunities to dissect the biological functions of multifunctional MADS TFs.
Collapse
Affiliation(s)
- Kai Thoris
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Miguel Correa Marrero
- Bioinformatics Group, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Martijn Fiers
- Business Unit Bioscience, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Xuelei Lai
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, Université Grenoble Alpes, INRAE, IRIG, CEA, 38000 Grenoble, Grenoble, France
| | - Iris E Zahn
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Xiaobing Jiang
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Mark Mekken
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Stefan Busscher
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Stuart Jansma
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Max Nanao
- Structural Biology, European Synchrotron Radiation Facility, 71 ave. des Martyrs, 38000 Grenoble, France
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Aalt D J van Dijk
- Bioinformatics Group, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Gerco C Angenent
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
- Business Unit Bioscience, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Richard G H Immink
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
- Business Unit Bioscience, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Chloe Zubieta
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, Université Grenoble Alpes, INRAE, IRIG, CEA, 38000 Grenoble, Grenoble, France
| | - Marian Bemer
- Business Unit Bioscience, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| |
Collapse
|
14
|
Chun J, Wan M, Guo H, Zhang Q, Feng Y, Tang Y, Zhu B, Sang Y, Jing S, Chen T, Zeng Z. Cytokinin-mediated enhancement of potato growth and yield by Verticillium Dahliae effector VDAL under low temperature stress. BMC PLANT BIOLOGY 2024; 24:1115. [PMID: 39578722 PMCID: PMC11585244 DOI: 10.1186/s12870-024-05840-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
The pathogen Verticillium dahliae secreted effector V. dahliae Aspf2-like protein (VDAL) has been found to cause leaf wilting in cotton, but the ectopic expression of VDAL-encoding gene enhances the resistance to V. dahliae in cotton and Arabidopsis. The application of the VDAL protein powder with optimal dosage promotes the growth and yield in multiple crop species, such as rice and wheat. However, the promotive effects of VDAL on these aspects are sporadically reported in asexually propagated species, including potato, while the molecular regulatory network involved in the process remains unclear. In this study, we observed that VDAL promotes sprouting of the potato pre-basic seed (PBS) tubers and enhances the development of both above-ground and below-ground tissues. Strikingly, VDAL increases the tuber yield in both greenhouse and field trials by up to 18.97%. The time-course transcriptomic analysis and the endogenous phytohormone detection revealed that cytokinin may play an important role in response to VDAL-promoted growth. Interestingly, VDAL-treated PBS tubers show higher resistance to cold temperature (late-spring cold), a phenomenon that is diminished when the lovastatin, a cytokinin inhibitor is applied, indicating that the VDAL-promoted potato growth, particularly under low temperature, is associated with cytokinin.
Collapse
Affiliation(s)
- Jun Chun
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, Sichuan, 611130, China
| | - Min Wan
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan, 610101, China
| | - Hongwei Guo
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan, 610101, China
| | - Qingpei Zhang
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, Sichuan, 611130, China
| | - Yan Feng
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, Sichuan, 611130, China
| | - Yunchuan Tang
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, Sichuan, 611130, China
| | - Bo Zhu
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan, 610101, China
- Plant Functional Genomics and Bioinformatics Research Center, Sichuan Normal University, Chengdu, Sichuan, 610101, China
| | - Youshun Sang
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, Sichuan, 611130, China
| | - Shenglin Jing
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan, 610101, China
- Plant Functional Genomics and Bioinformatics Research Center, Sichuan Normal University, Chengdu, Sichuan, 610101, China
| | - Tao Chen
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, Sichuan, 611130, China.
| | - Zixian Zeng
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan, 610101, China.
- Plant Functional Genomics and Bioinformatics Research Center, Sichuan Normal University, Chengdu, Sichuan, 610101, China.
| |
Collapse
|
15
|
Zhong W, Wu L, Li Y, Li X, Wang J, Pan J, Zhu S, Fang S, Yao J, Zhang Y, Chen W. GhSBI1, a CUP-SHAPED COTYLEDON 2 homologue, modulates branch internode elongation in cotton. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3175-3193. [PMID: 39058556 PMCID: PMC11500989 DOI: 10.1111/pbi.14439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/18/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024]
Abstract
Branch length is an important plant architecture trait in cotton (Gossypium) breeding. Development of cultivars with short branch has been proposed as a main object to enhance cotton yield potential, because they are suitable for high planting density. Here, we report the molecular cloning and characterization of a semi-dominant quantitative trait locus, Short Branch Internode 1(GhSBI1), which encodes a NAC transcription factor homologous to CUP-SHAPED COTYLEDON 2 (CUC2) and is regulated by microRNA ghr-miR164. We demonstrate that a point mutation found in sbi1 mutants perturbs ghr-miR164-directed regulation of GhSBI1, resulting in an increased expression level of GhSBI1. The sbi1 mutant was sensitive to exogenous gibberellic acid (GA) treatments. Overexpression of GhSBI1 inhibited branch internode elongation and led to the decreased levels of bioactive GAs. In addition, gene knockout analysis showed that GhSBI1 is required for the maintenance of the boundaries of multiple tissues in cotton. Transcriptome analysis revealed that overexpression of GhSBI1 affects the expression of plant hormone signalling-, axillary meristems initiation-, and abiotic stress response-related genes. GhSBI1 interacted with GAIs, the DELLA repressors of GA signalling. GhSBI1 represses expression of GA signalling- and cell elongation-related genes by directly targeting their promoters. Our work thus provides new insights into the molecular mechanisms for branch length and paves the way for the development of elite cultivars with suitable plant architecture in cotton.
Collapse
Affiliation(s)
- Weiping Zhong
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Lanxin Wu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yan Li
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| | - Xiaxuan Li
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Junyi Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jingwen Pan
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shouhong Zhu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| | - Shentao Fang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| | - Jinbo Yao
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| | - Yongshan Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Wei Chen
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
16
|
Meng Y, Li J, Zhu P, Wang Y, Cheng C, Zhao Q, Chen J. Characterization and fine mapping of cold-inducible parthenocarpy in cucumber (Cucumis sativus L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 348:112237. [PMID: 39182620 DOI: 10.1016/j.plantsci.2024.112237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/15/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Cold stress detrimentally influences fruit development, leading to a substantial yield reduction in many fruit-bearing vegetables. Cucumber, a vegetable of subtropical origin, is especially sensitive to cold. Cold-inducible parthenocarpy (CIP) promises fruit yield under cold conditions. Previously, we identified a CIP line EC5 in cucumber, which showed strong parthenocarpy and sustained fruit growth under cold conditions (16°C day/10°C night). However, the candidate gene and genetic mechanism underlying CIP in cucumber remain unknown. In this study, both BSA-seq and conventional QTL mapping strategies were employed on F2 populations to delve into the genetic control of CIP. A single QTL, CIP5.1, was consistently mapped across two winter seasons in 2021 and 2022. Fine mapping delimited the CIP locus into a 38.3 kb region on chromosome 5, harboring 8 candidate genes. Among these candidates, CsAGL11 (CsaV3_5G040370) was identified, exhibiting multiple deletions/insertions in the promoter and 5'UTR region. The CsAGL11 gene encodes a MADS-box transcription factor protein, which is homologous to the genes previously recognized as negative regulators in ovule and fruit development of Arabidopsis and tomato. Correspondingly, cold treatment resulted in decreased expression of CsAGL11 during the early developmental stage of the fruit in EC5. A promoter activity assay confirmed promoter polymorphisms leading to weak transcriptional activation of CsAGL11 under cold conditions. This study deepens our understanding of the genetic characteristics of CIP and elucidates the potential role of the CsAGL11 gene in developing cucumber cultivars with enhanced fruiting under cold conditions.
Collapse
Affiliation(s)
- Yongjiao Meng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Weigang Campus, Nanjing, 210095, China.
| | - Ji Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Weigang Campus, Nanjing, 210095, China.
| | - Pinyu Zhu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Weigang Campus, Nanjing, 210095, China.
| | - Yuhui Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Weigang Campus, Nanjing, 210095, China.
| | - Chunyan Cheng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Weigang Campus, Nanjing, 210095, China.
| | - Qinzheng Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Weigang Campus, Nanjing, 210095, China.
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Weigang Campus, Nanjing, 210095, China.
| |
Collapse
|
17
|
Xu J, Liu S, Hong J, Lin R, Xia X, Yu J, Zhou Y. SlBTB19 interacts with SlWRKY2 to suppress cold tolerance in tomato via the CBF pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1112-1124. [PMID: 39323012 DOI: 10.1111/tpj.17040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024]
Abstract
Cold stress restricts the metabolic and physiological activities of plants, thereby affecting their growth and development. Although broad-complex, tramtrack, and bric-à-brac (BTB) proteins are essential for diverse biological processes and stress responses, the mechanisms underlying BTB-mediated cold responses remain not fully understood. Here, we characterize the function of the cold-induced SlBTB19 protein in tomato (Solanum lycopersicum). Overexpression of SlBTB19 resulted in increased plant sensitivity to cold stress, whereas SlBTB19 knockout mutants exhibited a cold-tolerance phenotype. Further analyses, including protein-protein interaction studies and cell-free degradation assays, revealed that SlBTB19 interacts with and destabilizes the transcription factor SlWRKY2. Using virus-induced gene silencing (VIGS) to silence SlWRKY2 in both wild-type and slbtb19 mutants, we provided genetic evidence that SlWRKY2 acts downstream of SlBTB19 in regulating cold tolerance. Importantly, we demonstrated that SlWRKY2 positively regulates cold tolerance in a CRT/DRE binding factor (CBF)-dependent manner. Under cold stress, SlWRKY2 binds to the W-box in the CBF1 and CBF3 promoters, directly activating their expression. In summary, our findings identify a SlBTB19-SlWRKY2 module that negatively regulates the CBF-dependent cold tolerance pathway in tomato.
Collapse
Affiliation(s)
- Jin Xu
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Sidi Liu
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Jiachen Hong
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Rui Lin
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Xiaojian Xia
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Jingquan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
- Hainan Institute, Zhejiang University, Sanya, 572025, People's Republic of China
- Key Laboratory of Horticultural Plant Growth and Development, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou, 310058, People's Republic of China
| |
Collapse
|
18
|
Zhong M, Wang H, Hao X, Liu C, Hao J, Fan S, Han Y. LsFUL-LsSMU2 module positively controls bolting time in leaf lettuce (Lactuca sativa L.) under high temperature. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112195. [PMID: 39002573 DOI: 10.1016/j.plantsci.2024.112195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/15/2024]
Abstract
High temperature (HT) is an environmental factor that considerably affects plant physiology, development, crop yield, and economic value. HT can cause diseases and early bolting of leaf lettuce, thereby reducing the yield and quality of leaf lettuce. Herein, we used two leaf lettuce (Lactuca sativa L.) cultivars (bolting-resistant 'S24' and bolting-sensitive 'S39') to investigate the key factors and molecular mechanism impacting bolting. We found that 14 MADS-box genes implicated in bolting and flowering, LsMADS54 (also referred to as L. sativa FRUITFULL, LsFUL), was significantly up-regulated 1000 times after 5-d HT treatment and that HT-induced up-regulation of LsFUL was higher in bolting-sensitive than in resistant cultivars. The overexpression lines of LsFUL exhibited an earlier bolting time than that in the non-transformed 'S39'(CK). However, the RNA interference, and CRISPR-Cas9-mediated knockout lines of LsFUL exhibited a later bolting time than that in CK. In addition, we found that L. sativa SUPPRESSORS OF MEC-8 AND UNC-52 PROTEIN 2 (LsSMU2) and L. sativa CONSTANS-LIKE PROTEIN 5 (LsCOL5) interact with LsFUL, and these interactions could stimulate or prevent bolting. We observed that elevated temperature stimulated the abundance of LsSMU2 in the stem, which collaborated with LsFUL to accelerate bolting. Conversely, room temperature (RT) condition led to relatively more stable LsCOL5, which worked with LsFUL to postpone bolting. In summary, our findings demonstrate a molecular regulatory module of LsSMU2-LsFUL associated with HT-induced premature bolting, which serves as a reference for understanding HT-induced premature bolting phenomenon in leaf lettuce.
Collapse
Affiliation(s)
- Mengjiang Zhong
- Department of Plant Science and Technology, Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing 102206, China.
| | - Huiyu Wang
- Department of Plant Science and Technology, Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing 102206, China.
| | - Xindi Hao
- Department of Plant Science and Technology, Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing 102206, China.
| | - Chaojie Liu
- Department of Plant Science and Technology, Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing 102206, China.
| | - Jinghong Hao
- Department of Plant Science and Technology, Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing 102206, China.
| | - Shuangxi Fan
- Department of Plant Science and Technology, Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing 102206, China.
| | - Yingyan Han
- Department of Plant Science and Technology, Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing 102206, China.
| |
Collapse
|
19
|
Desaint H, Héreil A, Belinchon-Moreno J, Carretero Y, Pelpoir E, Pascal M, Brault M, Dumont D, Lecompte F, Laugier P, Duboscq R, Bitton F, Grumic M, Giraud C, Ferrante P, Giuliano G, Sunseri F, Causse M. Integration of QTL and transcriptome approaches for the identification of genes involved in tomato response to nitrogen deficiency. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5880-5896. [PMID: 38869971 DOI: 10.1093/jxb/erae265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/12/2024] [Indexed: 06/15/2024]
Abstract
Optimizing plant nitrogen (N) usage and inhibiting N leaching loss in the soil-crop system is crucial to maintaining crop yield and reducing environmental pollution. This study aimed at identifying quantitative trait loci (QTLs) and differentially expressed genes (DEGs) between two N treatments in order to list candidate genes related to nitrogen-related contrasting traits in tomato varieties. We characterized a genetic diversity core-collection (CC) and a multi-parental advanced generation intercross (MAGIC) tomato population grown in a greenhouse under two nitrogen levels and assessed several N-related traits and mapped QTLs. Transcriptome response under the two N conditions was also investigated through RNA sequencing of fruit and leaves in four parents of the MAGIC population. Significant differences in response to N input reduction were observed at the phenotypic level for biomass and N-related traits. Twenty-seven QTLs were detected for three target traits (leaf N content, leaf nitrogen balance index, and petiole NO3- content), 10 and six in the low and high N condition, respectively, while 19 QTLs were identified for plasticity traits. At the transcriptome level, 4752 and 2405 DEGs were detected between the two N conditions in leaves and fruits, respectively, among which 3628 (50.6%) in leaves and 1717 (71.4%) in fruit were genotype specific. When considering all the genotypes, 1677 DEGs were shared between organs or tissues. Finally, we integrated DEG and QTL analyses to identify the most promising candidate genes. The results highlighted a complex genetic architecture of N homeostasis in tomato and novel putative genes useful for breeding tomato varieties requiring less N input.
Collapse
Affiliation(s)
| | | | | | | | | | - Michel Pascal
- INRAE, UR407, Pathologie Végétale, 84143 Montfavet, France
| | | | | | | | | | | | | | | | | | - Paola Ferrante
- Italian National Agency for New technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Res Ctr, Via Anguillarese 301, 00123 Rome, Italy
| | - Giovanni Giuliano
- Italian National Agency for New technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Res Ctr, Via Anguillarese 301, 00123 Rome, Italy
| | | | | |
Collapse
|
20
|
Guo M, Yang F, Zhu L, Wang L, Li Z, Qi Z, Fotopoulos V, Yu J, Zhou J. Loss of cold tolerance is conferred by absence of the WRKY34 promoter fragment during tomato evolution. Nat Commun 2024; 15:6667. [PMID: 39107290 PMCID: PMC11303406 DOI: 10.1038/s41467-024-51036-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 07/28/2024] [Indexed: 08/10/2024] Open
Abstract
Natural evolution has resulted in reduced cold tolerance in cultivated tomato (Solanum lycopersicum). Herein, we perform a combined analysis of ATAC-Seq and RNA-Seq in cold-sensitive cultivated tomato and cold-tolerant wild tomato (S. habrochaites). We identify that WRKY34 has the most significant association with differential chromatin accessibility and expression patterns under cold stress. We find that a 60 bp InDel in the WRKY34 promoter causes differences in its transcription and cold tolerance among 376 tomato accessions. This 60 bp fragment contains a GATA cis-regulatory element that binds to SWIBs and GATA29, which synergistically suppress WRKY34 expression under cold stress. Moreover, WRKY34 interferes with the CBF cold response pathway through regulating transcription and protein levels. Our findings emphasize the importance of polymorphisms in cis-regulatory regions and their effects on chromatin structure and gene expression during crop evolution.
Collapse
Affiliation(s)
- Mingyue Guo
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Regulation, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Fengjun Yang
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Regulation, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Lijuan Zhu
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Regulation, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Leilei Wang
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Regulation, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Zhichao Li
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Regulation, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Zhenyu Qi
- Hainan Institute, Zhejiang University, Sanya, 572000, China
- Agricultural Experiment Station, Zhejiang University, Hangzhou, 310058, China
| | - Vasileios Fotopoulos
- Cyprus University of Technology, Department of Agricultural Sciences, Biotechnology and Food Science, Lemesos, 3036, Cyprus
| | - Jingquan Yu
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Regulation, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
- Hainan Institute, Zhejiang University, Sanya, 572000, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs of China, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Jie Zhou
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Regulation, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China.
- Hainan Institute, Zhejiang University, Sanya, 572000, China.
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs of China, Yuhangtang Road 866, Hangzhou, 310058, China.
| |
Collapse
|
21
|
Liu J, Zhang M, Xu J, Yao X, Lou L, Hou Q, Zhu L, Yang X, Liu G, Xu J. A Transcriptomic Analysis of Bottle Gourd-Type Rootstock Roots Identifies Novel Transcription Factors Responsive to Low Root Zone Temperature Stress. Int J Mol Sci 2024; 25:8288. [PMID: 39125858 PMCID: PMC11313094 DOI: 10.3390/ijms25158288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The bottle gourd [Lagenaria siceraria (Molina) Standl.] is often utilized as a rootstock for watermelon grafting. This practice effectively mitigates the challenges associated with continuous cropping obstacles in watermelon cultivation. The lower ground temperature has a direct impact on the rootstocks' root development and nutrient absorption, ultimately leading to slower growth and even the onset of yellowing. However, the mechanisms underlying the bottle gourd's regulation of root growth in response to low root zone temperature (LRT) remain elusive. Understanding the dynamic response of bottle gourd roots to LRT stress is crucial for advancing research regarding its tolerance to low temperatures. In this study, we compared the physiological traits of bottle gourd roots under control and LRT treatments; root sample transcriptomic profiles were monitored after 0 h, 48 h and 72 h of LRT treatment. LRT stress increased the malondialdehyde (MDA) content, relative electrolyte permeability and reactive oxygen species (ROS) levels, especially H2O2 and O2-. Concurrently, LRT treatment enhanced the activities of antioxidant enzymes like superoxide dismutase (SOD) and peroxidase (POD). RNA-Seq analysis revealed the presence of 2507 and 1326 differentially expressed genes (DEGs) after 48 h and 72 h of LRT treatment, respectively. Notably, 174 and 271 transcription factors (TFs) were identified as DEGs compared to the 0 h control. We utilized quantitative real-time polymerase chain reaction (qRT-PCR) to confirm the expression patterns of DEGs belonging to the WRKY, NAC, bHLH, AP2/ERF and MYB families. Collectively, our study provides a robust foundation for the functional characterization of LRT-responsive TFs in bottle gourd roots. Furthermore, these insights may contribute to the enhancement in cold tolerance in bottle gourd-type rootstocks, thereby advancing molecular breeding efforts.
Collapse
Affiliation(s)
- Jinqiu Liu
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.L.); (M.Z.); (J.X.); (X.Y.); (L.L.); (Q.H.); (L.Z.); (X.Y.)
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing 210014, China
| | - Man Zhang
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.L.); (M.Z.); (J.X.); (X.Y.); (L.L.); (Q.H.); (L.Z.); (X.Y.)
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing 210014, China
| | - Jian Xu
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.L.); (M.Z.); (J.X.); (X.Y.); (L.L.); (Q.H.); (L.Z.); (X.Y.)
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing 210014, China
| | - Xiefeng Yao
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.L.); (M.Z.); (J.X.); (X.Y.); (L.L.); (Q.H.); (L.Z.); (X.Y.)
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing 210014, China
| | - Lina Lou
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.L.); (M.Z.); (J.X.); (X.Y.); (L.L.); (Q.H.); (L.Z.); (X.Y.)
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing 210014, China
| | - Qian Hou
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.L.); (M.Z.); (J.X.); (X.Y.); (L.L.); (Q.H.); (L.Z.); (X.Y.)
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing 210014, China
| | - Lingli Zhu
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.L.); (M.Z.); (J.X.); (X.Y.); (L.L.); (Q.H.); (L.Z.); (X.Y.)
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing 210014, China
| | - Xingping Yang
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.L.); (M.Z.); (J.X.); (X.Y.); (L.L.); (Q.H.); (L.Z.); (X.Y.)
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing 210014, China
| | - Guang Liu
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.L.); (M.Z.); (J.X.); (X.Y.); (L.L.); (Q.H.); (L.Z.); (X.Y.)
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing 210014, China
| | - Jinhua Xu
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.L.); (M.Z.); (J.X.); (X.Y.); (L.L.); (Q.H.); (L.Z.); (X.Y.)
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing 210014, China
| |
Collapse
|
22
|
Qu J, Xiao P, Zhao ZQ, Wang YL, Zeng YK, Zeng X, Liu JH. Genome-wide identification, expression analysis of WRKY transcription factors in Citrus ichangensis and functional validation of CiWRKY31 in response to cold stress. BMC PLANT BIOLOGY 2024; 24:617. [PMID: 38937686 PMCID: PMC11212357 DOI: 10.1186/s12870-024-05320-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Ichang papeda (Citrus ichangensis), a wild perennial plant of the Rutaceae family, is a cold-hardy plant. WRKY transcription factors are crucial regulators of plant growth and development as well as abiotic stress responses. However, the WRKY genes in C. ichangensis (CiWRKY) and their expression patterns under cold stress have not been thoroughly investigated, hindering our understanding of their role in cold tolerance. RESULTS In this study, a total of 52 CiWRKY genes identified in the genome of C. ichangensis were classified into three main groups and five subgroups based on phylogenetic analysis. Comprehensive analyses of motif features, conserved domains, and gene structures were performed. Segmental duplication plays a significant role in the CiWRKY gene family expansion. Cis-acting element analysis revealed the presence of various stress-responsive elements in the promoters of the majority of CiWRKYs. Gene ontology (GO) analysis and protein-protein interaction predictions indicate that the CiWRKYs exhibit crucial roles in regulation of both development and stress response. Expression profiling analysis demonstrates that 14 CiWRKYs were substantially induced under cold stress. Virus-induced gene silencing (VIGS) assay confirmed that CiWRKY31, one of the cold-induced WRKYs, functions positively in regulation of cold tolerance. CONCLUSION Sequence and protein properties of CiWRKYs were systematically analyzed. Among the 52 CiWRKY genes 14 members exhibited cold-responsive expression patterns, and CiWRKY31 was verified to be a positive regulator of cold tolerance. These findings pave way for future investigations to understand the molecular functions of CiWRKYs in cold tolerance and contribute to unravelling WRKYs that may be used for engineering cold tolerance in citrus.
Collapse
Affiliation(s)
- Jing Qu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Peng Xiao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ze-Qi Zhao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yi-Lei Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yi-Ke Zeng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xi Zeng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ji-Hong Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
23
|
Zhao Z, Wang R, Su W, Sun T, Qi M, Zhang X, Wei F, Yu Z, Xiao F, Yan L, Yang C, Zhang J, Wang D. A comprehensive analysis of the WRKY family in soybean and functional analysis of GmWRKY164-GmGSL7c in resistance to soybean mosaic virus. BMC Genomics 2024; 25:620. [PMID: 38898399 PMCID: PMC11188170 DOI: 10.1186/s12864-024-10523-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/14/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Soybean mosaic disease caused by soybean mosaic virus (SMV) is one of the most devastating and widespread diseases in soybean producing areas worldwide. The WRKY transcription factors (TFs) are widely involved in plant development and stress responses. However, the roles of the GmWRKY TFs in resistance to SMV are largely unclear. RESULTS Here, 185 GmWRKYs were characterized in soybean (Glycine max), among which 60 GmWRKY genes were differentially expressed during SMV infection according to the transcriptome data. The transcriptome data and RT-qPCR results showed that the expression of GmWRKY164 decreased after imidazole treatment and had higher expression levels in the incompatible combination between soybean cultivar variety Jidou 7 and SMV strain N3. Remarkably, the silencing of GmWRKY164 reduced callose deposition and enhanced virus spread during SMV infection. In addition, the transcript levels of the GmGSL7c were dramatically lower upon the silencing of GmWRKY164. Furthermore, EMSA and ChIP-qPCR revealed that GmWRKY164 can directly bind to the promoter of GmGSL7c, which contains the W-box element. CONCLUSION Our findings suggest that GmWRKY164 plays a positive role in resistance to SMV infection by regulating the expression of GmGSL7c, resulting in the deposition of callose and the inhibition of viral movement, which provides guidance for future studies in understanding virus-resistance mechanisms in soybean.
Collapse
Affiliation(s)
- Zhihua Zhao
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Rongna Wang
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Weihua Su
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Tianjie Sun
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Mengnan Qi
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Xueyan Zhang
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Fengju Wei
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Zhouliang Yu
- School of Life Sciences, Yunnan University, Kunming, 650500, China
| | - Fuming Xiao
- Handan Municipal Academy of Agricultural Sciences, Hebei Province, Handan, 056001, China
| | - Long Yan
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050031, China
| | - Chunyan Yang
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050031, China
| | - Jie Zhang
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China.
| | - Dongmei Wang
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
24
|
Liu N, Li C, Wu F, Yang Y, Yu A, Wang Z, Zhao L, Zhang X, Qu F, Gao L, Xia T, Wang P. Genome-wide identification and expression pattern analysis of WRKY transcription factors in response to biotic and abiotic stresses in tea plants (Camellia sinensis). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108670. [PMID: 38703501 DOI: 10.1016/j.plaphy.2024.108670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/21/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Plants would encounter various biotic and abiotic stresses during the growth and development. WRKY transcription factors (TFs) as plant-specific TFs, play an important role in responding to various adverse circumstances. Despite some advances were achieved in functional studies of WRKY TFs in tea plants, systematic analysis of the involvement of CsWRKY TFs when facing cold, salt, drought stresses and pathogen and insect attack was lacked. In present study, a total of 78 CsWRKY TFs were identified following the genomic and transcript databases. The expression patterns of CsWRKYs in various organs of tea plants and the expression profiles in response to biotic and abiotic stresses were investigated by examining representative RNA-seq data. Moreover, the effects of hormone treatments (SA and MeJA) on the transcription levels of WRKY TFs were also investigated. The phylogenetic tree of CsWRKY TFs from different species indicated the functional diversity of WRKY TFs was not closely related to their protein classification. Concurrently, CsWRKY70-2 TF was identified as a positive regulator in response to drought stress. This study provided solid and valuable information, helping us better understand the functional diversity of CsWRKY TFs, and laid the foundation for further research on the function of key WRKY genes in tea plants.
Collapse
Affiliation(s)
- Nana Liu
- College of Horticulture, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Caiyun Li
- College of Horticulture, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Feixue Wu
- College of Horticulture, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Yi Yang
- College of Horticulture, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Antai Yu
- College of Horticulture, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Ziteng Wang
- College of Horticulture, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Lei Zhao
- College of Horticulture, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Xinfu Zhang
- College of Horticulture, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Fengfeng Qu
- College of Horticulture, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Liping Gao
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China.
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China.
| | - Peiqiang Wang
- College of Horticulture, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong, 266109, China.
| |
Collapse
|
25
|
Qiao Q, Gao Y, Liu Q. Metabolic and molecular mechanisms of spine color formation in Chinese red chestnut. FRONTIERS IN PLANT SCIENCE 2024; 15:1377899. [PMID: 38835869 PMCID: PMC11148441 DOI: 10.3389/fpls.2024.1377899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/11/2024] [Indexed: 06/06/2024]
Abstract
The spines of Chinese red chestnut are red and the depth of their color gradually increases with maturity. To identify the anthocyanin types and synthesis pathways in red chestnut and to identify the key genes regulating the anthocyanin biosynthesis pathway, we obtained and analyzed the transcriptome and anthocyanin metabolism of red chestnut and its control variety with green spines at 3 different periods. GO and KEGG analyses revealed that photosynthesis was more highly enriched in green spines compared with red spines, while processes related to defense and metabolism regulation were more highly enriched in red spines. The analysis showed that the change in spine color promoted photoprotection in red chestnut, especially at the early growth stage, which resulted in the accumulation of differentially expressed genes involved in the defense metabolic pathway. The metabolome results revealed 6 anthocyanins in red spines. Moreover, red spines exhibited high levels of cyanidin, peonidin and pelargonidin and low levels of delphinidin, petunidin and malvidin. Compared with those in the control group, the levels of cyanidin, peonidin, pelargonidin and malvidin in red spines were significantly increased, indicating that the cyanidin and pelargonidin pathways were enriched in the synthesis of anthocyanins in red spines, whereas the delphinidin pathways were inhibited and mostly transformed into malvidin. During the process of flower pigment synthesis, the expression of the CHS, CHI, F3H, CYP75A, CYP75B1, DFR and ANS genes clearly increased, that of CYP73A decreased obviously, and that of PAL, 4CL and LAR both increased and decreased. Notably, the findings revealed that the synthesized anthocyanin can be converted into anthocyanidin or epicatechin. In red spines, the upregulation of BZ1 gene expression increases the corresponding anthocyanidin content, and the upregulation of the ANR gene also promotes the conversion of anthocyanin to epicatechin. The transcription factors involved in color formation included 4 WRKYs.
Collapse
Affiliation(s)
- Qian Qiao
- Shandong Key Laboratory of Fruit Biotechnology Breeding, Shandong Institute of Pomology, Taian, Shandong, China
| | - Yun Gao
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong, China
| | - Qingzhong Liu
- Shandong Key Laboratory of Fruit Biotechnology Breeding, Shandong Institute of Pomology, Taian, Shandong, China
| |
Collapse
|
26
|
Peng Y, Cui L, Wang Y, Wei L, Geng S, Chen H, Chen G, Yang L, Bie Z. Pumpkin CmoDREB2A enhances salt tolerance of grafted cucumber through interaction with CmoNAC1 to regulate H 2O 2 and ABA signaling and K +/Na + homeostasis. HORTICULTURE RESEARCH 2024; 11:uhae057. [PMID: 38720932 PMCID: PMC11077054 DOI: 10.1093/hr/uhae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/19/2024] [Indexed: 05/12/2024]
Abstract
Pumpkin CmoNAC1 enhances salt tolerance in grafted cucumbers. However, the potential interactions with other proteins that may co-regulate salt tolerance alongside CmoNAC1 have yet to be explored. In this study, we identified pumpkin CmoDREB2A as a pivotal transcription factor that interacts synergistically with CmoNAC1 in the co-regulation of salt tolerance. Both transcription factors were observed to bind to each other's promoters, forming a positive regulatory loop of their transcription. Knockout of CmoDREB2A in the root resulted in reduced salt tolerance in grafted cucumbers, whereas overexpression demonstrated the opposite effect. Multiple assays in our study provided evidence of the protein interaction between CmoDREB2A and CmoNAC1. Exploiting this interaction, CmoDREB2A facilitated the binding of CmoNAC1 to the promoters of CmoRBOHD1, CmoNCED6, CmoAKT1;2, and CmoHKT1;1, inducing H2O2 and ABA synthesis and increasing the K+/Na+ ratio in grafted cucumbers under salt stress. Additionally, CmoNAC1 also promoted the binding of CmoDREB2A to CmoHAK5;1/CmoHAK5;2 promoters, further contributing to the K+/Na+ homeostasis. In summary, these findings reveal a crucial mechanism of CmoNAC1 and CmoDREB2A forming a complex enhancing salt tolerance in grafted cucumbers.
Collapse
Affiliation(s)
- Yuquan Peng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Lvjun Cui
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Ying Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Lanxing Wei
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Shouyu Geng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Hui Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Guoyu Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Li Yang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Zhilong Bie
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
- Hubei Hongshan Laboratory, Department of Science and Technology of Hubei Province, 430070 Wuhan, China
| |
Collapse
|
27
|
Zhang Z, Dang J, Yuan L, Zhang Y, Zhou F, Li T, Hu X. Exogenous 5-Aminolevulinic acid improved low-temperature tolerance tomato seedling by regulating starch content and phenylalanine metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108083. [PMID: 38615441 DOI: 10.1016/j.plaphy.2023.108083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/29/2023] [Accepted: 10/07/2023] [Indexed: 04/16/2024]
Abstract
Tomato is an important horticultural cash crop, and low-temperature stress has seriously affected the yield and quality of tomato. 5-Aminolevulinic acid (ALA) is widely used in agriculture as an efficient and harmless growth regulator. It is currently unclear whether exogenous ALA can cope with low-temperature stress by regulating tomato starch content and phenylalanine metabolism. In this study, exogenous ALA remarkably improved the low-temperature tolerance of tomato seedlings. RNA-sequencing results showed that exogenous ALA affected starch metabolism and phenylalanine metabolism in tomato seedling leaves under low-temperature stress. Subsequently, we used histochemical staining, observation of chloroplast microstructure, substance content determination, and qRT-PCR analysis to demonstrate that exogenous ALA could improve the low-temperature tolerance of tomato seedlings by regulating starch content and phenylalanine metabolism (SlPAL, SlPOD1, and SlPOD2). Simultaneously, we found that exogenous ALA induced the expression of SlMYBs and SlWRKYs under low-temperature stress. In addition, dual luciferase, yeast one hybrid, and electrophoretic mobility shift assays indicate that SlMYB4 and SlMYB88 could regulate the expression of SlPOD2 in phenylalanine metabolism. We demonstrated that exogenous ALA could improve the low-temperature tolerance of tomato seedlings by regulating starch content and phenylalanine metabolism.
Collapse
Affiliation(s)
- Zhengda Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China
| | - Jiao Dang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China
| | - Luqiao Yuan
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China
| | - Yuhui Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China
| | - Fan Zhou
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Xiaohui Hu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
28
|
Rajendran S, Kang YM, Yang IB, Eo HB, Baek KL, Jang S, Eybishitz A, Kim HC, Je BI, Park SJ, Kim CM. Functional characterization of plant specific Indeterminate Domain (IDD) transcription factors in tomato (Solanum lycopersicum L.). Sci Rep 2024; 14:8015. [PMID: 38580719 PMCID: PMC10997639 DOI: 10.1038/s41598-024-58903-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/04/2024] [Indexed: 04/07/2024] Open
Abstract
Plant-specific transcription factors (TFs) are responsible for regulating the genes involved in the development of plant-specific organs and response systems for adaptation to terrestrial environments. This includes the development of efficient water transport systems, efficient reproductive organs, and the ability to withstand the effects of terrestrial factors, such as UV radiation, temperature fluctuations, and soil-related stress factors, and evolutionary advantages over land predators. In rice and Arabidopsis, INDETERMINATE DOMAIN (IDD) TFs are plant-specific TFs with crucial functions, such as development, reproduction, and stress response. However, in tomatoes, IDD TFs remain uncharacterized. Here, we examined the presence, distribution, structure, characteristics, and expression patterns of SlIDDs. Database searches, multiple alignments, and motif alignments suggested that 24 TFs were related to Arabidopsis IDDs. 18 IDDs had two characteristic C2H2 domains and two C2HC domains in their coding regions. Expression analyses suggest that some IDDs exhibit multi-stress responsive properties and can respond to specific stress conditions, while others can respond to multiple stress conditions in shoots and roots, either in a tissue-specific or universal manner. Moreover, co-expression database analyses suggested potential interaction partners within IDD family and other proteins. This study functionally characterized SlIDDs, which can be studied using molecular and bioinformatics methods for crop improvement.
Collapse
Affiliation(s)
- Sujeevan Rajendran
- Department of Horticulture Industry, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Yu Mi Kang
- Department of Horticultural and Life Science, Pusan National University, Milyang, 50463, Korea
| | - In Been Yang
- Department of Horticulture Industry, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Hye Bhin Eo
- Department of Horticulture Industry, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Kyung Lyung Baek
- Department of Horticulture Industry, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Seonghoe Jang
- World Vegetable Center Korea Office (WKO), Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - Assaf Eybishitz
- World Vegetable Center, P.O. Box 42, Tainan, 74199, Shanhua, Taiwan
| | - Ho Cheol Kim
- Department of Horticulture Industry, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Byeong Il Je
- Department of Horticultural and Life Science, Pusan National University, Milyang, 50463, Korea
| | - Soon Ju Park
- Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Korea
| | - Chul Min Kim
- Department of Horticulture Industry, Wonkwang University, Iksan, 54538, Republic of Korea.
| |
Collapse
|
29
|
Hu C, Wang M, Zhu C, Wu S, Li J, Yu J, Hu Z. A transcriptional regulation of ERF15 contributes to ABA-mediated cold tolerance in tomato. PLANT, CELL & ENVIRONMENT 2024; 47:1334-1347. [PMID: 38221812 DOI: 10.1111/pce.14816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/30/2023] [Indexed: 01/16/2024]
Abstract
Cold stress is a major meteorological threat to crop growth and yield. Abscisic acid (ABA) plays important roles in plant cold tolerance by activating the expression of cold-responsive genes; however, the underlying transcriptional regulatory module remains unknown. Here, we demonstrated that the cold- and ABA-responsive transcription factor ETHYLENE RESPONSE FACTOR 15 (ERF15) positively regulates ABA-mediated cold tolerance in tomato. Exogenous ABA treatment significantly enhanced cold tolerance in wild-type tomato plants but failed to rescue erf15 mutants from cold stress. Transcriptome analysis showed that ERF15 was associated with the expression of cold-responsive transcription factors such as CBF1 and WRKY6. Further RT-qPCR assays confirmed that the ABA-induced increased in CBF1 and WRKY6 transcripts was suppressed in erf15 mutants when the plants were subjected to cold treatment. Moreover, yeast one-hybrid assays, dual-luciferase assays and electrophoretic mobility shift assays demonstrated that ERF15 activated the transcription of CBF1 and WRKY6 by binding their promoters. Silencing CBF1 or WRKY6 significantly decreased cold tolerance. Overall, our study identified the role of ERF15 in conferring ABA-mediated cold tolerance in tomato plants by activating CBF1 and WRKY6 expression. This study not only broadens our knowledge of the mechanism of ABA-mediated cold tolerance in plants but also highlights ERF15 as an ideal target gene for cold-tolerant crop breeding.
Collapse
Affiliation(s)
- Chaoyi Hu
- Hainan Institute, Zhejiang University, Sanya, China
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Mengqi Wang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Changan Zhu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Shaofang Wu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Jiajia Li
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Jingquan Yu
- Hainan Institute, Zhejiang University, Sanya, China
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Zhangjian Hu
- Hainan Institute, Zhejiang University, Sanya, China
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| |
Collapse
|
30
|
Jiao Y, Nigam D, Barry K, Daum C, Yoshinaga Y, Lipzen A, Khan A, Parasa SP, Wei S, Lu Z, Tello-Ruiz MK, Dhiman P, Burow G, Hayes C, Chen J, Brandizzi F, Mortimer J, Ware D, Xin Z. A large sequenced mutant library - valuable reverse genetic resource that covers 98% of sorghum genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1543-1557. [PMID: 38100514 DOI: 10.1111/tpj.16582] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/08/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023]
Abstract
Mutant populations are crucial for functional genomics and discovering novel traits for crop breeding. Sorghum, a drought and heat-tolerant C4 species, requires a vast, large-scale, annotated, and sequenced mutant resource to enhance crop improvement through functional genomics research. Here, we report a sorghum large-scale sequenced mutant population with 9.5 million ethyl methane sulfonate (EMS)-induced mutations that covered 98% of sorghum's annotated genes using inbred line BTx623. Remarkably, a total of 610 320 mutations within the promoter and enhancer regions of 18 000 and 11 790 genes, respectively, can be leveraged for novel research of cis-regulatory elements. A comparison of the distribution of mutations in the large-scale mutant library and sorghum association panel (SAP) provides insights into the influence of selection. EMS-induced mutations appeared to be random across different regions of the genome without significant enrichment in different sections of a gene, including the 5' UTR, gene body, and 3'-UTR. In contrast, there were low variation density in the coding and UTR regions in the SAP. Based on the Ka /Ks value, the mutant library (~1) experienced little selection, unlike the SAP (0.40), which has been strongly selected through breeding. All mutation data are publicly searchable through SorbMutDB (https://www.depts.ttu.edu/igcast/sorbmutdb.php) and SorghumBase (https://sorghumbase.org/). This current large-scale sequence-indexed sorghum mutant population is a crucial resource that enriched the sorghum gene pool with novel diversity and a highly valuable tool for the Poaceae family, that will advance plant biology research and crop breeding.
Collapse
Affiliation(s)
- Yinping Jiao
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, Texas, 79409, USA
| | - Deepti Nigam
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, Texas, 79409, USA
| | - Kerrie Barry
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Chris Daum
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Yuko Yoshinaga
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Anna Lipzen
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Adil Khan
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, Texas, 79409, USA
| | - Sai-Praneeth Parasa
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, Texas, 79409, USA
| | - Sharon Wei
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA
| | - Zhenyuan Lu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA
| | | | - Pallavi Dhiman
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, Texas, 79409, USA
| | - Gloria Burow
- Plant Stress and Germplasm Development Unit, Crop Systems Research Laboratory, USDA-ARS, 3810, 4th Street, Lubbock, Texas, 79424, USA
| | - Chad Hayes
- Plant Stress and Germplasm Development Unit, Crop Systems Research Laboratory, USDA-ARS, 3810, 4th Street, Lubbock, Texas, 79424, USA
| | - Junping Chen
- Plant Stress and Germplasm Development Unit, Crop Systems Research Laboratory, USDA-ARS, 3810, 4th Street, Lubbock, Texas, 79424, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Jenny Mortimer
- Joint BioEnergy Institute, Emeryville, California, 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California, 94720, USA
- School of Agriculture, Food and Wine, Waite Research Institute, Waite Research Precinct, University of Adelaide, Glen Osmond, South Australia, 5064, Australia
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA
- USDA-ARS NAA Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, Ithaca, New York, 14853, USA
| | - Zhanguo Xin
- Plant Stress and Germplasm Development Unit, Crop Systems Research Laboratory, USDA-ARS, 3810, 4th Street, Lubbock, Texas, 79424, USA
| |
Collapse
|
31
|
Wang L, Chen H, Chen G, Luo G, Shen X, Ouyang B, Bie Z. Transcription factor SlWRKY50 enhances cold tolerance in tomato by activating the jasmonic acid signaling. PLANT PHYSIOLOGY 2024; 194:1075-1090. [PMID: 37935624 DOI: 10.1093/plphys/kiad578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 11/09/2023]
Abstract
Tomato (Solanum lycopersicum) is a cold-sensitive crop but frequently experiences low-temperature stimuli. However, tomato responses to cold stress are still poorly understood. Our previous studies have shown that using wild tomato (Solanum habrochaites) as rootstock can significantly enhance the cold resistance of grafted seedlings, in which a high concentration of jasmonic acids (JAs) in scions exerts an important role, but the mechanism of JA accumulation remains unclear. Herein, we discovered that tomato SlWRKY50, a Group II WRKY transcription factor that is cold inducible, responds to cold stimuli and plays a key role in JA biosynthesis. SlWRKY50 directly bound to the promoter of tomato allene oxide synthase gene (SlAOS), and overexpressing SlWRKY50 improved tomato chilling resistance, which led to higher levels of Fv/Fm, antioxidative enzymes, SlAOS expression, and JA accumulation. SlWRKY50-silenced plants, however, exhibited an opposite trend. Moreover, diethyldithiocarbamate acid (a JA biosynthesis inhibitor) foliar treatment drastically reduced the cold tolerance of SlWRKY50-overexpression plants to wild-type levels. Importantly, SlMYC2, the key regulator of the JA signaling pathway, can control SlWRKY50 expression. Overall, our research indicates that SlWRKY50 promotes cold tolerance by controlling JA biosynthesis and that JA signaling mediates SlWRKY50 expression via transcriptional activation by SlMYC2. Thus, this contributes to the genetic knowledge necessary for developing cold-resistant tomato varieties.
Collapse
Affiliation(s)
- Lihui Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Hui Chen
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Guoyu Chen
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Guangbao Luo
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Xinyan Shen
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Bo Ouyang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Zhilong Bie
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| |
Collapse
|
32
|
Ma L, Li X, Zhang J, Yi D, Li F, Wen H, Liu W, Wang X. MsWRKY33 increases alfalfa (Medicago sativa L.) salt stress tolerance through altering the ROS scavenger via activating MsERF5 transcription. PLANT, CELL & ENVIRONMENT 2023; 46:3887-3901. [PMID: 37656830 DOI: 10.1111/pce.14703] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 09/03/2023]
Abstract
Alfalfa (Medicago sativa L.) is considered to be the most important forage crop on a global scale. Nevertheless, soil salinity significantly decreases productivity, seriously threatening food security worldwide. One viable strategy is to explore salt stress-responsive factors and elucidate their underlying molecular mechanism, and utilize them in further alfalfa breeding. In the present study, we designated MsWRKY33 as a representative salt stress-responsive factor preferentially expressed in alfalfa roots and leaves. Subsequently, it was demonstrated that MsWRKY33 was localized in the cell nucleus, and functioned as a transcriptional activator of the W-box element. Transgenic alfalfa overexpressing MsWRKY33 displayed enhanced salt stress tolerance and antioxidant activities with no significant difference in other agronomic traits. Transcriptome profiling of MsWRKY33 transgenic alfalfa under control and salt treatment unveiled significantly altered expression of reactive oxygen species (ROS) scavenger genes in transgenic alfalfa. Subsequent examination revealed that MsWRKY33 binded to the promoter of MsERF5, activating its expression and consequently fine-tuning the ROS-scavenging enzyme activity. Furthermore, MsWRKY33 interacted with the functional fragment of MsCaMBP25, which participates in Ca2+ signaling transduction. Collectively, this research offers new insight into the molecular mechanism of alfalfa salt stress tolerance and highlights the potential utility of MsWRKY33 in alfalfa breeding.
Collapse
Affiliation(s)
- Lin Ma
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinjin Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dengxia Yi
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Feng Li
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan plateau, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
- Beijing Cuihu Agricultural Technology Co., Ltd, Beijing, China
| | - Hongyu Wen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenhui Liu
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan plateau, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Xuemin Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
33
|
Zou J, Chen X, Liu C, Guo M, Kanwar MK, Qi Z, Yang P, Wang G, Bao Y, Bassham DC, Yu J, Zhou J. Autophagy promotes jasmonate-mediated defense against nematodes. Nat Commun 2023; 14:4769. [PMID: 37553319 PMCID: PMC10409745 DOI: 10.1038/s41467-023-40472-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 07/28/2023] [Indexed: 08/10/2023] Open
Abstract
Autophagy, as an intracellular degradation system, plays a critical role in plant immunity. However, the involvement of autophagy in the plant immune system and its function in plant nematode resistance are largely unknown. Here, we show that root-knot nematode (RKN; Meloidogyne incognita) infection induces autophagy in tomato (Solanum lycopersicum) and different atg mutants exhibit high sensitivity to RKNs. The jasmonate (JA) signaling negative regulators JASMONATE-ASSOCIATED MYC2-LIKE 1 (JAM1), JAM2 and JAM3 interact with ATG8s via an ATG8-interacting motif (AIM), and JAM1 is degraded by autophagy during RKN infection. JAM1 impairs the formation of a transcriptional activation complex between ETHYLENE RESPONSE FACTOR 1 (ERF1) and MEDIATOR 25 (MED25) and interferes with transcriptional regulation of JA-mediated defense-related genes by ERF1. Furthermore, ERF1 acts in a positive feedback loop and regulates autophagy activity by transcriptionally activating ATG expression in response to RKN infection. Therefore, autophagy promotes JA-mediated defense against RKNs via forming a positive feedback circuit in the degradation of JAMs and transcriptional activation by ERF1.
Collapse
Affiliation(s)
- Jinping Zou
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, 310058, Hangzhou, China
| | - Xinlin Chen
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, 310058, Hangzhou, China
| | - Chenxu Liu
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, 310058, Hangzhou, China
| | - Mingyue Guo
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, 310058, Hangzhou, China
| | - Mukesh Kumar Kanwar
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, 310058, Hangzhou, China
| | - Zhenyu Qi
- Hainan Institute, Zhejiang University, 572000, Sanya, China
- Agricultural Experiment Station, Zhejiang University, 310058, Hangzhou, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs of China, Yuhangtang Road 866, 310058, Hangzhou, China
| | - Ping Yang
- Agricultural Experiment Station, Zhejiang University, 310058, Hangzhou, China
| | - Guanghui Wang
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, 276000, Linyi, China
| | - Yan Bao
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Jingquan Yu
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, 310058, Hangzhou, China
- Hainan Institute, Zhejiang University, 572000, Sanya, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs of China, Yuhangtang Road 866, 310058, Hangzhou, China
| | - Jie Zhou
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, 310058, Hangzhou, China.
- Hainan Institute, Zhejiang University, 572000, Sanya, China.
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs of China, Yuhangtang Road 866, 310058, Hangzhou, China.
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, 276000, Linyi, China.
| |
Collapse
|
34
|
Zhu Y, Zhu G, Xu R, Jiao Z, Yang J, Lin T, Wang Z, Huang S, Chong L, Zhu J. A natural promoter variation of SlBBX31 confers enhanced cold tolerance during tomato domestication. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1033-1043. [PMID: 36704926 PMCID: PMC10106858 DOI: 10.1111/pbi.14016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 05/04/2023]
Abstract
Cold stress affects crop growth and productivity worldwide. Understanding the genetic basis of cold tolerance in germplasms is critical for crop improvement. Plants can coordinate environmental stimuli of light and temperature to regulate cold tolerance. However, it remains unknown which gene in germplasms could have such function. Here, we utilized genome-wide association study (GWAS) to investigate the cold tolerance of wild and cultivated tomato accessions and discovered that increased cold tolerance is accompanied with tomato domestication. We further identified a 27-bp InDel in the promoter of the CONSTANS-like transcription factor (TF) SlBBX31 is significantly linked with cold tolerance. Coincidentally, a key regulator of light signalling, SlHY5, can directly bind to the SlBBX31 promoter to activate SlBBX31 transcription while the 27-bp InDel can prevent S1HY5 from transactivating SlBBX31. Parallel to these findings, we observed that the loss of function of SlBBX31 results in impaired tomato cold tolerance. SlBBX31 can also modulate the cold-induced expression of several ERF TFs including CBF2 and DREBs. Therefore, our study has uncovered that SlBBX31 is possibly selected during tomato domestication for cold tolerance regulation, providing valuable insights for the development of hardy tomato varieties.
Collapse
Affiliation(s)
- Yingfang Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityKaifengChina
- Sanya Institute of Henan UniversitySanyaHainanChina
| | - Guangtao Zhu
- Yunnan Key Laboratory of Potato Biology, The AGISCAAS‐YNNU Joint Academy of Potato SciencesYunnan Normal UniversityKunmingChina
| | - Rui Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityKaifengChina
| | - Zhixin Jiao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityKaifengChina
| | - Junwei Yang
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Tao Lin
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Zhen Wang
- School of Life SciencesAnhui Agricultural UniversityHefeiAnhuiChina
| | - Sanwen Huang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
| | - Leelyn Chong
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityKaifengChina
| | - Jian‐Kang Zhu
- Institute of Advanced Biotechnology and School of Life SciencesSouthern University of Science and TechnologyShenzhenChina
- Center for Advanced Bioindustry TechnologiesChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
35
|
Wang H, Cheng X, Yin D, Chen D, Luo C, Liu H, Huang C. Advances in the Research on Plant WRKY Transcription Factors Responsive to External Stresses. Curr Issues Mol Biol 2023; 45:2861-2880. [PMID: 37185711 PMCID: PMC10136515 DOI: 10.3390/cimb45040187] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023] Open
Abstract
The WRKY transcription factors are a class of transcriptional regulators that are ubiquitous in plants, wherein they play key roles in various physiological activities, including responses to stress. Specifically, WRKY transcription factors mediate plant responses to biotic and abiotic stresses through the binding of their conserved domain to the W-box element of the target gene promoter and the subsequent activation or inhibition of transcription (self-regulation or cross-regulation). In this review, the progress in the research on the regulatory effects of WRKY transcription factors on plant responses to external stresses is summarized, with a particular focus on the structural characteristics, classifications, biological functions, effects on plant secondary metabolism, regulatory networks, and other aspects of WRKY transcription factors. Future research and prospects in this field are also proposed.
Collapse
Affiliation(s)
- Hongli Wang
- College of Ecology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xi Cheng
- Beijing Engineering Research Center of Functional Floriculture, Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Dongmei Yin
- College of Ecology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Dongliang Chen
- Beijing Engineering Research Center of Functional Floriculture, Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Chang Luo
- Beijing Engineering Research Center of Functional Floriculture, Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Hua Liu
- Beijing Engineering Research Center of Functional Floriculture, Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Conglin Huang
- Beijing Engineering Research Center of Functional Floriculture, Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
36
|
Xie H, Zhang J, Cheng J, Zhao S, Wen Q, Kong P, Zhao Y, Xiang X, Rong J. Field plus lab experiments help identify freezing tolerance and associated genes in subtropical evergreen broadleaf trees: A case study of Camellia oleifera. FRONTIERS IN PLANT SCIENCE 2023; 14:1113125. [PMID: 36909419 PMCID: PMC9994817 DOI: 10.3389/fpls.2023.1113125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The molecular mechanisms of freezing tolerance are unresolved in the perennial trees that can survive under much lower freezing temperatures than annual herbs. Since natural conditions involve many factors and temperature usually cannot be controlled, field experiments alone cannot directly identify the effects of freezing stress. Lab experiments are insufficient for trees to complete cold acclimation and cannot reflect natural freezing-stress responses. In this study, a new method was proposed using field plus lab experiments to identify freezing tolerance and associated genes in subtropical evergreen broadleaf trees using Camellia oleifera as a case. Cultivated C. oleifera is the dominant woody oil crop in China. Wild C. oleifera at the high-elevation site in Lu Mountain could survive below -30°C, providing a valuable genetic resource for the breeding of freezing tolerance. In the field experiment, air temperature was monitored from autumn to winter on wild C. oleifera at the high-elevation site in Lu Mountain. Leave samples were taken from wild C. oleifera before cold acclimation, during cold acclimation and under freezing temperature. Leaf transcriptome analyses indicated that the gene functions and expression patterns were very different during cold acclimation and under freezing temperature. In the lab experiments, leaves samples from wild C. oleifera after cold acclimation were placed under -10°C in climate chambers. A cultivated C. oleifera variety "Ganwu 1" was used as a control. According to relative conductivity changes of leaves, wild C. oleifera showed more freezing-tolerant than cultivated C. oleifera. Leaf transcriptome analyses showed that the gene expression patterns were very different between wild and cultivated C. oleifera in the lab experiment. Combing transcriptome results in both of the field and lab experiments, the common genes associated with freezing-stress responses were identified. Key genes of the flg22, Ca2+ and gibberellin signal transduction pathways and the lignin biosynthesis pathway may be involved in the freezing-stress responses. Most of the genes had the highest expression levels under freezing temperature in the field experiment and showed higher expression in wild C. oleifera with stronger freezing tolerance in the lab experiment. Our study may help identify freezing tolerance and underlying molecular mechanisms in trees.
Collapse
Affiliation(s)
- Haoxing Xie
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Center for Watershed Ecology, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, China
| | - Jian Zhang
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Center for Watershed Ecology, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, China
| | - Junyong Cheng
- Hubei Provincial Engineering Research Center of Non-Timber Forest-Based Economy, Hubei Academy of Forestry, Wuhan, China
| | - Songzi Zhao
- Jiangxi Provincial Key Laboratory of Camellia Germplasm Conservation and Utilization, Jiangxi Academy of Forestry, Nanchang, China
| | - Qiang Wen
- Jiangxi Provincial Key Laboratory of Camellia Germplasm Conservation and Utilization, Jiangxi Academy of Forestry, Nanchang, China
| | - Ping Kong
- Jiangxi Ecological Meteorology Centre, Nanchang, China
| | - Yao Zhao
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Center for Watershed Ecology, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, China
- Lushan Botanical Garden, Chinese Academy of Sciences, Lushan, China
| | - Xiaoguo Xiang
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Center for Watershed Ecology, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, China
| | - Jun Rong
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Center for Watershed Ecology, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, China
- Lushan Botanical Garden, Chinese Academy of Sciences, Lushan, China
| |
Collapse
|
37
|
Wang L, Wu B, Chen G, Chen H, Peng Y, Sohail H, Geng S, Luo G, Xu D, Ouyang B, Bie Z. The essential role of jasmonate signaling in Solanum habrochaites rootstock-mediated cold tolerance in tomato grafts. HORTICULTURE RESEARCH 2022; 10:uhac227. [PMID: 36643752 PMCID: PMC9832872 DOI: 10.1093/hr/uhac227] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/27/2022] [Indexed: 06/17/2023]
Abstract
Tomato (Solanum lycopersicum) is among the most important vegetables across the world, but cold stress usually affects its yield and quality. The wild tomato species Solanum habrochaites is commonly utilized as rootstock for enhancing resistance against abiotic stresses in cultivated tomato, especially cold resistance. However, the underlying molecular mechanism remains unclear. In this research, we confirmed that S. habrochaites rootstock can improve the cold tolerance of cultivated tomato scions, as revealed by growth, physiological, and biochemical indicators. Furthermore, transcriptome profiling indicated significant differences in the scion of homo- and heterografted seedlings, including substantial changes in jasmonic acid (JA) biosynthesis and signaling, which were validated by RT-qPCR analysis. S. habrochaites plants had a high basal level of jasmonate, and cold stress caused a greater amount of active JA-isoleucine in S. habrochaites heterografts. Moreover, exogenous JA enhanced while JA inhibitor decreased the cold tolerance of tomato grafts. The JA biosynthesis-defective mutant spr8 also showed increased sensitivity to cold stress. All of these results demonstrated the significance of JA in the cold tolerance of grafted tomato seedlings with S. habrochaites rootstock, suggesting a future direction for the characterization of the natural variation involved in S. habrochaites rootstock-mediated cold tolerance.
Collapse
Affiliation(s)
- Lihui Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Bo Wu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Guoyu Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Hui Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Yuquan Peng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Hamza Sohail
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Shouyu Geng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Guangbao Luo
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Dandi Xu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | | | | |
Collapse
|