1
|
Tan SL, Chen XH, Liao HH, Cheng WX, Xiao HW, Huang L, Luo HL, Nunes CEP, Ren ZX, Yang BY. Pre-pollination isolation by pollinator specificity: settling moth versus hawkmoth pollination in two sympatric Habenaria species (Orchidaceae). BMC PLANT BIOLOGY 2025; 25:421. [PMID: 40181287 PMCID: PMC11966826 DOI: 10.1186/s12870-025-06474-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 03/27/2025] [Indexed: 04/05/2025]
Abstract
BACKGROUND Habenaria species typically produce green or white flowers, bear nectar spurs, emit crepuscular-nocturnal scents, and are usually pollinated by crepuscular/nocturnal moths. However, the roles of floral traits in pollinator differentiation contributing to reproductive success in sympatric Habenaria species require further definition. In this study, we investigated flowering phenology, floral traits, pollinator behavior, and reproductive success of two co-occurring and co-blooming Habenaria species (H. ciliolaris and H. schindleri) in southeastern China. We also conducted intraspecific and interspecific hand pollinations to determine their respective breeding systems and the extent of interspecific post-pollination isolation. RESULTS Both species are self-compatible but rely on pollinators for sexual reproduction. Habenaria ciliolaris was pollinated by two species of nocturnal, settling moths (Thinopteryx nebulosa and Porsica sp.). They foraged for nectar upside down or from one side, carrying pollinaria on their eyes because the curved lateral lobes of the labellum block the movements of settling moths on these flowers. Habenaria schindleri was pollinated by two crepuscular hawkmoths (Eupanacra mydon and Hippotion rafflesi), which carried pollinaria between their palpi while hovering in front of flowers while taking nectar. The proboscis lengths of pollinators of both Habenaria species matched the spur lengths of their corresponding flowers. Habenaria ciliolaris experienced a high level of inbreeding depression. Interspecific pollination by applying pollen grains from H. schindleri to the stigmas of H. ciliolaris, resulted in a low level of seed set. CONCLUSIONS Differences in floral morphology and nectar volume/concentration appear to contribute to segregating members of the pollinator guild of some Habenaria species. These findings offer new insights to our understanding of the partitioning of pollinators between co-blooming congeners in the Orchidaceae.
Collapse
Affiliation(s)
- Shao-Lin Tan
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Xing-Hui Chen
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Hai-Hong Liao
- Jiulianshan National Natural Reserve Administration Bureau, Ganzhou, Jiangxi, China
| | - Wei-Xing Cheng
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Han-Wen Xiao
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, China
| | - Lang Huang
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
- College of Gardening and Horticulture, Wuhan University of Bioengineering, Wuhan, China
| | - Huo-Lin Luo
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Carlos E Pereira Nunes
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Department of Ecology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Zong-Xin Ren
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.
| | - Bo-Yun Yang
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
2
|
Wenzell KE, Neequaye M, Paajanen P, Hill L, Brett P, Byers KJRP. Within-species floral evolution reveals convergence in adaptive walks during incipient pollinator shift. Nat Commun 2025; 16:2721. [PMID: 40108138 PMCID: PMC11923230 DOI: 10.1038/s41467-025-57639-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 02/24/2025] [Indexed: 03/22/2025] Open
Abstract
Understanding how evolution proceeds from molecules to organisms to interactions requires integrative studies spanning biological levels. Linking phenotypes with associated genes and fitness illuminates how adaptive walks move organisms between fitness peaks. Floral evolution can confer rapid reproductive isolation, often converging in association with pollinator guilds. Within the monkeyflowers (Mimulus sect. Erythranthe), yellow flowers within red hummingbird-pollinated species have arisen at least twice, suggesting possible pollinator shifts. We compare two yellow-flowered forms of M. cardinalis and M. verbenaceus to their red counterparts in floral phenotypes, biochemistry, transcriptomic and genomic variation, and pollinator interactions. We find convergence in ongoing adaptive walks of both yellow morphs, with consistent changes in traits of large effect (floral pigments, associated gene expression), resulting in strong preference for yellow flowers by bumblebees. Shifts in scent emission and floral opening size also favor bee adaptation, suggesting smaller-effect steps from hummingbird to bee pollination. By examining intraspecific, incipient pollinator shifts in two related species, we elucidate adaptive walks at early stages, revealing how convergent large effect mutations (floral color) may drive pollinator attraction, followed by smaller effect changes for mechanical fit and reward access. Thus, ongoing adaptive walks may impact reproductive isolation and incipient speciation via convergent evolution.
Collapse
Affiliation(s)
- Katherine E Wenzell
- John Innes Centre, Norwich, UK
- Department of Natural Resource Management, South Dakota State University, Brookings, SD, USA
- California Academy of Sciences, San Francisco, CA, USA
- University of Maryland, College Park, MD, USA
| | | | | | | | | | | |
Collapse
|
3
|
Basnett S, Krpan J, Espíndola A. Floral traits and their connection with pollinators and climate. ANNALS OF BOTANY 2025; 135:125-140. [PMID: 38502826 PMCID: PMC11805930 DOI: 10.1093/aob/mcae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/18/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND AND AIMS Floral characteristics vary significantly among plant species, and multiple underlying factors govern this diversity. Although it is widely known that spatial variation in pollinator groups can exert selection on floral traits, the relative contribution of pollinators and climate to the variation of floral traits across large geographical areas remains a little-studied area. Besides furthering our conceptual understanding of these processes, gaining insight into the topic is also of conservation relevance: understanding how climate might drive variation in floral traits can serve to protect plant-pollinator interactions in globally change conditions. METHODS We used Rhododendron as a model system and collected floral traits (corolla length, nectar volume and concentrations), floral visitors and climatic data on 21 Rhododendron species across two continents (North America, Appalachians and Asia, Himalaya). Based on this, we quantified the influence of climate and pollinators on floral traits using phylogeny-informed analyses. KEY RESULTS Our results indicate that there is substantial variation in pollinators and morphological traits across Rhododendron species and continents. We came across four pollinator groups: birds, bees, butterflies and flies. Asian species were commonly visited by birds, bees and flies, whereas bees and butterflies were the most common visitors of North American species. The visitor identity explained nectar trait variation, with flowers visited by birds presenting higher volumes of dilute nectar and those visited by insects producing concentrated nectar. Nectar concentration and corolla length exhibited a strong phylogenetic signal across the analysed set of species. We also found that nectar trait variation in the Himalayas could also be explained by climate, which presented significant interactions with pollinator identity. CONCLUSIONS Our results indicate that both pollinators and climate contribute and interact to drive nectar trait variation, suggesting that both can affect pollination interactions and floral (and plant) evolution individually and in interaction with each other.
Collapse
Affiliation(s)
- Shweta Basnett
- Department of Entomology, Plant Sciences Building 4112, 4291 Fieldhouse Drive, University of Maryland, College Park, MD 20742, USA
| | - Julia Krpan
- Department of Entomology, Plant Sciences Building 4112, 4291 Fieldhouse Drive, University of Maryland, College Park, MD 20742, USA
| | - Anahí Espíndola
- Department of Entomology, Plant Sciences Building 4112, 4291 Fieldhouse Drive, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
4
|
Darragh K, Kay KM, Ramírez SR. The Convergent Evolution of Hummingbird Pollination Results in Repeated Floral Scent Loss Through Gene Downregulation. Mol Biol Evol 2025; 42:msaf027. [PMID: 39899329 PMCID: PMC11848715 DOI: 10.1093/molbev/msaf027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025] Open
Abstract
The repeated evolution of the same trait in different lineages provides powerful natural experiments to study the phenotypic and genotypic predictability of trait gain and loss. A fascinating example is the repeated evolution of hummingbird pollination in plant lineages in the Americas, a widespread and often unidirectional phenomenon. The spiral gingers in the genus Costus are ancestrally bee pollinated, and hummingbird pollination has evolved multiple times independently in the tropical Americas. These pollinator transitions are accompanied by predictable morphological and color changes, but the changes in floral scent have not been described. In this study, we describe the floral scent composition of 30 species of Costus sampled across the phylogeny to understand how floral scent has evolved across the genus with respect to pollinator transitions. We then combine transcriptomics and genomics to identify gene expression differences and gene family evolution associated with pollinator transitions. We show that hummingbird-pollinated species have mostly lost their floral scent, whereas bee-pollinated species exhibit either floral scent maintenance or, in some cases, gains of more diverse scent profiles. We find the floral scent loss appears to be due to gene downregulation rather than pseudogenization. The remarkable consistency of scent loss in hummingbird-pollinated species highlights the shared strong selection pressures experienced by these lineages. Even species with more recent transitions from bee to hummingbird pollination exhibit scent loss, highlighting the rapid breakdown of scent emission following pollinator transitions. This research highlights the capacity for rapid changes when selection pressures are strong through downregulation of floral scent genes.
Collapse
Affiliation(s)
- Kathy Darragh
- Department of Evolution and Ecology, University of California, Davis, CA, USA
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Kathleen M Kay
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Santiago R Ramírez
- Department of Evolution and Ecology, University of California, Davis, CA, USA
| |
Collapse
|
5
|
Uckele KA, Vargas OM, Kay KM. Prezygotic barriers effectively limit hybridization in a rapid evolutionary radiation. THE NEW PHYTOLOGIST 2024; 244:2548-2560. [PMID: 39400313 PMCID: PMC11579434 DOI: 10.1111/nph.20187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/22/2024] [Indexed: 10/15/2024]
Abstract
Hybridization is increasingly recognized as an important evolutionary process across the tree of life. In many clades, phylogenomic approaches have permitted unparalleled insight into the extent and frequency of hybridization. However, we continue to lack a deep understanding of the factors that limit and shape patterns of hybridization, especially in evolutionary radiations. In this study, we characterized patterns of introgression across Costus (Costaceae), a young evolutionary radiation of tropical understory plants that maintain widespread interfertility despite exhibiting strong prezygotic reproductive isolation. We analyzed a phylogenomic dataset of 756 genes from 54 Costus species using multiple complementary approaches - D-statistics, gene-tree-based tests, and phylogenetic network analyses - to detect and characterize introgression events throughout the evolutionary history of the radiation. Our results identified a moderate number of introgression events, including a particularly ancient, well-supported event spanning one of the deepest divergences in the clade. Most introgression events occurred between taxa or ancestral lineages that shared the same pollination syndrome (bee-pollinated or hummingbird-pollinated). These findings suggest that prezygotic barriers, including pollinator specialization, have been key to the balance between introgression and reproductive isolation in Costus.
Collapse
Affiliation(s)
- Kathryn A. Uckele
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaSanta CruzCA95060USA
| | - Oscar M. Vargas
- Department of Biological SciencesCalifornia State Polytechnic UniversityHumboldt, ArcataCA95521USA
| | - Kathleen M. Kay
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaSanta CruzCA95060USA
| |
Collapse
|
6
|
Barreto E, Boehm MMA, Ogutcen E, Abrahamczyk S, Kessler M, Bascompte J, Dellinger AS, Bello C, Dehling DM, Duchenne F, Kaehler M, Lagomarsino LP, Lohmann LG, Maglianesi MA, Morlon H, Muchhala N, Ornelas JF, Perret M, Salinas NR, Smith SD, Vamosi JC, Varassin IG, Graham CH. Macroevolution of the plant-hummingbird pollination system. Biol Rev Camb Philos Soc 2024; 99:1831-1847. [PMID: 38705863 DOI: 10.1111/brv.13094] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 05/07/2024]
Abstract
Plant-hummingbird interactions are considered a classic example of coevolution, a process in which mutually dependent species influence each other's evolution. Plants depend on hummingbirds for pollination, whereas hummingbirds rely on nectar for food. As a step towards understanding coevolution, this review focuses on the macroevolutionary consequences of plant-hummingbird interactions, a relatively underexplored area in the current literature. We synthesize prior studies, illustrating the origins and dynamics of hummingbird pollination across different angiosperm clades previously pollinated by insects (mostly bees), bats, and passerine birds. In some cases, the crown age of hummingbirds pre-dates the plants they pollinate. In other cases, plant groups transitioned to hummingbird pollination early in the establishment of this bird group in the Americas, with the build-up of both diversities coinciding temporally, and hence suggesting co-diversification. Determining what triggers shifts to and away from hummingbird pollination remains a major open challenge. The impact of hummingbirds on plant diversification is complex, with many tropical plant lineages experiencing increased diversification after acquiring flowers that attract hummingbirds, and others experiencing no change or even a decrease in diversification rates. This mixed evidence suggests that other extrinsic or intrinsic factors, such as local climate and isolation, are important covariables driving the diversification of plants adapted to hummingbird pollination. To guide future studies, we discuss the mechanisms and contexts under which hummingbirds, as a clade and as individual species (e.g. traits, foraging behaviour, degree of specialization), could influence plant evolution. We conclude by commenting on how macroevolutionary signals of the mutualism could relate to coevolution, highlighting the unbalanced focus on the plant side of the interaction, and advocating for the use of species-level interaction data in macroevolutionary studies.
Collapse
Affiliation(s)
- Elisa Barreto
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
| | - Mannfred M A Boehm
- Biodiversity Research Centre, University of British Columbia, 2212 Main Mall, Vancouver, BC, Canada
| | - Ezgi Ogutcen
- Department of Environment and Biodiversity, Paris Lodron University of Salzburg, Hellbrunner Straße 34, Salzburg, 5020, Austria
| | - Stefan Abrahamczyk
- Nees Institute for Biodiversity of Plant, University of Bonn, Meckenheimer Allee 170, Bonn, 53115, Germany
- State Museum of Natural History Stuttgart, Botany Department, Rosenstein 1, Stuttgart, 70191, Germany
| | - Michael Kessler
- Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, Zurich, 8008, Switzerland
| | - Jordi Bascompte
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurestrasse 190, Zurich, 8057, Switzerland
| | - Agnes S Dellinger
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, Vienna, 1030, Austria
| | - Carolina Bello
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, Universitätstrasse 16, Zurich, 8092, Switzerland
| | - D Matthias Dehling
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
- Securing Antarctica's Environmental Future, School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, 3800, Victoria, Australia
| | - François Duchenne
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
| | - Miriam Kaehler
- Departamento de Botânica, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos 100, Curitiba, 81531-980, Brazil
| | - Laura P Lagomarsino
- Department of Biological Sciences, Shirley C. Tucker Herbarium, Louisiana State University, Life Science Annex Building A257, Baton Rouge, 70803, LA, USA
| | - Lúcia G Lohmann
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, Butantã, São Paulo, 05508-090, Brazil
- Department of Integrative Biology, University and Jepson Herbaria, University of California, Berkeley, 1001 Valley Life Sciences Building, Berkeley, 94720-2465, CA, USA
| | - María A Maglianesi
- Escuela de Ciencias Exactas y Naturales, Universidad Estatal a Distancia, San José, 474-2050, Costa Rica
| | - Hélène Morlon
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, UMR 8197, 46 rue d'Ulm, Paris, 75005, France
| | - Nathan Muchhala
- Department of Biology, University of Missouri - St. Louis, St. Louis, 63121, MO, USA
| | - Juan Francisco Ornelas
- Departamento de Biología Evolutiva, Instituto de Ecología, A.C. (INECOL), Xalapa, Veracruz, 91073, Mexico
| | - Mathieu Perret
- Department of Plant Sciences, Conservatoire et Jardin Botaniques de Genève, University of Geneva, Chem. de l'Impératrice 1, 1292 Pregny-Chambésy, Geneva, Switzerland
| | - Nelson R Salinas
- Pfizer Plant Research Laboratory, New York Botanical Garden, 2900 Southern Blvd., Bronx, New York City, 10458, NY, USA
| | - Stacey D Smith
- Department of Ecology and Evolutionary Biology, University of Colorado-Boulder, 1900 Pleasant St, Boulder, 80302, CO, USA
| | - Jana C Vamosi
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, T2N1N4, AB, Canada
| | - Isabela G Varassin
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
- Departamento de Botânica, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos 100, Curitiba, 81531-980, Brazil
| | - Catherine H Graham
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
| |
Collapse
|
7
|
Dellinger AS, Lagomarsino L, Michelangeli F, Dullinger S, Smith SD. The Sequential Direct and Indirect Effects of Mountain Uplift, Climatic Niche, and Floral Trait Evolution on Diversification Dynamics in an Andean Plant Clade. Syst Biol 2024; 73:594-612. [PMID: 38554255 PMCID: PMC11377192 DOI: 10.1093/sysbio/syae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 02/28/2024] [Accepted: 04/11/2024] [Indexed: 04/01/2024] Open
Abstract
Why and how organismal lineages radiate is commonly studied through either assessing abiotic factors (biogeography, geomorphological processes, and climate) or biotic factors (traits and interactions). Despite increasing awareness that both abiotic and biotic processes may have important joint effects on diversification dynamics, few attempts have been made to quantify the relative importance and timing of these factors, and their potentially interlinked direct and indirect effects, on lineage diversification. We here combine assessments of historical biogeography, geomorphology, climatic niche, vegetative, and floral trait evolution to test whether these factors jointly, or in isolation, explain diversification dynamics of a Neotropical plant clade (Merianieae, Melastomataceae). After estimating ancestral areas and the changes in niche and trait disparity over time, we employ Phylogenetic Path Analyses as a synthesis tool to test eleven hypotheses on the individual direct and indirect effects of these factors on diversification rates. We find strongest support for interlinked effects of colonization of the uplifting Andes during the mid-Miocene and rapid abiotic climatic niche evolution in explaining a burst in diversification rate in Merianieae. Within Andean habitats, later increases in floral disparity allowed for the exploitation of wider pollination niches (i.e., shifts from bee to vertebrate pollinators), but did not affect diversification rates. Our approach of including both vegetative and floral trait evolution, rare in assessments of plant diversification in general, highlights that the evolution of woody habit and larger flowers preceded the colonization of the Andes, but was likely critical in enabling the rapid radiation in montane environments. Overall, and in concert with the idea that ecological opportunity is a key element of evolutionary radiations, our results suggest that a combination of rapid niche evolution and trait shifts was critical for the exploitation of newly available niche space in the Andes in the mid-Miocene. Further, our results emphasize the importance of incorporating both abiotic and biotic factors into the same analytical framework if we aim to quantify the relative and interlinked effects of these processes on diversification.
Collapse
Affiliation(s)
- Agnes S Dellinger
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria
- Ecology and Evolutionary Biology, University of Colorado Boulder, 1800 Colorado Ave., Boulder, CO 80309-0334, USA
| | - Laura Lagomarsino
- Shirley C. Tucker Herbarium, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
| | - Fabián Michelangeli
- Institute of Systematic Botany, The New York Botanical Garden, 2900 Southern Blvd, Bronx, NY 10458, USA
| | - Stefan Dullinger
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | - Stacey D Smith
- Ecology and Evolutionary Biology, University of Colorado Boulder, 1800 Colorado Ave., Boulder, CO 80309-0334, USA
| |
Collapse
|
8
|
Li X, Lowey D, Lessard J, Caicedo AL. Comparative histology of abscission zones reveals the extent of convergence and divergence in seed shattering in weedy and cultivated rice. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4837-4850. [PMID: 38972665 DOI: 10.1093/jxb/erae221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 05/29/2024] [Indexed: 07/09/2024]
Abstract
The modification of seed shattering has been a recurring theme in rice evolution. The wild ancestor of cultivated rice disperses its seeds, but reduced shattering was selected during multiple domestication events to facilitate harvesting. Conversely, selection for increased shattering occurred during the evolution of weedy rice, a weed invading cultivated rice fields that has originated multiple times from domesticated ancestors. Shattering requires formation of a tissue known as the abscission zone (AZ), but how the AZ has been modified throughout rice evolution is unclear. We quantitatively characterized the AZ characteristics of relative length, discontinuity, and intensity in 86 cultivated and weedy rice accessions. We reconstructed AZ evolutionary trajectories and determined the degree of convergence among different cultivated varieties and among independent weedy rice populations. AZ relative length emerged as the best feature to distinguish high and low shattering rice. Cultivated varieties differed in average AZ morphology, revealing lack of convergence in how shattering reduction was achieved during domestication. In contrast, weedy rice populations typically converged on complete AZs, irrespective of origin. By examining AZ population-level morphology, our study reveals its evolutionary plasticity, and suggests that the genetic potential to modify the ecologically and agronomically important trait of shattering is plentiful in rice lineages.
Collapse
Affiliation(s)
- Xiang Li
- Plant Biology Graduate Program and Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Daniel Lowey
- Plant Biology Graduate Program and Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Jessica Lessard
- Plant Biology Graduate Program and Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Ana L Caicedo
- Plant Biology Graduate Program and Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
9
|
São-Mateus WMB, Fernandes MF, Queiroz LPD, Meireles JE, Jardim JG, Delgado-Salinas A, Dorado Ó, Lima HCD, Rodríguez RR, González Gutiérrez PA, Lewis GP, Wojciechowski MF, Cardoso D. Molecular phylogeny and divergence time of Harpalyce (Leguminosae, Papilionoideae), a lineage with amphitropical diversification in seasonally dry forests and savannas. Mol Phylogenet Evol 2024; 194:108031. [PMID: 38360081 DOI: 10.1016/j.ympev.2024.108031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
Our knowledge of the systematics of the papilionoid legume tribe Brongniartieae has greatly benefitted from recent advances in molecular phylogenetics. The tribe was initially described to include species marked by a strongly bilabiate calyx and an embryo with a straight radicle, but recent research has placed taxa from the distantly related core Sophoreae and Millettieae within it. Despite these advances, the most species-rich genera within the Brongniartieae are still not well studied, and their morphological and biogeographical evolution remains poorly understood. Comprising 35 species, Harpalyce is one of these poorly studied genera. In this study, we present a comprehensive, multi-locus molecular phylogeny of the Brongniartieae, with an increased sampling of Harpalyce, to investigate morphological and biogeographical evolution within the group. Our results confirm the monophyly of Harpalyce and indicate that peltate glandular trichomes and a strongly bilabiate calyx with a carinal lip and three fused lobes are synapomorphies for the genus, which is internally divided into three distinct ecologically and geographically divergent lineages, corresponding to the previously recognized sections. Our biogeographical reconstructions demonstrate that Brongniartieae originated in South America during the Eocene, with subsequent pulses of diversification in South America, Mesoamerica, and Australia. Harpalyce also originated in South America during the Miocene at around 20 Ma, with almost synchronous later diversification in South America and Mexico/Mesoamerica beginning 10 Ma, but mostly during the Pliocene. Migration of Harpalyce from South to North America was accompanied by a biome and ecological shift from savanna to seasonally dry forest.
Collapse
Affiliation(s)
- Wallace M B São-Mateus
- Programa de Pós-Graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário Lagoa Nova, 59072-970, Natal, Rio Grande do Norte, Brazil.
| | - Moabe Ferreira Fernandes
- Instituto de Biologia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, s.n., Ondina, 40170-115 Salvador, Bahia, Brazil; Department of Geography, University of Exeter, Exeter, UK; Royal Botanic Gardens, Kew, Richmond TW93AE, UK
| | - Luciano Paganucci de Queiroz
- Universidade Estadual de Feira de Santana (HUEFS), Av. Transnordestina, s/n, Novo Horizonte, 44036-900 Feira de Santana, Bahia, Brazil
| | - José Eduardo Meireles
- School of Biology and Ecology, University of Maine, 5735 Hitchner Hall, 04469 Orono, ME, USA
| | - Jomar Gomes Jardim
- Universidade Federal do Sul da Bahia, Centro de Formação em Ciências Agroflorestais, Campus Jorge Amado, 45613-204 Itabuna, Bahia, Brazil; Herbário Centro de Pesquisas do Cacau - CEPEC, Km 29, Rod. Ilhéus-Itabuna, 45603-811 Itabuna, Bahia, Brazil
| | - Alfonso Delgado-Salinas
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado Postal 70-233, 04510 Coyoacán, Cd. México, Mexico
| | - Óscar Dorado
- Centro de Educación Ambiental e Investigación Sierra de Huautla, Universidad Autónoma del Estado de Morelos, Mexico
| | - Haroldo Cavalcante de Lima
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão, 915 22460-030 Rio de Janeiro, Brazil
| | - Rosa Rankin Rodríguez
- Jardín Botánico Nacional, Universidad de la Habana, Carretera "El Rocío", km 3.5, Calabazar C.P. 19230, Boyeros, La Habana, Cuba
| | - Pedro Alejandro González Gutiérrez
- Centro de Investigaciones y Servicios Ambientales de Holguín (CISAT), CITMA, Calle 18 sn, entre 1ª y Maceo, Reparto "El Llano", Holguín 80 100, Cuba
| | | | | | - Domingos Cardoso
- Instituto de Biologia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, s.n., Ondina, 40170-115 Salvador, Bahia, Brazil; Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão, 915 22460-030 Rio de Janeiro, Brazil.
| |
Collapse
|
10
|
Kopper C, Schönenberger J, Dellinger AS. High floral disparity without pollinator shifts in buzz-bee-pollinated Melastomataceae. THE NEW PHYTOLOGIST 2024. [PMID: 38634161 DOI: 10.1111/nph.19735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/14/2024] [Indexed: 04/19/2024]
Abstract
Shifts among functional pollinator groups are commonly regarded as sources of floral morphological diversity (disparity) through the formation of distinct pollination syndromes. While pollination syndromes may be used for predicting pollinators, their predictive accuracy remains debated, and they are rarely used to test whether floral disparity is indeed associated with pollinator shifts. We apply classification models trained and validated on 44 functional floral traits across 252 species with empirical pollinator observations and then use the validated models to predict pollinators for 159 species lacking observations. In addition, we employ multivariate statistics and phylogenetic comparative analyses to test whether pollinator shifts are the main source of floral disparity in Melastomataceae. We find strong support for four well-differentiated pollination syndromes ('buzz-bee', 'nectar-foraging vertebrate', 'food-body-foraging vertebrate', 'generalist'). While pollinator shifts add significantly to floral disparity, we find that the most species-rich 'buzz-bee' pollination syndrome is most disparate, indicating that high floral disparity may evolve without pollinator shifts. Also, relatively species-poor clades and geographic areas contributed substantially to total disparity. Finally, our results show that machine-learning approaches are a powerful tool for evaluating the predictive accuracy of the pollination syndrome concept as well as for predicting pollinators where observations are missing.
Collapse
Affiliation(s)
- Constantin Kopper
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, Vienna, 1030, Austria
| | - Jürg Schönenberger
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, Vienna, 1030, Austria
| | - Agnes S Dellinger
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, Vienna, 1030, Austria
| |
Collapse
|
11
|
Pemberton RW. Plant Resource Use and Pattern of Usage by the Naturalized Orchid Bee ( Euglossa dilemma: Hymenoptera: Apidae) in Florida. INSECTS 2023; 14:909. [PMID: 38132583 PMCID: PMC10743517 DOI: 10.3390/insects14120909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023]
Abstract
The Neotropical orchid bee Euglossa dilemma was found to be naturalized in southern Florida in 2003, and, by 2022, it had colonized the southern half of Florida. Observations of the bee's collection of plant resources, primarily flowers, were made from 2003 through to 2022 to document its plant usage and understand the patterns of its plant usage. The bee utilized 259 plant taxa, 237 species, and 22 horticultural forms, in 156 genera and 56 families in 263 total uses. Of 247 taxa of flowers, 120 were visited primarily for nectar, 46 for both nectar and pollen, 60 for pollen, including 42 buzz-pollinated flowers, 15 for fragrance chemicals for the males, and 5 for resin rewards by females for nesting. Fragrance chemicals were also collected by males from the leaves of 12 plant species. These extensive resource use data allowed the following predictions to be made. (1) The bee's presence in Florida, distant from its native region of Mexico and Central America and the geographical ranges of other orchid bees, would result the usage of many new taxa of plants. True, half, 74/148 (50%), of the genera and one third, 16/51(31%), of the plant families of the plants with flowers used by the bee were not previously recorded as being utilized by Euglossine bees. (2) Like other naturalized bees, it would use relatively more plants from its native range or congeners of these plants. True, 113/148 (76%) of genera with species bearing collected floral rewards are native or congeners with species native to the bee's native range. (3) Given the bee's long tongue, ability to buzz pollen from poricidal anthers, and ability to collect and use specialized rewards, it would disproportionately use plants with protected or highly specialized floral rewards. True, 180/247 (72%) utilized species bear rewards which were protected and unavailable to, or of no interest to, most other flower visitors.
Collapse
|
12
|
Dellinger AS, Hamilton AM, Wessinger CA, Smith S. Opposing Patterns of Altitude-Driven Pollinator Turnover in the Tropical and Temperate Americas. Am Nat 2023; 202:152-165. [PMID: 37531276 PMCID: PMC7614872 DOI: 10.1086/725017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
AbstractAbiotic factors (e.g., temperature, precipitation) vary markedly along elevational gradients and differentially affect major groups of pollinators. Ectothermic bees, for example, are impeded in visiting flowers by cold and rainy conditions common at high elevations, while endothermic hummingbirds may continue foraging under such conditions. Despite the possibly far-reaching effects of the abiotic environment on plant-pollinator interactions, we know little about how these factors play out at broad ecogeographic scales. We address this knowledge gap by investigating how pollination systems vary across elevations in 26 plant clades from the Americas. Specifically, we explore Cruden's 1972 hypothesis that the harsh montane environment drives a turnover from insect to vertebrate pollination at higher elevations. We compared the elevational distribution and bioclimatic attributes for a total of 2,232 flowering plants and found that Cruden's hypothesis holds only in the tropics. Above 30°N and below 30°S, plants pollinated by vertebrates (mostly hummingbirds) tend to occur at lower elevations than those pollinated by insects. We hypothesize that this latitudinal transition is due to the distribution of moist, forested habitats favored by vertebrate pollinators, which are common at high elevations in the tropics but not in the temperate Americas.
Collapse
|
13
|
Maguiña‐Conde R, Zuñiga‐Rivas D, Kay KM. An elevational gradient in floral traits and pollinator assemblages in the Neotropical species Costus guanaiensis var. tarmicus in Peru. Ecol Evol 2023; 13:e10314. [PMID: 37529588 PMCID: PMC10375365 DOI: 10.1002/ece3.10314] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/04/2023] [Indexed: 08/03/2023] Open
Abstract
Different populations of plant species can adapt to their local pollinators and diverge in floral traits accordingly. Floral traits are subject to pollinator-driven natural selection to enhance plant reproductive success. Studies on temperate plant systems have shown pollinator-driven selection results in floral trait variation along elevational gradients, but studies in tropical systems are lacking. We analyzed floral traits and pollinator assemblages in the Neotropical bee-pollinated taxon Costus guanaiensis var. tarmicus across four sites along a steep elevational gradient in Peru. We found variations in floral traits of size, color, and reward, and in the pollinator assemblage along the elevational gradient. We examined our results considering two hypotheses, (1) local adaptation to different bee assemblages, and (2) the early stages of an evolutionary shift to a new pollinator functional group (hummingbirds). We found some evidence consistent with the adaptation of C. guanaiensis var. tarmicus to the local bee fauna along the studied elevational gradient. Corolla width across sites was associated with bee thorax width of the local most frequent pollinator. However, we could not rule out the possibility of the beginning of a bee-to-hummingbird pollination shift in the highest-studied site. Our study is one of the few geographic-scale analyses of floral trait and pollinator assemblage variation in tropical plant species. Our results broaden our understanding of plant-pollinator interactions beyond temperate systems by showing substantial intraspecific divergence in both floral traits and pollinator assemblages across geographic space in a tropical plant species.
Collapse
Affiliation(s)
- Rossana Maguiña‐Conde
- Ecology and Evolutionary Biology DepartmentUniversity of California Santa CruzSanta CruzCaliforniaUSA
| | - Dorali Zuñiga‐Rivas
- Laboratorio de EntomologíaUniversidad Nacional San Antonio Abad del CuscoCuscoPeru
| | - Kathleen M. Kay
- Ecology and Evolutionary Biology DepartmentUniversity of California Santa CruzSanta CruzCaliforniaUSA
| |
Collapse
|
14
|
Harenčár J, Vargas OM, Escalona M, Schemske DW, Kay KM. Genome assemblies and comparison of two Neotropical spiral gingers: Costus pulverulentus and C. lasius. J Hered 2023; 114:286-293. [PMID: 36928286 PMCID: PMC10212132 DOI: 10.1093/jhered/esad018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/15/2023] [Indexed: 03/18/2023] Open
Abstract
The spiral gingers (Costus L.) are a pantropical genus of herbaceous perennial monocots; the Neotropical clade of Costus radiated rapidly in the past few million years into over 60 species. The Neotropical spiral gingers have a rich history of evolutionary and ecological research that can motivate and inform modern genetic investigations. Here, we present the first 2 chromosome-level genome assemblies in the genus, for C. pulverulentus and C. lasius, and briefly compare their synteny. We assembled the C. pulverulentus genome from a combination of short-read data, Chicago and Dovetail Hi-C chromatin-proximity sequencing, and alignment with a linkage map. We annotated the genome by mapping a C. pulverulentus transcriptome and querying mapped transcripts against a protein database. We assembled the C. lasius genome with Pacific Biosciences HiFi long reads and alignment to the C. pulverulentus genome. These 2 assemblies are the first published genomes for non-cultivated tropical plants. These genomes solidify the spiral gingers as a model system and will facilitate research on the poorly understood genetic basis of tropical plant diversification.
Collapse
Affiliation(s)
- Julia Harenčár
- Ecology and Evolutionary Biology Department, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Oscar M Vargas
- Department of Biological Sciences, California State Polytechnic University, Humboldt, Arcata, CA, United States
| | - Merly Escalona
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Douglas W Schemske
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| | - Kathleen M Kay
- Ecology and Evolutionary Biology Department, University of California, Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|