1
|
He Y, Junker RR, Xiao J, Lasky JR, Cao M, Asefa M, Swenson NG, Xu G, Yang J, Sedio BE. Genetic and environmental drivers of intraspecific variation in foliar metabolites in a tropical tree community. THE NEW PHYTOLOGIST 2025; 246:2551-2564. [PMID: 40247823 DOI: 10.1111/nph.70146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/26/2025] [Indexed: 04/19/2025]
Abstract
Plant interactions with abiotic and biotic environments are mediated by diverse metabolites, which are crucial for stress response and defense. These metabolites can not only support diversity by shaping species niche differences but also display heritable and plastic intraspecific variation, which few studies have quantified in terms of their relative contributions. To address this shortcoming, we used untargeted metabolomics to annotate and quantify foliar metabolites and restriction-site associated DNA (RAD) sequencing to assess genetic distances among 300 individuals of 10 locally abundant species from a diverse tropical community in Southwest China. We quantified the relative contributions of relatedness and the abiotic and biotic environment to intraspecific metabolite variation, considering different biosynthetic pathways. Intraspecific variation contributed most to community-level metabolite diversity, followed by species-level variation. Biotic factors had the largest effect on total and secondary metabolites, while abiotic factors strongly influenced primary metabolites, particularly carbohydrates. The relative importance of these factors varied widely across different biosynthetic pathways and different species. Our findings highlight that intraspecific variation is an essential component of community-level metabolite diversity. Furthermore, species rely on distinct classes of metabolites to adapt to environmental pressures, with genetic, abiotic, and biotic factors playing pathway-specific roles in driving intraspecific variation.
Collapse
Affiliation(s)
- Yunyun He
- State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
- University of Chinese Academy Sciences, Beijing, 100049, China
| | - Robert R Junker
- Evolutionary Ecology of Plants, Department of Biology, University of Marburg, Marburg, 35043, Germany
| | - Jianhua Xiao
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, JiaYing University, Mei Zhou, Guangdong, 514015, China
| | - Jesse R Lasky
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Min Cao
- State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
| | - Mengesha Asefa
- State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
- Department of Biology, College of Natural and Computational Sciences, University of Gondar, Gondar, 196, Ethiopia
| | - Nathan G Swenson
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Guorui Xu
- State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
| | - Jie Yang
- State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
- National Forest Ecosystem Research Station at Xishuangbanna, Mengla, Yunnan, 666303, China
| | - Brain E Sedio
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
- Smithsonian Tropical Research Institute, Balboa, Ancón, 0843, Republic of Panama
| |
Collapse
|
2
|
MacNeill FT, Hunter SG, Muth F, Sedio BE. Nectar metabolomes contribute to pollination syndromes. THE NEW PHYTOLOGIST 2025. [PMID: 40365744 DOI: 10.1111/nph.70217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 04/08/2025] [Indexed: 05/15/2025]
Abstract
'Pollination syndromes', where convergent floral signals reflect selection from a functional pollinator group, are often characterized by physical features, yet floral rewards such as nectar may also reflect selection from pollinators. We asked whether nectar chemistry shows evidence of convergence across functional pollinator groups, i.e. a 'chemical pollination syndrome'. We used untargeted metabolomics to compare nectar and leaf chemical profiles across 19 bee- and bird-syndrome species, focusing on Salvia spp. (Lamiaceae), selected to maximize switching events between pollination syndromes. We found that independently derived bird-syndrome nectar showed convergence on nectar traits distinct from bee-syndrome nectar, primarily driven by the composition and concentration of alkaloid profiles. We did not find evidence for 'passive leaking' of nectar compounds from leaves since metabolite abundances were uncorrelated across tissues and many nectar metabolites were not present in leaves. Nectar and leaf metabolomes were strongly decoupled from phylogenetic relationships within Salvia. These results suggest that functional pollinator groups may drive the evolution of floral reward chemistry, consistent with our 'chemical pollination syndrome' hypothesis and indicative of selection by pollinators, but we also consider alternative explanations. In addition, our results support the notion that nectar chemistry can be decoupled from that of other tissues.
Collapse
Affiliation(s)
- Fiona T MacNeill
- Department of Integrative Biology, University of Texas at Austin, 2415 Speedway, Austin, TX, 78712, USA
| | - Sarah G Hunter
- Department of Integrative Biology, University of Texas at Austin, 2415 Speedway, Austin, TX, 78712, USA
| | - Felicity Muth
- Department of Integrative Biology, University of Texas at Austin, 2415 Speedway, Austin, TX, 78712, USA
- Department of Neurobiology, Physiology & Behavior, University of California, Davis, 95616, Davis, CA, USA
| | - Brian E Sedio
- Department of Integrative Biology, University of Texas at Austin, 2415 Speedway, Austin, TX, 78712, USA
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Republic of Panama
| |
Collapse
|
3
|
Schneider GF, Beckman NG. Different tools for different trades: contrasts in specialized metabolite chemodiversity and phylogenetic dispersion in fruit, leaves, and roots of the neotropical shrubs Psychotria and Palicourea (Rubiaceae). PLANT BIOLOGY (STUTTGART, GERMANY) 2025. [PMID: 40120124 DOI: 10.1111/plb.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/14/2025] [Indexed: 03/25/2025]
Abstract
Plants produce an astonishingly diverse array of specialized metabolites. A crucial step in understanding the origin of such chemodiversity is describing how chemodiversity manifests across the spatial and ontogenetic scales relevant to plant-biotic interactions. Focusing on 21 sympatric species of Psychotria and Palicourea sensu lato (Rubiaceae), we describe patterns of specialized metabolite diversity across spatial and ontogenetic scales using a combination of field collections, untargeted metabolomics, and ecoinformatics. We compare α, β, and γ diversity of specialized metabolites in expanding leaves, unripe pulp, immature seed, ripe pulp, mature seed, and fine roots. Within species, fruit tissues from across ontogenetic stages had ≥α diversity than leaves, and ≤β diversity than leaves. Pooled across species, fruit tissues and ontogenetic stages had the highest γ diversity of all organs, and fruit tissues and ontogenetic stages combined had a higher incidence of organ-specific mass spectral features than leaves. Roots had ≤α diversity than leaves and the lowest β and γ diversity of all organs. Phylogenetic correlations of chemical distance varied by plant organ and chemical class. Our results describe patterns of specialized metabolite diversity across organs and species and provide support for organ-specific contributions to plant chemodiversity. This study contributes to the growing understanding within plant evolutionary ecology of the biological scales of specialized metabolite diversification. Future studies combining our data on specialized metabolite diversity with biotic interaction data and experiments can test existing hypotheses on the roles of ecological interactions in the evolution of chemodiversity.
Collapse
Affiliation(s)
- G F Schneider
- Department of Biology, Utah State University, Logan, Utah, USA
| | - N G Beckman
- Department of Biology and Ecology Center, Utah State University, Smithsonian Tropical Research Institute, Panama, Republic of Panama
| |
Collapse
|
4
|
Xu S, Gaquerel E. Evolution of plant specialized metabolites: beyond ecological drivers. TRENDS IN PLANT SCIENCE 2025:S1360-1385(25)00044-5. [PMID: 40113551 DOI: 10.1016/j.tplants.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/22/2025]
Abstract
Plants produce a highly diverse array of specialized metabolites. Traditionally, the evolution of these metabolites has been studied primarily through the lens of plants' ecological interactions with herbivores, pathogens, and pollinators, as many of them exhibit defense and/or attraction functions. However, increasing evidence suggests that many specialized metabolites, along with their precursors, also act as cellular signals that regulate cell growth and differentiation. We propose that these intrinsic functions are at least equally important factors in shaping the evolution of plant chemical defenses. We further discuss how future research that combines modern single-cell techniques and evolutionary genomics will provide novel insights into the evolutionary process of specialized metabolism diversification.
Collapse
Affiliation(s)
- Shuqing Xu
- Institute of Organismic and Molecular Evolution (iomE), University of Mainz, 55128 Mainz, Germany.
| | - Emmanuel Gaquerel
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
5
|
Guevara-Andino JE, Dávalos LM, Zapata F, Endara MJ, Cotoras DD, Chaves J, Claramunt S, López-Delgado J, Mendoza-Henao AM, Salazar-Valenzuela D, Rivas-Torres G, Yeager J. Neotropics as a Cradle for Adaptive Radiations. Cold Spring Harb Perspect Biol 2025; 17:a041452. [PMID: 38692837 PMCID: PMC11875094 DOI: 10.1101/cshperspect.a041452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Neotropical ecosystems are renowned for numerous examples of adaptive radiation in both plants and animals resulting in high levels of biodiversity and endemism. However, we still lack a comprehensive review of the abiotic and biotic factors that contribute to these adaptive radiations. To fill this gap, we delve into the geological history of the region, including the role of tectonic events such as the Andean uplift, the formation of the Isthmus of Panama, and the emergence of the Guiana and Brazilian Shields. We also explore the role of ecological opportunities created by the emergence of new habitats, as well as the role of key innovations, such as novel feeding strategies or reproductive mechanisms. We discuss different examples of adaptive radiation, including classic ones like Darwin's finches and Anolis lizards, and more recent ones like bromeliads and lupines. Finally, we propose new examples of adaptive radiations mediated by ecological interactions in their geological context. By doing so, we provide insights into the complex interplay of factors that contributed to the remarkable diversity of life in the Neotropics and highlight the importance of this region in understanding the origins of biodiversity.
Collapse
Affiliation(s)
- Juan E Guevara-Andino
- Grupo de Investigación en Ecología y Evolución en los Trópicos-EETrop, Universidad de las Américas, Quito 170124, Ecuador
| | - Liliana M Dávalos
- Department of Ecology and Evolution and Consortium for Inter-Disciplinary Environmental Research, Stony Brook University, Stony Brook, New York 11794, USA
| | - Felipe Zapata
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California 90024, USA
- Center for Tropical Research, Institute of the Environment and Sustainability, University of California, Los Angeles, California 90024, USA
| | - María José Endara
- Grupo de Investigación en Ecología y Evolución en los Trópicos-EETrop, Universidad de las Américas, Quito 170124, Ecuador
| | - Darko D Cotoras
- Department of Terrestrial Zoology, Senckenberg Research Institute and Natural History Museum, 60325 Frankfurt am Main, Germany
- Department of Entomology, California Academy of Sciences, San Francisco, California 94118, USA
| | - Jaime Chaves
- Galapagos Science Center, Universidad San Francisco de Quito (USFQ) and University of North Carolina (UNC), Chapel Hill, North Carolina 27516, USA
- Department of Biology, San Francisco State University, San Francisco, California 94132, USA
- Laboratorio de Biología Evolutiva, Instituto Biósfera, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito (USFQ), Quito 170901, Ecuador
| | - Santiago Claramunt
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto M5S 1A1, Ontario, Canada
| | - Julia López-Delgado
- School of Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Angela M Mendoza-Henao
- Colecciones Biológicas, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Claustro de San Agustín, Villa de Leyva 12-65 Piso 7, Colombia
| | - David Salazar-Valenzuela
- Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb) e Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias del Medio Ambiente, Universidad Indoamérica, Quito 170301, Ecuador
| | - Gonzalo Rivas-Torres
- Galapagos Science Center, Universidad San Francisco de Quito (USFQ) and University of North Carolina (UNC), Chapel Hill, North Carolina 27516, USA
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito (USFQ), Quito 170901, Ecuador
| | - Justin Yeager
- Grupo de Investigación en Biodiversidad, Ambiente y Salud-BIOMAS-Universidad de las Américas, Quito 170124, Ecuador
| |
Collapse
|
6
|
Vanessa E. Rubio. THE NEW PHYTOLOGIST 2025; 245:949-950. [PMID: 39370535 DOI: 10.1111/nph.20176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
|
7
|
Nicholls JA, Ringelberg JJ, Dexter KG, Loiseau O, Stone GN, Coley PD, Hughes CE, Kursar TA, Koenen EJM, Garcia F, Lemes MR, Neves DRM, Endara MJ, de Lima HC, Kidner CA, Pennington RT. Continuous colonization of the Atlantic coastal rain forests of South America from Amazônia. Proc Biol Sci 2025; 292:20241559. [PMID: 39837505 PMCID: PMC11750371 DOI: 10.1098/rspb.2024.1559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 11/14/2024] [Accepted: 12/06/2024] [Indexed: 01/23/2025] Open
Abstract
The two main extensions of rain forest in South America are the Amazon (Amazônia) and the Atlantic rain forest (Mata Atlântica), which are separated by a wide 'dry diagonal' of seasonal vegetation. We used the species-rich tree genus Inga to test if Amazônia-Mata Atlântica dispersals have been clustered during specific time periods corresponding to past, humid climates. We performed hybrid capture DNA sequencing of 810 nuclear loci for 453 accessions representing 164 species that included 62% of Mata Atlântica species and estimated a dated phylogeny for all accessions using maximum likelihood, and a species-level tree using coalescent methods. There have been 16-20 dispersal events to the Mata Atlântica from Amazônia with only one or two dispersals in the reverse direction. These events have occurred over the evolutionary history of Inga, with no evidence for temporal clustering, and model comparisons of alternative biogeographic histories and null simulations showing the timing of dispersal events matches a random expectation. Time-specific biogeographic corridors are not required to explain dispersal between Amazônia and the Mata Atlântica for rain forest trees such as Inga, which are likely to have used a dendritic net of gallery forests to cross the dry diagonal.
Collapse
Affiliation(s)
- James A. Nicholls
- Institute of Evolutionary Biology, University of Edinburgh, EdinburghEH9 3FL, UK
- Royal Botanic Garden Edinburgh, EdinburghEH3 5LR, UK
- Australian National Insect Collection, CSIRO, CanberraACT 2601, Australia
| | - Jens J. Ringelberg
- School of Geosciences, University of Edinburgh, EdinburghEH9 3FF, UK
- Department of Systematic and Evolutionary Botany, University of Zurich, ZurichCH-8008, Switzerland
| | - Kyle G. Dexter
- Royal Botanic Garden Edinburgh, EdinburghEH3 5LR, UK
- School of Geosciences, University of Edinburgh, EdinburghEH9 3FF, UK
- Department of Life Sciences and Systems Biology, University of Turin, Torino10124, Italy
| | - Oriane Loiseau
- School of Geosciences, University of Edinburgh, EdinburghEH9 3FF, UK
| | - Graham N. Stone
- Institute of Evolutionary Biology, University of Edinburgh, EdinburghEH9 3FL, UK
| | - Phyllis D. Coley
- Department of Biology, University of Utah, Salt Lake City,UT 84112-0840, USA
| | - Colin E. Hughes
- Department of Systematic and Evolutionary Botany, University of Zurich, ZurichCH-8008, Switzerland
| | - Thomas A. Kursar
- Department of Biology, University of Utah, Salt Lake City,UT 84112-0840, USA
| | - Erik J. M. Koenen
- Department of Systematic and Evolutionary Botany, University of Zurich, ZurichCH-8008, Switzerland
| | - Flávia Garcia
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG36570-900, Brazil
| | - Maristerra R. Lemes
- Laboratório de Genética e Biologia Reprodutiva de Plantas,Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazonia, Manaus, AM69067-375, Brazil
| | - Danilo R. M. Neves
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte31270-901, Brazil
| | - María José Endara
- Grupo de Investigación en Ecología y Evolución en los Trópicos- EETROP, Universidad de las Américas, Quito170513, Ecuador
| | | | - Catherine A. Kidner
- Royal Botanic Garden Edinburgh, EdinburghEH3 5LR, UK
- Institute of Molecular Plant Sciences, University of Edinburgh, EdinburghEH9 3BF, UK
| | - R. Toby Pennington
- Royal Botanic Garden Edinburgh, EdinburghEH3 5LR, UK
- Department of Geography, University of Exeter, ExeterEX4 4QE, UK
| |
Collapse
|
8
|
Schardl CL, Florea S, Nagabhyru P, Pan J, Farman ML, Young CA, Rahnama M, Leuchtmann A, Sabzalian MR, Torkian M, Mirlohi A, Iannone LJ. Chemotypic diversity of bioprotective grass endophytes based on genome analyses, with new insights from a Mediterranean-climate region in Isfahan Province, Iran. Mycologia 2025; 117:34-59. [PMID: 39661454 DOI: 10.1080/00275514.2024.2430174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/08/2024] [Indexed: 12/13/2024]
Abstract
Epichloë species are systemic, often seed-transmissible symbionts (endophytes) of cool-season grasses (Poaceae subfam. Poöideae) that produce up to four classes of bioprotective alkaloids. Whereas haploid Epichloë species may reproduce sexually and transmit between host plants (horizontally), many Epichloë species are polyploid hybrids that are exclusively transmitted via seeds (vertically). Therefore, the generation of, and selection on, chemotypic (alkaloid) profiles and diversity should differ between haploids and hybrids. We undertook a genome-level analysis of haploids and polyploid hybrids, emphasizing hybrids that produce lolines, which are potent broad-spectrum anti-invertebrate alkaloids that can accumulate to levels up to 2% of plant dry mass. Prior phylogenetic analysis had indicated that loline alkaloid gene clusters (LOL) in many hybrids are from the haploid species Epichloë bromicola, but no LOL-containing E. bromicola strains were previously identified. We discovered LOL-containing E. bromicola from host grasses Bromus tomentellus and Melica persica in a Mediterranean-climate region (MCR) in Isfahan Province, Iran, and from Thinopyrum intermedium in Poland. The isolates from B. tomentellus and M. persica were closely related and had nearly identical alkaloid gene profiles, and their LOL clusters were most closely related to those of several Epichloë hybrids. In contrast, several LOL genes in the isolate from T. intermedium were phylogenetically more basal in genus Epichloë, indicating trans-species polymorphism. While identifying likely hybrid ancestors, this study also revealed novel host ranges in central Iran, with the first observation of E. bromicola in host tribe Meliceae and of Epichloë festucae in host tribe Bromeae. We discuss the possibility that MCRs may be hotspots for diversification of grass-Epichloë symbioses via extended host ranges and interspecific hybridization of the symbionts.
Collapse
Affiliation(s)
- Christopher L Schardl
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Simona Florea
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Padmaja Nagabhyru
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Juan Pan
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Mark L Farman
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Carolyn A Young
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Mostafa Rahnama
- Department of Biology, Tennessee Technological University, Cookeville, Tennessee 38505, USA
| | - Adrian Leuchtmann
- Plant Ecological Genetics Group, Institute of Integrative Biology, ETH Zurich, Zurich CH-8092, Switzerland
| | - Mohammad R Sabzalian
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan 8415683111, Iran
| | - Mehran Torkian
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan 8415683111, Iran
| | - Aghafakhr Mirlohi
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan 8415683111, Iran
| | - Leopoldo J Iannone
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- CONICET-Instituto de Micología y Botánica, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| |
Collapse
|
9
|
de la Fuente A, Youngentob KN, Marsh KJ, Krockenberger AK, Williams SE, Cernusak LA. Relationships between abiotic factors, foliage chemistry and herbivory in a tropical montane ecosystem. Oecologia 2024; 206:293-304. [PMID: 39453448 PMCID: PMC11599541 DOI: 10.1007/s00442-024-05630-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024]
Abstract
Herbivore-plant interactions are fundamental processes shaping ecosystems, yet their study is challenged by their complex connections within broader ecosystem processes, requiring a nuanced understanding of ecosystem dynamics. This study investigated the relationship between nutrient availability and insect herbivory in the Australian Wet Tropics. Our objectives were threefold. Firstly, to understand what factors influence nutrient availability for plants and herbivores across the landscape; secondly, to investigate how trees of different species respond to nutrient availability; and thirdly, to unravel how the relationships between resources and plant chemistry affect herbivory. We established a network of 25 study sites covering important abiotic gradients, including temperature, precipitation, and geology. Employing a hierarchical modelling approach, we assessed the influence of climate and geology on resource availability for plants, primarily in the form of soil nutrients. Then, we explored the influence of the above factors on the interaction between herbivory and foliage chemistry across three widespread rainforest tree species, comparing how these relationships emerged across genera. Our findings suggest an overarching influence of climate and geology over soil chemistry, foliar nitrogen, and insect herbivory, both directly and indirectly. However, individual constituents of soil fertility showed equivocal influences on spatial patterns of foliage chemistry once site geological origin was accounted for, suggesting a questionable relationship between individual soil nutrients and foliar composition. We have demonstrated that herbivore-plant interactions are complex dynamics regulated by an intricate web of relationships spanning different biogeochemical processes. While our results provide some support to the notion that herbivory is affected by resource availability, different species growing under the same conditions can show differing responses to the same resources, highlighting the importance of identifying specific limiting factors rather than simpler proxies of resource availability.
Collapse
Affiliation(s)
| | - Kara N Youngentob
- The Fenner School of Environment and Society, Australian National University, Canberra, ACT, Australia
| | - Karen J Marsh
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | | | - Stephen E Williams
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Lucas A Cernusak
- College of Science and Engineering, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
10
|
Schley RJ, Pennington RT, Twyford AD, Dexter KG, Kidner C, Michael TP, Royal Botanic Garden Edinburgh Genome Acquisition Lab, Plant Genome Sizing collective, Wellcome Sanger Institute Tree of Life Management, Samples and Laboratory team, Wellcome Sanger Institute Scientific Operations: Sequencing Operations, Wellcome Sanger Institute Tree of Life Core Informatics team, Tree of Life Core Informatics collective. The genome sequence of Inga oerstediana Benth. Wellcome Open Res 2024; 9:607. [PMID: 39606618 PMCID: PMC11599804 DOI: 10.12688/wellcomeopenres.23146.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2024] [Indexed: 11/29/2024] Open
Abstract
We present a genome assembly from an individual of Inga oerstediana (Streptophyta; Magnoliopsida; Fabales; Fabaceae). The genome sequence has a total length of 970.60 megabases. Most of the assembly is scaffolded into 13 chromosomal pseudomolecules. The mitochondrial and plastid genome assemblies have lengths of 1,166.81 and 175.18 kilobases, respectively. Gene annotation of this assembly on Ensembl identified 33,334 protein-coding genes.
Collapse
Affiliation(s)
| | - R. Toby Pennington
- University of Exeter, Exeter, England, UK
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
| | - Alex D. Twyford
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
- University of Edinburgh, Edinburgh, Scotland, UK
| | - Kyle G. Dexter
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
- University of Edinburgh, Edinburgh, Scotland, UK
- University of Turin, Turin, Italy
| | - Catherine Kidner
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
- University of Edinburgh, Edinburgh, Scotland, UK
| | - Todd P. Michael
- Salk Institute for Biological Studies, La Jolla, California, USA
- University of California San Diego, San Diego, California, USA
- San Diego Botanical Garden, San Diego, California, USA
| | - Royal Botanic Garden Edinburgh Genome Acquisition Lab
- University of Exeter, Exeter, England, UK
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
- University of Edinburgh, Edinburgh, Scotland, UK
- University of Turin, Turin, Italy
- Salk Institute for Biological Studies, La Jolla, California, USA
- University of California San Diego, San Diego, California, USA
- San Diego Botanical Garden, San Diego, California, USA
| | - Plant Genome Sizing collective
- University of Exeter, Exeter, England, UK
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
- University of Edinburgh, Edinburgh, Scotland, UK
- University of Turin, Turin, Italy
- Salk Institute for Biological Studies, La Jolla, California, USA
- University of California San Diego, San Diego, California, USA
- San Diego Botanical Garden, San Diego, California, USA
| | | | - Wellcome Sanger Institute Scientific Operations: Sequencing Operations
- University of Exeter, Exeter, England, UK
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
- University of Edinburgh, Edinburgh, Scotland, UK
- University of Turin, Turin, Italy
- Salk Institute for Biological Studies, La Jolla, California, USA
- University of California San Diego, San Diego, California, USA
- San Diego Botanical Garden, San Diego, California, USA
| | - Wellcome Sanger Institute Tree of Life Core Informatics team
- University of Exeter, Exeter, England, UK
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
- University of Edinburgh, Edinburgh, Scotland, UK
- University of Turin, Turin, Italy
- Salk Institute for Biological Studies, La Jolla, California, USA
- University of California San Diego, San Diego, California, USA
- San Diego Botanical Garden, San Diego, California, USA
| | - Tree of Life Core Informatics collective
- University of Exeter, Exeter, England, UK
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
- University of Edinburgh, Edinburgh, Scotland, UK
- University of Turin, Turin, Italy
- Salk Institute for Biological Studies, La Jolla, California, USA
- University of California San Diego, San Diego, California, USA
- San Diego Botanical Garden, San Diego, California, USA
| |
Collapse
|
11
|
Schley RJ, Pennington RT, Twyford AD, Dexter KG, Kidner C, Michael TP, Royal Botanic Garden Edinburgh Genome Acquisition Lab, Plant Genome Sizing collective, Wellcome Sanger Institute Tree of Life Management, Samples and Laboratory team, Wellcome Sanger Institute Scientific Operations: Sequencing Operations, Wellcome Sanger Institute Tree of Life Core Informatics team, Tree of Life Core Informatics collective. The genome sequence of Inga leiocalycina Benth. Wellcome Open Res 2024; 9:606. [PMID: 39494196 PMCID: PMC11531642 DOI: 10.12688/wellcomeopenres.23131.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2024] [Indexed: 11/05/2024] Open
Abstract
We present a genome assembly from an individual of Inga leiocalycina (Streptophyta; Magnoliopsida; Fabales; Fabaceae). The genome sequence has a total length of 948.00 megabases. Most of the assembly is scaffolded into 13 chromosomal pseudomolecules. The assembled mitochondrial genome sequences have lengths of 1,019.42 and 98.74 kilobases, and the plastid genome assembly is 175.51 kb long. Gene annotation of the nuclear genome assembly on Ensembl identified 33,457 protein-coding genes.
Collapse
Affiliation(s)
| | - R. Toby Pennington
- University of Exeter, Exeter, England, UK
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
| | - Alex D. Twyford
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
- The University of Edinburgh, Edinburgh, Scotland, UK
| | - Kyle G. Dexter
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
- The University of Edinburgh, Edinburgh, Scotland, UK
- University of Turin, Turin, Italy
| | - Catherine Kidner
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
- The University of Edinburgh, Edinburgh, Scotland, UK
| | - Todd P. Michael
- Salk Institute for Biological Studies, La Jolla, California, USA
- University of California San Diego, San Diego, California, USA
- San Diego Botanical Garden, San Diego, California, USA
| | - Royal Botanic Garden Edinburgh Genome Acquisition Lab
- University of Exeter, Exeter, England, UK
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
- The University of Edinburgh, Edinburgh, Scotland, UK
- University of Turin, Turin, Italy
- Salk Institute for Biological Studies, La Jolla, California, USA
- University of California San Diego, San Diego, California, USA
- San Diego Botanical Garden, San Diego, California, USA
| | - Plant Genome Sizing collective
- University of Exeter, Exeter, England, UK
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
- The University of Edinburgh, Edinburgh, Scotland, UK
- University of Turin, Turin, Italy
- Salk Institute for Biological Studies, La Jolla, California, USA
- University of California San Diego, San Diego, California, USA
- San Diego Botanical Garden, San Diego, California, USA
| | | | - Wellcome Sanger Institute Scientific Operations: Sequencing Operations
- University of Exeter, Exeter, England, UK
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
- The University of Edinburgh, Edinburgh, Scotland, UK
- University of Turin, Turin, Italy
- Salk Institute for Biological Studies, La Jolla, California, USA
- University of California San Diego, San Diego, California, USA
- San Diego Botanical Garden, San Diego, California, USA
| | - Wellcome Sanger Institute Tree of Life Core Informatics team
- University of Exeter, Exeter, England, UK
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
- The University of Edinburgh, Edinburgh, Scotland, UK
- University of Turin, Turin, Italy
- Salk Institute for Biological Studies, La Jolla, California, USA
- University of California San Diego, San Diego, California, USA
- San Diego Botanical Garden, San Diego, California, USA
| | - Tree of Life Core Informatics collective
- University of Exeter, Exeter, England, UK
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
- The University of Edinburgh, Edinburgh, Scotland, UK
- University of Turin, Turin, Italy
- Salk Institute for Biological Studies, La Jolla, California, USA
- University of California San Diego, San Diego, California, USA
- San Diego Botanical Garden, San Diego, California, USA
| |
Collapse
|
12
|
Kim T, Lee S, Kwak Y, Choi MS, Park J, Hwang SJ, Kim SG. READRetro: natural product biosynthesis predicting with retrieval-augmented dual-view retrosynthesis. THE NEW PHYTOLOGIST 2024; 243:2512-2527. [PMID: 39081009 DOI: 10.1111/nph.20012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/08/2024] [Indexed: 08/23/2024]
Abstract
Plants, as a sessile organism, produce various secondary metabolites to interact with the environment. These chemicals have fascinated the plant science community because of their ecological significance and notable biological activity. However, predicting the complete biosynthetic pathways from target molecules to metabolic building blocks remains a challenge. Here, we propose retrieval-augmented dual-view retrosynthesis (READRetro) as a practical bio-retrosynthesis tool to predict the biosynthetic pathways of plant natural products. Conventional bio-retrosynthesis models have been limited in their ability to predict biosynthetic pathways for natural products. READRetro was optimized for the prediction of complex metabolic pathways by incorporating cutting-edge deep learning architectures, an ensemble approach, and two retrievers. Evaluation of single- and multi-step retrosynthesis showed that each component of READRetro significantly improved its ability to predict biosynthetic pathways. READRetro was also able to propose the known pathways of secondary metabolites such as monoterpene indole alkaloids and the unknown pathway of menisdaurilide, demonstrating its applicability to real-world bio-retrosynthesis of plant natural products. For researchers interested in the biosynthesis and production of secondary metabolites, a user-friendly website (https://readretro.net) and the open-source code of READRetro have been made available.
Collapse
Affiliation(s)
- Taein Kim
- Department of Biological Sciences, KAIST, Daejeon, 34141, Korea
| | - Seul Lee
- Kim Jaechul Graduate School of AI, KAIST, Daejeon, 34141, Korea
| | - Yejin Kwak
- Department of BioMedical Convergence Engineering, Pusan National University, Yangsan, 50612, Korea
| | - Min-Soo Choi
- Department of Biological Sciences, KAIST, Daejeon, 34141, Korea
| | - Jeongbin Park
- Department of BioMedical Convergence Engineering, Pusan National University, Yangsan, 50612, Korea
| | - Sung Ju Hwang
- Kim Jaechul Graduate School of AI, KAIST, Daejeon, 34141, Korea
- School of Computing, KAIST, Daejeon, 34141, Korea
| | - Sang-Gyu Kim
- Department of Biological Sciences, KAIST, Daejeon, 34141, Korea
| |
Collapse
|
13
|
Sun L, He Y, Cao M, Wang X, Zhou X, Yang J, Swenson NG. Tree phytochemical diversity and herbivory are higher in the tropics. Nat Ecol Evol 2024; 8:1426-1436. [PMID: 38937611 DOI: 10.1038/s41559-024-02444-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 05/20/2024] [Indexed: 06/29/2024]
Abstract
A long-standing but poorly tested hypothesis in plant ecology and evolution is that biotic interactions play a more important role in producing and maintaining species diversity in the tropics than in the temperate zone. A core prediction of this hypothesis is that tropical plants deploy a higher diversity of phytochemicals within and across communities because they experience more herbivore pressure than temperate plants. However, simultaneous comparisons of phytochemical diversity and herbivore pressure in plant communities from the tropical to the temperate zone are lacking. Here we provide clear support for this prediction by examining phytochemical diversity and herbivory in 60 tree communities ranging from species-rich tropical rainforests to species-poor subalpine forests. Using a community metabolomics approach, we show that phytochemical diversity is higher within and among tropical tree communities than within and among subtropical and subalpine communities, and that herbivore pressure and specialization are highest in the tropics. Furthermore, we show that the phytochemical similarity of trees has little phylogenetic signal, indicating rapid divergence between closely related species. In sum, we provide several lines of evidence from entire tree communities showing that biotic interactions probably play an increasingly important role in generating and maintaining tree diversity in the lower latitudes.
Collapse
Affiliation(s)
- Lu Sun
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Yunyun He
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- University of Chinese Academy Sciences, Beijing, China
| | - Min Cao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Xuezhao Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- University of Chinese Academy Sciences, Beijing, China
| | - Xiang Zhou
- School of Ethnic Medicine, Key Lab of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education of China, Yunnan Minzu University, Kunming, China
| | - Jie Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China.
| | - Nathan G Swenson
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
14
|
Singh D, Mittal N, Mittal P, Siddiqui MH. Transcriptome sequencing of medical herb Salvia Rosmarinus (Rosemary) revealed the phenylpropanoid biosynthesis pathway genes and their phylogenetic relationships. Mol Biol Rep 2024; 51:757. [PMID: 38874856 DOI: 10.1007/s11033-024-09685-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND The Salvia rosmarinus spenn. (rosemary) is considered an economically important ornamental and medicinal plant and is widely utilized in culinary and for treating several diseases. However, the procedure behind synthesizing secondary metabolites-based bioactive compounds at the molecular level in S. rosmarinus is not explored completely. METHODS AND RESULTS We performed transcriptomic sequencing of the pooled sample from leaf and stem tissues on the Illumina HiSeqTM X10 platform. The transcriptomics analysis led to the generation of 29,523,608 raw reads, followed by data pre-processing which generated 23,208,592 clean reads, and de novo assembly of S. rosmarinus obtained 166,849 unigenes. Among them, nearly 75.1% of unigenes i.e., 28,757 were interpreted against a non-redundant protein database. The gene ontology-based annotation classified them into 3 main categories and 55 sub-categories, and clusters of orthologous genes annotation categorized them into 23 functional categories. The Kyoto Encyclopedia of Genes and Genomes database-based pathway analysis confirmed the involvement of 13,402 unigenes in 183 biochemical pathways, among these unigenes, 1,186 are involved in the 17 secondary metabolite production pathways. Several key enzymes involved in producing aromatic amino acids and phenylpropanoids were identified from the transcriptome database. Among the identified 48 families of transcription factors from coding unigenes, bHLH, MYB, WRKYs, NAC, C2H2, C3H, and ERF are involved in flavonoids and other secondary metabolites biosynthesis. CONCLUSION The phylogenetic analysis revealed the evolutionary relationship between the phenylpropanoid pathway genes of rosemary with other members of Lamiaceae. Our work reveals a new molecular mechanism behind the biosynthesis of phenylpropanoids and their regulation in rosemary plants.
Collapse
Affiliation(s)
- Dhananjay Singh
- Department of Biosciences, Integral University, Kursi Road, Lucknow, Uttar Pradesh, 226026, India
| | - Nishu Mittal
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh, 225003, India
| | - Pooja Mittal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Mohammed Haris Siddiqui
- Department of Bioengineering, Integral University, Kursi Road, Lucknow, Uttar Pradesh, 226026, India.
| |
Collapse
|
15
|
Younkin GC, Alani ML, Züst T, Jander G. Four enzymes control natural variation in the steroid core of Erysimum cardenolides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588904. [PMID: 38645095 PMCID: PMC11030354 DOI: 10.1101/2024.04.10.588904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Plants commonly produce families of structurally related metabolites with similar defensive functions. This apparent redundancy raises the question of underlying molecular mechanisms and adaptive benefits of such chemical variation. Cardenolides, a class defensive compounds found in the wallflower genus Erysimum (L., Brassicaceae) and scattered across other plant families, show substantial structural variation, with glycosylation and hydroxylation being common modifications of a steroid core, which itself may vary in terms of stereochemistry and saturation. Through a combination of chemical mutagenesis and analysis of gene coexpression networks, we identified four enzymes involved in cardenolide biosynthesis in Erysimum that work together to determine stereochemistry at carbon 5 of the steroid core: Ec3βHSD, a 3β-hydroxysteroid dehydrogenase, Ec3KSI, a ketosteroid isomerase, EcP5βR2, a progesterone 5β-reductase, and EcDET2, a steroid 5α-reductase. We biochemically characterized the activity of these enzymes in vitro and generated CRISPR/Cas9 knockout lines to confirm activity in vivo. Cardenolide biosynthesis was not eliminated in any of the knockouts. Instead, mutant plants accumulated cardenolides with altered saturation and stereochemistry of the steroid core. Furthermore, we found variation in carbon 5 configuration among the cardenolides of 44 species of Erysimum, where the occurrence of some 5β-cardenolides is associated with the expression and sequence of P5βR2. This may have allowed Erysimum species to fine-tune their defensive profiles to target specific herbivore populations over the course of evolution. SIGNIFICANCE STATEMENT Plants use an array of toxic compounds to defend themselves from attack against insects and other herbivores. One mechanism through which plants may evolve more toxic compounds is through modifications to the structure of compounds they already produce. In this study, we show how plants in the wallflower genus Erysimum use four enzymes to fine-tune the structure of toxic metabolites called cardenolides. Natural variation in the sequence and expression of a single enzyme called progesterone 5β-reductase 2 partly explains the variation in cardenolides observed across the Erysimum genus. These alterations to cardenolide structure over the course of evolution suggests that there may be context-dependent benefits to Erysimum to invest in one cardenolide variant over another.
Collapse
Affiliation(s)
- Gordon C. Younkin
- Boyce Thompson Institute, Ithaca, New York 14853
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | | | - Tobias Züst
- Institute of Systematic and Evolutionary Botany, University of Zurich, 8008 Zürich, Switzerland
| | - Georg Jander
- Boyce Thompson Institute, Ithaca, New York 14853
| |
Collapse
|
16
|
Shi H, Wu X, Zhu Y, Jiang T, Wang Z, Li X, Liu J, Zhang Y, Chen F, Gao J, Xu X, Zhang G, Xiao N, Feng X, Zhang P, Wu Y, Li A, Chen P, Li X. RefMetaPlant: a reference metabolome database for plants across five major phyla. Nucleic Acids Res 2024; 52:D1614-D1628. [PMID: 37953341 PMCID: PMC10767953 DOI: 10.1093/nar/gkad980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 11/14/2023] Open
Abstract
Plants are unique with tremendous chemical diversity and metabolic complexity, which is highlighted by estimates that green plants collectively produce metabolites numbering in the millions. Plant metabolites play crucial roles in all aspects of plant biology, like growth, development, stress responses, etc. However, the lack of a reference metabolome for plants, and paucity of high-quality standard compound spectral libraries and related analytical tools, have hindered the discovery and functional study of phytochemicals in plants. Here, by leveraging an advanced LC-MS platform, we generated untargeted mass spectral data from >150 plant species collected across the five major phyla. Using a self-developed computation protocol, we constructed reference metabolome for 153 plant species. A 'Reference Metabolome Database for Plants' (RefMetaPlant) was built to encompass the reference metabolome, integrated standard compound mass spectral libraries for annotation, and related query and analytical tools like 'LC-MS/MS Query', 'RefMetaBlast' and 'CompoundLibBlast' for searches and profiling of plant metabolome and metabolite identification. Analogous to a reference genome in genomic research, RefMetaPlant provides a powerful platform to support plant genome-scale metabolite analysis to promote knowledge/data sharing and collaboration in the field of metabolomics. RefMetaPlant is freely available at https://www.biosino.org/RefMetaDB/.
Collapse
Affiliation(s)
- Han Shi
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xueting Wu
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yan Zhu
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Tao Jiang
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | | | - Xuetong Li
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jianju Liu
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou, China
| | | | - Feng Chen
- Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Jinshan Gao
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Xiaoyan Xu
- Core Facility Center, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Guoqing Zhang
- National Genomics Data Center & Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Ning Xiao
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou, China
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Peng Zhang
- University of Chinese Academy of Sciences, Beijing, China
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yongrui Wu
- University of Chinese Academy of Sciences, Beijing, China
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Aihong Li
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou, China
| | - Ping Chen
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xuan Li
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
Rubio VE, Swenson NG. On functional groups and forest dynamics. Trends Ecol Evol 2024; 39:23-30. [PMID: 37673714 DOI: 10.1016/j.tree.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 09/08/2023]
Abstract
Functional trait variation measured on continuous scales has helped ecologists to unravel important ecological processes. However, forest ecologists have recently moved back toward using functional groups. There are pragmatic and biological rationales for focusing on functional groups. Both of these approaches have inherent limitations including binning clearly continuous distributions, poor trait-group matching, and narrow conceptual frameworks for why groups exist and how they evolved. We believe the pragmatic use of functional groups due to data deficiencies will eventually erode. Conversely, we argue that existing conceptual frameworks for why a limited number of tree functional groups may exist is a useful, but flawed, starting point for modeling forests that can be improved through the consideration of unmeasured axes of functional variation.
Collapse
Affiliation(s)
- Vanessa E Rubio
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
| | - Nathan G Swenson
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
18
|
Wang X, He Y, Sedio BE, Jin L, Ge X, Glomglieng S, Cao M, Yang J, Swenson NG, Yang J. Phytochemical diversity impacts herbivory in a tropical rainforest tree community. Ecol Lett 2023; 26:1898-1910. [PMID: 37776563 DOI: 10.1111/ele.14308] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/24/2023] [Accepted: 08/25/2023] [Indexed: 10/02/2023]
Abstract
Metabolomics provides an unprecedented window into diverse plant secondary metabolites that represent a potentially critical niche dimension in tropical forests underlying species coexistence. Here, we used untargeted metabolomics to evaluate chemical composition of 358 tree species and its relationship with phylogeny and variation in light environment, soil nutrients, and insect herbivore leaf damage in a tropical rainforest plot. We report no phylogenetic signal in most compound classes, indicating rapid diversification in tree metabolomes. We found that locally co-occurring species were more chemically dissimilar than random and that local chemical dispersion and metabolite diversity were associated with lower herbivory, especially that of specialist insect herbivores. Our results highlight the role of secondary metabolites in mediating plant-herbivore interactions and their potential to facilitate niche differentiation in a manner that contributes to species coexistence. Furthermore, our findings suggest that specialist herbivore pressure is an important mechanism promoting phytochemical diversity in tropical forests.
Collapse
Affiliation(s)
- Xuezhao Wang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Ecology and Environment, Southwest Forestry University, Kunming, China
| | - Yunyun He
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Brian E Sedio
- Department of Integrative Biology, University of Texas at Austin, Texas, Austin, USA
- Smithsonian Tropical Research Institute, Ancón, Republic of Panama
| | - Lu Jin
- College of Life Sciences, South China Agricultural University, Guangzhou, China
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xuejun Ge
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Suphanee Glomglieng
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Cao
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Jianhong Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Nathan G Swenson
- Department of Biological Sciences, University of Notre Dame, Indiana, Notre Dame, USA
| | - Jie Yang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
19
|
Walker TWN, Schrodt F, Allard PM, Defossez E, Jassey VEJ, Schuman MC, Alexander JM, Baines O, Baldy V, Bardgett RD, Capdevila P, Coley PD, van Dam NM, David B, Descombes P, Endara MJ, Fernandez C, Forrister D, Gargallo-Garriga A, Glauser G, Marr S, Neumann S, Pellissier L, Peters K, Rasmann S, Roessner U, Salguero-Gómez R, Sardans J, Weckwerth W, Wolfender JL, Peñuelas J. Leaf metabolic traits reveal hidden dimensions of plant form and function. SCIENCE ADVANCES 2023; 9:eadi4029. [PMID: 37647404 PMCID: PMC10468135 DOI: 10.1126/sciadv.adi4029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023]
Abstract
The metabolome is the biochemical basis of plant form and function, but we know little about its macroecological variation across the plant kingdom. Here, we used the plant functional trait concept to interpret leaf metabolome variation among 457 tropical and 339 temperate plant species. Distilling metabolite chemistry into five metabolic functional traits reveals that plants vary on two major axes of leaf metabolic specialization-a leaf chemical defense spectrum and an expression of leaf longevity. Axes are similar for tropical and temperate species, with many trait combinations being viable. However, metabolic traits vary orthogonally to life-history strategies described by widely used functional traits. The metabolome thus expands the functional trait concept by providing additional axes of metabolic specialization for examining plant form and function.
Collapse
Affiliation(s)
- Tom W. N. Walker
- Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
- Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
| | - Franziska Schrodt
- School of Geography, University of Nottingham, Nottingham NG7 2RD, UK
| | - Pierre-Marie Allard
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| | - Emmanuel Defossez
- Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Vincent E. J. Jassey
- Laboratoire d’Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Meredith C. Schuman
- Departments of Geography and Chemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Jake M. Alexander
- Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
| | - Oliver Baines
- School of Geography, University of Nottingham, Nottingham NG7 2RD, UK
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, 8000 Aarhus, Denmark
| | - Virginie Baldy
- Aix Marseille Université, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - Richard D. Bardgett
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PT, UK
| | - Pol Capdevila
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona 08028, Spain
| | - Phyllis D. Coley
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Nicole M. van Dam
- Leibniz Institute of Vegetable and Ornamental crops (IGZ), 14979 Großbeeren, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, 07743 Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| | - Bruno David
- Green Mission Pierre Fabre, Institut de Recherche Pierre Fabre, 31562 Toulouse, France
| | - Patrice Descombes
- Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
- Ecosystems and Landscape Evolution, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), 8903 Birmensdorf, Switzerland
- Musée et Jardins botaniques cantonaux, 1007 Lausanne, Switzerland
| | - María-José Endara
- Medio Ambiente y Salud (BIOMAS), Facultad de Ingenierías y Ciencias Aplicadas, Universidad de Las Américas, 170124 Quito, Ecuador
| | - Catherine Fernandez
- Aix Marseille Université, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - Dale Forrister
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Albert Gargallo-Garriga
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, 08193 Bellaterra, Catalonia, Spain
- CREAF, 08193 Cerdanyola del Vallès, Catalonia, Spain
- Global Change Research Institute, Czech Academy of Sciences, 603 00 Brno, Czech Republic
| | - Gaëtan Glauser
- Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Sue Marr
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Leibniz Institute of Plant Biochemistry, Bioinformatics and Scientific Data, 06120 Halle, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle Wittenberg, 06108 Halle, Germany
| | - Steffen Neumann
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Leibniz Institute of Plant Biochemistry, Bioinformatics and Scientific Data, 06120 Halle, Germany
| | - Loïc Pellissier
- Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
- Ecosystems and Landscape Evolution, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), 8903 Birmensdorf, Switzerland
| | - Kristian Peters
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Leibniz Institute of Plant Biochemistry, Bioinformatics and Scientific Data, 06120 Halle, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle Wittenberg, 06108 Halle, Germany
| | - Sergio Rasmann
- Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Ute Roessner
- Research School of Biology, The Australian National University, 2601 Acton, Australia
| | | | - Jordi Sardans
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, 08193 Bellaterra, Catalonia, Spain
- CREAF, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - Wolfram Weckwerth
- Molecular Systems Biology, Department of Functional and Evolutionary Ecology, 1010 University of Vienna, Vienna, Austria
- Vienna Metabolomics Center, 1010 University of Vienna, Vienna, Austria
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, 08193 Bellaterra, Catalonia, Spain
- CREAF, 08193 Cerdanyola del Vallès, Catalonia, Spain
| |
Collapse
|