1
|
Eck JL, Hernández Hassan L, Comita LS. Intraspecific plant-soil feedback in four tropical tree species is inconsistent in a field experiment. AMERICAN JOURNAL OF BOTANY 2024; 111:e16331. [PMID: 38750661 PMCID: PMC11659945 DOI: 10.1002/ajb2.16331] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 12/21/2024]
Abstract
PREMISE Soil microbes can influence patterns of diversity in plant communities via plant-soil feedbacks. Intraspecific plant-soil feedbacks occur when plant genotype leads to variations in soil microbial composition, resulting in differences in the performance of seedlings growing near their maternal plants versus seedlings growing near nonmaternal conspecific plants. How consistently such intraspecific plant-soil feedbacks occur in natural plant communities is unclear, especially in variable field conditions. METHODS In an in situ experiment with four native tree species on Barro Colorado Island (BCI), Panama, seedlings of each species were transplanted beneath their maternal tree or another conspecific tree in the BCI forest. Mortality and growth were assessed at the end of the wet season (~4 months post-transplant) and at the end of the experiment (~7 months post-transplant). RESULTS Differences in seedling performance among field treatments were inconsistent among species and eroded over time. Effects of field environment were detected at the end of the wet season in two of the four species: Virola surinamensis seedlings had higher survival beneath their maternal tree than other conspecific trees, while seedling survival of Ormosia macrocalyx was higher under other conspecific trees. However, these differences were gone by the end of the experiment. CONCLUSIONS Our results suggest that intraspecific plant-soil feedbacks may not be consistent in the field for tropical tree species and may have a limited role in determining seedling performance in tropical tree communities. Future studies are needed to elucidate the environmental and genetic factors that determine the incidence and direction of intraspecific plant-soil feedbacks in plant communities.
Collapse
Affiliation(s)
- Jenalle L. Eck
- Yale School of the Environment195 Prospect St.New Haven06511CTUSA
- Smithsonian Tropical Research InstituteLuis Clement Ave., Bldg Tupper 401AnconPanamaRepublic of Panama
- Department of Evolution, Ecology and Organismal BiologyThe Ohio State University318 W. 12th Ave., 300 Aronoff LaboratoryColumbus43210OHUSA
- Department of BotanyUniversity of TartuJ. Liivi 2Tartu50409Estonia
| | - Lourdes Hernández Hassan
- Smithsonian Tropical Research InstituteLuis Clement Ave., Bldg Tupper 401AnconPanamaRepublic of Panama
| | - Liza S. Comita
- Yale School of the Environment195 Prospect St.New Haven06511CTUSA
- Smithsonian Tropical Research InstituteLuis Clement Ave., Bldg Tupper 401AnconPanamaRepublic of Panama
| |
Collapse
|
2
|
Gerstner BP, Laport RG, Rudgers JA, Whitney KD. Plant-soil microbe feedbacks depend on distance and ploidy in a mixed cytotype population of Larrea tridentata. AMERICAN JOURNAL OF BOTANY 2024; 111:e16298. [PMID: 38433501 DOI: 10.1002/ajb2.16298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 03/05/2024]
Abstract
PREMISE Theory predicts that mixed ploidy populations should be short-lived due to strong fitness disadvantages for the rare ploidy. However, mixed ploidy populations are common, suggesting that the fitness costs for rare ploidies are counterbalanced by ecological benefits that emerge when rare. We investigated whether differences in ecological interactions with soil microbes help to maintain a tetraploid-hexaploid population of Larrea tridentata (creosote bush) in the Sonoran Desert, California, United States, where prior work documented ploidy-specific root-associated microbes. METHODS We used a plant-soil feedback (PSF) experiment to test whether host-specific soil microbes can alter the outcomes of intraploidy vs. interploidy competition. Host-specific soil microbes can build up over time; thus, distance from a host plant can affect the fitness of nearby plants. RESULTS Seedlings grown in soils from near plants of a different ploidy produced greater biomass relative to seedlings grown in soils from near plants of the same ploidy. Moreover, seedlings grown in soils from near plants of a different ploidy produced more biomass than those grown in soils that were farther from plants of a different ploidy. These results suggest that the ecological consequences of PSF may facilitate the persistence of mixed ploidy populations. CONCLUSIONS This is the first evidence, to our knowledge, that is consistent with plant-soil microbe feedback as a viable mechanism to maintain the coexistence of multiple ploidy levels in a single population.
Collapse
Affiliation(s)
- Benjamin P Gerstner
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Robert G Laport
- Department of Biology, The College of Idaho, Caldwell, ID, 83605, USA
| | - Jennifer A Rudgers
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Kenneth D Whitney
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
3
|
Xia Z, Chen BJW, Korpelainen H, Niinemets Ü, Li C. Belowground ecological interactions in dioecious plants: why do opposites attract but similar ones repel? TRENDS IN PLANT SCIENCE 2024; 29:630-637. [PMID: 38485646 DOI: 10.1016/j.tplants.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/06/2024] [Accepted: 02/21/2024] [Indexed: 06/09/2024]
Abstract
Dioecious plant species exhibit sexual dimorphism in various aspects, including morphology, physiology, life history, and behavior, potentially influencing sex-specific interactions. While it is generally accepted that intersexual interactions in dioecious species are less intense compared with intrasexual interactions, the mechanisms underlying belowground facilitation in intersexual combinations remain less understood. Here, we explore these mechanisms, which encompass resource complementarity, mycorrhizal fungal networks, root exudate-mediated belowground chemical communication, as well as plant-soil feedback. We address the reason for the lack of consistency in the strength of inter- and intrasexual interactions. We also propose that a comprehensive understanding of the potential positive consequences of sex-specific interactions can contribute to maintaining ecological equilibrium, conserving biodiversity, and enhancing the productivity of agroforestry.
Collapse
Affiliation(s)
- Zhichao Xia
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Bin J W Chen
- College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Helena Korpelainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, FI-00014, Finland
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia
| | - Chunyang Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Zou HX, Yan X, Rudolf VHW. Time-dependent interaction modification generated from plant-soil feedback. Ecol Lett 2024; 27:e14432. [PMID: 38698727 DOI: 10.1111/ele.14432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/10/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
Pairwise interactions between species can be modified by other community members, leading to emergent dynamics contingent on community composition. Despite the prevalence of such higher-order interactions, little is known about how they are linked to the timing and order of species' arrival. We generate population dynamics from a mechanistic plant-soil feedback model, then apply a general theoretical framework to show that the modification of a pairwise interaction by a third plant depends on its germination phenology. These time-dependent interaction modifications emerge from concurrent changes in plant and microbe populations and are strengthened by higher overlap between plants' associated microbiomes. The interaction between this overlap and the specificity of microbiomes further determines plant coexistence. Our framework is widely applicable to mechanisms in other systems from which similar time-dependent interaction modifications can emerge, highlighting the need to integrate temporal shifts of species interactions to predict the emergent dynamics of natural communities.
Collapse
Affiliation(s)
- Heng-Xing Zou
- Program in Ecology and Evolutionary Biology, Department of BioSciences, Rice University, Houston, Texas, USA
| | - Xinyi Yan
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Volker H W Rudolf
- Program in Ecology and Evolutionary Biology, Department of BioSciences, Rice University, Houston, Texas, USA
| |
Collapse
|
5
|
Kandlikar GS. Quantifying soil microbial effects on plant species coexistence: A conceptual synthesis. AMERICAN JOURNAL OF BOTANY 2024; 111:e16316. [PMID: 38659131 DOI: 10.1002/ajb2.16316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 04/26/2024]
Abstract
Soil microorganisms play a critical role in shaping the biodiversity dynamics of plant communities. These microbial effects can arise through direct mediation of plant fitness by pathogens and mutualists, and over the past two decades, numerous studies have shined a spotlight on the role of dynamic feedbacks between plants and soil microorganisms as key determinants of plant species coexistence. Such feedbacks occur when plants modify the composition of the soil community, which in turn affects plant performance. Stimulated by a theoretical model developed in the 1990s, a bulk of the empirical evidence for microbial controls over plant coexistence comes from experiments that quantify plant growth in soil communities that were previously conditioned by conspecific or heterospecific plants. These studies have revealed that soil microbes can generate strong negative to positive frequency-dependent dynamics among plants. Even as soil microbes have become recognized as a key player in determining plant coexistence outcomes, the past few years have seen a renewed interest in expanding the conceptual foundations of this field. New results include re-interpretations of key metrics from classic two-species models, extensions of plant-soil feedback theory to multispecies communities, and frameworks to integrate plant-soil feedbacks with processes like intra- and interspecific competition. Here, I review the implications of theoretical developments for interpreting existing empirical results and highlight proposed analyses and designs for future experiments that can enable a more complete understanding of microbial regulation of plant community dynamics.
Collapse
|
6
|
Iuorio A, Eppinga MB, Baudena M, Veerman F, Rietkerk M, Giannino F. Modelling how negative plant-soil feedbacks across life stages affect the spatial patterning of trees. Sci Rep 2023; 13:19128. [PMID: 37926717 PMCID: PMC10625994 DOI: 10.1038/s41598-023-44867-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023] Open
Abstract
In this work, we theoretically explore how litter decomposition processes and soil-borne pathogens contribute to negative plant-soil feedbacks, in particular in transient and stable spatial organisation of tropical forest trees and seedlings known as Janzen-Connell distributions. By considering soil-borne pathogens and autotoxicity both separately and in combination in a phenomenological model, we can study how both factors may affect transient dynamics and emerging Janzen-Connell distributions. We also identify parameter regimes associated with different long-term behaviours. Moreover, we compare how the strength of negative plant-soil feedbacks was mediated by tree germination and growth strategies, using a combination of analytical approaches and numerical simulations. Our interdisciplinary investigation, motivated by an ecological question, allows us to construct important links between local feedbacks, spatial self-organisation, and community assembly. Our model analyses contribute to understanding the drivers of biodiversity in tropical ecosystems, by disentangling the abilities of two potential mechanisms to generate Janzen-Connell distributions. Furthermore, our theoretical results may help guiding future field data analyses by identifying spatial signatures in adult tree and seedling distribution data that may reflect the presence of particular plant-soil feedback mechanisms.
Collapse
Affiliation(s)
- Annalisa Iuorio
- Department of Engineering, Centro Direzionale-Isola C4, Parthenope University of Naples, 80143, Naples, Italy.
- Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090, Vienna, Austria.
| | - Maarten B Eppinga
- Department of Geography, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Mara Baudena
- Environmental Sciences Group, Copernicus Institute of Sustainable Development, Utrecht University, 3508 TC, Utrecht, The Netherlands
- Institute of Atmospheric Sciences and Climate (CNR-ISAC), National Research Council of Italy, Corso Fiume 4, 10133, Torino, Italy
| | - Frits Veerman
- Mathematical Institute, Leiden University, Niels Bohrweg 1, 2300 RA, Leiden, The Netherlands
| | - Max Rietkerk
- Environmental Sciences Group, Copernicus Institute of Sustainable Development, Utrecht University, 3508 TC, Utrecht, The Netherlands
| | - Francesco Giannino
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici, Italy
| |
Collapse
|
7
|
In 't Zandt D, Kolaříková Z, Cajthaml T, Münzbergová Z. Plant community stability is associated with a decoupling of prokaryote and fungal soil networks. Nat Commun 2023; 14:3736. [PMID: 37349286 PMCID: PMC10287681 DOI: 10.1038/s41467-023-39464-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/14/2023] [Indexed: 06/24/2023] Open
Abstract
Soil microbial networks play a crucial role in plant community stability. However, we lack knowledge on the network topologies associated with stability and the pathways shaping these networks. In a 13-year mesocosm experiment, we determined links between plant community stability and soil microbial networks. We found that plant communities on soil abandoned from agricultural practices 60 years prior to the experiment promoted destabilising properties and were associated with coupled prokaryote and fungal soil networks. This coupling was mediated by strong interactions of plants and microbiota with soil resource cycling. Conversely, plant communities on natural grassland soil exhibited a high stability, which was associated with decoupled prokaryote and fungal soil networks. This decoupling was mediated by a large variety of past plant community pathways shaping especially fungal networks. We conclude that plant community stability is associated with a decoupling of prokaryote and fungal soil networks and mediated by plant-soil interactions.
Collapse
Affiliation(s)
- Dina In 't Zandt
- Institute of Botany, Czech Academy of Sciences, 252 43, Průhonice, Czech Republic.
| | - Zuzana Kolaříková
- Institute of Botany, Czech Academy of Sciences, 252 43, Průhonice, Czech Republic
| | - Tomáš Cajthaml
- Institute for Environmental Studies, Faculty of Science, Charles University, Praha 2, Czech Republic
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, Prague, CZ-14220, Czech Republic
| | - Zuzana Münzbergová
- Institute of Botany, Czech Academy of Sciences, 252 43, Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Praha 2, Czech Republic
| |
Collapse
|
8
|
Slater H, Dolan L. The New Phytologist Tansley Medal 2022 - Leander D. L. Anderegg and Moi Exposito-Alonso. THE NEW PHYTOLOGIST 2023; 237:1939-1940. [PMID: 36795474 DOI: 10.1111/nph.18741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
|