1
|
Werba JA, DiRenzo GV, Brand AB, Grant EHC. Reducing uncertainty with iterative model updating parses effects of competition and environment on salamander occupancy. Oecologia 2024; 206:305-316. [PMID: 39499270 DOI: 10.1007/s00442-024-05631-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/25/2024] [Indexed: 11/07/2024]
Abstract
Making timely management decisions is often hindered by uncertainty. Monitoring reduces two key types of uncertainty. First, it serves to reduce structural uncertainty of how the system works and provides support for expectations of how a system works. Second, it serves to reduce parametric uncertainty of the drivers of system dynamics. By combining monitoring data and quantitative models, we can reduce structural and parametric uncertainty. To demonstrate this, we focus on the Shenandoah salamander (Plethodon shenandoah), a United States Federally Endangered Species. Early work suggested that P. shenandoah extinction risk results from competition with a conspecific (Plethodon cinereus). However, more recent work has found equivocal support for this claim, instead suggesting that abiotic factors, such as moisture and temperature, drive P. shenandoah persistence. Using long-term monitoring data, we find that while competition may play a part in P. shenandoah extinction risk, measures of surface moisture are better predictors of occupancy dynamics. Further, we find decreased detection rates of P. shenandoah when P. cinereus is present, suggesting a conflation of detection probability with actual competition, which cautions against making inference from unadjusted observations of occurrence. Using multiple lines of inquiry allows for more robust understanding of system drivers in the face of high uncertainty, increasing opportunities to manage extinction risk.
Collapse
Affiliation(s)
- Jo A Werba
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA, 16802, USA
- U.S. Geological Survey, Eastern Ecological Research Center (Patuxent Wildlife Research Center), S.O. Conte Anadromous Fish Research Laboratory, Turners Falls, MA, USA
| | - Graziella V DiRenzo
- U. S. Geological Survey, Massachusetts Cooperative Fish and Wildlife Research Unit, University of Massachusetts, Amherst, MA, 01003, USA
| | - Adrianne B Brand
- U.S. Geological Survey, Eastern Ecological Research Center (Patuxent Wildlife Research Center), S.O. Conte Anadromous Fish Research Laboratory, Turners Falls, MA, USA
| | - Evan H Campbell Grant
- U.S. Geological Survey, Eastern Ecological Research Center (Patuxent Wildlife Research Center), S.O. Conte Anadromous Fish Research Laboratory, Turners Falls, MA, USA.
| |
Collapse
|
2
|
Riddell EA, Burger IJ, Tyner-Swanson TL, Biggerstaff J, Muñoz MM, Levy O, Porter CK. Parameterizing mechanistic niche models in biophysical ecology: a review of empirical approaches. J Exp Biol 2023; 226:jeb245543. [PMID: 37955347 DOI: 10.1242/jeb.245543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Mechanistic niche models are computational tools developed using biophysical principles to address grand challenges in ecology and evolution, such as the mechanisms that shape the fundamental niche and the adaptive significance of traits. Here, we review the empirical basis of mechanistic niche models in biophysical ecology, which are used to answer a broad array of questions in ecology, evolution and global change biology. We describe the experiments and observations that are frequently used to parameterize these models and how these empirical data are then incorporated into mechanistic niche models to predict performance, growth, survival and reproduction. We focus on the physiological, behavioral and morphological traits that are frequently measured and then integrated into these models. We also review the empirical approaches used to incorporate evolutionary processes, phenotypic plasticity and biotic interactions. We discuss the importance of validation experiments and observations in verifying underlying assumptions and complex processes. Despite the reliance of mechanistic niche models on biophysical theory, empirical data have and will continue to play an essential role in their development and implementation.
Collapse
Affiliation(s)
- Eric A Riddell
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Isabella J Burger
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tamara L Tyner-Swanson
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Justin Biggerstaff
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Martha M Muñoz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| | - Ofir Levy
- Faculty of Life Sciences, School of Zoology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Cody K Porter
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
3
|
Briscoe NJ, Morris SD, Mathewson PD, Buckley LB, Jusup M, Levy O, Maclean IMD, Pincebourde S, Riddell EA, Roberts JA, Schouten R, Sears MW, Kearney MR. Mechanistic forecasts of species responses to climate change: The promise of biophysical ecology. GLOBAL CHANGE BIOLOGY 2023; 29:1451-1470. [PMID: 36515542 DOI: 10.1111/gcb.16557] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/10/2022] [Indexed: 05/20/2023]
Abstract
A core challenge in global change biology is to predict how species will respond to future environmental change and to manage these responses. To make such predictions and management actions robust to novel futures, we need to accurately characterize how organisms experience their environments and the biological mechanisms by which they respond. All organisms are thermodynamically connected to their environments through the exchange of heat and water at fine spatial and temporal scales and this exchange can be captured with biophysical models. Although mechanistic models based on biophysical ecology have a long history of development and application, their use in global change biology remains limited despite their enormous promise and increasingly accessible software. We contend that greater understanding and training in the theory and methods of biophysical ecology is vital to expand their application. Our review shows how biophysical models can be implemented to understand and predict climate change impacts on species' behavior, phenology, survival, distribution, and abundance. It also illustrates the types of outputs that can be generated, and the data inputs required for different implementations. Examples range from simple calculations of body temperature at a particular site and time, to more complex analyses of species' distribution limits based on projected energy and water balances, accounting for behavior and phenology. We outline challenges that currently limit the widespread application of biophysical models relating to data availability, training, and the lack of common software ecosystems. We also discuss progress and future developments that could allow these models to be applied to many species across large spatial extents and timeframes. Finally, we highlight how biophysical models are uniquely suited to solve global change biology problems that involve predicting and interpreting responses to environmental variability and extremes, multiple or shifting constraints, and novel abiotic or biotic environments.
Collapse
Affiliation(s)
- Natalie J Briscoe
- School of Ecosystem and Forest Science, The University of Melbourne, Melbourne, Victoria, Australia
| | - Shane D Morris
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Paul D Mathewson
- Department of Zoology, University of Wisconsin Madison, Madison, Wisconsin, USA
| | - Lauren B Buckley
- Department of Biology, University of Washington, Seattle, Washington, USA
| | - Marko Jusup
- Fisheries Resources Research Institute, Fisheries Research Agency, Yokohama, Japan
| | - Ofir Levy
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ilya M D Maclean
- School of Biosciences, Centre for Ecology and Conservation, Cornwall, UK
| | | | - Eric A Riddell
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA
| | - Jessica A Roberts
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Rafael Schouten
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Michael W Sears
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Michael Ray Kearney
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Pintanel P, Tejedo M, Salinas-Ivanenko S, Jervis P, Merino-Viteri A. Predators like it hot: Thermal mismatch in a predator-prey system across an elevational tropical gradient. J Anim Ecol 2021; 90:1985-1995. [PMID: 33942306 DOI: 10.1111/1365-2656.13516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/27/2021] [Indexed: 01/15/2023]
Abstract
Climate change may have dramatic consequences for communities through both direct effects of peak temperatures upon individual species and through interspecific mismatches in thermal sensitivities of interacting organisms which mediate changes in interspecific interactions (i.e. predation). Despite this, there is a paucity of information on the patterns of spatial physiological sensitivity of interacting species (at both landscape and local scales) which could ultimately influence geographical variation in the effects of climate change on community processes. In order to assess where these impacts may occur, we first need to evaluate the spatial heterogeneity in the degree of mismatch in thermal tolerances between interacting organisms. We quantify the magnitude of interspecific mismatch in maximum (CTmax ) and minimum (CTmin ) thermal tolerances among a predator-prey system of dragonfly and anuran larvae in tropical montane (242-3,631 m) and habitat (ponds and streams) gradients. To compare thermal mismatches between predator and prey, we coined the parameters maximum and minimum predatory tolerance margins (PTMmax and PTMmin ), or difference in CTmax and CTmin of interacting organisms sampled across elevational and habitat gradients. Our analyses revealed that: (a) predators exhibit higher heat tolerances than prey (~4°C), a trend which remained stable across habitats and elevations. In contrast, we found no differences in minimum thermal tolerances between these groups. (b) Maximum and minimum thermal tolerances of both predators and prey decreased with elevation, but only maximum thermal tolerance varied across habitats, with pond species exhibiting higher heat tolerance than stream species. (c) Pond-dwelling organisms from low elevations (0-1,500 m a.s.l.) may be more susceptible to direct effects of warming than their highland counterparts because their maximum thermal tolerances are only slightly higher than their exposed maximum environmental temperatures. The greater relative thermal tolerance of dragonfly naiad predators may further increase the vulnerability of lowland tadpoles to warming due to potentially enhanced indirect effects of higher predation rates by more heat-tolerant dragonfly predators. However, further experimental work is required to establish the individual and population-level consequences of this thermal tolerance mismatch upon biotic interactions such as predator-prey. .
Collapse
Affiliation(s)
- Pol Pintanel
- Department of Evolutionary Ecology, Estación Biológica de Doñana, CSIC, Sevilla, Spain.,Laboratorio de Ecofisiología and Museo de Zoología (QCAZ), Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador.,Department for Posgraduate Studies, Faculty of Biological Sciences, Universidad Central del Ecuador, Quito, Ecuador.,Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Barcelona, Spain
| | - Miguel Tejedo
- Department of Evolutionary Ecology, Estación Biológica de Doñana, CSIC, Sevilla, Spain
| | - Sofia Salinas-Ivanenko
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Barcelona, Spain
| | - Phillip Jervis
- Laboratorio de Ecofisiología and Museo de Zoología (QCAZ), Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador.,Institute of Zoology, Zoological Society of London, London, UK.,MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK.,Department of Chemistry, University College London, London, UK
| | - Andrés Merino-Viteri
- Laboratorio de Ecofisiología and Museo de Zoología (QCAZ), Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| |
Collapse
|
5
|
Lasky JR, Hooten MB, Adler PB. What processes must we understand to forecast regional-scale population dynamics? Proc Biol Sci 2020; 287:20202219. [PMID: 33290672 PMCID: PMC7739927 DOI: 10.1098/rspb.2020.2219] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/12/2020] [Indexed: 12/14/2022] Open
Abstract
An urgent challenge facing biologists is predicting the regional-scale population dynamics of species facing environmental change. Biologists suggest that we must move beyond predictions based on phenomenological models and instead base predictions on underlying processes. For example, population biologists, evolutionary biologists, community ecologists and ecophysiologists all argue that the respective processes they study are essential. Must our models include processes from all of these fields? We argue that answering this critical question is ultimately an empirical exercise requiring a substantial amount of data that have not been integrated for any system to date. To motivate and facilitate the necessary data collection and integration, we first review the potential importance of each mechanism for skilful prediction. We then develop a conceptual framework based on reaction norms, and propose a hierarchical Bayesian statistical framework to integrate processes affecting reaction norms at different scales. The ambitious research programme we advocate is rapidly becoming feasible due to novel collaborations, datasets and analytical tools.
Collapse
Affiliation(s)
- Jesse R. Lasky
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Mevin B. Hooten
- U.S. Geological Survey, Colorado Cooperative Fish and Wildlife Research Unit, Colorado State University, Fort Collins, CO, USA
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, USA
- Department of Statistics, Colorado State University, Fort Collins, CO, USA
| | - Peter B. Adler
- Department of Wildland Resources and the Ecology Center, Utah State University, Logan, UT, USA
| |
Collapse
|
6
|
Diele-Viegas LM, Rocha CFD. Unraveling the influences of climate change in Lepidosauria (Reptilia). J Therm Biol 2018; 78:401-414. [PMID: 30509664 DOI: 10.1016/j.jtherbio.2018.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 10/25/2018] [Accepted: 11/12/2018] [Indexed: 12/30/2022]
Abstract
In recent decades, changes in climate have caused impacts on natural and human systems on all continents and across the oceans and many species have shifted their geographic ranges, seasonal activities, migration patterns, abundances and interactions in response to these changes. Projections of future climate change are uncertain, but the Earth's warming is likely to exceed 4.8 °C by the end of 21th century. The vulnerability of a population, species, group or system due to climate change is a function of impact of the changes on the evaluated system (exposure and sensitivity) and adaptive capacity as a response to this impact, and the relationship between these elements will determine the degree of species vulnerability. Predicting the potential future risks to biodiversity caused by climate change has become an extremely active field of research, and several studies in the last two decades had focused on determining possible impacts of climate change on Lepidosaurians, at a global, regional and local level. Here we conducted a systematic review of published studies in order to seek to what extent the accumulated knowledge currently allow us to identify potential trends or patterns regarding climate change effects on lizards, snakes, amphisbaenians and tuatara. We conducted a literature search among online literature databases/catalogues and recorded 255 studies addressing the influence of climate change on a total of 1918 species among 49 Lepidosaurian's families. The first study addressing this subject is dated 1999. Most of the studies focused on species distribution, followed by thermal biology, reproductive biology, behavior and genetics. We concluded that an integrative approach including most of these characteristics and also bioclimatic and environmental variables, may lead to consistent and truly effective strategies for species conservation, aiming to buffer the climate change effects on this group of reptiles.
Collapse
|
7
|
Martin PR, Freshwater C, Ghalambor CK. The outcomes of most aggressive interactions among closely related bird species are asymmetric. PeerJ 2017; 5:e2847. [PMID: 28070465 PMCID: PMC5217525 DOI: 10.7717/peerj.2847] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/30/2016] [Indexed: 11/20/2022] Open
Abstract
Aggressive interactions among closely related species are common, and can play an important role as a selective pressure shaping species traits and assemblages. The nature of this selective pressure depends on whether the outcomes of aggressive contests are asymmetric between species (i.e., one species is consistently dominant), yet few studies have estimated the prevalence of asymmetric versus symmetric outcomes to aggressive contests. Here we use previously published data involving 26,212 interactions between 270 species pairs of birds from 26 taxonomic families to address the question: How often are aggressive interactions among closely related bird species asymmetric? We define asymmetry using (i) the proportion of contests won by one species, and (ii) statistical tests for asymmetric outcomes of aggressive contests. We calculate these asymmetries using data summed across different sites for each species pair, and compare results to asymmetries calculated using data separated by location. We find that 80% of species pairs had aggressive outcomes where one species won 80% or more of aggressive contests. We also find that the majority of aggressive interactions among closely related species show statistically significant asymmetries, and above a sample size of 52 interactions, all outcomes are asymmetric following binomial tests. Species pairs with dominance data from multiple sites showed the same dominance relationship across locations in 93% of the species pairs. Overall, our results suggest that the outcome of aggressive interactions among closely related species are usually consistent and asymmetric, and should thus favor ecological and evolutionary strategies specific to the position of a species within a dominance hierarchy.
Collapse
Affiliation(s)
- Paul R Martin
- Department of Biology, Queen's University , Kingston , Ontario , Canada
| | - Cameron Freshwater
- Department of Biology, University of Victoria , Victoria , British Columbia , Canada
| | - Cameron K Ghalambor
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University , Fort Collins , Colorado , United States
| |
Collapse
|
8
|
Monaco CJ, Wethey DS, Helmuth B. Thermal sensitivity and the role of behavior in driving an intertidal predator–prey interaction. ECOL MONOGR 2016. [DOI: 10.1002/ecm.1230] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Cristián J. Monaco
- Department of Biological Sciences University of South Carolina Columbia South Carolina 29208 USA
| | - David S. Wethey
- Department of Biological Sciences University of South Carolina Columbia South Carolina 29208 USA
| | - Brian Helmuth
- Marine Science Center Northeastern University Nahant Massachusetts 01908 USA
| |
Collapse
|
9
|
Chu C, Adler PB. Large niche differences emerge at the recruitment stage to stabilize grassland coexistence. ECOL MONOGR 2015. [DOI: 10.1890/14-1741.1] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Abstract
The evidence that climate warming is changing the distribution of Ixodes ticks and the pathogens they transmit is reviewed and evaluated. The primary approaches are either phenomenological, which typically assume that climate alone limits current and future distributions, or mechanistic, asking which tick-demographic parameters are affected by specific abiotic conditions. Both approaches have promise but are severely limited when applied separately. For instance, phenomenological approaches (e.g. climate envelope models) often select abiotic variables arbitrarily and produce results that can be hard to interpret biologically. On the other hand, although laboratory studies demonstrate strict temperature and humidity thresholds for tick survival, these limits rarely apply to field situations. Similarly, no studies address the influence of abiotic conditions on more than a few life stages, transitions or demographic processes, preventing comprehensive assessments. Nevertheless, despite their divergent approaches, both mechanistic and phenomenological models suggest dramatic range expansions of Ixodes ticks and tick-borne disease as the climate warms. The predicted distributions, however, vary strongly with the models' assumptions, which are rarely tested against reasonable alternatives. These inconsistencies, limited data about key tick-demographic and climatic processes and only limited incorporation of non-climatic processes have weakened the application of this rich area of research to public health policy or actions. We urge further investigation of the influence of climate on vertebrate hosts and tick-borne pathogen dynamics. In addition, testing model assumptions and mechanisms in a range of natural contexts and comparing their relative importance as competing models in a rigorous statistical framework will significantly advance our understanding of how climate change will alter the distribution, dynamics and risk of tick-borne disease.
Collapse
Affiliation(s)
- Richard S Ostfeld
- Cary Institute of Ecosystem Studies, PO Box AB, Millbrook, NY 12545, USA
| | - Jesse L Brunner
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
11
|
Crespo-Pérez V, Régnière J, Chuine I, Rebaudo F, Dangles O. Changes in the distribution of multispecies pest assemblages affect levels of crop damage in warming tropical Andes. GLOBAL CHANGE BIOLOGY 2015; 21:82-96. [PMID: 24920187 DOI: 10.1111/gcb.12656] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 05/27/2014] [Indexed: 05/26/2023]
Abstract
Climate induced species range shifts might create novel interactions among species that may outweigh direct climatic effects. In an agricultural context, climate change might alter the intensity of competition or facilitation interactions among pests with, potentially, negative consequences on the levels of damage to crop. This could threaten the productivity of agricultural systems and have negative impacts on food security, but has yet been poorly considered in studies. In this contribution, we constructed and evaluated process-based species distribution models for three invasive potato pests in the Tropical Andean Region. These three species have been found to co-occur and interact within the same potato tuber, causing different levels of damage to crop. Our models allowed us to predict the current and future distribution of the species and therefore, to assess how damage to crop might change in the future due to novel interactions. In general, our study revealed the main challenges related to distribution modeling of invasive pests in highly heterogeneous regions. It yielded different results for the three species, both in terms of accuracy and distribution, with one species surviving best at lower altitudes and the other two performing better at higher altitudes. As to future distributions our results suggested that the three species will show different responses to climate change, with one of them expanding to higher altitudes, another contracting its range and the other shifting its distribution to higher altitudes. These changes will result in novel areas of co-occurrence and hence, interactions of the pests, which will cause different levels of damage to crop. Combining population dynamics and species distribution models that incorporate interspecific trade-off relationships in different environments revealed a powerful approach to provide predictions about the response of an assemblage of interacting species to future environmental changes and their impact on process rates.
Collapse
Affiliation(s)
- Verónica Crespo-Pérez
- UR 072, Diversité, Ecologie et Evolution des Insectes Tropicaux, Laboratoire Evolution, Génomes et Spéciation, UPR 9034, CNRS, IRD, Gif-sur- Yvette Cedex, 91198, France; Université Paris-Sud 11, Orsay Cedex, 91405, France; Laboratorio de Entomología, Pontificia Universidad Católica del Ecuador, Facultad de Ciencias Exactas y Naturales, 12 de Octubre, 1076 y Roca, Quito, Ecuador; Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, 1919 route de Mende, Montpellier cedex 5, 34293, France
| | | | | | | | | |
Collapse
|
12
|
Aguado S, Braña F. Thermoregulation in a cold-adapted species (Cyren’s Rock Lizard, Iberolacerta cyreni): influence of thermal environment and associated costs. CAN J ZOOL 2014. [DOI: 10.1139/cjz-2014-0096] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thermal constraints may limit the physiology and behaviour of ectotherms because of the high thermal dependence of metabolic functions. The adaptive mechanisms of thermoregulation and the cost of confronting thermal constraints were studied in the Cyren’s Rock Lizard (Iberolacerta cyreni (Müller and Hellmich, 1937)), a lacertid lizard endemic to mountain areas of central Spain. Semicontinuous monitoring of body temperature (Tb) in the laboratory indicated that the preferred temperature range for this population (Tpref) was lower than those found for most lacertid lizards, and field body temperatures of active animals in summer were even lower than Tpref. Overall these results, together with distribution of field operative temperatures (Te), indicate that I. cyreni is an active and relatively accurate thermoregulator, although limited by thermal constraints in their habitat. Laboratory experiments in contrasting thermal environments showed that even under thermally restricted conditions, lizards achieved their Tpref by modifying their thermoregulatory behaviour, principally through changes in space use, basking time, and body posture. However, these behavioural adjustments to reach the Tpref have associated costs, and lizards spent 80% of their time in thermoregulation when tested under low radiation conditions, which in the wild would limit the scope for other activities and eventually increase predation risk. Our results suggest that thermoregulatory behaviour may play an important role in coping with global climate change, hence predictions of the effects of climate warming on lizards inhabiting cold habitats should take into account the buffering role of behavioural thermoregulation.
Collapse
Affiliation(s)
- S. Aguado
- Unidad de Zoología, Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo, and Unidad Mixta de Investigación en Biodiversidad (UMIB, CSIC-UO-PA), c/ Catedrático Rodrigo Uría s/n, 33071 Oviedo, Spain
| | - F. Braña
- Unidad de Zoología, Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo, and Unidad Mixta de Investigación en Biodiversidad (UMIB, CSIC-UO-PA), c/ Catedrático Rodrigo Uría s/n, 33071 Oviedo, Spain
| |
Collapse
|