1
|
Lyons SA, McClelland GB. Commentary: Tracing the fate of metabolic substrates during changes in whole-body energy expenditure in mice. Comp Biochem Physiol B Biochem Mol Biol 2024; 274:111008. [PMID: 39059702 DOI: 10.1016/j.cbpb.2024.111008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
For small mammals, such as mice, cannulation procedures can be quite challenging, limiting research associated with tracing isotopically labelled substrates at the whole-animal level. When cannulation in mice is possible, assessment of substrate use is further limited to when mice are either under anesthesia or are at rest, as there are no studies directly quantifying substrate use during exercise in mice. The use of isotopic tracer techniques has greatly advanced our knowledge in understanding how metabolic substrates (carbohydrates, amino acids, and fatty acids) contribute to whole-body metabolism. However, research regarding tissue-specific fuel use contributions to whole-body energy expenditure in mice at varying metabolic intensities (i.e., exercise) is lacking, despite the popularity of using mice in a variety of metabolic models. In this commentary, we briefly discuss the methodologies, advantages, and disadvantages of using radiolabelled, positron emission, and stable isotopes with a specific focus on fatty acids. We highlight recent mouse studies that have used creative experimental designs employing the use of isotopic tracer techniques and we briefly discuss how these methodologies can be further pursued to deepen our understanding of substrate use during exercise. Lastly, we show findings of a recent study we performed using a radiolabelled fatty acid tracer (14C-bromopalmitic acid) to determine fatty acid uptake in 16 muscles, two brown and two white adipose tissue depots during submaximal exercise in deer mice.
Collapse
Affiliation(s)
- Sulayman A Lyons
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Grant B McClelland
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
2
|
O'Brien DM, Freedman LS, Rivera P, Merriman S, Sági-Kiss V, Palma-Duran SA, Barrett B, Commins J, Kipnis V, Tasevska N. The carbon isotope ratio of breath is elevated by short-term and long-term added sugar and animal protein intake in a controlled feeding study. Am J Clin Nutr 2024; 120:630-637. [PMID: 39232603 PMCID: PMC11393392 DOI: 10.1016/j.ajcnut.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND The breath carbon isotope ratio (CIR) was recently identified as a noninvasive candidate biomarker of short-term added sugars (AS) intake. OBJECTIVES This study aimed to better understand the potential of the breath CIR as a dietary biomarker. We evaluated the effects of short-term and long-term intakes of AS, animal protein (AP), and related variables on breath CIR, in the context of typical dietary intake patterns. METHODS We conducted a 15-d controlled feeding study of 100 adults (age 18-70 y, 55% females) in Phoenix, AZ. Participants were provided individualized diets that approximated habitual food intakes and recorded the timing of food consumption. Three breath samples (fasting, midday, and evening) were collected on each of 3 nonconsecutive study days. We modeled the effects of dietary intake in each of 8 h preceding collection of the breath sample on breath CIR with a linear mixed model, which also included 15-d mean intakes, sex, age, and BMI. RESULTS Median (IQR) intakes of AS and AP in our study were 65 (38) and 67 (33) g/d, respectively. Midday and evening breath CIRs correlated strongly with each other (0.80) and with fasting breath CIR (0.77 and 0.68, respectively). In our linear mixed models, breath CIR increased by AS consumed 1-4 h before sample collection, AP consumed 3-6 h before sample collection, and 15-d intakes of AS and AP, all with similar effect sizes. The breath CIR was also inversely associated with 15-d intakes of intrinsic sugars and plant protein; thus, associations with 15-d intakes were particularly strong when expressed proportionally as the AS ratio (added sugars/total sugars) and AP ratio (animal protein/total protein). CONCLUSIONS The breath CIR is a promising measure of long-term intakes of AS and AP, especially as proportional intakes. Approaches to increase specificity would benefit the further development of this biomarker.
Collapse
Affiliation(s)
- Diane M O'Brien
- Center for Alaska Native Health Research, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States; Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, United States.
| | - Laurence S Freedman
- Gertner Institute for Epidemiology and Health Policy Research, Sheba Medical Center, Tel Hashomer, Israel
| | - Patricia Rivera
- Center for Alaska Native Health Research, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Sean Merriman
- Center for Alaska Native Health Research, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Virág Sági-Kiss
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| | - Susana A Palma-Duran
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| | - Brian Barrett
- Information Management Services, Rockville, MD, United States
| | - John Commins
- Information Management Services, Rockville, MD, United States
| | - Victor Kipnis
- Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, United States
| | - Natasha Tasevska
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| |
Collapse
|
3
|
Rogers EJ, Gerson AR. Water restriction increases oxidation of endogenous amino acids in house sparrows (Passer domesticus). J Exp Biol 2024; 227:jeb246483. [PMID: 38380522 PMCID: PMC11093224 DOI: 10.1242/jeb.246483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/06/2024] [Indexed: 02/22/2024]
Abstract
Animals can cope with dehydration in a myriad of ways, both behaviorally and physiologically. The oxidation of protein produces more metabolic water per kilojoule than that of fat or carbohydrate, and it is well established that birds increase protein catabolism in response to high rates of water loss. However, the fate of amino acids mobilized in response to water restriction has not been explicitly determined. While protein catabolism releases bound water, we hypothesized that water-restricted birds would also oxidize the resulting amino acids, producing additional water as a product of oxidative phosphorylation. To test this, we fed captive house sparrows (Passer domesticus) 13C-labeled leucine for 9 weeks to label endogenous proteins. We conducted weekly trials during which we measured the physiological response to water restriction as changes in lean mass, fat mass, metabolism and the enrichment of 13C in exhaled CO2 (δ13Cbreath). If water-restricted birds catabolized proteins and oxidized the resulting amino acids, we expected to simultaneously observe greater lean mass loss and elevated δ13Cbreath relative to control birds. We found that water-restricted birds catabolized more lean tissue and also had enriched δ13Cbreath in response to water restriction, supporting our hypothesis. δ13Cbreath, however, varied with metabolic rate and the length of the water restriction period, suggesting that birds may spare protein when water balance can be achieved using other physiological strategies.
Collapse
Affiliation(s)
- Elizabeth J. Rogers
- Organismic and Evolutionary Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Alexander R. Gerson
- Organismic and Evolutionary Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
4
|
Balakrishnan B, Yan X, McCue MD, Bellagamba O, Guo A, Winkler F, Thall J, Crawford L, Dimen R, Chen S, McEnaney S, Wu Y, Zimmer M, Sarkis J, Martini PG, Finn PF, Lai K. Whole-body galactose oxidation as a robust functional assay to assess the efficacy of gene-based therapies in a mouse model of Galactosemia. Mol Ther Methods Clin Dev 2024; 32:101191. [PMID: 38352271 PMCID: PMC10863324 DOI: 10.1016/j.omtm.2024.101191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
Despite the implementation of lifesaving newborn screening programs and a galactose-restricted diet, many patients with classic galactosemia develop long-term debilitating neurological deficits and primary ovarian insufficiency. Previously, we showed that the administration of human GALT mRNA predominantly expressed in the GalT gene-trapped mouse liver augmented the expression of hepatic GALT activity, which decreased not only galactose-1 phosphate (gal-1P) in the liver but also peripheral tissues. Since each peripheral tissue requires distinct methods to examine the biomarker and/or GALT effect, this highlights the necessity for alternative strategies to evaluate the overall impact of therapies. In this study, we established that whole-body galactose oxidation (WBGO) as a robust, noninvasive, and specific method to assess the in vivo pharmacokinetic and pharmacodynamic parameters of two experimental gene-based therapies that aimed to restore GALT activity in a mouse model of galactosemia. Although our results illustrated the long-lasting efficacy of AAVrh10-mediated GALT gene transfer, we found that GALT mRNA therapy that targets the liver predominantly is sufficient to sustain WBGO. The latter could have important implications in the design of novel targeted therapy to ensure optimal efficacy and safety.
Collapse
Affiliation(s)
- Bijina Balakrishnan
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | | | | | - Olivia Bellagamba
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - Aaron Guo
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | | | | | | | | | | | | | - Yiman Wu
- Moderna, Cambridge, MA 02139, USA
| | | | | | | | | | - Kent Lai
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| |
Collapse
|
5
|
McCue MD. CO 2 scrubbing, zero gases, Keeling plots, and a mathematical approach to ameliorate the deleterious effects of ambient CO 2 during 13 C breath testing in humans and animals. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9639. [PMID: 37817343 DOI: 10.1002/rcm.9639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/17/2023] [Accepted: 08/26/2023] [Indexed: 10/12/2023]
Abstract
13 C breath testing is increasingly used in physiology and ecology research because of what it reveals about the different fuels that animals oxidize to meet their energetic demands. Here I review the practice of 13 C breath testing in humans and other animals and describe the impact that contamination by ambient/background CO2 in the air can have on the accuracy of 13 C breath measurements. I briefly discuss physical methods to avoid sample contamination as well as the Keeling plot approach that researchers have been using for the past two decades to estimate δ13 C from breath samples mixed with ambient CO2 . Unfortunately, Keeling plots are not suited for 13 C breath testing in common situations where (1) a subject's VCO2 is dynamic, (2) ambient [CO2 ] may change, (3) a subject is sensitive to hypercapnia, or (4) in any flow-through indirect calorimetry system. As such, I present a mathematical solution that addresses these issues by using information about the instantaneous [CO2 ] and the δ13 CO2 of ambient air as well as the diluted breath sample to back-calculate the δ13 CO2 in the CO2 exhaled by the animal. I validate this approach by titrating a sample of 13 C-enriched gas into an air stream and demonstrate its ability to provide accurate values across a wide range of breath and air mixtures. This approach allows researchers to instantaneously calculate the δ13 C of exhaled gas of humans or other animals in real time without having to scrub ambient CO2 or rely on estimated values.
Collapse
|
6
|
Wolf N, Smeltz TS, Cook C, Martinez del Rio C. Using stable isotopes in hummingbird breath to estimate reliance on supplemental feeders. Ecol Evol 2023; 13:e9799. [PMID: 36789347 PMCID: PMC9905664 DOI: 10.1002/ece3.9799] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 02/11/2023] Open
Abstract
Understanding the ecological consequences of supplemental feeding to both hummingbirds and the plants they pollinate is complicated by logistical challenges associated with assessing relative dietary resource use with commonly applied observational methods. Here, we describe the results of research conducted to assess the relative use of feeder and flower nectar by Broad-tailed (Selasphorus platycercus) and Rufous hummingbirds (Selasphorus rufus) using two distinct methodological variations to measure the δ13C values of exhaled CO2. Because of the relatively quick time in which both species switch from exogenous to endogenous resources to fuel metabolism, our experiment allowed us to assess resource use at two timescales. Our results suggest variability in the relative contributions of the two dietary sources within and among species and timescales, with most birds employing a mixture of feeder and flower sugars as fuel sources. This diversity in relative resource use may mitigate potential negative effects of supplemental feeding on hummingbirds and their plant symbionts.
Collapse
Affiliation(s)
- Nathan Wolf
- FAST LaboratoryAlaska Pacific UniversityAnchorageAlaskaUSA
| | | | - Craig Cook
- University of Wyoming Stable Isotope Facility, University of WyomingLaramieWyomingUSA
| | | |
Collapse
|
7
|
Holden KG, Hedrick AR, Gangloff EJ, Hall SJ, Bronikowski AM. Temperature-dependence of metabolism and fuel selection from cells to whole organisms. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:199-205. [PMID: 34855309 DOI: 10.1002/jez.2564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Temperature affects nearly every aspect of how organisms interact with and are constrained by their environment. Measures of organismal energetics, such as metabolic rate, are highly temperature-dependent and governed through temperature effects on rates of biochemical reactions. Characterizing the relationships among levels of biological organization can lend insight into how temperature affects whole-organism function. We tested the temperature dependence of cellular oxygen consumption and its relationship to whole-animal metabolic rate in garter snakes (Thamnophis elegans). Additionally, we tested whether thermal responses were linked to shifts in the fuel source oxidized to support metabolism with the use of carbon stable isotopes. Our results demonstrate temperature dependence of metabolic rates across levels of biological organization. Cellular (basal, adenosine triphosphate-linked) and whole-animal rates of respiration increased with temperature but were not correlated within or among individuals, suggesting that variation in whole-animal metabolic rates is not due simply to variation at the cellular level, but rather other interacting factors across scales of biological organization. Counter to trends observed during fasting, elevated temperature did not alter fuel selection (i.e., natural-abundance stable carbon isotope composition in breath, δ13 Cbreath ). This consistency suggests the maintenance and oxidation of a single fuel source supporting metabolism across a broad range of metabolic demands.
Collapse
Affiliation(s)
- Kaitlyn G Holden
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA
| | - Ashley R Hedrick
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA
| | - Eric J Gangloff
- Department of Zoology, Ohio Wesleyan University, Delaware, Ohio, USA
| | - Steven J Hall
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA
| | - Anne M Bronikowski
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
8
|
Sánchez-García FJ, Aguilar-Setien JA, Pérez-Hernández CA, Kolstoe SE, Coker A, Rendon-Franco E, Moreno-Altamirano MMB. The mitochondrial activity of leukocytes from Artibeus jamaicensis bats remains unaltered after several weeks of flying restriction. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 127:104303. [PMID: 34728275 DOI: 10.1016/j.dci.2021.104303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Bats are the only flying mammals known. They have longer lifespan than other mammals of similar size and weight and can resist high loads of many pathogens, mostly viruses, with no signs of disease. These distinctive characteristics have been attributed to their metabolic rate that is thought to be the result of their flying lifestyle. Compared with non-flying mammals, bats have lower production of reactive oxygen species (ROS), and high levels of antioxidant enzymes such as superoxide dismutase. This anti-oxidative vs. oxidative profile may help to explain bat's longer than expected lifespans. The aim of this study was to assess the effect that a significant reduction in flying has on bats leukocytes mitochondrial activity. This was assessed using samples of lymphoid and myeloid cells from peripheral blood from Artibeus jamaicensis bats shortly after capture and up to six weeks after flying deprivation. Mitochondrial membrane potential (Δψm), mitochondrial calcium (mCa2+), and mitochondrial ROS (mROS) were used as key indicators of mitochondrial activity, while total ROS and glucose uptake were used as additional indicators of cell metabolism. Results showed that total ROS and glucose uptake were statistically significantly lower at six weeks of flying deprivation (p < 0.05), in both lymphoid and myeloid cells, however no significant changes in mitochondrial activity associated with flying deprivation was observed (p > 0.05). These results suggest that bat mitochondria are stable to sudden changes in physical activity, at least up to six weeks of flying deprivation. However, decrease in total ROS and glucose uptake in myeloid cells after six weeks of captivity suggest a compensatory mechanism due to the lack of the highly metabolic demands associated with flying.
Collapse
Affiliation(s)
- F Javier Sánchez-García
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | | | - C Angélica Pérez-Hernández
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Simon E Kolstoe
- School of Health Sciences, University of Portsmouth, Portsmouth, UK
| | | | - Emilio Rendon-Franco
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana Unidad Xochimilco, Ciudad de México, Mexico
| | - María Maximina Bertha Moreno-Altamirano
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico.
| |
Collapse
|
9
|
Clerc J, Rogers EJ, McGuire LP. Testing Predictions of Optimal Migration Theory in Migratory Bats. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.686379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Optimal migration theory is a framework used to evaluate trade-offs associated with migratory strategies. Two strategies frequently considered by migration theory are time minimizing, whereby migration is completed as quickly as possible, and energy minimizing, whereby migration is completed as energetically efficiently as possible. Despite extensive literature dedicated to generating analytical predictions about these migratory strategies, identifying appropriate study systems to empirically test predictions is difficult. Theoretical predictions that compare migratory strategies are qualitative, and empirical tests require that both time-minimizers and energy-minimizers are present in the same population; spring migrating silver-haired (Lasionycteris noctivagans) and hoary bats (Lasiurus cinereus) provide such a system. As both species mate in the fall, spring-migrating males are thought to be energy-minimizers while females benefit from early arrival to summering grounds, and are thought to be time-minimizers. Thermoregulatory expression also varies between species during spring migration, as female silver-haired bats and males of both species use torpor while female hoary bats, which implant embryos earlier, are thought to avoid torpor use which would delay pregnancy. Based on optimal migration theory, we predicted that female silver-haired bats and hoary bats would have increased fuel loads relative to males and the difference between fuel loads of male and female hoary bats would be greater than the difference between male and female silver-haired bats. We also predicted that females of both species would have a greater stopover foraging proclivity and/or assimilate nutrients at a greater rate than males. We then empirically tested our predictions using quantitative magnetic resonance to measure fuel load, δ13C isotope breath signature analysis to assess foraging, and 13C–labeled glycine to provide an indicator of nutrient assimilation rate. Optimal migration theory predictions of fuel load were supported, but field observations did not support the predicted refueling mechanisms, and alternatively suggested a reliance on increased fuel loads via carry-over effects. This research is the first to validate a migration theory prediction in a system of both time and energy minimizers and uses novel methodological approaches to uncover underlying mechanisms of migratory stopover use.
Collapse
|
10
|
Ouyang X, Lee CY, Lee SY. Effects of food and feeding regime on CO 2 fluxes from mangrove consumers - Do marine benthos breathe what they eat? MARINE ENVIRONMENTAL RESEARCH 2021; 169:105352. [PMID: 33991937 DOI: 10.1016/j.marenvres.2021.105352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 06/12/2023]
Abstract
Intertidal benthos link tertiary predators and primary producers in marine food webs as well as directly contribute to sediment CO2 emission. However, current methods for studying food sources of marine benthos are time-consuming and does not allow direct estimates on feeding regime-related (including different diets, active versus dormant) CO2 production. We examined the food sources of mangrove crabs and gastropods as well as their corresponding CO2 production using cavity-ring down spectroscopy to measure the δ13C-CO2 respiration for consumers, considering the effects of feeding regime, benthos taxa, and dominant feeding habit. Benthos taxa and feeding habit have significant impact on δ13C-CO2 respiration. Particularly, the δ13C-CO2 respiration for crabs (-23.9 ± 0.4‰) was significantly lower than that for gastropods (-17.5 ± 1.3‰). The δ13C-CO2 respiration for deposit-feeders was significantly higher than that for detritivores. There are significant differences in the amount of CO2 emitted and δ13C-CO2 respiration for crabs under different feeding regimes. The differences reflect diet-switching and fuel-switching by the crabs, i.e. 'you breathe what you eat'. Significant differences in CO2 production of crabs also exist between those feeding on microphytobenthos in the laboratory (0.13 ± 0.02 mmol g-1 day-1) and on field collection (i.e. just collected from the field) (0.31 ± 0.03 mmol g-1 day-1). CO2 production of crabs is strongly related to carapace width and length. The δ13C-CO2 respiration for mangrove crabs reflects their diet while crab-respired CO2 flux is related to crab size. These relationships enable partitioning the feeding habit and food sources of key benthos, and help incorporate their contribution into the overall sediment-atmosphere CO2 fluxes in mangrove forests.
Collapse
Affiliation(s)
- Xiaoguang Ouyang
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Cheuk Yan Lee
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Shing Yip Lee
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
11
|
Urca T, Levin E, Ribak G. Insect flight metabolic rate revealed by bolus injection of the stable isotope 13C. Proc Biol Sci 2021; 288:20211082. [PMID: 34187193 PMCID: PMC8242924 DOI: 10.1098/rspb.2021.1082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Measuring metabolic rate (MR) poses a formidable challenge in free-flying insects who cannot breathe into masks or be trained to fly in controlled settings. Consequently, flight MR has been predominantly measured on hovering or tethered insects flying in closed systems. Stable isotopes such as labelled water allow measurement of MR in free-flying animals but integrates the measurement over long periods exceeding the average flight duration of insects. Here, we applied the 'bolus injection of isotopic 13C Na-bicarbonate' method to insects to measure their flight MR and report a 90% accuracy compared to respirometry. We applied the method on two beetle species, measuring MR during free flight and tethered flight in a wind tunnel. We also demonstrate the ability to repeatedly use the technique on the same individual. Therefore, the method provides a simple, reliable and accurate tool that solves a long-lasting limitation on insect flight research by enabling the measurement of MR during free flight.
Collapse
Affiliation(s)
- Tomer Urca
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Eran Levin
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.,Steinhardt Museum of Natural History, Israel National Center for Biodiversity Studies, Tel Aviv 6997801, Israel
| | - Gal Ribak
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.,Steinhardt Museum of Natural History, Israel National Center for Biodiversity Studies, Tel Aviv 6997801, Israel
| |
Collapse
|
12
|
Denommé M, Deakin JE, Morbey YE, Guglielmo CG. Using breath δ 13C analysis to determine the effects of dietary carbohydrate and protein on glucose and leucine oxidation at rest in the yellow-rumped warbler (Setophaga coronata). Comp Biochem Physiol A Mol Integr Physiol 2021; 256:110936. [PMID: 33713811 DOI: 10.1016/j.cbpa.2021.110936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/07/2021] [Accepted: 03/07/2021] [Indexed: 10/21/2022]
Abstract
Fat is the major fuel for migratory flight of birds, but protein is also catabolized. Flight range could be reduced if protein is used too quickly from muscles and organs, and it is important to understand factors that influence protein catabolism. Previous correlative studies suggested high protein diets may increase protein use in flight, although a wind tunnel study with yellow-rumped warblers (Setophaga coronata) did not support this relationship. We tested the hypothesis that diet composition affects nutrient oxidation in resting, fasted yellow-rumped warblers. For method development, we gavaged or subcutaneously injected warblers with 13C labelled glucose or leucine, and measured δ13C of breath CO2 in real time using infrared laser spectrometry. Regardless of route of administration, leucine had greater instantaneous and cumulative oxidation than glucose. Compared to subcutaneous injection, gavaged birds reached maximum oxidation rate faster for leucine and glucose, respectively, had a higher maximum oxidation rate, and reached final cumulative oxidation approximately faster for leucine or glucose, respectively, indicating immediate oxidation of the substrates by the digestive system. Warblers (N = 10 each) were fed isocaloric 60% carbohydrate or 60% protein diets for minimum 2 weeks, and subcutaneously injected with 13C labelled glucose or leucine. Diet composition had little effect on oxidation kinetics except that warblers fed high-carbohydrate reached final cumulative oxidation of leucine more quickly than those fed high-protein. The findings do not support the hypothesis that high protein diets increase the oxidation of protein during negative energy states in migratory birds, and provide methodology that could be applied to test it in flight.
Collapse
Affiliation(s)
- Melanie Denommé
- Department of Biology, Advanced Facility for Avian Research, University of Western Ontario, London, ON N6A5B7, Canada.
| | - Jessica E Deakin
- Department of Biology, Advanced Facility for Avian Research, University of Western Ontario, London, ON N6A5B7, Canada
| | - Yolanda E Morbey
- Department of Biology, Advanced Facility for Avian Research, University of Western Ontario, London, ON N6A5B7, Canada
| | - Christopher G Guglielmo
- Department of Biology, Advanced Facility for Avian Research, University of Western Ontario, London, ON N6A5B7, Canada
| |
Collapse
|
13
|
Anparasan L, Hobson KA. Tracing sources of carbon and hydrogen to stored lipids in migratory passerines using stable isotope (δ 13C, δ 2H) measurements. Oecologia 2021; 195:37-49. [PMID: 33389017 DOI: 10.1007/s00442-020-04827-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 12/09/2020] [Indexed: 11/29/2022]
Abstract
Using measurements of naturally occurring stable isotopes in feathers to determine avian origin and migratory patterns is well established. However, isotopically determining nutritional origins of lipids, a major migratory fuel, has not been attempted. This study explores isotopic links between diet and stored lipids in captive white-throated sparrows (Zonotrichia albicollis) by providing isotopically distinct mixtures of carbohydrates/oils and drinking water and assessing the δ13C and δ2H values of stored lipid, breath CO2 (δ13C) and breath water vapour (δ2H). Stored lipid δ13C and δ2H values correlated with the isotopic values found in dietary carbohydrates/oils and drinking water treatments, respectively, indicating a clear traceable transfer of environmental dietary isotopic signals into body lipids. Dietary oils and carbohydrates contributed 80-82% of carbon and 44-46% of hydrogen, respectively, to stored lipids. Drinking water contributed 18-28% of hydrogen to stored lipids. Isotopic relationships were quantifiable using linear calibration algorithms which provide the basis for the construction of tissue isoscapes for migratory passerines. Breath CO2 δ13C values and breath water vapour δ2H values for fed and fasted birds reflected dietary sources. Breath CO2 δ13C values were higher for fasted birds than for fed birds by an average of 4.5‰ while breath water vapour δ2H values were lower for fasted birds by an average of 48.9‰. These results indicate that lipids and metabolites from their subsequent breakdown for fuel isotopically reflect dietary sources but complicate interpretation of such data, especially for wild migrating birds. Applications and limitations of these findings to the creation of "liposcapes" are examined.
Collapse
Affiliation(s)
- Libesha Anparasan
- Department of Biology, University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada.
| | - Keith A Hobson
- Department of Biology, University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada.,Environment and Climate Change Canada, Saskatoon, SK, S7N 3H5, Canada
| |
Collapse
|
14
|
Duan K, Gao X, Zhu D. The clinical relevance and mechanism of skeletal muscle wasting. Clin Nutr 2020; 40:27-37. [PMID: 32788088 DOI: 10.1016/j.clnu.2020.07.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/15/2020] [Accepted: 07/21/2020] [Indexed: 02/08/2023]
Abstract
Skeletal muscle wasting occurs in both chronic and acute diseases. Increasing evidence has shown this debilitating process is associated with short- and long-term outcomes in critical, cancer and surgical patients. Both muscle quantity and quality, as reflected by the area and density of a given range of attenuation in CT scan, impact the patient prognosis. In addition, ultrasound and bioelectrical impedance analysis (BIA) are also widely used in the assessment of body composition due to their bedside viability and no radioactivity. Mechanism researches have revealed complicated pathways are involved in muscle wasting, which include altered IGF1-Akt-FoxO signaling, elevated levels of myostatin and activin A, activation of NF-κB pathway and glucocorticoid effects. Particularly, central nervous system (CNS) has been proven to participate in regulating muscle wasting in various conditions, such as infection and tumor. Several promising therapeutic agents have been under developing in the treatment of muscle atrophy, such as myostatin antagonist, ghrelin analog, non-steroidal selective androgen receptor modulators (SARMs). Notably, nutritional therapy is still the fundamental support in combating muscle wasting. However, the optimizing and tailored nutrition regimen relies on accurate metabolism measurement and large clinical trials in the future. Here, we will discuss the current understanding of muscle wasting and potential treatment in clinical practice.
Collapse
Affiliation(s)
- Kaipeng Duan
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, PR China
| | - Xin Gao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, PR China
| | - Dongming Zhu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, PR China.
| |
Collapse
|
15
|
Pettersson S, Ahnoff M, Edin F, Lingström P, Simark Mattsson C, Andersson-Hall U. A Hydrogel Drink With High Fructose Content Generates Higher Exogenous Carbohydrate Oxidation and Lower Dental Biofilm pH Compared to Two Other, Commercially Available, Carbohydrate Sports Drinks. Front Nutr 2020; 7:88. [PMID: 32596251 PMCID: PMC7303329 DOI: 10.3389/fnut.2020.00088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/14/2020] [Indexed: 12/30/2022] Open
Abstract
The purpose of this study was to evaluate the substrate oxidation of three commercially available, 14%-carbohydrate sports drinks with different compositions, osmolality, and pH for their impact on dental exposure to low pH. In a cross-over, randomized double-blinded design, 12 endurance athletes (age 31. 2 ± 7.7 years, V ˙ O2max 65.6 ± 5.0 mL·kg-1) completed 180 min of cycling at 55% Wmax. During the first 100 min of cycling, athletes consumed amylopectin starch (AP), maltodextrin+sucrose (MD+SUC), or maltodextrin+fructose hydrogel (MD+FRU) drinks providing 95 g carbohydrate·h-1, followed by water intake only at 120 and 160 min. Fuel use was determined using indirect calorimetry and stable-isotope techniques. Additionally, dental biofilm pH was measured using the microtouch method in a subsample of participants (n = 6) during resting conditions before, and at different time intervals up to 45 min following a single bolus of drink. Exogenous carbohydrate oxidation (CHOEXO) during the 2nd hour of exercise was significantly (P < 0.05) different between all three drinks: MD+FRU (1.17 ± 0.17 g·min-1), MD+SUC (1.01 ± 0.13 g·min-1), and AP (0.84 ± 0.11 g·min-1). At the end of exercise, CHOEXO and blood glucose concentrations (3.54 ± 0.50, 4.07 ± 0.67, and 4.28 ± 0.47 mmol·L-1, respectively) were significantly lower post MD+FRU consumption than post MD+SUC and AP consumption (P < 0.05). Biofilm acidogenicity at rest demonstrated a less pronounced pH fall for MD+FRU compared to the acidulant-containing MD+SUC and AP (P < 0.05). In conclusion, while total intake of MD+FRU showed signs of completed uptake before end of monitoring, this was less so for MD+SUC, and not at all the case for AP. Thus, this study showed that despite carbohydrates being encapsulated in a hydrogel, a higher CHOEXO was observed following MD+FRU drink ingestion compared to AP and MD+SUC consumption upon exposure to the acidic environment of the stomach. This finding may be related to the higher fructose content of the MD+FRU drink compared with the MD+SUC and AP drinks. Furthermore, a carbohydrate solution without added acidulants, which are commonly included in commercial sport drinks, may have less deleterious effects on oral health.
Collapse
Affiliation(s)
- Stefan Pettersson
- Department of Food and Nutrition, and Sport Science, Center for Health and Performance, University of Gothenburg, Gothenburg, Sweden
| | - Martin Ahnoff
- Maurten AB, Research and Development, Gothenburg, Sweden
| | - Fredrik Edin
- Department of Food and Nutrition, and Sport Science, Center for Health and Performance, University of Gothenburg, Gothenburg, Sweden
| | - Peter Lingström
- Department of Cariology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Charlotte Simark Mattsson
- Department of Cariology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ulrika Andersson-Hall
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
16
|
Changes in exhaled 13CO2/12CO2 breath delta value as an early indicator of infection in intensive care unit patients. J Trauma Acute Care Surg 2020; 86:71-78. [PMID: 30575683 DOI: 10.1097/ta.0000000000002097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND We have developed a new, noninvasive predictive marker for onset of infection in surgical intensive care unit (ICU) patients. The exhaled CO2/CO2 ratio, or breath delta value (BDV), has been shown to be an early marker for infection in a proof of concept human study and in animal models of bacterial peritonitis. In these studies, the BDV changes during onset and progression of infection, and these changes precede physiological changes associated with infection. Earlier diagnosis and treatment will significantly reduce morbidity, mortality, hospitalization costs, and length of stay. The objective of this prospective, observational, multicenter study was to determine the predictive value of the BDV as an early diagnostic marker of infection. METHODS Critically ill adults after trauma or acute care surgery with an expected length of stay longer than 5 days were enrolled. The BDV was obtained every 4 hours for 7 days and correlated to clinical infection diagnosis, serum C-reactive protein, and procalcitonin levels. Clinical infection diagnosis was made by an independent endpoint committee. This trial was registered at the US National Institutes of Health (ClinicalTrials.gov) NCT02327130. RESULTS Groups were demographically similar (n = 20). Clinical infection diagnosis was confirmed on day 3.9 ± 0.63. Clinical suspicion of infection (defined by SIRS criteria and/or new antibiotic therapy) was on day 2.1 ± 0.5 in all infected patients. However, 5 (56%) of 9 noninfected subjects also met clinical suspicion criteria. The BDV significantly increased by 1‰ to 1.7‰ on day 2.1 after enrollment (p < 0.05) in subjects who developed infections, while it remained at baseline (± 0.5‰) for subjects without infections. CONCLUSION A BDV greater than 1.4‰ accurately differentiates subjects who develop infections from those who do not and predicts the presence of infection up to 48 hours before clinical confirmation. The BDV may predict the onset of infection and aid in distinguishing SIRS from infection, which could prompt earlier diagnosis, earlier appropriate treatment, and improve outcomes. LEVEL OF EVIDENCE Diagnostic test, level III.
Collapse
|
17
|
Baloun DE, Hobson KA, Guglielmo CG. Temporal patterns of foraging by silver-haired bats during migratory stopover revealed by isotopic analyses (δ 13C) of breath CO 2. Oecologia 2020; 193:67-75. [PMID: 32306117 DOI: 10.1007/s00442-020-04650-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 04/08/2020] [Indexed: 11/26/2022]
Abstract
The extent to which migratory bats forage at stopover sites or while in migratory flight is poorly understood. Endogenous fat stores have lower δ13C values relative to the dietary substrates from which they were synthesized, and so, the fed versus fasted state of bats should be discernable by comparing their breath δ13C at capture to that after a known period of fasting. We captured silver-haired bats (Lasionycteris noctivagans) at a stopover site at Long Point, Ontario, Canada, during spring and fall migration. We collected breath samples at capture and after fasting in captivity for 12 h, providing a fasted-state δ13C value corresponding to metabolism of fat stores. We also collected and weighed fecal pellets produced while in captivity. Breath δ13C values at capture were positively correlated with mass of feces produced. During spring migration, δ13C values of breath CO2 at capture were low and similar to fasting values, but increased with date consistent with increased foraging at stopover and reliance on exogenous dietary nutrients as the season progressed. The opposite temporal pattern was found during fall migration. Our findings suggest that bats forage during migratory stopover when environmental conditions permit despite potential time trade-offs between feeding and travel, and the energy savings resulting from torpor during roosting. This study provides insight into the eco-physiology of bat migration and shows the importance of foraging habitat for migratory bats.
Collapse
Affiliation(s)
- Dylan E Baloun
- Department of Biology and Advanced Facility for Avian Research (AFAR), University of Western Ontario, London, ON, Canada.
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Keith A Hobson
- Department of Biology and Advanced Facility for Avian Research (AFAR), University of Western Ontario, London, ON, Canada
| | - Christopher G Guglielmo
- Department of Biology and Advanced Facility for Avian Research (AFAR), University of Western Ontario, London, ON, Canada
| |
Collapse
|
18
|
McCue MD, Javal M, Clusella‐Trullas S, Le Roux JJ, Jackson MC, Ellis AG, Richardson DM, Valentine AJ, Terblanche JS. Using stable isotope analysis to answer fundamental questions in invasion ecology: Progress and prospects. Methods Ecol Evol 2019. [DOI: 10.1111/2041-210x.13327] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Marshall D. McCue
- Sable Systems International Las Vegas NV USA
- Department of Conservation Ecology and Entomology Centre for Invasion Biology Stellenbosch University Stellenbosch South Africa
| | - Marion Javal
- Department of Conservation Ecology and Entomology Centre for Invasion Biology Stellenbosch University Stellenbosch South Africa
| | - Susana Clusella‐Trullas
- Centre for Invasion Biology Department of Botany and Zoology Stellenbosch University Stellenbosch South Africa
| | - Johannes J. Le Roux
- Centre for Invasion Biology Department of Botany and Zoology Stellenbosch University Stellenbosch South Africa
- Department of Biological Sciences Macquarie University NSW Australia
| | - Michelle C. Jackson
- Centre for Invasion Biology Department of Botany and Zoology Stellenbosch University Stellenbosch South Africa
- Department of Life Sciences Imperial College London Ascot UK
- Department of Zoology Oxford University Oxford UK
| | - Allan G. Ellis
- Department of Botany and Zoology Stellenbosch University Stellenbosch South Africa
| | - David M. Richardson
- Centre for Invasion Biology Department of Botany and Zoology Stellenbosch University Stellenbosch South Africa
| | - Alex J. Valentine
- Department of Botany and Zoology Stellenbosch University Stellenbosch South Africa
| | - John S. Terblanche
- Department of Conservation Ecology and Entomology Centre for Invasion Biology Stellenbosch University Stellenbosch South Africa
| |
Collapse
|
19
|
Extended indirect calorimetry with isotopic CO 2 sensors for prolonged and continuous quantification of exogenous vs. total substrate oxidation in mice. Sci Rep 2019; 9:11507. [PMID: 31395916 PMCID: PMC6687832 DOI: 10.1038/s41598-019-47977-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/25/2019] [Indexed: 11/22/2022] Open
Abstract
Indirect calorimetry (InCa) estimates whole-body energy expenditure and total substrate oxidation based on O2 consumption and CO2 production, but does not allow for the quantification of oxidation of exogenous substrates with time. To achieve this, we incorporated 13CO2 and 12CO2 gas sensors into a commercial InCa system and aimed to demonstrate their performance and added value. As a performance indicator, we showed the discriminative oscillations in 13CO2 enrichment associated with food intake in mice fed diets containing naturally low (wheat) vs high (maize) 13C enrichment. To demonstrate the physiological value, we quantified exogenous vs total carbohydrate and fat oxidation continuously, in real time in mice varying in fat mass. Diet-induced obese mice were fed a single liquid mixed meal containing 13C-isotopic tracers of glucose or palmitate. Over 13 h, ~70% glucose and ~48% palmitate ingested were oxidised. Exogenous palmitate oxidation depended on body fat mass, which was not the case for exogenous glucose oxidation. We conclude that extending an InCa system with 13CO2 and 12CO2 sensors provides an accessible and powerful technique for real-time continuous quantification of exogenous and whole-body substrate oxidation in mouse models of human metabolic physiology.
Collapse
|
20
|
Regan MD, Chiang E, Martin SL, Porter WP, Assadi-Porter FM, Carey HV. Shifts in metabolic fuel use coincide with maximal rates of ventilation and body surface rewarming in an arousing hibernator. Am J Physiol Regul Integr Comp Physiol 2019; 316:R764-R775. [PMID: 30969844 DOI: 10.1152/ajpregu.00379.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
It is well established that hibernating mammals rely predominantly on lipid stores to fuel metabolism throughout the hibernation season. However, it is unclear if other endogenous fuels contribute to the rapid, ~400-fold increase in metabolic rate during the early phase of arousal from torpor. To investigate this issue, we used cavity ring-down spectroscopy, a technique that provides a real-time indication of fuel use by measuring the ratio of 13C to 12C in the exhaled CO2 of arousing 13-lined ground squirrels (Ictidomys tridecemlineatus). We used infrared thermography to simultaneously measure ventilation and surface temperature change in various body regions, and we interpreted these data in light of changing plasma metabolite abundances at multiple stages of arousal from torpor. We found that hibernating squirrels use a combination of lipids and, likely, carbohydrates to fuel the initial ~60 min of arousal before switching to predominantly lipid oxidation. This fuel switch coincided with times of maximal rates of ventilation and rewarming of different body surface regions, including brown adipose tissue. Infrared thermography revealed zonal rewarming, whereby the brown adipose tissue region was the first to warm, followed by the thoracic and head regions and, finally, the posterior half of the body. Consistent with the results from cavity ring-down spectroscopy, plasma metabolite dynamics during early arousal suggested a large reliance on fatty acids, with a contribution from carbohydrates and glycerol. Because of their high oxidative flux rates and efficient O2 use, carbohydrates might be an advantageous metabolic fuel during the early phase of arousal, when metabolic demands are high but ventilation rates and, thus, O2 supply are relatively low.
Collapse
Affiliation(s)
- Matthew D Regan
- Department of Comparative Biosciences, University of Wisconsin-Madison , Madison, Wisconsin
| | - Edna Chiang
- Department of Comparative Biosciences, University of Wisconsin-Madison , Madison, Wisconsin.,Department of Bacteriology, University of Wisconsin-Madison , Madison, Wisconsin
| | - Sandra L Martin
- Department of Cell and Developmental Biology, University of Colorado School of Medicine , Aurora, Colorado
| | - Warren P Porter
- Deparment of Integrative Biology, University of Wisconsin-Madison , Madison, Wisconsin
| | - Fariba M Assadi-Porter
- Department of Comparative Biosciences, University of Wisconsin-Madison , Madison, Wisconsin.,Deparment of Integrative Biology, University of Wisconsin-Madison , Madison, Wisconsin
| | - Hannah V Carey
- Department of Comparative Biosciences, University of Wisconsin-Madison , Madison, Wisconsin
| |
Collapse
|
21
|
Plasman M, McCue MD, Reynoso VH, Terblanche JS, Clusella-Trullas S. Environmental temperature alters the overall digestive energetics and differentially affects dietary protein and lipid use in a lizard. J Exp Biol 2019; 222:222/6/jeb194480. [DOI: 10.1242/jeb.194480] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/10/2019] [Indexed: 12/18/2022]
Abstract
ABSTRACT
Processing food (e.g. ingestion, digestion, assimilation) requires energy referred to as specific dynamic action (SDA) and is at least partially fuelled by oxidation of the nutrients (e.g. proteins and lipids) within the recently ingested meal. In ectotherms, environmental temperature can affect the magnitude and/or duration of the SDA, but is likely to also alter the mixture of nutrients that are oxidized to cover these costs. Here, we examined metabolic rate, gut passage time, assimilation efficiency and fuel use in the lizard Agama atra digesting cricket meals at three ecologically relevant temperatures (20, 25 and 32°C). Crickets were isotopically enriched with 13C-leucine or 13C-palmitic-acid tracers to distinguish between protein and lipid oxidation, respectively. Our results show that higher temperatures increased the magnitude of the SDA peak (by 318% between 32 and 20°C) and gut passage rate (63%), and decreased the duration of the SDA response (by 20% for males and 48% for females). Peak rate of dietary protein oxidation occurred sooner than peak lipid oxidation at all temperatures (70, 60 and 31 h earlier for 20, 25 and 32°C, respectively). Assimilation efficiency of proteins, but not lipids, was positively related to temperature. Interestingly, the SDA response exhibited a notable circadian rhythm. These results show that temperature has a pronounced effect on digestive energetics in A. atra, and that this effect differs between nutrient classes. Variation in environmental temperatures may thus alter the energy budget and nutrient reserves of these animals.
Collapse
Affiliation(s)
- Melissa Plasman
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch 7600, South Africa
| | | | - Víctor Hugo Reynoso
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch 7600, South Africa
- Instituto de Biología, Departamento de Zoología, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - John S. Terblanche
- Centre for Invasion Biology, Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Susana Clusella-Trullas
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
22
|
Gordon G, Rhoads A. Field-deployable measurements of free-living individuals to determine energy balance: fuel substrate usage through δ 13C in breath CO 2 and diet through hair δ 13C and δ 15N values. ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 2019; 55:70-79. [PMID: 30602299 DOI: 10.1080/10256016.2018.1562448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 11/26/2018] [Indexed: 06/09/2023]
Abstract
Carbon isotopes of breath CO2 vary depending on diet and fuel substrate used. This study examined if exercise-induced δ13C-CO2 changes in substrate utilization were distinguishable from baseline δ13C-CO2 variations in a population with uncontrolled diet, and compared hair isotope values and food logs to develop an isotope model of diet. Study participants included nine women with diverse Body Mass Index (BMI), age, ancestry, exercise history, and diet. Breath samples were collected prior to and up to 12 h after a 5- or 10 K walk/run. Indirect calorimetry was measured with a smartphone-enabled mobile colorimetric device, and a field-deployable isotope analyzer measured breath δ13C-CO2 values. Diet was assessed by food logs and δ13C, δ15N of hair samples. Post-exercise δ13C-CO2 values increased by 0.54 ± 1.09‰ (1 sd, n = 9), implying enhanced carbohydrate burning, while early morning δ13C-CO2 values were lower than daily averages (p = 0.0043), indicating lipid burning during overnight fasting. Although diurnal δ13C-CO2 variation (1.90 ± 0.77‰) and participant baseline range (3.06‰) exceeded exercise-induced variation, temporal patterns distinguished exercise from dietary isotope effects. Hair δ13C and δ15N values were consistent with a new dietary isotope model. Notwithstanding the small number of participants, this study introduces a novel combination of techniques to directly monitor energy balance in free-living individuals.
Collapse
Affiliation(s)
- Gwyneth Gordon
- a School of Earth & Space Exploration , Arizona State University , Tempe , AZ , USA
| | - Amrita Rhoads
- b Peggy Payne Academy , McClintock High School , Tempe , AZ , USA
| |
Collapse
|
23
|
Metabolic Fates of Evening Crop-Stored Sugar in Ruby-Throated Hummingbirds (Archilochus colubris). DIVERSITY-BASEL 2019. [DOI: 10.3390/d11010009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
During the day, hummingbirds quickly metabolize floral nectar to fuel high metabolic demands, but are unable to feed at night. Though stored fat is the primary nocturnal metabolic fuel, it has been suggested that hummingbirds store nectar in their crop to offset fat expenditure in the night or to directly fuel their first foraging trip in the morning. We examine the use of crop-stored sugar in the nocturnal energy budget of ruby-throated hummingbirds (Archilochus colubris) using respirometry and 13C stable isotope analysis. Hummingbirds were fed a 13C-enriched sugar solution before lights-out and held in respirometry chambers overnight without food. Respirometry results indicate that the hummingbirds metabolized the sugar in the evening meal in less than 2 h, and subsequently primarily catabolized fat. Breath stable isotope signatures provide the key insight that the hummingbirds converted a substantial portion of an evening meal to fats, which they later catabolized to support their overnight metabolism and spare endogenous energy stores. These results show that the value of a hummingbird’s evening meal depends on how much of this energy was converted to fat. Furthermore, this suggests that evening hyperphagia is an important energy maximization strategy, especially during energetically expensive periods such as migration or incubation.
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Optimal nutritional therapy has been associated with better clinical outcomes and requires providing energy as closed as possible to measured energy expenditure. We reviewed the current innovations in energy expenditure assessment in humans, focusing on indirect calorimetry and other new alternative methods. RECENT FINDINGS Although considered the reference method to measure energy expenditure, the use of indirect calorimetry is currently limited by the lack of an adequate device. However, recent technical developments may allow a broader use of indirect calorimetry for in-patients and out-patients. An ongoing international academic initiative to develop a new indirect calorimeter aimed to provide innovative and affordable technical solutions for many of the current limitations of indirect calorimetry. New alternative methods to indirect calorimetry, including CO2 measurements in mechanically ventilated patients, isotopic approaches and accelerometry-based fitness equipments, show promises but have been either poorly studied and/or are not accurate compared to indirect calorimetry. Therefore, to date, energy expenditure measured by indirect calorimetry remains the gold standard to guide nutritional therapy. SUMMARY Some new innovative methods are demonstrating promises in energy expenditure assessment, but still need to be validated. There is an ongoing need for easy-to-use, accurate and affordable indirect calorimeter for daily use in in-patients and out-patients.
Collapse
Affiliation(s)
- Najate Achamrah
- Department of Clinical Nutrition, Geneva University Hospital, Geneva, Switzerland
| | | | | |
Collapse
|
25
|
A genomics approach reveals insights into the importance of gene losses for mammalian adaptations. Nat Commun 2018; 9:1215. [PMID: 29572503 PMCID: PMC5865188 DOI: 10.1038/s41467-018-03667-1] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 03/02/2018] [Indexed: 11/08/2022] Open
Abstract
Identifying the genomic changes that underlie phenotypic adaptations is a key challenge in evolutionary biology and genomics. Loss of protein-coding genes is one type of genomic change with the potential to affect phenotypic evolution. Here, we develop a genomics approach to accurately detect gene losses and investigate their importance for adaptive evolution in mammals. We discover a number of gene losses that likely contributed to morphological, physiological, and metabolic adaptations in aquatic and flying mammals. These gene losses shed light on possible molecular and cellular mechanisms that underlie these adaptive phenotypes. In addition, we show that gene loss events that occur as a consequence of relaxed selection following adaptation provide novel insights into species' biology. Our results suggest that gene loss is an evolutionary mechanism for adaptation that may be more widespread than previously anticipated. Hence, investigating gene losses has great potential to reveal the genomic basis underlying macroevolutionary changes.
Collapse
|
26
|
Welch KC, Myrka AM, Ali RS, Dick MF. The Metabolic Flexibility of Hovering Vertebrate Nectarivores. Physiology (Bethesda) 2018; 33:127-137. [DOI: 10.1152/physiol.00001.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Foraging hummingbirds and nectar bats oxidize both glucose and fructose from nectar at exceptionally high rates. Rapid sugar flux is made possible by adaptations to digestive, cardiovascular, and metabolic physiology affecting shared and distinct pathways for the processing of each sugar. Still, how these animals partition and regulate the metabolism of each sugar and whether this occurs differently between hummingbirds and bats remain unclear.
Collapse
Affiliation(s)
- Kenneth C. Welch
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Center for the Neurobiology of Stress, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Alexander M. Myrka
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Raafay Syed Ali
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Morag F. Dick
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
27
|
Levin E, McCue MD, Davidowitz G. More than just sugar: allocation of nectar amino acids and fatty acids in a Lepidopteran. Proc Biol Sci 2018; 284:rspb.2016.2126. [PMID: 28148746 DOI: 10.1098/rspb.2016.2126] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/05/2017] [Indexed: 01/19/2023] Open
Abstract
The ability to allocate resources, even when limited, is essential for survival and fitness. We examine how nutrients that occur in minute amounts are allocated among reproductive, somatic, and metabolic demands. In addition to sugar, flower nectars contain two macronutrients-amino acids and fatty acids. We created artificial nectars spiked with 13C-labelled amino acids and fatty acids and fed these to adult moths (Manduca sexta: Sphingidae) to understand how they allocate these nutrients among competing sinks (reproduction, somatic tissue, and metabolic fuel). We found that both essential and non-essential amino acids were allocated to eggs and flight muscles and were still detectable in early-instar larvae. Parental-derived essential amino acids were more conserved in the early-instars than non-essential amino acids. All amino acids were used as metabolic fuel, but the non-essential amino acids were oxidized at higher rates than essential amino acids. Surprisingly, the nectar fatty acids were not vertically transferred to offspring, but were readily used as a metabolic fuel by the moth, minimizing losses of endogenous nutrient stores. We conclude that the non-carbohydrate components of nectar may play important roles in both reproductive success and survival of these nectar-feeding animals.
Collapse
Affiliation(s)
- Eran Levin
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Marshall D McCue
- Department of Biological Sciences, St. Mary's University, San Antonio, TX, USA
| | - Goggy Davidowitz
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
28
|
McCue MD, Terblanche JS, Benoit JB. Learning to starve: impacts of food limitation beyond the stress period. J Exp Biol 2017; 220:4330-4338. [DOI: 10.1242/jeb.157867] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
ABSTRACT
Starvation is common among wild animal populations, and many individuals experience repeated bouts of starvation over the course of their lives. Although much information has been gained through laboratory studies of acute starvation, little is known about how starvation affects an animal once food is again available (i.e. during the refeeding and recovery phases). Many animals exhibit a curious phenomenon – some seem to ‘get better’ at starving following exposure to one or more starvation events – by this we mean that they exhibit potentially adaptive responses, including reduced rates of mass loss, reduced metabolic rates, and lower costs of digestion. During subsequent refeedings they may also exhibit improved digestive efficiency and more rapid mass gain. Importantly, these responses can last until the next starvation bout or even be inherited and expressed in the subsequent generation. Currently, however, little is known about the molecular regulation and physiological mechanisms underlying these changes. Here, we identify areas of research that can fill in the most pressing knowledge gaps. In particular, we highlight how recently refined techniques (e.g. stable isotope tracers, quantitative magnetic resonance and thermal measurement) as well as next-generation sequencing approaches (e.g. RNA-seq, proteomics and holobiome sequencing) can address specific starvation-focused questions. We also describe outstanding unknowns ripe for future research regarding the timing and severity of starvation, and concerning the persistence of these responses and their interactions with other ecological stressors.
Collapse
Affiliation(s)
- Marshall D. McCue
- Department of Biological Sciences, St Mary's University, San Antonio, TX 78228, USA
| | - John S. Terblanche
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch 7602, South Africa
| | - Joshua B. Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
29
|
Muscle mass and physical recovery in ICU: innovations for targeting of nutrition and exercise. Curr Opin Crit Care 2017; 23:269-278. [PMID: 28661414 DOI: 10.1097/mcc.0000000000000431] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE OF REVIEW We have significantly improved hospital mortality from sepsis and critical illness in last 10 years; however, over this same period we have tripled the number of 'ICU survivors' going to rehabilitation. Furthermore, as up to half the deaths in the first year following ICU admission occur post-ICU discharge, it is unclear how many of these patients ever returned home or a meaningful quality of life. For those who do survive, recent data reveals many 'ICU survivors' will suffer significant functional impairment or post-ICU syndrome (PICS). Thus, new innovative metabolic and exercise interventions to address PICS are urgently needed. These should focus on optimal nutrition and lean body mass (LBM) assessment, targeted nutrition delivery, anabolic/anticatabolic strategies, and utilization of personalized exercise intervention techniques, such as utilized by elite athletes to optimize preparation and recovery from critical care. RECENT FINDINGS New data for novel LBM analysis technique such as computerized tomography scan and ultrasound analysis of LBM are available showing objective measures of LBM now becoming more practical for predicting metabolic reserve and effectiveness of nutrition/exercise interventions. 13C-Breath testing is a novel technique under study to predict infection earlier and predict over-feeding and under-feeding to target nutrition delivery. New technologies utilized routinely by athletes such as muscle glycogen ultrasound also show promise. Finally, the role of personalized cardiopulmonary exercise testing to target preoperative exercise optimization and post-ICU recovery are becoming reality. SUMMARY New innovative techniques are demonstrating promise to target recovery from PICS utilizing a combination of objective LBM and metabolic assessment, targeted nutrition interventions, personalized exercise interventions for prehabilitation and post-ICU recovery. These interventions should provide hope that we will soon begin to create more 'survivors' and fewer victim's post-ICU care.
Collapse
|
30
|
Hatle JD, Awan A, Nicholas J, Koch R, Vokrri JR, McCue MD, Williams CM, Davidowitz G, Hahn DA. Life-extending dietary restriction and ovariectomy each increase leucine oxidation and alter leucine allocation in grasshoppers. Exp Gerontol 2017; 96:155-161. [PMID: 28668481 DOI: 10.1016/j.exger.2017.06.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 06/14/2017] [Accepted: 06/27/2017] [Indexed: 10/19/2022]
|
31
|
Levin E, Lopez-Martinez G, Fane B, Davidowitz G. Hawkmoths use nectar sugar to reduce oxidative damage from flight. Science 2017; 355:733-735. [PMID: 28209896 DOI: 10.1126/science.aah4634] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 01/13/2017] [Indexed: 01/14/2023]
Abstract
Nectar-feeding animals have among the highest recorded metabolic rates. High aerobic performance is linked to oxidative damage in muscles. Antioxidants in nectar are scarce to nonexistent. We propose that nectarivores use nectar sugar to mitigate the oxidative damage caused by the muscular demands of flight. We found that sugar-fed moths had lower oxidative damage to their flight muscle membranes than unfed moths. Using respirometry coupled with δ13C analyses, we showed that moths generate antioxidant potential by shunting nectar glucose to the pentose phosphate pathway (PPP), resulting in a reduction in oxidative damage to the flight muscles. We suggest that nectar feeding, the use of PPP, and intense exercise are causally linked and have allowed the evolution of powerful fliers that feed on nectar.
Collapse
Affiliation(s)
- E Levin
- Department of Entomology, University of Arizona, Tucson, AZ, USA.
| | - G Lopez-Martinez
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| | - B Fane
- School of Plant Sciences and the BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - G Davidowitz
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
32
|
O'Mara MT, Wikelski M, Voigt CC, Ter Maat A, Pollock HS, Burness G, Desantis LM, Dechmann DK. Cyclic bouts of extreme bradycardia counteract the high metabolism of frugivorous bats. eLife 2017; 6. [PMID: 28923167 PMCID: PMC5605195 DOI: 10.7554/elife.26686] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 08/13/2017] [Indexed: 12/04/2022] Open
Abstract
Active flight requires the ability to efficiently fuel bursts of costly locomotion while maximizing energy conservation during non-flying times. We took a multi-faceted approach to estimate how fruit-eating bats (Uroderma bilobatum) manage a high-energy lifestyle fueled primarily by fig juice. Miniaturized heart rate telemetry shows that they use a novel, cyclic, bradycardic state that reduces daily energetic expenditure by 10% and counteracts heart rates as high as 900 bpm during flight. Uroderma bilobatum support flight with some of the fastest metabolic incorporation rates and dynamic circulating cortisol in vertebrates. These bats will exchange fat reserves within 24 hr, meaning that they must survive on the food of the day and are at daily risk of starvation. Energetic flexibly in U. bilobatum highlights the fundamental role of ecological pressures on integrative energetic networks and the still poorly understood energetic strategies of animals in the tropics. To survive, all animals have to balance how much energy they take in and how much they use. They must find enough food to fuel the chemical processes that keep them alive – known as their metabolism – and store leftover fuel to use when food is not available. Bats, for example, have a fast metabolism and powerful flight muscles, which require a lot of energy. Some bat species, such as the tent-making bats, survive on fruit juice, and their food sources are often far apart and difficult to find. These bats are likely to starve if they go without food for more than 24 hours, and therefore need to conserve energy while they are resting. To deal with potential food shortages, bats and other animals can enter a low-energy resting state called torpor. In this state, animals lower their body temperature and slow down their heart rate and metabolism so that they need less energy to stay alive. However, many animals that live in tropical regions, including tent-making bats, cannot enter a state of torpor, as it is too hot to sufficiently lower their body temperature. Until now, scientists did not fully understand how these bats control how much energy they use. Now, O’Mara et al. studied tent-making bats in the wild by attaching small heart rate transmitters to four wild bats, and measured their heartbeats over several days. Since each heartbeat delivers oxygen and fuel to the rest of the body, measuring the bats’ heart rate indicates how much energy they are using. The experiments revealed for the first time that tent-making bats periodically lower their heart rates while resting (to around 200 beats per minute). This reduces the amount of energy they use each day by up to 10%, and helps counteract heart rates that can reach 900 beats per minute when the bats are flying. Overall, these findings show that animals have evolved in various ways to control their use of energy. Future research should use similar technology to continue uncovering how wild animals have adapted to survive in different conditions. This knowledge will help us to understand how life has become so diverse in the tropics and the strategies that animals may use as climates change.
Collapse
Affiliation(s)
- M Teague O'Mara
- Department of Migration and Immuno-ecology, Max Planck Institute for Ornithology, Radolfzell, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany.,Smithsonian Tropical Research Institute, Panama City, Panama.,Zukunftskolleg, University of Konstanz, Konstanz, Germany
| | - Martin Wikelski
- Department of Migration and Immuno-ecology, Max Planck Institute for Ornithology, Radolfzell, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany
| | | | - Andries Ter Maat
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Starnberg, Germany
| | - Henry S Pollock
- Program in Ecology, Evolution and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Gary Burness
- Department of Biology, Trent University, Peterborough, Canada
| | - Lanna M Desantis
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Canada
| | - Dina Kn Dechmann
- Department of Migration and Immuno-ecology, Max Planck Institute for Ornithology, Radolfzell, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany.,Smithsonian Tropical Research Institute, Panama City, Panama
| |
Collapse
|
33
|
Sugar Metabolism in Hummingbirds and Nectar Bats. Nutrients 2017; 9:nu9070743. [PMID: 28704953 PMCID: PMC5537857 DOI: 10.3390/nu9070743] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 07/03/2017] [Accepted: 07/04/2017] [Indexed: 12/15/2022] Open
Abstract
Hummingbirds and nectar bats coevolved with the plants they visit to feed on floral nectars rich in sugars. The extremely high metabolic costs imposed by small size and hovering flight in combination with reliance upon sugars as their main source of dietary calories resulted in convergent evolution of a suite of structural and functional traits. These allow high rates of aerobic energy metabolism in the flight muscles, fueled almost entirely by the oxidation of dietary sugars, during flight. High intestinal sucrase activities enable high rates of sucrose hydrolysis. Intestinal absorption of glucose and fructose occurs mainly through a paracellular pathway. In the fasted state, energy metabolism during flight relies on the oxidation of fat synthesized from previously-ingested sugar. During repeated bouts of hover-feeding, the enhanced digestive capacities, in combination with high capacities for sugar transport and oxidation in the flight muscles, allow the operation of the “sugar oxidation cascade”, the pathway by which dietary sugars are directly oxidized by flight muscles during exercise. It is suggested that the potentially harmful effects of nectar diets are prevented by locomotory exercise, just as in human hunter-gatherers who consume large quantities of honey.
Collapse
|
34
|
Lee TN, Richter MM, Williams CT, Tøien Ø, Barnes BM, O'Brien DM, Buck CL. Stable isotope analysis of CO 2 in breath indicates metabolic fuel shifts in torpid arctic ground squirrels. Comp Biochem Physiol A Mol Integr Physiol 2017; 209:10-15. [PMID: 28396263 DOI: 10.1016/j.cbpa.2017.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 11/19/2022]
Abstract
Stable carbon isotope ratios (δ13C) in breath show promise as an indicator of immediate metabolic fuel utilization in animals because tissue lipids have a lower δ13C value than carbohydrates and proteins. Metabolic fuel consumption is often estimated using the respiratory exchange ratio (RER), which has lipid and carbohydrate boundaries, but does not differentiate between protein and mixed fuel catabolism at intermediate values. Because lipids have relatively low δ13C values, measurements of stable carbon isotopes in breath may help distinguish between catabolism of protein and mixed fuel that includes lipid. We measured breath δ13C and RER concurrently in arctic ground squirrels (Urocitellus parryii) during steady-state torpor at ambient temperatures from -2 to -26°C. As predicted, we found a correlation between RER and breath δ13C values; however, the range of RER in this study did not reach intermediate levels to allow further resolution of metabolic substrate use with the addition of breath δ13C measurements. These data suggest that breath δ13C values are 1.1‰ lower than lipid tissue during pure lipid metabolism. From RER, we determined that arctic ground squirrels rely on nonlipid fuel sources for a significant portion of energy during torpor (up to 37%). The shift toward nonlipid fuel sources may be influenced by adiposity of the animals in addition to thermal challenge.
Collapse
Affiliation(s)
- Trixie N Lee
- Institute of Arctic Biology, 311 Irving I, University of Alaska Fairbanks, Fairbanks, AK 99775, USA.
| | - Melanie M Richter
- Department of Biological Sciences, University of Alaska Anchorage, 3101 Science Circle, Anchorage, AK 99508, USA
| | - Cory T Williams
- Institute of Arctic Biology, 311 Irving I, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Øivind Tøien
- Institute of Arctic Biology, 311 Irving I, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Brian M Barnes
- Institute of Arctic Biology, 311 Irving I, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Diane M O'Brien
- Institute of Arctic Biology, 311 Irving I, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - C Loren Buck
- Department of Biological Sciences, University of Alaska Anchorage, 3101 Science Circle, Anchorage, AK 99508, USA
| |
Collapse
|
35
|
McCue MD, Albach A, Salazar G. Previous Repeated Exposure to Food Limitation Enables Rats to Spare Lipid Stores during Prolonged Starvation. Physiol Biochem Zool 2017; 90:63-74. [PMID: 28051943 DOI: 10.1086/689323] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The risk of food limitation and, ultimately, starvation dates back to the dawn of heterotrophy in animals, yet starvation remains a major factor in the regulation of modern animal populations. Researchers studying starvation more than a century ago suggested that animals subjected to sublethal periods of food limitation are somehow more tolerant of subsequent starvation events. This possibility has received little attention over the past decades, yet it is highly relevant to modern science for two reasons. First, animals in natural populations are likely to be exposed to bouts of food limitation once or more before they face prolonged starvation, during which the risk of mortality becomes imminent. Second, our current approach to studying starvation physiology in the laboratory focuses on nourished animals with no previous exposure to nutritional stress. We examined the relationship between previous exposure to food limitation and potentially adaptive physiological responses to starvation in adult rats and found several significant differences. On two occasions, rats were fasted until they lost 20% of their body mass maintained lower body temperatures, and had presumably lower energy requirements when subjected to prolonged starvation than their naive cohort that never experienced food limitation. These rats that were trained in starvation also had lower plasma glucose set -points and reduced their reliance on endogenous lipid oxidation. These findings underscore (1) the need for biologists to revisit the classic hypothesis that animals can become habituated to starvation, using a modern set of research tools; and (2) the need to design controlled experiments of starvation physiology that more closely resemble the dynamic nature of food availability.
Collapse
|
36
|
Herrera M. LG, López R. T. Columnar cacti as sources of energy and protein for frugivorous bats in a semi-arid ecosystem. Biotropica 2017. [DOI: 10.1111/btp.12350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- L. Gerardo Herrera M.
- Estación de Biología de Chamela; Instituto de Biología; Universidad Nacional Autónoma de México; Apartado Postal 21 San Patricio Jalisco 48980 México
| | - Teresa López R.
- Escuela de Biología; Benemérita Universidad del Estado de Puebla; Edificio 112-A Ciudad Universitaria, Puebla Puebla 72570 México
| |
Collapse
|
37
|
Rosner E, Voigt CC. Oxidation of linoleic and palmitic acid in pre-hibernating and hibernating common noctule bats revealed by 13C breath testing. J Exp Biol 2017; 221:jeb.168096. [DOI: 10.1242/jeb.168096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/13/2017] [Indexed: 12/31/2022]
Abstract
Mammals fuel hibernation by oxidizing saturated and unsaturated fatty acids from triacylglycerols in adipocytes, yet the relative importance of these two categories as an oxidative fuel may change during hibernation. We studied the selective use of fatty acids as an oxidative fuel in noctule bats (Nyctalus noctula). Pre-hibernating noctule bats that were fed 13C-enriched linoleic acid (LA) showed 12 times higher tracer oxidation rates compared to conspecifics fed 13C-enriched palmitic acid (PA). After this experiment, we supplemented the diet of bats with the same fatty acids on 5 subsequent days to enrich their fat depots with the respective tracer. We then compared the excess 13C enrichment (APE) in breath of bats for torpor and arousal events during early and late hibernation. We observed higher APE values in breath of bats fed 13C-enriched LA than in bats fed 13C-enriched PA for both states, torpor and arousal, and also for both periods. Thus, hibernating bats oxidized selectively endogenous LA instead of PA, most likely because of faster transportation rates of PUFA compared with SFA. We did not observe changes in APE values in the breath of torpid animals between early and late hibernation. Skin temperature of torpid animals increased by 0.7°C between early and late hibernation in bats fed PA, whereas it decreased by -0.8°C in bats fed LA, highlighting that endogenous LA may fulfil two functions when available in excess: serving as an oxidative fuel and supporting cell membrane functionality.
Collapse
Affiliation(s)
- Elisabeth Rosner
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Berlin 10315, Germany
- Zoological Institute and Museum, Ernst-Moritz-Arndt-University Greifswald, 17487 Greifswald, Germany
| | - Christian C. Voigt
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Berlin 10315, Germany
- Institute of Biology, Freie Universität Berlin, Takustr 6 , 14195 Berlin, Germany
| |
Collapse
|
38
|
Williams CM, McCue MD, Sunny NE, Szejner-Sigal A, Morgan TJ, Allison DB, Hahn DA. Cold adaptation increases rates of nutrient flow and metabolic plasticity during cold exposure in Drosophila melanogaster. Proc Biol Sci 2016; 283:20161317. [PMID: 27605506 PMCID: PMC5031658 DOI: 10.1098/rspb.2016.1317] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/15/2016] [Indexed: 01/24/2023] Open
Abstract
Metabolic flexibility is an important component of adaptation to stressful environments, including thermal stress and latitudinal adaptation. A long history of population genetic studies suggest that selection on core metabolic enzymes may shape life histories by altering metabolic flux. However, the direct relationship between selection on thermal stress hardiness and metabolic flux has not previously been tested. We investigated flexibility of nutrient catabolism during cold stress in Drosophila melanogaster artificially selected for fast or slow recovery from chill coma (i.e. cold-hardy or -susceptible), specifically testing the hypothesis that stress adaptation increases metabolic turnover. Using (13)C-labelled glucose, we first showed that cold-hardy flies more rapidly incorporate ingested carbon into amino acids and newly synthesized glucose, permitting rapid synthesis of proline, a compound shown elsewhere to improve survival of cold stress. Second, using glucose and leucine tracers we showed that cold-hardy flies had higher oxidation rates than cold-susceptible flies before cold exposure, similar oxidation rates during cold exposure, and returned to higher oxidation rates during recovery. Additionally, cold-hardy flies transferred compounds among body pools more rapidly during cold exposure and recovery. Increased metabolic turnover may allow cold-adapted flies to better prepare for, resist and repair/tolerate cold damage. This work illustrates for the first time differences in nutrient fluxes associated with cold adaptation, suggesting that metabolic costs associated with cold hardiness could invoke resource-based trade-offs that shape life histories.
Collapse
Affiliation(s)
- Caroline M Williams
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611, USA Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Marshall D McCue
- Department of Biological Sciences, St Mary's University, San Antonio, TX 78228, USA
| | - Nishanth E Sunny
- Department of Medicine, University of Florida, Gainesville, FL 32601, USA
| | - Andre Szejner-Sigal
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611, USA Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Theodore J Morgan
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - David B Allison
- Section on Statistical Genetics, Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Daniel A Hahn
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611, USA Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
39
|
McCue MD, Boardman L, Clusella-Trullas S, Kleynhans E, Terblanche JS. The speed and metabolic cost of digesting a blood meal depends on temperature in a major disease vector. ACTA ACUST UNITED AC 2016; 219:1893-902. [PMID: 27059066 DOI: 10.1242/jeb.138669] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/27/2016] [Indexed: 11/20/2022]
Abstract
The energetics of processing a meal is crucial for understanding energy budgets of animals in the wild. Given that digestion and its associated costs may be dependent on environmental conditions, it is necessary to obtain a better understanding of these costs under diverse conditions and identify resulting behavioural or physiological trade-offs. This study examines the speed and metabolic costs - in cumulative, absolute and relative energetic terms - of processing a bloodmeal for a major zoonotic disease vector, the tsetse fly Glossina brevipalpis, across a range of ecologically relevant temperatures (25, 30 and 35°C). Respirometry showed that flies used less energy digesting meals faster at higher temperatures but that their starvation tolerance was reduced, supporting the prediction that warmer temperatures are optimal for bloodmeal digestion while cooler temperatures should be preferred for unfed or post-absorptive flies. (13)C-Breath testing revealed that the flies oxidized dietary glucose and amino acids within the first couple of hours of feeding and overall oxidized more dietary nutrients at the cooler temperatures, supporting the premise that warmer digestion temperatures are preferred because they maximize speed and minimize costs. An independent test of these predictions using a thermal gradient confirmed that recently fed flies selected warmer temperatures and then selected cooler temperatures as they became post-absorptive, presumably to maximize starvation resistance. Collectively these results suggest there are at least two thermal optima in a given population at any time and flies switch dynamically between optima throughout feeding cycles.
Collapse
Affiliation(s)
- Marshall D McCue
- Department of Biological Sciences, St Mary's University, San Antonio, TX 78228, USA
| | - Leigh Boardman
- Centre for Invasion Biology, Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Susana Clusella-Trullas
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Elsje Kleynhans
- Centre for Invasion Biology, Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - John S Terblanche
- Centre for Invasion Biology, Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
40
|
Lambertz M, Perry SF. Respiratory Science. Ann N Y Acad Sci 2016; 1365:3-4. [DOI: 10.1111/nyas.13069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Markus Lambertz
- Institut für Zoologie; Rheinische Friedrich-Wilhelms-Universität Bonn; Bonn Germany
| | - Steven F. Perry
- Institut für Zoologie; Rheinische Friedrich-Wilhelms-Universität Bonn; Bonn Germany
| |
Collapse
|
41
|
Herrera M. LG, Osorio M. J. Tracking Nutrient Routing in Avian Consumers in a Subtropical Desert. Biotropica 2016. [DOI: 10.1111/btp.12274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- L. Gerardo Herrera M.
- Estación de Biología de Chamela; Instituto de Biología; Universidad Nacional Autónoma de México; Apartado Postal 21 San Patricio Jalisco 48980 Mexico
| | - Jazmín Osorio M.
- Departamento de Ecología y Recursos Naturales; Centro Universitario de la Costa Sur; Universidad de Guadalajara; Av. Independencia Nacional #151 Autlán Jalisco 48900 Mexico
- Facultad de Ciencias Biológicas y Agropecuarias; Autopista Colima-Manzanillo km 40 Crucero de Tecomán; Tecomán Colima 28100 Mexico
| |
Collapse
|
42
|
McCue MD, Welch KC. (13)C-Breath testing in animals: theory, applications, and future directions. J Comp Physiol B 2015; 186:265-85. [PMID: 26660654 DOI: 10.1007/s00360-015-0950-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/11/2015] [Accepted: 11/25/2015] [Indexed: 10/22/2022]
Abstract
The carbon isotope values in the exhaled breath of an animal mirror the carbon isotope values of the metabolic fuels being oxidized. The measurement of stable carbon isotopes in carbon dioxide is called (13)C-breath testing and offers a minimally invasive method to study substrate oxidation in vivo. (13)C-breath testing has been broadly used to study human exercise, nutrition, and pathologies since the 1970s. Owing to reduced use of radioactive isotopes and the increased convenience and affordability of (13)C-analyzers, the past decade has witnessed a sharp increase in the use of breath testing throughout comparative physiology--especially to answer questions about how and when animals oxidize particular nutrients. Here, we review the practical aspects of (13)C-breath testing and identify the strengths and weaknesses of different methodological approaches including the use of natural abundance versus artificially-enriched (13)C tracers. We critically compare the information that can be obtained using different experimental protocols such as diet-switching versus fuel-switching. We also discuss several factors that should be considered when designing breath testing experiments including extrinsic versus intrinsic (13)C-labelling and different approaches to model nutrient oxidation. We use case studies to highlight the myriad applications of (13)C-breath testing in basic and clinical human studies as well as comparative studies of fuel use, energetics, and carbon turnover in multiple vertebrate and invertebrate groups. Lastly, we call for increased and rigorous use of (13)C-breath testing to explore a variety of new research areas and potentially answer long standing questions related to thermobiology, locomotion, and nutrition.
Collapse
|
43
|
McCue MD, Guzman RM, Passement CA. Digesting pythons quickly oxidize the proteins in their meals and save the lipids for later. ACTA ACUST UNITED AC 2015; 218:2089-96. [PMID: 25987734 DOI: 10.1242/jeb.118349] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 04/29/2015] [Indexed: 01/03/2023]
Abstract
Pythons digesting rodent meals exhibit up to 10-fold increases in their resting metabolic rate (RMR); this increase in RMR is termed specific dynamic action (SDA). Studies have shown that SDA is partially fueled by oxidizing dietary nutrients, yet it remains unclear whether the proteins and the lipids in their meals contribute equally to this energy demand. We raised two populations of mice on diets labeled with either [(13)C]leucine or [(13)C]palmitic acid to intrinsically enrich the proteins and lipids in their bodies, respectively. Ball pythons (Python regius) were fed whole mice (and pureed mice 3 weeks later), after which we measured their metabolic rates and the δ(13)C in the breath. The δ(13)C values in the whole bodies of the protein- and lipid-labeled mice were generally similar (i.e. 5.7±4.7‰ and 2.8±5.4‰, respectively) but the oxidative kinetics of these two macronutrient pools were quite different. We found that the snakes oxidized 5% of the protein and only 0.24% of the lipids in their meals within 14 days. Oxidation of the dietary proteins peaked 24 h after ingestion, at which point these proteins provided ∼90% of the metabolic requirement of the snakes, and by 14 days the oxidation of these proteins decreased to nearly zero. The oxidation of the dietary lipids peaked 1 day later, at which point these lipids supplied ∼25% of the energy demand. Fourteen days after ingestion, these lipids were still being oxidized and continued to account for ∼25% of the metabolic rate. Pureeing the mice reduced the cost of gastric digestion and decreased SDA by 24%. Pureeing also reduced the oxidation of dietary proteins by 43%, but it had no effect on the rates of dietary lipid oxidation. Collectively, these results demonstrate that pythons are able to effectively partition the two primary metabolic fuels in their meals. This approach of uniquely labeling the different components of the diet will allow researchers to examine new questions about how and when animals use the nutrients in their meals.
Collapse
Affiliation(s)
- Marshall D McCue
- Department of Biological Sciences, St Mary's University, San Antonio, TX 78228, USA
| | - R Marena Guzman
- Department of Biological Sciences, St Mary's University, San Antonio, TX 78228, USA
| | - Celeste A Passement
- Department of Biological Sciences, St Mary's University, San Antonio, TX 78228, USA
| |
Collapse
|