1
|
Ray ME, Rothstein TL. Human VH4-34 antibodies derived from B1 cells are more frequently autoreactive than VH4-34 antibodies derived from memory cells. Front Immunol 2023; 14:1259827. [PMID: 38162664 PMCID: PMC10754998 DOI: 10.3389/fimmu.2023.1259827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Human B1 cells produce natural antibodies characterized by overutilization of heavy chain variable region VH4-34 in comparison to other B cell populations. VH4-34-containing antibodies have been reported to be autoreactive and to be associated with lupus and other autoimmune dyscrasias. However, it has been unclear to what extent VH4-34 antibodies manifest autoreactivity in B1 cells or other B cell populations-in other words, are VH4-34 containing antibodies autoreactive wherever found, or mainly within the B1 cell population? To address this issue we sort purified single human B1 and memory B cells and then amplified, sequenced, cloned and expressed VH4-34-containing antibodies from 76 individual B cells. Each of these antibodies was tested for autoreactivity by HEp-2 IFA and autoantigen ELISA. Antibodies were scored as autoreactive if positive by either assay. We found VH4-34 antibodies rescued from B1 cells were much more frequently autoreactive (14/48) than VH4-34 antibodies rescued from memory B cells (2/28). Among B1 cell antibodies, 4 were HEp-2+, 6 were dsDNA+ and 4 were positive for both. Considering only HEp-2+ antibodies, again these were found more frequently among B1 cell VH4-34 antibodies (8/48) than memory B cell VH4-34 antibodies (1/28). We found autoreactivity was associated with greater CDR3 length, as expected; however, we found no association between autoreactivity and a previously described FR1 "hydrophobic patch". Our results indicate that autoreactive VH4-34-containing antibodies tend to reside within the human B1 cell population.
Collapse
Affiliation(s)
| | - Thomas L. Rothstein
- Center for Immunobiology and Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| |
Collapse
|
2
|
Ahmad HI, Jabbar A, Mushtaq N, Javed Z, Hayyat MU, Bashir J, Naseeb I, Abideen ZU, Ahmad N, Chen J. Immune Tolerance vs. Immune Resistance: The Interaction Between Host and Pathogens in Infectious Diseases. Front Vet Sci 2022; 9:827407. [PMID: 35425833 PMCID: PMC9001959 DOI: 10.3389/fvets.2022.827407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
The immune system is most likely developed to reduce the harmful impact of infections on the host homeostasis. This defense approach is based on the coordinated activity of innate and adaptive immune system components, which detect and target infections for containment, killing, or expulsion by the body's defense mechanisms. These immunological processes are responsible for decreasing the pathogen burden of an infected host to maintain homeostasis that is considered to be infection resistance. Immune-driven resistance to infection is connected with a second, and probably more important, defensive mechanism: it helps to minimize the amount of dysfunction imposed on host parenchymal tissues during infection without having a direct adverse effect on pathogens. Disease tolerance is a defensive approach that relies on tissue damage control systems to prevent infections from causing harm to the host. It also uncouples immune-driven resistance mechanisms from immunopathology and disease, allowing the body to fight infection more effectively. This review discussed the cellular and molecular processes that build disease tolerance to infection and the implications of innate immunity on those systems. In addition, we discuss how symbiotic relationships with microbes and their control by particular components of innate and adaptive immunity alter disease tolerance to infection.
Collapse
Affiliation(s)
- Hafiz Ishfaq Ahmad
- Department of Animal Breeding and Genetics, University of Veterinary and Animal Sciences, Lahore, Pakistan
- *Correspondence: Hafiz Ishfaq Ahmad
| | - Abdul Jabbar
- Department of Clinical Medicine, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Nadia Mushtaq
- Department of Biological Sciences, Faculty of Fisheries and Wildlife, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Zainab Javed
- Institute of Pharmaceutical Sciences, Faculty of Biosciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Umar Hayyat
- Institute of Pharmaceutical Sciences, Faculty of Biosciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Javaria Bashir
- Department of Medical Sciences, Sharif Medical and Dental Hospital, Lahore, Pakistan
| | - Iqra Naseeb
- Institute of Microbiology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Zain Ul Abideen
- Department of Zoology, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Nisar Ahmad
- Department of Livestock Management, University of Veterinary and Animal Sciences, Pattoki, Pakistan
| | - Jinping Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
- Jinping Chen
| |
Collapse
|
3
|
Clemens EA, Alexander-Miller MA. Understanding Antibody Responses in Early Life: Baby Steps towards Developing an Effective Influenza Vaccine. Viruses 2021; 13:v13071392. [PMID: 34372597 PMCID: PMC8310046 DOI: 10.3390/v13071392] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/13/2021] [Indexed: 01/01/2023] Open
Abstract
The immune system of young infants is both quantitatively and qualitatively distinct from that of adults, with diminished responsiveness leaving these individuals vulnerable to infection. Because of this, young infants suffer increased morbidity and mortality from respiratory pathogens such as influenza viruses. The impaired generation of robust and persistent antibody responses in these individuals makes overcoming this increased vulnerability through vaccination challenging. Because of this, an effective vaccine against influenza viruses in infants under 6 months is not available. Furthermore, vaccination against influenza viruses is challenging even in adults due to the high antigenic variability across viral strains, allowing immune evasion even after induction of robust immune responses. This has led to substantial interest in understanding how specific antibody responses are formed to variable and conserved components of influenza viruses, as immune responses tend to strongly favor recognition of variable epitopes. Elicitation of broadly protective antibody in young infants, therefore, requires that both the unique characteristics of young infant immunity as well as the antibody immunodominance present among epitopes be effectively addressed. Here, we review our current understanding of the antibody response in newborns and young infants and discuss recent developments in vaccination strategies that can modulate both magnitude and epitope specificity of IAV-specific antibody.
Collapse
|
4
|
Mass E, Gentek R. Fetal-Derived Immune Cells at the Roots of Lifelong Pathophysiology. Front Cell Dev Biol 2021; 9:648313. [PMID: 33708774 PMCID: PMC7940384 DOI: 10.3389/fcell.2021.648313] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/05/2021] [Indexed: 12/12/2022] Open
Abstract
Tissue-resident innate immune cells exert a wide range of functions in both adult homeostasis and pathology. Our understanding of when and how these cellular networks are established has dramatically changed with the recognition that many lineages originate at least in part from fetal sources and self-maintain independently from hematopoietic stem cells. Indeed, fetal-derived immune cells are found in most organs and serous cavities of our body, where they reside throughout the entire lifespan. At the same time, there is a growing appreciation that pathologies manifesting in adulthood may be caused by adverse early life events, a concept known as “developmental origins of health and disease” (DOHaD). Yet, whether fetal-derived immune cells are mechanistically involved in DOHaD remains elusive. In this review, we summarize our knowledge of fetal hematopoiesis and its contribution to adult immune compartments, which results in a “layered immune system.” Based on their ontogeny, we argue that fetal-derived immune cells are prime transmitters of long-term consequences of prenatal adversities. In addition to increasing disease susceptibility, these may also directly cause inflammatory, degenerative, and metabolic disorders. We explore this notion for cells generated from erythro-myeloid progenitors (EMP) produced in the extra-embryonic yolk sac. Focusing on macrophages and mast cells, we present emerging evidence implicating them in lifelong disease by either somatic mutations or developmental programming events resulting from maternal and early environmental perturbations.
Collapse
Affiliation(s)
- Elvira Mass
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Rebecca Gentek
- Centre for Inflammation Research & Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
5
|
Elsaid R, Yang J, Cumano A. The influence of space and time on the establishment of B cell identity. Biomed J 2019; 42:209-217. [PMID: 31627863 PMCID: PMC6818146 DOI: 10.1016/j.bj.2019.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/21/2019] [Accepted: 07/01/2019] [Indexed: 02/01/2023] Open
Abstract
During embryonic development multiple waves of hematopoietic progenitors with distinct lineage potential are differentially regulated in time and space. Consistent with this view, some specialized lymphocytes emerge during a limited time-window in embryogenesis and migrate to the tissues where they contribute to organogenesis and to tissue homeostasis. These cells are not constantly produced by bone marrow derived hematopoietic stem cells but are maintained in tissues and self-renew throughout life. These particular cell subsets are produced from lymphoid restricted progenitors only found in the first days of fetal liver hematopoietic activity. Growing evidence of the heterogeneity and layered organization of the hematopoietic system is leading to a common view that some lymphocyte subsets are functionally different because they follow distinct developmental programs and emerge from distinct waves of lymphoid progenitors. However, understanding the influence of developmental origin and the relative contribution of local microenvironment on the development of these specialized lymphocyte subsets needs further analysis. In this review, we discuss how different pathways followed by developing B cells during ontogeny may contribute to the diverse functions.
Collapse
Affiliation(s)
- Ramy Elsaid
- Unit of Lymphopoiesis, Immunology Department, Institut Pasteur, U1223, INSERM, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Junjie Yang
- Unit of Lymphopoiesis, Immunology Department, Institut Pasteur, U1223, INSERM, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France; CNBG Company, China
| | - Ana Cumano
- Unit of Lymphopoiesis, Immunology Department, Institut Pasteur, U1223, INSERM, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
6
|
Abstract
Hematopoiesis is the process by which mature blood and immune cells are produced from hematopoietic stem and progenitor cells (HSCs and HSPCs). The last several decades of research have shed light on the origin of HSCs, as well as the heterogeneous pools of fetal progenitors that contribute to lifelong hematopoiesis. The overarching concept that hematopoiesis occurs in dynamic, overlapping waves throughout development, with each wave contributing to both continuous and developmentally limited cell types, has been solidified over the years. However, recent advances in our ability to track the production of hematopoietic cells in vivo have challenged several long-held dogmas on the origin and persistence of distinct hematopoietic cell types. In this review, we highlight emerging concepts in hematopoietic development and identify unanswered questions.
Collapse
Affiliation(s)
- Taylor Cool
- Institute for the Biology of Stem Cells, Program in Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - E Camilla Forsberg
- Institute for the Biology of Stem Cells, Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, United States.
| |
Collapse
|
7
|
Salas LA, Wiencke JK, Koestler DC, Zhang Z, Christensen BC, Kelsey KT. Tracing human stem cell lineage during development using DNA methylation. Genome Res 2018; 28:1285-1295. [PMID: 30072366 PMCID: PMC6120629 DOI: 10.1101/gr.233213.117] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 07/27/2018] [Indexed: 12/22/2022]
Abstract
Stem cell maturation is a fundamental, yet poorly understood aspect of human development. We devised a DNA methylation signature deeply reminiscent of embryonic stem cells (a fetal cell origin signature, FCO) to interrogate the evolving character of multiple human tissues. The cell fraction displaying this FCO signature was highly dependent upon developmental stage (fetal versus adult), and in leukocytes, it described a dynamic transition during the first 5 yr of life. Significant individual variation in the FCO signature of leukocytes was evident at birth, in childhood, and throughout adult life. The genes characterizing the signature included transcription factors and proteins intimately involved in embryonic development. We defined and applied a DNA methylation signature common among human fetal hematopoietic progenitor cells and have shown that this signature traces the lineage of cells and informs the study of stem cell heterogeneity in humans under homeostatic conditions.
Collapse
Affiliation(s)
- Lucas A Salas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire 03756, USA
| | - John K Wiencke
- Department of Neurological Surgery, Institute for Human Genetics, University of California San Francisco, San Francisco, California 94158, USA
| | - Devin C Koestler
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Ze Zhang
- Department of Epidemiology, Brown University, Providence, Rhode Island 02912, USA.,Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912, USA
| | - Brock C Christensen
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire 03756, USA.,Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire 03756, USA.,Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire 03756, USA
| | - Karl T Kelsey
- Department of Epidemiology, Brown University, Providence, Rhode Island 02912, USA.,Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
8
|
Khasbiullina NR, Shilova NV, Navakouski ME, Nokel AY, Knirel YA, Blixt O, Bovin NV. Repertoire of Abs primed by bacteria in gnotobiotic mice. Innate Immun 2018; 24:180-187. [PMID: 29546786 PMCID: PMC6852387 DOI: 10.1177/1753425918763524] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 01/27/2018] [Accepted: 02/13/2018] [Indexed: 11/16/2022] Open
Abstract
Innate immunity natural Abs (NAbs) execute a number of functions, including protection and surveillance. Despite active research, the stimuli that induce the formation of NAbs are still described only hypothetically. Here, we compared repertoires of anti-glycan Abs in the peripheral blood of mice that received per os various bacteria. The repertoires of Abs of mice primed in this way were compared using a microarray that included about 350 glycans, as well as 150 bacterial polysaccharides. Sterile mice did not possess anti-glycan Abs. Oral inoculation of a single strain or combination of two to four strains of bacteria, as well as putting the animals on short-term nutrition with non-sterile food, did not contribute significantly to the formation of Abs, whereas a single gavage of digested food of non-sterile mice induced the formation of a repertoire close to the natural ones. Interestingly, the priming with polysaccharide Ags (in a composition of the bacterial cell envelope), that is, dominant Ags of bacteria, led to the induction of Abs against typical glycans of mammalian glycoproteins and glycolipids (e.g. Abs of the ABH blood group system) that do not have a structural similarity to the polysaccharides. The results support the importance of early contact with a naïve immune system with microorganisms of the environment to form a normal NAbs repertoire.
Collapse
Affiliation(s)
- Nailia R Khasbiullina
- Shemyakin-Ovchinnikov Institute of
Bioorganic Chemistry, Russian Academy of Sciences, Russia
- Zelinsky Institute of Organic Chemistry,
Russian Academy of Sciences, Russia
| | - Nadezhda V Shilova
- Shemyakin-Ovchinnikov Institute of
Bioorganic Chemistry, Russian Academy of Sciences, Russia
| | - Maxim E Navakouski
- Shemyakin-Ovchinnikov Institute of
Bioorganic Chemistry, Russian Academy of Sciences, Russia
| | - Alexey Yu Nokel
- Shemyakin-Ovchinnikov Institute of
Bioorganic Chemistry, Russian Academy of Sciences, Russia
| | - Yuri A Knirel
- Zelinsky Institute of Organic Chemistry,
Russian Academy of Sciences, Russia
| | - Ola Blixt
- University of Copenhagen, Department of
Chemistry, Denmark
| | - Nicolai V Bovin
- Shemyakin-Ovchinnikov Institute of
Bioorganic Chemistry, Russian Academy of Sciences, Russia
- Auckland University of Technology, New
Zealand
| |
Collapse
|
9
|
Hadland B, Yoshimoto M. Many layers of embryonic hematopoiesis: new insights into B-cell ontogeny and the origin of hematopoietic stem cells. Exp Hematol 2017; 60:1-9. [PMID: 29287940 DOI: 10.1016/j.exphem.2017.12.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/11/2017] [Accepted: 12/19/2017] [Indexed: 12/22/2022]
Abstract
In adult hematopoiesis, the hematopoietic stem cell (HSC) sits at the top of a hierarchy of hematopoietic progenitors responsible for generating the diverse repertoire of blood and immune cells. During embryonic development, however, the initial waves of hematopoiesis provide the first functioning blood cells of the developing embryo, such as primitive erythrocytes arising in the yolk sac, independently of HSCs. In the field of developmental immunology, it has been recognized that some components of the immune system, such as B-1a lymphocytes, are uniquely produced during the embryonic and neonatal period, suggesting a "layered" development of immunity. Several recent studies have shed new light on the developmental origin of the layered immune system, suggesting complex and sometimes multiple contributions to unique populations of innate-like immune cells from both fetal HSCs and earlier HSC-independent progenitors. In this review, we will attempt to synthesize these studies to provide an integrated model of developmental hematopoiesis and layered immunity that may offer new insights into the origin of HSCs.
Collapse
Affiliation(s)
- Brandon Hadland
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Washington School of Medicine, Seattle, WA, USA.
| | - Momoko Yoshimoto
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
10
|
Rothstein TL. Natural Antibodies as Rheostats for Susceptibility to Chronic Diseases in the Aged. Front Immunol 2016; 7:127. [PMID: 27092140 PMCID: PMC4823301 DOI: 10.3389/fimmu.2016.00127] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 03/21/2016] [Indexed: 02/06/2023] Open
Abstract
Natural antibodies are spontaneously produced in the absence of infection or immunization, and are both anti-microbial and autoreactive. Autoreactive natural antibodies can bind noxious molecules, such as those involved in clinical situations of atherosclerosis (oxLDL), malignancy (NGcGM3), and neurodegeneration (amyloid, tau) and can affect the fate of their targets or the cells bearing them to maintain homeostasis. Clinically relevant natural antibodies have been shown to decline with advancing age in those few situations where measurements have been made. Consistent with this, human B-1 cells that are thought to be responsible for generating natural antibodies also decline with advancing age. These findings together suggest that an age-related decline in amount or efficacy of homeostatic natural antibodies is associated with relative loss of protection against molecules involved in several diseases whose incidence rises in the older age population, and that those individuals experiencing greatest loss are at greatest risk. In this view, natural antibodies act as rheostats for susceptibility to several age-related diseases. These considerations suggest that administration of natural antibodies, or of factors that maintain B-1 cells and/or enhance production of natural antibodies by B-1 cells, may serve to counteract the onset or progression of age-related chronic illness.
Collapse
Affiliation(s)
- Thomas L Rothstein
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research , Manhasset, NY , USA
| |
Collapse
|