1
|
Yang LK, Ma WJ, Wang X, Chen HR, Jiang YN, Sun H. Apoptosis in polycystic ovary syndrome: Mechanisms and therapeutic implications. Life Sci 2025; 363:123394. [PMID: 39809382 DOI: 10.1016/j.lfs.2025.123394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/30/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Polycystic ovary syndrome (PCOS) is a common disorder that affects the female reproductive system, with an incidence of 8 % to 15 %. It is characterized by irregular menstruation, hyperandrogenemia, and polycystic abnormalities in the ovaries. Nevertheless, there is still much to learn about the molecular pathways underlying PCOS. Apoptosis is the process by which cells actively destroy themselves, and it is vital to an organism's ability to develop normally and maintain homeostasis. In recent years, a growing body of research has indicated a connection between the pathophysiology of PCOS and apoptosis. Therefore, it is critical to comprehend the relationship between PCOS and apoptosis in greater detail, identify the pathophysiological underpinnings of PCOS, and provide fresh perspectives and targets for its treatment. This review aims to summarize the relationship between PCOS and apoptosis, discuss how apoptosis affects normal ovarian function and how it becomes dysfunctional in the ovaries of PCOS patients, and investigate the signaling pathways associated with apoptosis in PCOS, including PI3K-Akt, TNF, NF-κB, and p53. Additionally, potential therapeutic approaches for PCOS treatment are provided by summarizing the role of apoptosis in PCOS therapy.
Collapse
Affiliation(s)
- Ling-Kun Yang
- Pharmaceutical Experiment Teaching Center, College of Pharmacy, Harbin Medical University, Harbin 150081, PR China
| | - Wan-Jing Ma
- Pharmaceutical Experiment Teaching Center, College of Pharmacy, Harbin Medical University, Harbin 150081, PR China
| | - Xiao Wang
- Pharmaceutical Experiment Teaching Center, College of Pharmacy, Harbin Medical University, Harbin 150081, PR China
| | - Huan-Ran Chen
- Pharmaceutical Experiment Teaching Center, College of Pharmacy, Harbin Medical University, Harbin 150081, PR China
| | - Ya-Nan Jiang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, PR China.
| | - Hui Sun
- Pharmaceutical Experiment Teaching Center, College of Pharmacy, Harbin Medical University, Harbin 150081, PR China.
| |
Collapse
|
2
|
Kircali-Haznedar N, Mumusoglu S, Bilgic P. How phytochemicals influence reproductive outcomes in women receiving assisted reproductive techniques: a systematic review. Nutr Rev 2025; 83:e304-e316. [PMID: 38641329 DOI: 10.1093/nutrit/nuae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024] Open
Abstract
CONTEXT Over the past few years, there has been an increasing amount of scholarly literature suggesting a connection between the nutritional status of pregnant mothers and early fetal development, as well as the long-term health consequences of their offspring. Multiple studies have documented that alterations in dietary patterns prior to conception have the potential to affect the initial stages of embryonic development. OBJECTIVES The aim of this study was to perform a comprehensive review of the research pertaining to the correlation between phytochemicals ( specifically, polyphenols, carotenoids and phytoestrogens) and assisted reproductive technology (ART). DATA SOURCES PubMed, Scopus, Web of Science, and Clinical Trials databases were searched from January 1978 to March 2023. STUDY SELECTION This study comprised observational, randomized controlled, and cohort studies that examined the effects of phytochemicals on ART results. The study's outcomes encompass live birth rate, clinical pregnancy, and ongoing pregnancy. DATA EXTRACTION The assessment of study quality was conducted by 2 researchers, independently, using the Quality Criteria Checklist for Primary Research. RESULTS A total of 13 studies were included, of which there were 5 randomized controlled studies, 1 nonrandomized controlled study, 6 prospective cohort studies, and 1 retrospective cohort study. CONCLUSION This research focused on investigating the impact of phytochemicals on ART and has highlighted a dearth of articles addressing that topic. Collaboration among patients, physicians, and nutritionists is crucial for doing novel research. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42023426332.
Collapse
Affiliation(s)
- Nagihan Kircali-Haznedar
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Selcuk University, Selcuklu, Konya, Türkiye
| | - Sezcan Mumusoglu
- Department of Obstetrics and Gynecology, Hacettepe University School of Medicine, Sihhiye, Ankara, Türkiye
| | - Pelin Bilgic
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Altindag, Ankara, Türkiye
| |
Collapse
|
3
|
Bertoldo A, Pizzol D, Yon DK, Callegari M, Gobbo V, Cuccurese P, Butler L, Caminada S, Stebbing J, Richardson F, Gawronska J, Smith L. Resveratrol and Female Fertility: A Systematic Review. Int J Mol Sci 2024; 25:12792. [PMID: 39684501 DOI: 10.3390/ijms252312792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Resveratrol is a natural polyphenolic compound that may have multiple influences on human health, including antiaging, anti-inflammatory, anti-neoplastic, antioxidant, insulin-sensitizing, cardioprotective and vasodilating activities. Growing evidence also suggests a potential positive effect of resveratrol on female fertility. The aim of the present study was to collate and appraise the scientific literature on the relationship between resveratrol and female fertility. We systematically searched Medline, PubMed, Web of Science and Embase from the databases' inception (1951, 1951, 1947 and 1900, respectively) until 9th May 2024. All in vivo or in vitro retrospective or prospective studies reporting the effects of resveratrol interventions on women's fertility were included. We ultimately incorporated twenty-four studies into a systematic review with a narrative summary of the results; of those studies, nine were performed on women seeking natural or assisted fertility, and fifteen were in vitro studies performed on human cells and tissues in different stages of the reproductive cascade. The current literature, though limited, suggests that resveratrol may play a role in female infertility. Specifically, it may significantly and positively impact reproductive outcomes, owing to its potential therapeutic effects improving ovarian function. Further studies are now needed to better understand resveratrol's effects and define the optimal dosage and periods of intake to maximize beneficial effects, as well as to prevent adverse outcomes on implantation, subsequent pregnancy and the fetus.
Collapse
Affiliation(s)
- Alessandro Bertoldo
- U.O.S.D. of Assisted Reproductive Technologies "G. Beltrame", Ospedale di Oderzo, ULSS2, 31046 Treviso, Italy
| | | | - Dong Keon Yon
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul 02447, Republic of Korea
| | - Maura Callegari
- U.O.S.D. of Assisted Reproductive Technologies "G. Beltrame", Ospedale di Oderzo, ULSS2, 31046 Treviso, Italy
| | - Valentina Gobbo
- U.O.S.D. of Assisted Reproductive Technologies "G. Beltrame", Ospedale di Oderzo, ULSS2, 31046 Treviso, Italy
| | - Pierluigi Cuccurese
- Department of Obstetrics and Gynecology, Ospedale di Oderzo, ULSS2, 31046 Treviso, Italy
| | - Laurie Butler
- Faculty of Science and Engineering, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | | | - Justin Stebbing
- Department of Life Sciences, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Fiona Richardson
- The Queen Elizabeth Hospital King's Lynn NHS Foundation Trust, King's Lynn PE30 4ET, UK
| | - Julia Gawronska
- Centre for Health, Performance and Wellbeing, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Lee Smith
- Centre for Health, Performance and Wellbeing, Anglia Ruskin University, Cambridge CB1 1PT, UK
| |
Collapse
|
4
|
Olivero-Verbel J, Quintero-Rincón P, Caballero-Gallardo K. Aromatic plants as cosmeceuticals: benefits and applications for skin health. PLANTA 2024; 260:132. [PMID: 39500772 PMCID: PMC11538177 DOI: 10.1007/s00425-024-04550-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024]
Abstract
MAIN CONCLUSION This review highlights the potential of aromatic plants as natural antioxidants in cosmeceuticals to combat skin aging and promote health and rejuvenation. Aromatic plant extracts, essential oils, or their phytoconstituents have a long history of use in skincare, dating back centuries. Currently, these plant-based sources are extensively researched and utilized in the cosmeceutical industry to formulate products that enhance skin health and promote a youthful appearance. These plants' diverse bioactivities and sensory properties make them ideal ingredients for developing anti-aging agents recommended for maintaining healthy skin through self-care routines, offering a natural alternative to synthetic products. Reactive oxygen species (ROS) accumulation in the dermis, attributed to intrinsic and extrinsic aging factors, particularly prolonged sun exposure, is identified as the primary cause of skin aging. Plant extracts enriched with antioxidant compounds including flavonoids, phenolics, tannins, stilbenes, terpenes, and steroids, are fundamental to counteract ROS-induced oxidative stress. Noteworthy effects observed from the use of these natural sources include photoprotective, senolytic, anti-inflammatory, anti-wrinkle, anti-acne, and anti-tyrosinase activities, encompassing benefits like photoprotection, wound healing, skin whitening, anti-pigmentation, tissue regeneration, among others. This review highlights several globally distributed aromatic plant species renowned for their benefits for skin, including Foeniculum vulgare Mill. (Apiaceae), Calendula officinalis L. and Matricaria chamomilla L. (Asteraceae), Thymus vulgaris L. (Lamiaceae), Litsea cubeba (Lour.) Pers. (Lauraceae), Althaea officinalis L. (Malvaceae), Malaleuca alternifolia (Maiden y Betche) Cheel (Myrtaceae), Cymbopogon citratus (DC.) Stapf (Poaceae), Rubus idaeus L. (Rosaceae), and Citrus sinensis L. Osbeck (Rutaceae), emphasizing their potential in skincare formulations and their role in promoting health and rejuvenation.
Collapse
Affiliation(s)
- Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group. School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130014, Colombia
| | - Patricia Quintero-Rincón
- Functional Toxicology Group. School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130014, Colombia
- Research Group Design and Formulation of Medicines, Cosmetics, and Related, Faculty of Pharmaceutical and Food Sciences, Universidad de Antioquia, Medellín, 050010, Colombia
| | - Karina Caballero-Gallardo
- Environmental and Computational Chemistry Group. School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130014, Colombia.
- Functional Toxicology Group. School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130014, Colombia.
| |
Collapse
|
5
|
Albardan L, Platat C, Kalupahana NS. Role of Omega-3 Fatty Acids in Improving Metabolic Dysfunctions in Polycystic Ovary Syndrome. Nutrients 2024; 16:2961. [PMID: 39275277 PMCID: PMC11397015 DOI: 10.3390/nu16172961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/16/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder that impacts women of reproductive age. In addition to reproductive and psychological complications, women with PCOS are also at a higher risk of developing metabolic diseases such as obesity, type 2 diabetes and cardiovascular disease. While weight reduction can help manage these complications in overweight or obese women, many weight loss interventions have been ineffective due to weight stigma and its psychological impact on women with PCOS. Therefore, exploring alternative dietary strategies which do not focus on weight loss per se is of importance. In this regard, omega-3 polyunsaturated fatty acids of marine origin (n-3 PUFAs), which are known for their hypotriglyceridemic, cardioprotective and anti-inflammatory effects, have emerged as a potential therapy for prevention and reversal of metabolic complications in PCOS. Several clinical trials showed that n-3 PUFAs can improve components of metabolic syndrome in women with PCOS. In this review, we first summarize the available clinical evidence for different dietary patterns in improving PCOS complications. Next, we summarize the clinical evidence for n-3 PUFAs for alleviating metabolic complications in PCOS. Finally, we explore the mechanisms by which n-3 PUFAs improve the metabolic disorders in PCOS in depth.
Collapse
Affiliation(s)
| | | | - Nishan Sudheera Kalupahana
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
6
|
Del Bianco D, Gentile R, Sallicandro L, Biagini A, Quellari PT, Gliozheni E, Sabbatini P, Ragonese F, Malvasi A, D’Amato A, Baldini GM, Trojano G, Tinelli A, Fioretti B. Electro-Metabolic Coupling of Cumulus-Oocyte Complex. Int J Mol Sci 2024; 25:5349. [PMID: 38791387 PMCID: PMC11120766 DOI: 10.3390/ijms25105349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Oocyte-cumulus cell interaction is essential for oocyte maturation and competence. The bidirectional crosstalk network mediated by gap junctions is fundamental for the metabolic cooperation between these cells. As cumulus cells exhibit a more glycolytic phenotype, they can provide metabolic substrates that the oocyte can use to produce ATP via oxidative phosphorylation. The impairment of mitochondrial activity plays a crucial role in ovarian aging and, thus, in fertility, determining the success or failure of assisted reproductive techniques. This review aims to deepen the knowledge about the electro-metabolic coupling of the cumulus-oocyte complex and to hypothesize a putative role of potassium channel modulators in order to improve fertility, promote intracellular Ca2+ influx, and increase the mitochondrial biogenesis and resulting ATP levels in cumulus cells.
Collapse
Affiliation(s)
- Diletta Del Bianco
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
| | - Rosaria Gentile
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Laboratorio Interdipartimentale di Fisiopatologia della Riproduzione, Università degli Studi di Perugia, Edificio C, Piano 3 P.zza Lucio Severi, 1, Sant’Andrea delle Fratte, 06132 Perugia, Italy
| | - Luana Sallicandro
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Department of Medicine and Surgery, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
| | - Andrea Biagini
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Department of Medicine and Surgery, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
| | - Paola Tiziana Quellari
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Department of Medicine and Surgery, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
- ASST Grande Ospedale Metropolitano Niguarda, 20162 Milano, Italy
| | - Elko Gliozheni
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Department of Medicine and Surgery, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tirana, AL1005 Tirana, Albania
| | - Paola Sabbatini
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
| | - Francesco Ragonese
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Laboratorio Interdipartimentale di Fisiopatologia della Riproduzione, Università degli Studi di Perugia, Edificio C, Piano 3 P.zza Lucio Severi, 1, Sant’Andrea delle Fratte, 06132 Perugia, Italy
| | - Antonio Malvasi
- Department of Biomedical Sciences and Human Oncology, University of Bari, 70121 Bari, Italy;
| | - Antonio D’Amato
- 1st Unit of Obstetrics and Gynecology, University of Bari, 70121 Bari, Italy;
| | | | - Giuseppe Trojano
- Department of Maternal and Child Health, “Madonna delle Grazie” Hospital ASM, 75100 Matera, Italy;
| | - Andrea Tinelli
- Department of Obstetrics and Gynecology and CERICSAL (CEntro di RIcerca Clinico SALentino), Veris delli Ponti Hospital, Via Giuseppina delli Ponti, 73020 Scorrano, Lecce, Italy
| | - Bernard Fioretti
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Laboratorio Interdipartimentale di Fisiopatologia della Riproduzione, Università degli Studi di Perugia, Edificio C, Piano 3 P.zza Lucio Severi, 1, Sant’Andrea delle Fratte, 06132 Perugia, Italy
| |
Collapse
|
7
|
Jiang X, Ma Y, Gong S, Zi X, Zhang D. Resveratrol Promotes Proliferation, Antioxidant Properties, and Progesterone Production in Yak ( Bos grunniens) Granulosa Cells. Animals (Basel) 2024; 14:240. [PMID: 38254409 PMCID: PMC10812796 DOI: 10.3390/ani14020240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Resveratrol (RES) is a class of natural polyphenolic compounds known for its strong anti-apoptotic and antioxidant properties. Granulosa cells (GCs) are one of the important components of ovarian follicles and play crucial roles in follicular development of follicles in the ovary. Here, we explored the effects of RES on the proliferation and functions of yak GCs. Firstly, we evaluated the effect of RES dose and time in culture on the viability of GCs, and then the optimum treatment protocol (10 μM RES, 36 h) was selected to analyze the effects of RES on the proliferation, cell cycle, apoptosis, malondialdehyde (MDA), glutathione (GSH), reactive oxygen species (ROS) accumulation, lipid droplet content, ATP production, and steroidogenesis of GCs, as well as the expression of related genes. The results show that RES treatment significantly (1) increased cell viability and proliferation and inhibited cell apoptosis by upregulating BCL-2 and SIRT1 genes and downregulating BAX, CASP3, P53, and KU70 genes; (2) increased the proportion of GCs in the S phase and upregulated CCND1, PCNA, CDK4, and CDK5 genes; (3) reduced ROS accumulation and MDA content and increased GSH content, as well as upregulating the relative expression levels of CAT, SOD2, and GPX1 genes; (4) decreased lipid droplet content and increased ATP production; (5) promoted progesterone (P4) secretion and the expression of P4 synthesis-related genes (StAR, HSD3B1, and CYP11A1); and (6) inhibited E2 secretion and CYP19A1 expression. These findings suggest that RES at 10 μM increases the proliferation and antioxidant properties, inhibits apoptosis, and promotes ATP production, lipid droplet consumption, and P4 secretion of yak GCs.
Collapse
Affiliation(s)
- Xudong Jiang
- The Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China; (X.J.); (Y.M.); (S.G.)
| | - Yao Ma
- The Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China; (X.J.); (Y.M.); (S.G.)
| | - Sanni Gong
- The Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China; (X.J.); (Y.M.); (S.G.)
| | - Xiangdong Zi
- The Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China; (X.J.); (Y.M.); (S.G.)
| | - Dawei Zhang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
8
|
Miletić M, Kmetič I, Kovač V, Šimić B, Petković T, Štrac DŠ, Pleadin J, Murati T. Resveratrol ameliorates ortho- polychlorinated biphenyls' induced toxicity in ovary cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27812-6. [PMID: 37256397 DOI: 10.1007/s11356-023-27812-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 05/17/2023] [Indexed: 06/01/2023]
Abstract
Polychlorinated biphenyls (PCBs) can induce chronic oxidative stress, inflammation, and cell death, leading to coronary heart disease, endothelial dysfunction, neurotoxicity, cancer, obesity, type 2 diabetes, reproductive dysfunction, etc. The aim of this study was to investigate possible protective effect of resveratrol (2.5-20 μM) in ovarian cells exposed to PCBs. An emphasis was on identifying mechanisms of resveratrol action upon distinct structure of the individual PCB congener-planar dioxin-like PCB 77 and non-planar di-ortho-substituted PCB 153. Multiple toxicity endpoint analysis was performed. Cell viability/proliferation was assessed by Trypan Blue exclusion method, Neutral Red, Kenacid Blue, and MTT bioassays. The level of oxidative stress was measured by fluorescent probes, and flow cytometry was applied to evaluate the mode of cell death. Resveratrol applied alone did not affect cell proliferation and viability in doses up to 20 µM, although significant antioxidative activity was observed. Toxic effects of ortho-PCB 153 (cytotoxicity, oxidative stress, and cell death) were mitigated by resveratrol. On the contrary pre-incubation with resveratrol did not result in cell viability protection when planar PCB 77 was applied. This indicates that resveratrol efficacy may be linked to specific structure of the individual congener, suggesting nutritional modulation of environmental insults caused by ortho-PCBs. We point out the importance of resveratrol dosage considering that synergistic cytotoxic effect with both PCB congeners is observed at concentrations ≥ 10 μM.
Collapse
Affiliation(s)
- Marina Miletić
- Laboratory for Toxicology, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotti St. 6, 10000, Zagreb, Croatia
| | - Ivana Kmetič
- Laboratory for Toxicology, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotti St. 6, 10000, Zagreb, Croatia.
| | - Veronika Kovač
- Laboratory for Organic Chemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotti St. 6, 10000, Zagreb, Croatia
| | - Branimir Šimić
- Laboratory for Toxicology, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotti St. 6, 10000, Zagreb, Croatia
| | - Tea Petković
- Laboratory for Toxicology, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotti St. 6, 10000, Zagreb, Croatia
| | - Dubravka Švob Štrac
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička St. 54, 10000, Zagreb, Croatia
| | - Jelka Pleadin
- Laboratory for Analytical Chemistry, Department of Veterinary Public Health, Croatian Veterinary Institute, Savska St. 143, 10000, Zagreb, Croatia
| | - Teuta Murati
- Laboratory for Toxicology, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotti St. 6, 10000, Zagreb, Croatia
| |
Collapse
|
9
|
Hashemi Taheri AP, Moradi B, Radmard AR, Sanginabadi M, Qorbani M, Mohajeri-Tehrani MR, Shirzad N, Hosseini S, Hekmatdoost A, Asadi S, Samadi M, Mansour A. Effect of resveratrol administration on ovarian morphology, determined by transvaginal ultrasound for the women with polycystic ovary syndrome (PCOS). Br J Nutr 2022; 128:211-216. [PMID: 34467834 DOI: 10.1017/s0007114521003330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Intake of resveratrol has been associated with improved ovarian morphology under in vitro and in the animal models; however, this finding has not been confirmed in trials. The aim of our study was, therefore, to use a placebo-controlled approach with the detailed assessment of the ovarian morphology by applying transvaginal ultrasound to examine the effectiveness of this therapeutic approach in this group of women. The mean age of all participants was 28·61 (sd 4·99) years, with the mean BMI of 28·26 (sd 5·62) kg/m2. Resveratrol therapy, as compared with placebo, was associated with a significantly higher rate of improvement in the ovarian morphology (P = 0·02). Women who received resveratrol had a more dominant follicle than those getting placebo, with a significant reduction in the ovarian volume (P < 0·05). However, the number of follicle count per ovary (FNPO), stromal area (SA), ovarian echogenicity and distribution of follicles were not significantly altered (P > 0·05). Forty-one women with polycystic ovary syndrome (PCOS) were randomly assigned (1:1) to 3 months of daily 1000 mg resveratrol or placebo. Random assignment was done by blocked randomisation. Our primary endpoints were the change in the ovarian volume, SA and antral FNPO from the baseline to 3 months. Secondary endpoints were improvement in the distribution of follicles and ovarian echogenicity. Differences between the resveratrol and control groups were evaluated by Chi-square, Fisher's exact test and repeated-measures ANOVA. Treatment with resveratrol significantly reduced the ovarian volume and polycystic ovarian morphology, thus suggesting a disease-modifying effect in PCOS.
Collapse
Affiliation(s)
| | - Behnaz Moradi
- Department of Radiology, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Reza Radmard
- Radiology Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Sanginabadi
- Radiology Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Qorbani
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Mohajeri-Tehrani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nooshin Shirzad
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Endocrinology, Vali-Asr Hospital, Endocrinology and Metabolism Research Center, Imam Khomeini Complex Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Hosseini
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, International Campus, Tehran University of Medical Sciences, Tehran, Iran
| | - Azita Hekmatdoost
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology, Research Institute, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Sedigheh Asadi
- Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Samadi
- Radiology Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Asieh Mansour
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology, Research Institute, Shahid Beheshti University of Medical Science, Tehran, Iran
| |
Collapse
|
10
|
Karimi A, Tutunchi H, Naeini F, Vajdi M, Mobasseri M, Najafipour F. The therapeutic effects and mechanisms of action of resveratrol on polycystic ovary syndrome: A comprehensive systematic review of clinical, animal, and in vitro studies. Clin Exp Pharmacol Physiol 2022; 49:935-949. [PMID: 35778955 DOI: 10.1111/1440-1681.13698] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/14/2022] [Accepted: 06/26/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is one of the most important and common polygenic endocrine disorders among women of reproductive age. Resveratrol, a natural phenol, is involved in various biological activities, including antioxidant, antiseptic, anti-inflammatory, anti-aging, and anti-cancer effects. METHODS This systematic review aimed to investigate the therapeutic effects and mechanisms of actions of resveratrol in PCOS. The present study was conducted according to the guidelines of the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) statements. We searched PubMed, Science Direct, Google Scholar, Scopus, ISI Web of Science, ProQuest, and Embase databases up to August 2021 by using the relative keywords. Original studies published in the English language that assessed the effects of resveratrol on PCOS and its associated complications were considered. Out of 417 records screened, only 24 articles met the inclusion criteria: 10 in vitro, 10 animal, and 4 human studies. RESULTS The results obtained in the present study showed that resveratrol supplementation might be effective in improving PCOS-related symptoms by reducing insulin resistance, alleviating dyslipidemia, improving ovarian morphology and anthropometric indices, regulating the reproductive hormones, and reducing inflammation and oxidative stress by affecting biological pathways. CONCLUSION According to the available evidence, resveratrol may reduce the complications of PCOS. However, further studies are recommended for a comprehensive conclusion on the exact mechanism of resveratrol in PCOS patients. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Arash Karimi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Helda Tutunchi
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Naeini
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Science, Tehran, Iran
| | - Mahdi Vajdi
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Majid Mobasseri
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzad Najafipour
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Chen M, He C, Zhu K, Chen Z, Meng Z, Jiang X, Cai J, Yang C, Zuo Z. Resveratrol ameliorates polycystic ovary syndrome via transzonal projections within oocyte-granulosa cell communication. Theranostics 2022; 12:782-795. [PMID: 34976213 PMCID: PMC8692920 DOI: 10.7150/thno.67167] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/20/2021] [Indexed: 12/15/2022] Open
Abstract
Rationale: Polycystic ovary syndrome (PCOS) is closely linked to follicular dysplasia and impaired bidirectional oocyte-granulosa cell (GC) communication. Given that PCOS is a heterogeneous, multifactorial endocrine disorder, it is important to clarify the pathophysiology of this ovarian disease and identify a specific treatment. Methods: We generated PCOS rat models based on neonatal tributyltin (TBT) exposure and studied the therapeutic effect and mechanism of resveratrol (RSV), a natural plant polyphenol. Transcriptome analysis was conducted to screen the significantly changed pathways, and a series of experiments, such as quantitative real-time polymerase chain reaction (PCR), Western blot and phalloidin staining, were performed in rat ovaries. We also observed similar changes in human PCOS samples using Gene Expression Omnibus (GEO) database analysis and quantitative real-time PCR. Results: We first found that injury to transzonal projections (TZPs), which are specialized filopodia that mediate oocyte-GC communication in follicles, may play an important role in the etiology of PCOS. We successfully established PCOS rat models using TBT and found that overexpressed calcium-/calmodulin-dependent protein kinase II beta (CaMKIIβ) inhibited TZP assembly. In addition, TZP disruption and CAMK2B upregulation were also observed in samples from PCOS patients. Moreover, we demonstrated that RSV potently ameliorated ovarian failure and estrus cycle disorder through TZP recovery via increased cytoplasmic calcium levels and excessive phosphorylation of CaMKIIβ. Conclusions: Our data indicated that upregulation of CaMKIIβ may play a critical role in regulating TZP assembly and may be involved in the pathogenesis of PCOS associated with ovarian dysfunction. Investigation of TZPs and RSV as potent CaMKIIβ activators provides new insight and a therapeutic target for PCOS, which is helpful for improving female reproduction.
Collapse
|
12
|
Wei H, Huo P, Liu S, Huang H, Zhang S. Posttranslational modifications in pathogenesis of PCOS. Front Endocrinol (Lausanne) 2022; 13:1024320. [PMID: 36277727 PMCID: PMC9585718 DOI: 10.3389/fendo.2022.1024320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a lifelong reproductive, metabolic, and psychiatric disorder that affects 5-18% of women, which is associated with a significantly increased lifetime risk of concomitant diseases, including type 2 diabetes, psychiatric disorders, and gynecological cancers. Posttranslational modifications (PTMs) play an important role in changes in protein function and are necessary to maintain cellular viability and biological processes, thus their maladjustment can lead to disease. Growing evidence suggests the association between PCOS and posttranslational modifications. This article mainly reviews the research status of phosphorylation, methylation, acetylation, and ubiquitination, as well as their roles and molecular mechanisms in the development of PCOS. In addition, we briefly summarize research and clinical trials of PCOS therapy to advance our understanding of agents that can be used to target phosphorylated, methylated, acetylated, and ubiquitinated PTM types. It provides not only ideas for future research on the mechanism of PCOS but also ideas for PCOS treatments with therapeutic potential.
Collapse
Affiliation(s)
- Huimei Wei
- Reproductive Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Peng Huo
- School of Public Health, Guilin Medical University, Guilin, China
| | - Shun Liu
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, University of South China, Hengyang, China
| | - Hua Huang
- Reproductive Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- *Correspondence: Hua Huang, ; Shun Zhang,
| | - Shun Zhang
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, China
- *Correspondence: Hua Huang, ; Shun Zhang,
| |
Collapse
|
13
|
Nishigaki A, Tsubokura H, Tsuzuki-Nakao T, Okada H. Hypoxia: Role of SIRT1 and the protective effect of resveratrol in ovarian function. Reprod Med Biol 2021; 21:e12428. [PMID: 34934403 PMCID: PMC8656197 DOI: 10.1002/rmb2.12428] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/09/2021] [Indexed: 12/27/2022] Open
Abstract
Background Ovarian function is closely related to the degree of vascular network development surrounding the ovary. Maternal aging‐related construction defects in this vascular network can cause ovarian hypoxia, which impedes oocyte nutrient supply, leading to physiological changes in the ovaries and oocytes. The anti‐aging gene Sirtuin 1 (SIRT1) senses and adapts to ambient stress and is associated with hypoxic environments and mitochondrial biogenesis. Methods The present study is a literature review focusing on investigations involving the changes in SIRT1 and mitochondrial expression during hypoxia and the cytoprotective effects of the SIRT1 activator, resveratrol. Main findings Hypoxia suppresses SIRT1 and mitochondrial expression. Resveratrol can reverse the hypoxia‐induced decrease in mitochondrial and SIRT1 activity. Resveratrol suppresses the production of hypoxia‐inducible factor‐1α and vascular endothelial growth factor proteins. Conclusion Resveratrol exhibits protective activity against hypoxic stress and may prevent hypoxia‐ or aging‐related mitochondrial dysfunction. Resveratrol treatment may be a potential option for infertility therapy.
Collapse
Affiliation(s)
- Akemi Nishigaki
- Department of Obstetrics and Gynecology Kansai Medical University Osaka Japan
| | - Hiroaki Tsubokura
- Department of Obstetrics and Gynecology Kansai Medical University Osaka Japan
| | | | - Hidetaka Okada
- Department of Obstetrics and Gynecology Kansai Medical University Osaka Japan
| |
Collapse
|
14
|
Nie Z, Hua R, Zhang Y, Zhang N, Zhang Y, Li Q, Wu H. Resveratrol protects human luteinised granulosa cells against hydrogen peroxide-induced oxidative injury through the Sirt1. Reprod Fertil Dev 2021; 33:831-840. [PMID: 34724621 DOI: 10.1071/rd21069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 09/18/2021] [Indexed: 11/23/2022] Open
Abstract
Granulosa cells (GCs) control follicular development and are important for female reproduction. Resveratrol (Res) was considered as an antioxidant and Sirt1 inducer. Hydrogen peroxide (H2O2) is the classical reagent to study oxidative stress. The study was conducted to investigate the role of Res against H2O2 in human luteinised granulosa cells (LGCs). The LGCs in the H2O2 group were treated with 100μmol/L H2O2 for 24h. The LGCs in the Res group were treated with 50μmol/L Res for 2h, followed by H2O2. The LGCs in the Sirt1 blockage group were treated with 2.5μmol/L EX527+50μmol/L Res for 2h, followed by H2O2. Results showed that Res significantly increased LGCs viability in H2O2-induced LGCs. The apoptotic rate and ROS in the H2O2 group was higher and the antioxidant enzyme activity was lower compared with other groups. Following the Res, the apoptotic rate and ROS level were reduced and the antioxidant enzyme activity were increased. In the Res blockage group, no significant alterations in the cell apoptosis, ROS and antioxidant enzyme activity were observed compared with the H2O2 group. The Res group had a Caspase-3 downregulation and Sirt1 upregulation compared with the other groups. In conclusion, Res had a protective effect against the H2O2-induced LGCs, and the mechanism may be associated with Sirt1.
Collapse
Affiliation(s)
- Zhaoyan Nie
- Department of Reproductive Medicine, Fourth Hospital of Hebei Medical University, No. 12, Jiankang Road, Shijiazhuang, Hebei 050011, China
| | - Rui Hua
- Histology and Embryology, Hebei Medical University, 361 East Zhongshan,Road, Shijiazhuang, Hebei 050010, China
| | - Yanan Zhang
- Histology and Embryology, Hebei Medical University, 361 East Zhongshan,Road, Shijiazhuang, Hebei 050010, China
| | - Na Zhang
- Department of Reproductive Medicine, Fourth Hospital of Hebei Medical University, No. 12, Jiankang Road, Shijiazhuang, Hebei 050011, China
| | - Yi Zhang
- Department of Reproductive Medicine, Fourth Hospital of Hebei Medical University, No. 12, Jiankang Road, Shijiazhuang, Hebei 050011, China
| | - Qiaoxia Li
- Department of Reproductive Medicine, Fourth Hospital of Hebei Medical University, No. 12, Jiankang Road, Shijiazhuang, Hebei 050011, China
| | - Haifeng Wu
- Department of Medical Laboratory, Hebei Chest Hospital, No. 372, Shengli North Street, Shijiazhuang, Hebei 050010, China
| |
Collapse
|
15
|
Zhang LX, Li CX, Kakar MU, Khan MS, Wu PF, Amir RM, Dai DF, Naveed M, Li QY, Saeed M, Shen JQ, Rajput SA, Li JH. Resveratrol (RV): A pharmacological review and call for further research. Biomed Pharmacother 2021; 143:112164. [PMID: 34649335 DOI: 10.1016/j.biopha.2021.112164] [Citation(s) in RCA: 209] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/27/2021] [Accepted: 09/03/2021] [Indexed: 12/27/2022] Open
Abstract
Resveratrol (RV) is a well-known polyphenolic compound in various plants, including grape, peanut, and berry fruits, which is quite famous for its association with several health benefits such as anti-obesity, cardioprotective neuroprotective, antitumor, antidiabetic, antioxidants, anti-age effects, and glucose metabolism. Significantly, promising therapeutic properties have been reported in various cancer, neurodegeneration, and atherosclerosis and are regulated by several synergistic pathways that control oxidative stress, cell death, and inflammation. Similarly, RV possesses a strong anti-adipogenic effect by inhibiting fat accumulation processes and activating oxidative and lipolytic pathways, exhibiting their cardioprotective effects by inhibiting platelet aggregation. The RV also shows significant antibacterial effects against various food-borne pathogens (Listeria, Campylobacter, Staphylococcus aureus, and E. coli) by inhibiting an electron transport chain (ETC) and F0F1-ATPase, which decreases the production of cellular energy that leads to the spread of pathogens. After collecting and analyzing scientific literature, it may be concluded that RV is well tolerated and favorably affects cardiovascular, neurological, and diabetic disorders. As such, it is possible that RV can be considered the best nutritional additive and a complementary drug, especially a therapeutic candidate. Therefore, this review would increase knowledge about the blend of RV as well as inspire researchers around the world to consider RV as a pharmaceutical drug to combat future health crises against various inhumane diseases. In the future, this article will be aware of discoveries about the potential of this promising natural compound as the best nutraceuticals and therapeutic drugs in medicine.
Collapse
Affiliation(s)
- Li-Xue Zhang
- School of Medicine, Northwest Minzu University, Lanzhou 730030, China
| | - Chang-Xing Li
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Mohib Ullah Kakar
- Faculty of Marine Sciences, Lasbela University of Agriculture Water and Marine Sciences, Uthal 90150, Balochistan, Pakistan
| | - Muhammad Sajjad Khan
- The Cholistan University of Veterinary and Animal Sciences, Bahawalpur 6300, Pakistan.
| | - Pei-Feng Wu
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Rai Muhammad Amir
- Institute of Food and Nutritional Sciences, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Dong-Fang Dai
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Muhammad Naveed
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Qin-Yuan Li
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Muhammad Saeed
- The Cholistan University of Veterinary and Animal Sciences, Bahawalpur 6300, Pakistan
| | - Ji-Qiang Shen
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Shahid Ali Rajput
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jian-Hua Li
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China.
| |
Collapse
|
16
|
Enhancing Bioavailability of Nutraceutically Used Resveratrol and Other Stilbenoids. Nutrients 2021; 13:nu13093095. [PMID: 34578972 PMCID: PMC8470508 DOI: 10.3390/nu13093095] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
Stilbenoids are interesting natural compounds with pleiotropic in vitro and in vivo activity. Their well-documented biological properties include anti-inflammatory effects, anticancer effects, effects on longevity, and many others. Therefore, they are nowadays commonly found in foods and dietary supplements, and used as a part of treatment strategy in various types of diseases. Bioactivity of stilbenoids strongly depends on different types of factors such as dosage, food composition, and synergistic effects with other plant secondary metabolites such as polyphenols or vitamins. In this review, we summarize the existing in vitro, in vivo, and clinical data from published studies addressing the optimization of bioavailability of stilbenoids. Stilbenoids face low bioavailability due to their chemical structure. This can be improved by the use of novel drug delivery systems or enhancers, which are discussed in this review. Current in vitro and in vivo evidence suggests that both approaches are very promising and increase the absorption of the original substance by several times. However, data from more clinical trials are required.
Collapse
|
17
|
Gerli S, Della Morte C, Ceccobelli M, Mariani M, Favilli A, Leonardi L, Lanti A, Iannitti RG, Fioretti B. Biological and clinical effects of a resveratrol-based multivitamin supplement on intracytoplasmic sperm injection cycles: a single-center, randomized controlled trial. J Matern Fetal Neonatal Med 2021; 35:7640-7648. [PMID: 34338114 DOI: 10.1080/14767058.2021.1958313] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Resveratrol display's positive effects on follicle growth and development in preclinical studies while there is scantly information from clinical trials. The aim of this study was to evaluate the biological and clinical impact of a resveratrol-based multivitamin supplement on intracytoplasmatic sperm injection (ICSI) cycles. METHODS A randomized, single-center controlled trial conducted at the University Center of Assisted Reproductive Technologies involving 101 women infertile women undergoing ICSI cycles was conducted. A pretreatment with a daily resveratrol based nutraceutical was administered to the Study Group; Control Group received folic acid. The primary outcomes were the number of developed mature follicles (>16 mm), total oocytes and MII oocytes recovered, the fertilization rate and the number of cleavage embryos/blastocysts obtained. Secondary endpoints were the duration and dosage of gonadotropins, the number of embryos for transfer, implantation, biochemical, clinical pregnancy rates, live birth and miscarriage rates. RESULTS A significantly higher number of oocytes and MII oocytes were retrieved in the Study Group than in Control Group (p = .03 and p = .04, respectively). A higher fertilization rate (p = .004), more cleavage embryos/patient (p = .01), blastocytes/patients (p = .01) and cryopreserved embryos (p = .03) were obtained in the Study Group. No significant differences in biochemical or clinical pregnancy, live birth, and miscarriage rates were revealed, but a trend to a higher live birth rate was revealed in the Study Group. CONCLUSIONS A 3 months period of dietary supplementation with a resveratrol-based multivitamin nutraceutical leads to better biological effects on ICSI cycles. TRIAL REGISTRATION NUMBER ClinicalTrials.gov registration identifier: NCT04386499.
Collapse
Affiliation(s)
- Sandro Gerli
- Department of Medicine and Surgery, Centre of Perinatal and Reproductive Medicine, University of Perugia, Perugia, Italy.,Centre of Assisted Reproductive Technologies, S. Maria della Misericordia Hospital, Perugia, Italy
| | - Chiara Della Morte
- Department of Medicine and Surgery, Centre of Perinatal and Reproductive Medicine, University of Perugia, Perugia, Italy.,Centre of Assisted Reproductive Technologies, S. Maria della Misericordia Hospital, Perugia, Italy
| | - Margherita Ceccobelli
- Department of Medicine and Surgery, Centre of Perinatal and Reproductive Medicine, University of Perugia, Perugia, Italy.,Centre of Assisted Reproductive Technologies, S. Maria della Misericordia Hospital, Perugia, Italy
| | - Monica Mariani
- Centre of Assisted Reproductive Technologies, S. Maria della Misericordia Hospital, Perugia, Italy
| | | | - Lucio Leonardi
- Department of R&D, S&R Farmaceutici S.p.A Bastia Umbra, Perugia, Italy
| | - Alessandro Lanti
- Department of R&D, S&R Farmaceutici S.p.A Bastia Umbra, Perugia, Italy
| | | | - Bernard Fioretti
- Centre of Assisted Reproductive Technologies, S. Maria della Misericordia Hospital, Perugia, Italy.,Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| |
Collapse
|
18
|
Maranesi M, Dall’Aglio C, Acuti G, Cappelli K, Trabalza Marinucci M, Galarini R, Suvieri C, Zerani M. Effects of Dietary Polyphenols from Olive Mill Waste Waters on Inflammatory and Apoptotic Effectors in Rabbit Ovary. Animals (Basel) 2021; 11:ani11061727. [PMID: 34207896 PMCID: PMC8228552 DOI: 10.3390/ani11061727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 01/02/2023] Open
Abstract
The aim of this study was to evaluate the effect of dietary polyphenols on the expression of the effectors involved in inflammation and apoptosis in rabbit ovary. New Zealand White female rabbits were fed a basal control diet (CTR), or the same diet supplemented with a polyphenolic concentrate (POL, 282.4 mg/kg) obtained from olive mill waste waters. The follicle counts and the relative mRNA (RT-qPCR) and protein (immunohistochemistry) expression of the effectors involved in inflammation (cyclooxygenase-2; interleukin-1beta; tumor necrosis factor-alpha, TNFA) and apoptosis (BCL2-associated X protein, BAX), detected in the ovaries of both groups, were examined. The POL diet increased the primary and total follicles number. Cyclooxygenase-2 gene expression was higher (p < 0.05) in the POL group than in the CTR group, whereas BAX was lower (p < 0.05) in POL than CTR. Immunohistochemistry revealed the presence of all the proteins examined, with weaker (p < 0.05) COX2 and BAX signals in POL. No differences between the CTR and POL groups were observed for IL1B and TNFA gene and protein expression. These preliminary findings show that dietary polyphenols modulate inflammatory and apoptotic activities in rabbit ovary, regulating cyclooxygenase-2 and BAX expression, thus suggesting a functional involvement of these dietary compounds in mammalian reproduction.
Collapse
Affiliation(s)
- Margherita Maranesi
- Dipartimento di Medicina Veterinaria, Università di Perugia, via San Costanzo 4, 06126 Perugia, Italy; (M.M.); (C.D.); (M.T.M.); (M.Z.)
| | - Cecilia Dall’Aglio
- Dipartimento di Medicina Veterinaria, Università di Perugia, via San Costanzo 4, 06126 Perugia, Italy; (M.M.); (C.D.); (M.T.M.); (M.Z.)
| | - Gabriele Acuti
- Dipartimento di Medicina Veterinaria, Università di Perugia, via San Costanzo 4, 06126 Perugia, Italy; (M.M.); (C.D.); (M.T.M.); (M.Z.)
- Correspondence: (G.A.); (K.C.)
| | - Katia Cappelli
- Dipartimento di Medicina Veterinaria, Università di Perugia, via San Costanzo 4, 06126 Perugia, Italy; (M.M.); (C.D.); (M.T.M.); (M.Z.)
- Correspondence: (G.A.); (K.C.)
| | - Massimo Trabalza Marinucci
- Dipartimento di Medicina Veterinaria, Università di Perugia, via San Costanzo 4, 06126 Perugia, Italy; (M.M.); (C.D.); (M.T.M.); (M.Z.)
| | - Roberta Galarini
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, via Gaetano Salvemini 1, 06126 Perugia, Italy;
| | - Chiara Suvieri
- Dipartimento di Medicina e Chirurgia, Sezione di Farmacologia, Università di Perugia, piazzale Severi 1, 06132 Perugia, Italy;
| | - Massimo Zerani
- Dipartimento di Medicina Veterinaria, Università di Perugia, via San Costanzo 4, 06126 Perugia, Italy; (M.M.); (C.D.); (M.T.M.); (M.Z.)
| |
Collapse
|
19
|
Sirotkin AV. Effects of resveratrol on female reproduction: A review. Phytother Res 2021; 35:5502-5513. [PMID: 34101259 DOI: 10.1002/ptr.7185] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 12/16/2022]
Abstract
The present review summarizes the current knowledge concerning physiological effects of resveratrol (RSV) with emphasis on the RSV action on female reproductive processes. The review outlines provenance, properties, mechanisms of action, physiological and therapeutic actions of RSV on female reproduction and other physiological processes, as well as areas of possible application of R. This review is based on the search for the related full papers indexed in Medline/Pubmed, Web of Science and SCOPUS databases between the year 2000 and 2021 according to the criteria of preferred reporting items for systematic reviews and meta-analyses extension for scoping reviews and other related guidelines. The analysis of the available information suggests that RSV has a number of properties which enable its influence on various physiological processes including female reproduction at various regulatory levels via various extra- and intracellular signalling pathways. Despite some contradictions and limitations in the available data, they indicate applicability of both stimulatory and inhibitory effects of RSV for control and influence of various reproductive and non-reproductive processes and treatment of their disorders in phytotherapy, animal production, medicine, biotechnology and assisted reproduction. To establish the clinical efficacy of RSV, further high quality studies are needed.
Collapse
Affiliation(s)
- Alexander V Sirotkin
- Dept. Zoology and Anthropology, Constantine the Philosopher University in Nitra, Nitra, Slovak Republic
| |
Collapse
|
20
|
Iervolino M, Lepore E, Forte G, Laganà AS, Buzzaccarini G, Unfer V. Natural Molecules in the Management of Polycystic Ovary Syndrome (PCOS): An Analytical Review. Nutrients 2021; 13:nu13051677. [PMID: 34063339 PMCID: PMC8156462 DOI: 10.3390/nu13051677] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a heterogenous disorder characterized by chronic ovulation dysfunction and hyperandrogenism. It is considered the most common endocrinological disorder, affecting up to 25% of women of reproductive age, and associated with long-term metabolic abnormalities predisposing to cardiovascular risk, such as insulin resistance (IR), dyslipidemia, endothelial dysfunction, and systemic inflammation. PCOS is also characterized by elevated serum levels of luteinizing hormone (LH), causing a condition of hyperandrogenism and a consequent altered ratio between LH and the follicle stimulating hormone (FSH). Over the years, several different approaches have been proposed to alleviate PCOS symptoms. Supplementation with natural molecules such as inositols, resveratrol, flavonoids and flavones, vitamin C, vitamin E and vitamin D, and omega-3 fatty acids may contribute to overcoming PCOS pathological features, including the presence of immature oocyte, IR, hyperandrogenism, oxidative stress and inflammation. This review provides a comprehensive overview of the current knowledge about the efficacy of natural molecule supplementation in the management of PCOS.
Collapse
Affiliation(s)
- Matteo Iervolino
- R&D Department, Lo.Li. Pharma Srl, 00156 Rome, Italy; (M.I.); (E.L.); (G.F.)
| | - Elisa Lepore
- R&D Department, Lo.Li. Pharma Srl, 00156 Rome, Italy; (M.I.); (E.L.); (G.F.)
| | - Gianpiero Forte
- R&D Department, Lo.Li. Pharma Srl, 00156 Rome, Italy; (M.I.); (E.L.); (G.F.)
| | - Antonio Simone Laganà
- Department of Obstetrics and Gynecology, “Filippo Del Ponte” Hospital, University of Insubria, 2100 Varese, Italy;
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00156 Rome, Italy
| | - Giovanni Buzzaccarini
- Unit of Gynecology and Obstetrics, Department of Women and Children’s Health, University of Padua, 35128 Padua, Italy;
| | - Vittorio Unfer
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00156 Rome, Italy
- Systems Biology Group Lab, Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
- Correspondence:
| |
Collapse
|
21
|
Mihanfar A, Nouri M, Roshangar L, Khadem-Ansari MH. Polyphenols: Natural compounds with promising potential in treating polycystic ovary syndrome. Reprod Biol 2021; 21:100500. [PMID: 33878526 DOI: 10.1016/j.repbio.2021.100500] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/30/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022]
Abstract
Polyphenols are natural compounds used by plants as a defense system against various stresses. In recent years, the importance of these polyhydroxyphenols has extensively increased due to their potent cardioprotection, anti-carcinogenic, anti-oxidant, anti-apoptotic, and anti-inflammatory properties. Therefore, various studies have reported promising results from the studies investigating their efficacy as a therapeutic strategy in various disorders such as human malignancies, cardiovascular diseases, nervous system impairments, diabetes, metabolic syndrome, aging, and inflammation-associated disorders, as well as a polycystic ovarian syndrome (PCOS). Since oxidative stress, hormonal, metabolic, and endocrine disturbances have been shown to play a crucial role in the initiation/progression of PCOS, polyphenols are suggested to be an effective treatment for this disorder. Therefore, this study aimed to discuss the therapeutic potential of multiple polyphenols in PCOS.
Collapse
Affiliation(s)
- Aynaz Mihanfar
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences Tabriz, Iran; Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
22
|
Ziętek M, Barłowska K, Wijas B, Szablisty E, Atanasov AG, Modliński JA, Świergiel AH, Sampino S. Preconceptional Resveratrol Supplementation Partially Counteracts Age-Related Reproductive Complications in C57BL/6J Female Mice. Molecules 2021; 26:molecules26071934. [PMID: 33808281 PMCID: PMC8037093 DOI: 10.3390/molecules26071934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/18/2021] [Accepted: 03/25/2021] [Indexed: 11/16/2022] Open
Abstract
Aging is associated with a drastic decline in fertility/fecundity and with an increased risk of pregnancy complications. Resveratrol (RES), a natural polyphenolic compound, has shown anti-oxidant and anti-inflammatory activities in both human and animal models, thus representing a potential therapeutic and prophylactic anti-aging supplement. Here, we investigated whether preconceptional resveratrol supplementation improved reproductive outcomes in mid-aged (8-month-old) and old (12-month-old) C57BL/6J female mice. Female siblings were cohoused and assigned to either RES or vehicle supplementation to drinking water for 10 consecutive weeks. Subsequently, females were mated with non-supplemented males and their pregnancy outcomes were monitored. RES improved mating success in old, but not in mid-aged females, and prevented the occurrence of delivery complications in the latter. These results indicate that preconceptional RES supplementation could partially improve age-related reproductive complications, but it was not sufficient to restore fecundity in female mice at a very advanced age.
Collapse
Affiliation(s)
- Marta Ziętek
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postępu 36A, Jastrzębiec, 05-552 Magdalenka, Poland; (M.Z.); (K.B.); (B.W.); (E.S.); (J.A.M.)
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland
- Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, ul. Rakowiecka 36, 02-532 Warsaw, Poland
| | - Katarzyna Barłowska
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postępu 36A, Jastrzębiec, 05-552 Magdalenka, Poland; (M.Z.); (K.B.); (B.W.); (E.S.); (J.A.M.)
| | - Barbara Wijas
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postępu 36A, Jastrzębiec, 05-552 Magdalenka, Poland; (M.Z.); (K.B.); (B.W.); (E.S.); (J.A.M.)
| | - Ewa Szablisty
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postępu 36A, Jastrzębiec, 05-552 Magdalenka, Poland; (M.Z.); (K.B.); (B.W.); (E.S.); (J.A.M.)
| | - Atanas G. Atanasov
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, 1090 Vienna, Austria;
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzębiec, 05-552 Magdalenka, Poland
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G Bonchev Str. bl. 23, 1113 Sofia, Bulgaria
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Jacek A. Modliński
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postępu 36A, Jastrzębiec, 05-552 Magdalenka, Poland; (M.Z.); (K.B.); (B.W.); (E.S.); (J.A.M.)
| | - Artur H. Świergiel
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland
- Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, ul. Rakowiecka 36, 02-532 Warsaw, Poland
- Correspondence: (A.H.Ś.); (S.S.); Tel.: +48-50-393-4080 (A.H.Ś.); +48-22-736-7038 (S.S.)
| | - Silvestre Sampino
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postępu 36A, Jastrzębiec, 05-552 Magdalenka, Poland; (M.Z.); (K.B.); (B.W.); (E.S.); (J.A.M.)
- Correspondence: (A.H.Ś.); (S.S.); Tel.: +48-50-393-4080 (A.H.Ś.); +48-22-736-7038 (S.S.)
| |
Collapse
|
23
|
Effect of resveratrol on menstrual cyclicity, hyperandrogenism and metabolic profile in women with PCOS. Clin Nutr 2021; 40:4106-4112. [PMID: 33610422 DOI: 10.1016/j.clnu.2021.02.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/24/2021] [Accepted: 02/01/2021] [Indexed: 11/20/2022]
Abstract
AIM The aim of this randomized trial was to find whether resveratrol could improve menstrual dysfunction, clinical signs (i.e., acne and hair loss), and the biochemical evidence of hyperandrogenism in the women with PCOS. METHODS Women, in the age range of 18-40 years, diagnosed with PCOS, as defined by the Rotterdam criteria, and no other known cause of abnormal menstruation, were recruited. Participants were randomized based on a 1:1 ratio, to either 1000 mg resveratrol or 1000 mg placebo daily groups, for a period of 3 months. RESULTS Seventy-eight patients were randomized: 39 to the resveratrol group and 39 to placebo. Results were analyzed according to the intention-to-treat principle. At the end of study, it was found that women who received resveratrol had a statistically higher regular menstruation rate, as compared to those who got placebo (76.47% vs. 51.61%; p = 0.03), and lower hair loss (32.10% vs. 68.00%; p = 0.009). We also found no significant differences between the two groups in terms of ovarian and adrenal androgens, sex hormone binding globulin (SHBG) levels, free androgen index (FAI), glycoinsulinemic metabolism and lipid profile. Moreover, the resveratrol treatment did not interfere with the thyroid, liver and kidney functions. The negative effect of resveratrol on the body composition was also observed, though not influencing changes in the weight, relative to the placebo group. CONCLUSION Resveratrol improved menstrual cyclicity and hair loss, even though levels of androgens, insulin and lipids remained unchanged.
Collapse
|
24
|
Ragonese F, Monarca L, De Luca A, Mancinelli L, Mariani M, Corbucci C, Gerli S, Iannitti RG, Leonardi L, Fioretti B. Resveratrol depolarizes the membrane potential in human granulosa cells and promotes mitochondrial biogenesis. Fertil Steril 2021; 115:1063-1073. [PMID: 33487442 DOI: 10.1016/j.fertnstert.2020.08.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/24/2020] [Accepted: 08/10/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To study the biological effects of resveratrol on the growth, electrophysiology, and mitochondrial function of human granulosa cells (h-GCs). DESIGN Preclinical study. SETTING Electrophysiology laboratory and in vitro fertilization unit. PATIENT(S) This study included h-GCs from seven infertile women undergoing assisted reproductive techniques. INTERVENTION(S) Human ovarian Granulosa Cell Tumor (GCT) cell line COV434 and h-GCs obtained after oocyte retrieval were cultured in the absence or presence of resveratrol. MAIN OUTCOME MEASURE(S) Granulosa cells were evaluated for cell viability and mitochondrial activity. Electrophysiological recordings and evaluation of potassium current (IKur) and Ca2+ concentration were also performed. RESULT(S) Resveratrol induced mitochondrial activity in a bell-shaped, dose-effect-dependent manner. Specifically, resveratrol treatment (3 μM, 48 hours) increased ATP production and cell viability and promoted the induction of cellular differentiation. These biological changes were associated with mitochondrial biogenesis. Electrophysiological recordings showed that resveratrol reduced the functional expression of an ultra rapid activating, slow inactivating, delayed rectifier potassium current (IKur) that is associated with a plasma membrane depolarization and that promotes an increase in intracellular Ca2+. CONCLUSION(S): The effects of resveratrol on potassium current and mitochondrial biogenesis in h-GCs could explain the beneficial effects of this polyphenol on the physiology of the female reproductive system. These findings suggest there are therapeutic implications of resveratrol in a clinical setting.
Collapse
Affiliation(s)
- Francesco Ragonese
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - Lorenzo Monarca
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy; Department of Experimental Medicine, Perugia Medical School, University of Perugia, Perugia, Italy
| | - Antonella De Luca
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - Loretta Mancinelli
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - Monica Mariani
- Centre of Assisted Reproductive Technologies, S. Maria della Misericordia Hospital, Perugia, Italy
| | - Cristina Corbucci
- Centre of Assisted Reproductive Technologies, S. Maria della Misericordia Hospital, Perugia, Italy
| | - Sandro Gerli
- Department of Surgical and Biomedical Sciences, Centre of Perinatal and Reproductive Medicine, University of Perugia, Perugia, Italy
| | | | | | - Bernard Fioretti
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy.
| |
Collapse
|
25
|
Rodríguez-Varela C, Labarta E. Clinical Application of Antioxidants to Improve Human Oocyte Mitochondrial Function: A Review. Antioxidants (Basel) 2020; 9:antiox9121197. [PMID: 33260761 PMCID: PMC7761442 DOI: 10.3390/antiox9121197] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
Mitochondria produce adenosine triphosphate (ATP) while also generating high amounts of reactive oxygen species (ROS) derived from oxygen metabolism. ROS are small but highly reactive molecules that can be detrimental if unregulated. While normally functioning mitochondria produce molecules that counteract ROS production, an imbalance between the amount of ROS produced in the mitochondria and the capacity of the cell to counteract them leads to oxidative stress and ultimately to mitochondrial dysfunction. This dysfunction impairs cellular functions through reduced ATP output and/or increased oxidative stress. Mitochondrial dysfunction may also lead to poor oocyte quality and embryo development, ultimately affecting pregnancy outcomes. Improving mitochondrial function through antioxidant supplementation may enhance reproductive performance. Recent studies suggest that antioxidants may treat infertility by restoring mitochondrial function and promoting mitochondrial biogenesis. However, further randomized, controlled trials are needed to determine their clinical efficacy. In this review, we discuss the use of resveratrol, coenzyme-Q10, melatonin, folic acid, and several vitamins as antioxidant treatments to improve human oocyte and embryo quality, focusing on the mitochondria as their main hypothetical target. However, this mechanism of action has not yet been demonstrated in the human oocyte, which highlights the need for further studies in this field.
Collapse
Affiliation(s)
- Cristina Rodríguez-Varela
- IVI Foundation—IIS La Fe, Fernando Abril Martorell 106, Torre A, Planta 1ª, 46026 Valencia, Spain;
- Correspondence:
| | - Elena Labarta
- IVI Foundation—IIS La Fe, Fernando Abril Martorell 106, Torre A, Planta 1ª, 46026 Valencia, Spain;
- IVIRMA Valencia, Plaza de la Policía Local 3, 46015 Valencia, Spain
| |
Collapse
|
26
|
The Role of Resveratrol in Mammalian Reproduction. Molecules 2020; 25:molecules25194554. [PMID: 33027994 PMCID: PMC7582294 DOI: 10.3390/molecules25194554] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/20/2020] [Accepted: 09/30/2020] [Indexed: 12/18/2022] Open
Abstract
Resveratrol is one of the most investigated natural polyphenolic compounds and is contained in more than 70 types of plants and in red wine. The widespread interest in this polyphenol derives from its antioxidant, anti-inflammatory and anti-aging properties. Several studies have established that resveratrol regulates animal reproduction. However, the mechanisms of action and the potential therapeutic effects are still unclear. This review aims to clarify the role of resveratrol in male and female reproductive functions, with a focus on animals of veterinary interest. In females, resveratrol has been considered as a phytoestrogen due to its capacity to modulate ovarian function and steroidogenesis via sirtuins, SIRT1 in particular. Resveratrol has also been used to enhance aged oocyte quality and as a gametes cryo-protectant with mainly antioxidant and anti-apoptotic effects. In males, resveratrol enhances testes function and spermatogenesis through activation of the AMPK pathway. Furthermore, resveratrol has been supplemented to semen extenders, improving the preservation of sperm quality. In conclusion, resveratrol has potentially beneficial effects for ameliorating ovarian and testes function.
Collapse
|
27
|
Kuroda K, Ochiai A, Brosens JJ. The actions of resveratrol in decidualizing endometrium: acceleration or inhibition?†. Biol Reprod 2020; 103:1152-1156. [PMID: 33029621 DOI: 10.1093/biolre/ioaa172] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/09/2020] [Accepted: 09/17/2020] [Indexed: 12/20/2022] Open
Abstract
Resveratrol, a natural polyphenolic compound, is widely studied for its anti-inflammatory and antisenescent properties. Recently, two studies reported seemingly conflicting findings on the actions of resveratrol on decidualization of human endometrial stromal cells (HESCs). One study by Ochiai et al. demonstrated that resveratrol inhibits decidual transformation of primary cultured HESCs. The other study by Mestre Citrinovitz et al., showed that resveratrol enhances decidualization of HESCs in culture. At a glance, the reason for these opposing observations seems puzzling. However, recent studies demonstrated that decidualization is a multistep process, which starts with an acute proinflammatory stress response that lasts for several days and is followed by the emergence of stress-resistant decidual cells as well as senescent decidual cells. The balance between these decidual subpopulations may determine if the cycling endometrium can successfully transition into the decidua of pregnancy upon embryo implantation. Here, we explore the importance of timing of drugs aimed at modulating the decidual response. We posit that resveratrol treatment during the initial proinflammatory decidual phase, i.e., coinciding with the implantation window in vivo, inhibits decidual transformation of the endometrium. However, when given after the initial phase, resveratrol may promote decidualization by inhibiting decidual senescence. Further, if restricted to the proliferative phase, resveratrol may promote ovarian function without adversely impacting on embryo implantation or decidualization. Thus, failure to align drug interventions with the correct phase of the menstrual cycle may negate beneficial clinical effects and results in adverse reproductive outcomes.
Collapse
Affiliation(s)
- Keiji Kuroda
- Center for Reproductive Medicine and Implantation Research, Sugiyama Clinic Shinjuku, Tokyo, Japan.,Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Asako Ochiai
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Jan J Brosens
- The Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, Coventry, UK.,Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire, Coventry, UK
| |
Collapse
|
28
|
DeWitt NA, Whirledge S, Kallen AN. Updates on molecular and environmental determinants of luteal progesterone production. Mol Cell Endocrinol 2020; 515:110930. [PMID: 32610113 PMCID: PMC7484338 DOI: 10.1016/j.mce.2020.110930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 12/14/2022]
Abstract
Progesterone, a critical hormone in reproduction, is a key sex steroid in the establishment and maintenance of early pregnancy and serves as an intermediary for synthesis of other steroid hormones. Progesterone production from the corpus luteum is a tightly regulated process which is stimulated and maintained by multiple factors, both systemic and local. Multiple regulatory systems, including classic mediators of gonadotropin stimulation such as the cAMP/PKA pathway and TGFβ-mediated signaling pathways, as well as local production of hormonal factors, exist to promote granulosa cell function and physiological fine-tuning of progesterone levels. In this manuscript, we provide an updated narrative review of the known mediators of human luteal progesterone and highlight new observations regarding this important process, focusing on studies published within the last five years. We will also review recent evidence suggesting that this complex system of progesterone production is sensitive to disruption by exogenous environmental chemicals that can mimic or interfere with the activities of endogenous hormones.
Collapse
Affiliation(s)
- Natalie A DeWitt
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Shannon Whirledge
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Amanda N Kallen
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
29
|
Qasem RJ. The estrogenic activity of resveratrol: a comprehensive review of in vitro and in vivo evidence and the potential for endocrine disruption. Crit Rev Toxicol 2020; 50:439-462. [DOI: 10.1080/10408444.2020.1762538] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Rani J. Qasem
- Department of Pharmaceutical Sciences, College of Pharmacy, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdullah International Medical Research Center (KAIMRC) and King Abdulaziz Medical City, National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia
| |
Collapse
|
30
|
Yang Z, Tang Z, Cao X, Xie Q, Hu C, Zhong Z, Tan J, Zheng Y. Controlling chronic low-grade inflammation to improve follicle development and survival. Am J Reprod Immunol 2020; 84:e13265. [PMID: 32395847 DOI: 10.1111/aji.13265] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 12/16/2022] Open
Abstract
Chronic low-grade inflammation is one cause of follicle development disturbance. Chronic inflammation exists in pathological conditions such as premature ovarian failure, physiological aging of the ovaries, and polycystic ovary syndrome. Inflammation of the whole body can affect oocytes via the follicle microenvironment, oxidative stress, and GM-CSF. Many substances without toxic side-effects extracted from natural organisms have gradually gained researchers' attention. Recently, chitosan oligosaccharide, resveratrol, anthocyanin, and melatonin have been found to contribute to an improvement in inflammation. This review discusses the interrelationships between chronic low-grade inflammation and follicle development, the underlying mechanisms, and methods that may improve follicle development by controlling the level of chronic low-grade inflammation.
Collapse
Affiliation(s)
- Ziwei Yang
- Jiangxi Medical College, Nanchang University, Nanchang, China.,The Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang, China
| | - Zijuan Tang
- Jiangxi Medical College, Nanchang University, Nanchang, China.,The Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang, China
| | - Xiuping Cao
- Jiangxi Medical College, Nanchang University, Nanchang, China.,The Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang, China
| | - Qi Xie
- Jiangxi Medical College, Nanchang University, Nanchang, China.,The Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang, China
| | - Chuan Hu
- Jiangxi Medical College, Nanchang University, Nanchang, China.,The Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang, China
| | - Zhisheng Zhong
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Jun Tan
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Yuehui Zheng
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| |
Collapse
|
31
|
Jozkowiak M, Hutchings G, Jankowski M, Kulcenty K, Mozdziak P, Kempisty B, Spaczynski RZ, Piotrowska-Kempisty H. The Stemness of Human Ovarian Granulosa Cells and the Role of Resveratrol in the Differentiation of MSCs-A Review Based on Cellular and Molecular Knowledge. Cells 2020; 9:E1418. [PMID: 32517362 PMCID: PMC7349183 DOI: 10.3390/cells9061418] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
Ovarian Granulosa Cells (GCs) are known to proliferate in the developing follicle and undergo several biochemical processes during folliculogenesis. They represent a multipotent cell population that has been differentiated to neuronal cells, chondrocytes, and osteoblasts in vitro. However, progression and maturation of GCs are accompanied by a reduction in their stemness. In the developing follicle, GCs communicate with the oocyte bidirectionally via gap junctions. Together with neighboring theca cells, they play a crucial role in steroidogenesis, particularly the production of estradiol, as well as progesterone following luteinization. Many signaling pathways are known to be important throughout the follicle development, leading either towards luteinization and release of the oocyte, or follicular atresia and apoptosis. These signaling pathways include cAMP, PI3K, SMAD, Hedgehog (HH), Hippo and Notch, which act together in a complex manner to control the maturation of GCs through regulation of key genes, from the primordial follicle to the luteal phase. Small molecules such as resveratrol, a phytoalexin found in grapes, peanuts and other dietary constituents, may be able to activate/inhibit these signaling pathways and thereby control physiological properties of GCs. This article reviews the current knowledge about granulosa stem cells, the signaling pathways driving their development and maturation, as well as biological activities of resveratrol and its properties as a pro-differentiation agent.
Collapse
Affiliation(s)
- Malgorzata Jozkowiak
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30 St., PL-60-631 Poznan, Poland;
| | - Greg Hutchings
- Department of Anatomy, Poznan University of Medical Sciences, Swiecickiego 6 St., PL-60-781 Poznan, Poland; (G.H.); (M.J.); (B.K.)
| | - Maurycy Jankowski
- Department of Anatomy, Poznan University of Medical Sciences, Swiecickiego 6 St., PL-60-781 Poznan, Poland; (G.H.); (M.J.); (B.K.)
| | - Katarzyna Kulcenty
- Radiology Lab, Department of Medical Physics, Greater Poland Cancer Centre, Garbary 15 St., PL-61-866 Poznan, Poland;
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Campus Box 7608, Raleigh, NC 27695-7608, USA;
| | - Bartosz Kempisty
- Department of Anatomy, Poznan University of Medical Sciences, Swiecickiego 6 St., PL-60-781 Poznan, Poland; (G.H.); (M.J.); (B.K.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecickiego 6 St., PL-60-781 Poznan, Poland
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 60200 Brno, Czech Republic
| | - Robert Z. Spaczynski
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, Polna 33 St., PL-60-535 Poznan, Poland;
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30 St., PL-60-631 Poznan, Poland;
| |
Collapse
|
32
|
Ochiai A, Kuroda K. Preconception resveratrol intake against infertility: Friend or foe? Reprod Med Biol 2020; 19:107-113. [PMID: 32273814 PMCID: PMC7138940 DOI: 10.1002/rmb2.12303] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/20/2019] [Accepted: 09/25/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Resveratrol is an antiaging, antioxidant, anti-inflammatory, and insulin-sensitizing natural polyphenolic compound. Growing evidence indicates that resveratrol has potential therapeutic effects in infertile women with diminished ovarian function, polycystic ovary syndrome (PCOS), or endometriosis. However, only one clinical trial in women undergoing in vitro fertilization (IVF) cycles using resveratrol has ever been reported. This review focuses on the potential therapeutic effects of resveratrol on pregnancy and on its advantages and disadvantages in pregnancy outcomes during infertility treatment. METHODS We performed a literature review to describe the known impacts of resveratrol on the ovary and endometrium. RESULTS Resveratrol upregulates sirtuin (SIRT)1 expression in ovaries, which is associated with protection against oxidative stress. It leads to the activation of telomerase activity and mitochondrial function, improving ovarian function. In the endometrium, resveratrol downregulates the CRABP2-RAR pathway leading to suppressing decidual and senescent changes of endometrial cells, which is essential for embryo implantation and placentation. Moreover, resveratrol may also induce deacetylation of important decidual-related genes. CONCLUSIONS Resveratrol has potential therapeutic effects for improving ovarian function; however, it also has anti-deciduogenic actions in uterine endometrium. In addition, its teratogenicity has not yet been ruled out; thus, resveratrol should be avoided during the luteal phase and pregnancy.
Collapse
Affiliation(s)
- Asako Ochiai
- Department of Obstetrics and GynecologyFaculty of MedicineJuntendo UniversityTokyoJapan
| | - Keiji Kuroda
- Department of Obstetrics and GynecologyFaculty of MedicineJuntendo UniversityTokyoJapan
- Center for Reproductive Medicine and Implantation ResearchSugiyama Clinic ShinjukuTokyoJapan
| |
Collapse
|
33
|
Ozatik FY, Ozatik O, Yigitaslan S, Kaygısız B, Erol K. Do Resveratrol and Dehydroepiandrosterone Increase Diminished Ovarian Reserve? Eurasian J Med 2020; 52:6-11. [PMID: 32158305 DOI: 10.5152/eurasianjmed.2019.19044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Objective In this study, the aim is to observe changes induced by dehydroepiandrosterone (DHEA) and resveratrol (RES) in diminished ovarian follicles that was induced by 4-vinylcyclohexenediepoxide (VCD). Materials and Methods Twenty four Wistar albino female rats were divided into 3 groups: control, DHEA and RES. Unilateral oophorectomy was performed in control group to remove the right ovary of 4 rats and the left ovary of 4 rats. After administration of 160 mg/kg VCD, remaining ovaries were removed. Following the same VCD treatment, in DHEA and RES groups, 60 mg/kg DHEA and 20 mg/kg RES were given for 45 days respectively and residual ovaries were removed. Hematoxylin-eosin and TUNEL staining were performed. Follicle stimulating hormone (FSH), estradiol (E2) and anti-mullerian hormone (AMH) values were measured. Results In control group, VCD-induced apoptosis in follicles increased the TUNEL-positive cell counts (p<0.001) with decreased number of follicles. On the other hand, DHEA significantly increased all three follicle types in the ovaries and decreased apoptosis (p<0.001). The decreased follicle number in all three follicle types after VCD treatment were found to be significantly increased after RES treatment (p<0.001). Apoptosis in the follicles was significantly decreased by RES administration (p<0.001). FSH values were found to be increased with VCD and to reach control values with DHEA and RES. E2 values significantly decreased with VCD, but significantly increased with RES and DHEA. Conclusion Both DHEA and RES may improve VCD-induced diminished ovarian reserve. DHEA and RES increased the number of primary, primordial and growing follicles, with no significant difference between them.
Collapse
Affiliation(s)
- Fikriye Yasemin Ozatik
- Department of Pharmacology, Kutahya Health Sciences University School of Medicine, Kutahya, Turkey
| | - Orhan Ozatik
- Department of Histology and Embriology, Kutahya Health Sciences University School of Medicine, Kutahya, Turkey
| | - Semra Yigitaslan
- Department of Pharmacology, Eskisehir Osmangazi University School of Medicine, Eskisehir, Turkey
| | - Bilgin Kaygısız
- Department of Pharmacology, Eskisehir Osmangazi University School of Medicine, Eskisehir, Turkey
| | - Kevser Erol
- Department of Pharmacology, Eskisehir Osmangazi University School of Medicine, Eskisehir, Turkey
| |
Collapse
|
34
|
Sirotkin A, Kádasi A, Balaží A, Kotwica J, Alwasel S, Harrath AH. The Action of Benzene, Resveratrol and Their Combination on Ovarian Cell Hormone Release. Folia Biol (Praha) 2020; 66:67-71. [PMID: 32851836 DOI: 10.14712/fb2020066020067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The aim of our study was to examine the direct influence of plant polyphenol resveratrol and oil-related environmental contaminant benzene on ovarian hormone release, as well as the ability of resveratrol to prevent the effect of benzene. Porcine ovarian granulosa cells were cultured with and without resveratrol (0, 1,10 or 100 ug/ml) alone or in combination with 0.1% benzene. The release of progesterone, oxytocin and prostaglandin F was measured by enzyme immunoassay (EIA). Benzene promoted the release of progesterone, oxytocin and prostaglandin F. Resveratrol, when given alone, stimulated both progesterone and prostaglandin F, but not the oxytocin output. Moreover, resveratrol prevented and even inverted the stimulatory action of benzene on all analysed hormones. These observations demonstrate the direct influence of both benzene and resveratrol on porcine ovarian hormone release, as well as the ability of resveratrol to prevent the benzene action on the ovary.
Collapse
Affiliation(s)
- A Sirotkin
- Constantine the Philosopher University, Nitra, Slovakia
- Department of Genetics and Reproduction, Research Institute of Animal Production, Lužianky, Slovakia
| | - A Kádasi
- Department of Animal Physiology, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - A Balaží
- Department of Genetics and Reproduction, Research Institute of Animal Production, Lužianky, Slovakia
| | - J Kotwica
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - S Alwasel
- Kind Saud University, Department of Biology, College of Science, Riyadh, Saudi Arabia
| | - A H Harrath
- Kind Saud University, Department of Biology, College of Science, Riyadh, Saudi Arabia
| |
Collapse
|
35
|
Sun S, Jiao M, Han C, Zhang Q, Shi W, Shi J, Li X. Causal Effects of Genetically Determined Metabolites on Risk of Polycystic Ovary Syndrome: A Mendelian Randomization Study. Front Endocrinol (Lausanne) 2020; 11:621. [PMID: 33013699 PMCID: PMC7505923 DOI: 10.3389/fendo.2020.00621] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 07/30/2020] [Indexed: 12/16/2022] Open
Abstract
Background: Polycystic ovary syndrome (PCOS) is a heterogeneous endocrine disorder that is influenced by both genetic and environmental factors. However, the etiology of PCOS remains unclear. Methods: We conducted a two-sample Mendelian randomization (MR) analysis to assess the causal effects of genetically determined metabolites (GDMs) on the risk of PCOS. We used summary level data of a genome-wide association study (GWAS) on 486 metabolites (n = 7,824) as exposure and a PCOS GWAS consisting of 4,138 cases and 20,129 controls as the outcome. Both datasets were obtained from publicly published databases. For each metabolite, a genetic instrumental variable was generated to assess the relationship between the metabolite and PCOS. For MR analysis, we primarily used the standard inverse variance weighted (IVW) method, while three additional methods-the MR-Egger, weighted median, and MR-PRESSO (pleiotropy residual sum and outlier) methods-were performed as sensitivity analyses. Results: Using genetic variants as predictors, we observed a robust relationship between epiandrosterone sulfate (EPIA-S) and PCOS (PIVW = 0.0186, PMR-Egger = 0.0111; PWeighted-median = 0.0154, and PMR-PRESSO = 0.0290). Similarly, 3-dehydrocarnitine, 4-hydroxyhippurate, hexadecanedioate, and β-hydroxyisovalerate may also have causal effects on PCOS development. Conclusions: We identified metabolites that might have causal effects on PCOS development. Our study emphasizes the role of genetic factors underlying the causal relationships between metabolites and PCOS and provides novel insights through the integration of metabolomics and genomics to better understand the mechanisms involved in human disease pathogenesis.
Collapse
Affiliation(s)
- Shuliu Sun
- Department of Obstetrics and Gynecology, Northwest Women's and Children's Hospital, Xi'an, China
| | - Minjie Jiao
- Department of Obstetrics and Gynecology, Northwest Women's and Children's Hospital, Xi'an, China
| | - Chengcheng Han
- Department of Obstetrics and Gynecology, Northwest Women's and Children's Hospital, Xi'an, China
| | - Qian Zhang
- Department of Obstetrics and Gynecology, Northwest Women's and Children's Hospital, Xi'an, China
| | - Wenhao Shi
- The Assisted Reproductive Centre, Northwest Women's and Children's Hospital, Xi'an, China
| | - Juanzi Shi
- The Assisted Reproductive Centre, Northwest Women's and Children's Hospital, Xi'an, China
| | - Xiaojuan Li
- Department of Obstetrics and Gynecology, Northwest Women's and Children's Hospital, Xi'an, China
- *Correspondence: Xiaojuan Li
| |
Collapse
|
36
|
Ochiai A, Kuroda K, Ikemoto Y, Ozaki R, Nakagawa K, Nojiri S, Takeda S, Sugiyama R. Influence of resveratrol supplementation on IVF–embryo transfer cycle outcomes. Reprod Biomed Online 2019; 39:205-210. [DOI: 10.1016/j.rbmo.2019.03.205] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/13/2019] [Accepted: 03/13/2019] [Indexed: 10/27/2022]
|
37
|
Sirotkin A, Alexa R, Kádasi A, Adamcová E, Alwasel S, Harrath AH. Resveratrol directly affects ovarian cell sirtuin, proliferation, apoptosis, hormone release and response to follicle-stimulating hormone (FSH) and insulin-like growth factor I (IGF-I). Reprod Fertil Dev 2019; 31:1378-1385. [PMID: 30975285 DOI: 10.1071/rd18425] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/12/2019] [Indexed: 12/12/2022] Open
Abstract
The objective of our study was to examine the influence of the plant polyphenol resveratrol (R) on the rapamycin signalling pathway (mammalian target of rapamycin; mTOR) and basic ovarian cell functions in mammalian targets, as well as on their response to the physiological hormonal stimulators follicle-stimulating hormone (FSH) and insulin-like growth factor I (IGF-I). Resveratrol was found to stimulate sirtuin 1 accumulation and apoptosis, inhibit proliferation, suppress P and promote T and E release. Alone, FSH promoted proliferation and had no effect on apoptosis, but had an inhibitory effect on these processes when combined with R. IGF-I alone stimulated proliferation and inhibited apoptosis and promoted P production but not that of T; however, in the presence of R, the addition of IGF-I switched from having an anti-apoptotic to a pro-apoptotic effect and stimulated T release, but it did not modify the effect of IGF-I on proliferation and P output. These observations: (1) demonstrate that R directly affects the basic ovarian cell functions of proliferation, apoptosis and steroidogenesis, (2) provide further evidence of the involvement of FSH and IGF-I in the regulation of these processes, (3) demonstrate the ability of R to prevent and even invert the effects of FSH and IGF-I on ovarian cells and (4) indicate that the effects of R may be mediated by the mTOR-sirtuin intracellular signalling system.
Collapse
Affiliation(s)
- Alexander Sirotkin
- Constantine the Philosopher University, 949 74 Nitra, Slovakia; and Department of Genetics and Reproduction, Research Institute of Animal Production, 951 41 Lužianky, Slovakia; and Corresponding author
| | - Richard Alexa
- Constantine the Philosopher University, 949 74 Nitra, Slovakia
| | - Attila Kádasi
- Department of Animal Physiology, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia
| | - Erika Adamcová
- Constantine the Philosopher University, 949 74 Nitra, Slovakia
| | - Saleh Alwasel
- King Saud University, Department of Zoology, College of Science, Riyadh 11451, Saudi Arabia
| | - Abdel Halim Harrath
- King Saud University, Department of Zoology, College of Science, Riyadh 11451, Saudi Arabia
| |
Collapse
|
38
|
Sirotkin AV, Adamcova E, Rotili D, Mai A, Mlyncek M, Mansour L, Alwasel S, Harrath AH. Comparison of the effects of synthetic and plant-derived mTOR regulators on healthy human ovarian cells. Eur J Pharmacol 2019; 854:70-78. [PMID: 30959047 DOI: 10.1016/j.ejphar.2019.03.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 01/10/2023]
Abstract
The aim of the present in vitro study was to compare the effects of synthetic and plant-derived mTOR regulators on healthy human ovarian cells. We compared the effect of two synthetic mammalian mTOR blockers MC2141 and MC2183 with that of natural/plant-derived mTOR blocker rapamycin and mTOR activator resveratrol on cultured human ovarian granulosa cells. We evaluated the accumulation of markers for the mTOR system (sirtuin 1; SIRT 1), proliferation (PCNA), and apoptosis (caspase 3) along with the expression of the transcription factor p53 by quantitative immunocytochemistry. It was observed that MC2183 but not MC2141 or rapamycin reduced SIRT 1 accumulation. MC2141, MC2183, and rapamycin inhibited the accumulation of PCNA, caspase 3, and p53. On the contrary, resveratrol promoted the accumulation of SIRT-1, PCNA, caspase 3, and p53. We have demonstrated the involvement of the mTOR system in the regulation of healthy human ovarian cell proliferation and apoptosis for the first time and indicated that the action of mTOR regulators on ovarian cell apoptosis can be mediated by p53. We have further shown that mTOR regulators can affect ovarian functions without any changes in SIRT-1 accumulation and that the stimulatory effects of resveratrol on analyzed ovarian cell functions are opposite to the inhibitory effects of rapamycin and synthetic mTOR blockers.
Collapse
Affiliation(s)
- Alexander V Sirotkin
- Constantine the Philosopher University in Nitra, 949 74, Nitra, Slovakia; Research Institute of Animal Production Nitra, 949 59, Lužianky, Slovakia; King Saud University, Department of Zoology, College of Science, Riyadh, 11451, Saudi Arabia.
| | - Erika Adamcova
- Constantine the Philosopher University in Nitra, 949 74, Nitra, Slovakia
| | - Dante Rotili
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, 00185, Rome, Italy
| | - Antonello Mai
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, 00185, Rome, Italy; Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, 00185, Rome, Italy
| | - Milos Mlyncek
- Constantine the Philosopher University in Nitra, 949 74, Nitra, Slovakia; Faculty Hospital in Nitra, 949 01, Nitra, Slovakia
| | - Lamjed Mansour
- King Saud University, Department of Zoology, College of Science, Riyadh, 11451, Saudi Arabia
| | - Saleh Alwasel
- King Saud University, Department of Zoology, College of Science, Riyadh, 11451, Saudi Arabia
| | - Abdel Halim Harrath
- King Saud University, Department of Zoology, College of Science, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
39
|
Ochiai A, Kuroda K, Ozaki R, Ikemoto Y, Murakami K, Muter J, Matsumoto A, Itakura A, Brosens JJ, Takeda S. Resveratrol inhibits decidualization by accelerating downregulation of the CRABP2-RAR pathway in differentiating human endometrial stromal cells. Cell Death Dis 2019; 10:276. [PMID: 30894514 PMCID: PMC6427032 DOI: 10.1038/s41419-019-1511-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/19/2019] [Accepted: 03/07/2019] [Indexed: 12/20/2022]
Abstract
Pregnancy critically depends on the transformation of the human endometrium into a decidual matrix that controls embryo implantation and placenta formation, a process driven foremost by differentiation and polarization of endometrial stromal cells into mature and senescent decidual cells. Perturbations in the decidual process underpin a spectrum of prevalent reproductive disorders, including implantation failure and early pregnancy loss, emphasizing the need for new therapeutic interventions. Resveratrol is a naturally occurring polyphenol, widely used for its antioxidant and anti-inflammatory properties. Using primary human endometrial stromal cell (HESC) cultures, we demonstrate that resveratrol has anti-deciduogenic properties, repressing not only the induction of the decidual marker genes PRL and IGFBP1 but also abrogating decidual senescence. Knockdown of Sirtuin 1, a histone deacetylase activated by resveratrol, restored the expression of IGFBP1 but not the induction of PRL or senescence markers in decidualizing HESCs, suggesting involvement of other pathways. We demonstrate that resveratrol interferes with the reprogramming of the retinoic acid signaling pathway in decidualizing HESCs by accelerating down-regulation of cellular retinoic acid-binding protein 2 (CRABP2) and retinoic acid receptor (RAR). Notably, knockdown of CRABP2 or RAR in HESCs was sufficient to recapitulate the anti-deciduogenic effects of resveratrol. Thus, while resveratrol has been advanced as a potential fertility drug, our results indicate it may have detrimental effects on embryo implantation by interfering with decidual remodeling of the endometrium.
Collapse
Affiliation(s)
- Asako Ochiai
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Keiji Kuroda
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Juntendo University, Tokyo, 113-8421, Japan.
- Center for Reproductive Medicine and Implantation Research, Sugiyama Clinic Shinjuku, Tokyo, 116-0023, Japan.
| | - Rie Ozaki
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Yuko Ikemoto
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Keisuke Murakami
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Joanne Muter
- The Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, Coventry, CV2 2DX, UK
| | - Akemi Matsumoto
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Atsuo Itakura
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Jan J Brosens
- The Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, Coventry, CV2 2DX, UK
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire, Coventry, CV2 2DX, UK
| | - Satoru Takeda
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| |
Collapse
|
40
|
SIRT1 participates in the response to methylglyoxal-dependent glycative stress in mouse oocytes and ovary. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1389-1401. [PMID: 30771486 DOI: 10.1016/j.bbadis.2019.02.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/18/2019] [Accepted: 02/11/2019] [Indexed: 12/21/2022]
Abstract
Methylglyoxal (MG), a highly reactive dicarbonyl derived from metabolic processes, is the most powerful precursor of advanced glycation end products (AGEs). Glycative stress has been recently associated with ovarian dysfunctions in aging and PCOS syndrome. We have investigated the role of the NAD+-dependent Class III deacetylase SIRT1 in the adaptive response to MG in mouse oocytes and ovary. In mouse oocytes, MG induced up-expression of glyoxalase 1 (Glo1) and glyoxalase 2 (Glo2) genes, components of the main MG detoxification system, whereas inhibition of SIRT1 by Ex527 or sirtinol reduced this response. In addition, the inhibition of SIRT1 worsened the effects of MG on oocyte maturation rates, while SIRT1 activation by resveratrol counteracted MG insult. Ovaries from female mice receiving 100 mg/kg MG by gastric administration for 28 days (MG mice) exhibited increased levels of SIRT1 along with over-expression of catalase, superoxide dismutase 2, SIRT3, PGC1α and mtTFA. Similar levels of MG-derived AGEs were observed in the ovaries from MG and control groups, along with enhanced protein expression of glyoxalase 1 in MG mice. Oocytes ovulated by MG mice exhibited atypical meiotic spindles, a condition predisposing to embryo aneuploidy. Our results from mouse oocytes revealed for the first time that SIRT1 could modulate MG scavenging by promoting expression of glyoxalases. The finding that up-regulation of glyoxalase 1 is associated with that of components of a SIRT1 functional network in the ovaries of MG mice provides strong evidence that SIRT1 participates in the response to methylglyoxal-dependent glycative stress in the female gonad.
Collapse
|
41
|
Mojave Yucca ( Yucca Schidigera Roezl) Effects on Female Reproduction a Review. FOLIA VETERINARIA 2018. [DOI: 10.2478/fv-2018-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Yucca is an important source of biologically active substances such as steroidal saponins and stilbenes providing many beneficial effects when administered to humans and other animals. These substances offer a great potential in the prevention and treatment of current civilized diseases as well as to their: antioxidant, hypocholesterolaemic, anti-inflammatory, phytoestrogenic, pro-apoptotic, anti-proliferative, and anti-carcinogenic properties. This review focuses on the roles of two main yucca constituent groups and their ability to modulate ovarian functions and female reproductive performance. Both the biological activity of yucca substances and the mechanisms of their actions on ovaries are still incompletely understood. Thus, the direct effects of yucca extract on ovarian cells in animal models under in vitro conditions, as well as actions after yucca consumption will be discussed.
Collapse
|
42
|
Piras AR, Menéndez-Blanco I, Soto-Heras S, Catalá MG, Izquierdo D, Bogliolo L, Paramio MT. Resveratrol supplementation during in vitro maturation improves embryo development of prepubertal goat oocytes selected by brilliant cresyl blue staining. J Reprod Dev 2018; 65:113-120. [PMID: 30606957 PMCID: PMC6473110 DOI: 10.1262/jrd.2018-077] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
This study aimed to investigate the effect of resveratrol supplementation in maturation medium on the developmental ability and bioenergetic\oxidative status of prepubertal goat oocytes selected by brilliant cresyl blue (BCB). Oocytes collected from slaughterhouse-derived ovaries were selected by 13 µM BCB staining and classified as grown BCB+ and growing BCB- oocytes. All oocytes were matured in vitro in our conventional maturation medium and supplemented with 1 µM (BCB+R and BCB-R) and without (Control groups: BCB+C and BCB-C) resveratrol. After 24 h, IVM-oocytes were fertilized with fresh semen and presumptive zygotes were in vitro cultured for 8 days. Oocytes were assessed for blastocyst development and quality, mitochondrial activity and distribution, and levels of GSH, ROS, and ATP. BCB+R (28.3%) oocytes matured with resveratrol presented significantly higher blastocyst development than BCB+C (13.0%) and BCB- groups (BCB-R: 8.3% and BCB-C: 4.7%). Resveratrol improved blastocyst development of BCB-R oocytes at the same rate as BCB+C oocytes. No differences were observed in blastocyst quality among groups. GSH levels were significantly higher in resveratrol groups (BCB+R: 36554.6; BCB-R: 34946.7 pixels/oocyte) than in control groups (BCB+C: 27624.0; BCB-C: 27655.4 pixels/oocyte). No differences were found in mitochondrial activity, ROS level, and ATP content among the groups. Resveratrol-treated oocytes had a higher proportion of clustered active mitochondria in both BCB groups (BCB+R: 73.07%; BCB-R: 79.16%) than control groups (BCB+C: 19.35%; BCB-C: 40%). In conclusion, resveratrol increased blastocyst production from oocytes of prepubertal goats, particularly in better quality oocytes (BCB+).
Collapse
Affiliation(s)
- Anna-Rita Piras
- Universitat Autònoma de Barcelona, Departament de Ciència Animal i dels Aliments, 08193 Bellaterra, Barcelona, Spain.,Università degli Studi di Sassari, Dipartimento di Medicina Veterinaria, 07100 Sassari, Italy
| | - Irene Menéndez-Blanco
- Universitat Autònoma de Barcelona, Departament de Ciència Animal i dels Aliments, 08193 Bellaterra, Barcelona, Spain
| | - Sandra Soto-Heras
- Universitat Autònoma de Barcelona, Departament de Ciència Animal i dels Aliments, 08193 Bellaterra, Barcelona, Spain
| | - Maria-Gracia Catalá
- Universitat Autònoma de Barcelona, Departament de Ciència Animal i dels Aliments, 08193 Bellaterra, Barcelona, Spain
| | - Dolors Izquierdo
- Universitat Autònoma de Barcelona, Departament de Ciència Animal i dels Aliments, 08193 Bellaterra, Barcelona, Spain
| | - Luisa Bogliolo
- Università degli Studi di Sassari, Dipartimento di Medicina Veterinaria, 07100 Sassari, Italy
| | - Maria-Teresa Paramio
- Universitat Autònoma de Barcelona, Departament de Ciència Animal i dels Aliments, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
43
|
Furat Rencber S, Kurnaz Ozbek S, Eraldemır C, Sezer Z, Kum T, Ceylan S, Guzel E. Effect of resveratrol and metformin on ovarian reserve and ultrastructure in PCOS: an experimental study. J Ovarian Res 2018; 11:55. [PMID: 29958542 PMCID: PMC6025739 DOI: 10.1186/s13048-018-0427-7] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/22/2018] [Indexed: 01/20/2023] Open
Abstract
Background PCOS is a reproductive hormonal abnormality and a metabolic disorder. It is frequently associated with insulin resistance, hyperandrogenism, chronic inflammation, and oxidative stress. We aim to investigate the potential therapeutic effects of combined therapy of resveratrol and metformin on polycystic ovaries via SIRT1 and AMPK activation. Methods Wistar albino rats were divided into control and experimental (PCOS) groups. DHEA-induced PCOS rats were given resveratrol (20 mg/kg/day), metformin (300 mg/kg/day) and combined therapy. At the end of the experiment, the body and ovarian weight of rats were measured and blood samples were analyzed for FSH, LH, testosterone, AMH, TNF-α and MDA levels. Histopathological evaluation of ovaries were carried out by light and electron microscopy. SIRT1 and AMPK immunreactivity and TUNEL assay were scored. Data were statistically analyzed by SPSS programme. Results Metformin and combined treatment groups reduced the body and ovary weights compared to the PCOS group. Serum testosterone levels were significantly higher in the PCOS group than in the control group and this was reduced when PCOS was treated with all but especially resveratrol. All the treatment groups decreased LH, LH/FSH, TNF-α and tissue AMH levels which were induced in the PCOS group, whereas metformin was unable to improve the increased MDA and plasma AMH levels. Treatment with resveratrol and/or metformin ameliorated the elevated number of secondary and atretic follicles and the decreased number of Graafian follicles in the PCOS group, which indicates the effect of the treatments on the maintenance of folliculogenesis. Light and electron microscopic findings supported the analysis of follicular count. Increased number of TUNEL (+) granulosa cells in the PCOS group were reduced significantly in the treatment groups. Resveratrol and metformin increased SIRT1 and AMPK immunreactivity, respectively, compared to the PCOS group. Conclusions The results suggest that combined therapy of metformin and resveratrol may improve the weight gain, hormone profile and ovarian follicular cell architecture by inducing antioxidant and antiinflammatory systems via SIRT1 and AMPK activation in PCOS.
Collapse
Affiliation(s)
- Selenay Furat Rencber
- Department of Histology and Embryology, Kocaeli University Faculty of Medicine, 41380, Kocaeli, Turkey
| | - Sema Kurnaz Ozbek
- Department of Histology and Embryology, Kocaeli University Faculty of Medicine, 41380, Kocaeli, Turkey
| | - Ceyla Eraldemır
- Department of Biochemistry, Kocaeli University Faculty of Medicine, 41380, Kocaeli, Turkey
| | - Zehra Sezer
- Department of Histology and Embryology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, 34098, Istanbul, Turkey
| | - Tugba Kum
- Department of Biochemistry, Kocaeli University Faculty of Medicine, 41380, Kocaeli, Turkey
| | - Sureyya Ceylan
- Department of Histology and Embryology, Kocaeli University Faculty of Medicine, 41380, Kocaeli, Turkey
| | - Elif Guzel
- Department of Histology and Embryology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, 34098, Istanbul, Turkey.
| |
Collapse
|
44
|
Liu Y, Wang YL, He SW, Chen MH, Zhang Z, Fu XP, Fu BB, Liao BQ, Lin YH, Qi ZQ, Wang HL. Protective effects of resveratrol against mancozeb induced apoptosis damage in mouse oocytes. Oncotarget 2018; 8:6233-6245. [PMID: 28031523 PMCID: PMC5351627 DOI: 10.18632/oncotarget.14056] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/13/2016] [Indexed: 11/25/2022] Open
Abstract
Mancozeb, a mixture of ethylene-bis-dithiocarbamate manganese and zinc salts, is one of the most widely used fungicides in agriculture. Mancozeb could lead to mitochondria dysfunction, cellular anti-oxidation enzymes depletion and apoptotic pathways activation. Previous studies indicated the exposure of mancozeb through mother would lead to irregular estrous cycles, decreased progesterone levels, reduced litter sizes, and more frequent delivery of dead fetuses. In this study, we investigated mancozeb inducing reproductive toxicity, especially focusing on its apoptotic effect and epigenetic modifications. We also showed that resveratrol, a kind of phytoalexin found in peanuts and grapes, can alleviate mancozeb's adverse effects, such as declined fertility, decreased ovary weight and primary follicles. Besides, mancozeb treated oocytes displayed suboptimal developmental competence and this can also be improved by treatment of resveratrol. More detailed investigation of these processes revealed that mancozeb increased reactive oxygen species, causing cell apoptosis and abnormal epigenetic modifications, and resveratrol can block these cytotoxic changes. Collectively, our results showed that resveratrol can alleviate mancozeb induced infertility and this was mainly through the correction of apoptotic tendency and the abnormity of cellular epigenetic modification.
Collapse
Affiliation(s)
- Yu Liu
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen City, Fujian Province, China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen City, Fujian Province, China
| | - Ya-Long Wang
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen City, Fujian Province, China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen City, Fujian Province, China
| | - Shu-Wen He
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen City, Fujian Province, China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen City, Fujian Province, China
| | - Ming-Huang Chen
- Department of Gynaecology and Obstetrics, Zhongshan Hospital, Xiamen University, Xiamen City, Fujian Province, China
| | - Zhen Zhang
- Xiamen Institute for Food and Drug Quality Control, Xiamen City, Fujian Province, China
| | - Xian-Pei Fu
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen City, Fujian Province, China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen City, Fujian Province, China
| | - Bin-Bin Fu
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen City, Fujian Province, China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen City, Fujian Province, China
| | - Bao-Qiong Liao
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen City, Fujian Province, China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen City, Fujian Province, China
| | - Yan-Hong Lin
- Department of Gynecology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Zhong-Quan Qi
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen City, Fujian Province, China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen City, Fujian Province, China
| | - Hai-Long Wang
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen City, Fujian Province, China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen City, Fujian Province, China
| |
Collapse
|
45
|
Tatone C, Di Emidio G, Barbonetti A, Carta G, Luciano AM, Falone S, Amicarelli F. Sirtuins in gamete biology and reproductive physiology: emerging roles and therapeutic potential in female and male infertility. Hum Reprod Update 2018; 24:267-289. [DOI: 10.1093/humupd/dmy003] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/19/2018] [Indexed: 12/21/2022] Open
Affiliation(s)
- Carla Tatone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Gynecology Unit, Reproductive Service, San Salvatore Hospital, Via Vetoio, 67100 L’Aquila, Italy
| | - Giovanna Di Emidio
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Gynecology Unit, Reproductive Service, San Salvatore Hospital, Via Vetoio, 67100 L’Aquila, Italy
| | | | - Gaspare Carta
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Gynecology Unit, Reproductive Service, San Salvatore Hospital, Via Vetoio, 67100 L’Aquila, Italy
| | - Alberto M Luciano
- Department of Health, Animal Science and Food Safety, Reproductive and Developmental Biology Laboratory, University of Milan, 20133 Milan, Italy
| | - Stefano Falone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Fernanda Amicarelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Institute of Translational Pharmacology (IFT), CNR, 67100 L’Aquila, Italy
| |
Collapse
|
46
|
Uberti F, Morsanuto V, Aprile S, Ghirlanda S, Stoppa I, Cochis A, Grosa G, Rimondini L, Molinari C. Biological effects of combined resveratrol and vitamin D3 on ovarian tissue. J Ovarian Res 2017; 10:61. [PMID: 28915830 PMCID: PMC5602920 DOI: 10.1186/s13048-017-0357-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/05/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is a natural antioxidant polyphenol able to exert a wide range of biological effect on several tissues. Despite its important beneficial properties, it has a low water solubility, which limits its therapeutic applications in humans. Resveratrol also acts as a phytoestrogen that modulates estrogen receptor (ER)-mediated transcription. In addition, it has been shown that ovarian tissues benefit greatly from vitamin D3, which exerts its beneficial effects through VDR receptors. The aim was to evaluate the cooperative effects of resveratrol combined with vitamin D3 on ovarian cells and tissues and some other organs as well. Moreover, the modulation of specific intracellular pathways involving ER and VDR receptors has been studied. METHODS The experiments were performed both in vitro and in vivo, to analyze cell viability, radical oxygen species production, signal transductions through Western Blot, and resveratrol quantification by HPLC. RESULTS Cell viability, radical oxygen species production, and intracellular pathways have been studied on CHO-K1 cells. Also, the relative mechanism activated following oral intake in female Wistar rats as animal model was investigated, evaluating bioavailability, biodistribution and signal transduction in heart, kidney, liver and ovarian tissues. Both in in vitro and in vivo experiments, resveratrol exerts more evident effects when administered in combination with vitD in ovarian cells, showing a common biphasic cooperative effect: The role of vitamin D3 in maintaining and supporting the biological activity of resveratrol has been clearly observed. Moreover, resveratrol plus vitamin D3 blood concentrations showed a biphasic absorption rate. CONCLUSIONS Such results could be used as a fundamental data for the development of new therapies for gynecological conditions, such as hot-flashes.
Collapse
Affiliation(s)
- Francesca Uberti
- Physiology Laboratory, Department of Translational Medicine, UPO, Via Solaroli, 17 28100 Novara, Italy
| | - Vera Morsanuto
- Physiology Laboratory, Department of Translational Medicine, UPO, Via Solaroli, 17 28100 Novara, Italy
| | - Silvio Aprile
- Department of Pharmaceutical Sciences and Drug and Food Biotechnology Center, UPO, Novara, Italy
| | - Sabrina Ghirlanda
- Physiology Laboratory, Department of Translational Medicine, UPO, Via Solaroli, 17 28100 Novara, Italy
| | - Ian Stoppa
- Physiology Laboratory, Department of Translational Medicine, UPO, Via Solaroli, 17 28100 Novara, Italy
| | - Andrea Cochis
- Department of Health Sciences, Medical School, UPO, Novara, Italy
| | - Giorgio Grosa
- Department of Pharmaceutical Sciences and Drug and Food Biotechnology Center, UPO, Novara, Italy
| | - Lia Rimondini
- Department of Health Sciences, Medical School, UPO, Novara, Italy
| | - Claudio Molinari
- Physiology Laboratory, Department of Translational Medicine, UPO, Via Solaroli, 17 28100 Novara, Italy
| |
Collapse
|
47
|
Kim YJ, Chung SO, Kim JK, Park SU. Recent studies on resveratrol and its biological and pharmacological activity. EXCLI JOURNAL 2017; 16:602-608. [PMID: 28694761 PMCID: PMC5491918 DOI: 10.17179/excli2017-253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 04/11/2017] [Indexed: 02/03/2023]
Affiliation(s)
- Yong Joo Kim
- Department of Biosystems Machinery Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| | - Sun Ok Chung
- Department of Biosystems Machinery Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| | - Jae Kwang Kim
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| | - Sang Un Park
- Division of Life Sciences and Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Korea
| |
Collapse
|
48
|
Mansour A, Hosseini S, Larijani B, Mohajeri-Tehrani MR. Nutrients as novel therapeutic approaches for metabolic disturbances in polycystic ovary syndrome. EXCLI JOURNAL 2016; 15:551-564. [PMID: 28096785 PMCID: PMC5225686 DOI: 10.17179/excli2016-422] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/02/2016] [Indexed: 12/14/2022]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders among women. This disease is characterized by infertility, menstrual dysfunction, and hyperandrogenism. Also, PCOS is often associated with hyperlipidemia and impaired glucose tolerance, conditions that are associated with cardiovascular disorder, type 2 diabetes, cancer and hypertension. Evidence supports that some nutrients may affect the hormonal and metabolic disturbances of PCOS. Here in this study, we aimed to review the available literature that assessed the nutrients such as inostol, isoflavonids, resveratrol, vitamin D, and PUFA (polyunsaturated fatty acids), known to influence the hormonal and metabolic disturbances of PCOS, along with the strategies and future directions of nutrient supplementations in such patients.
Collapse
Affiliation(s)
- Asieh Mansour
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology, Research Institute Shahid Beheshti University of Medical Science, Tehran, Iran; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Hosseini
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Mohajeri-Tehrani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
49
|
Banu SK, Stanley JA, Sivakumar KK, Arosh JA, Burghardt RC. Resveratrol protects the ovary against chromium-toxicity by enhancing endogenous antioxidant enzymes and inhibiting metabolic clearance of estradiol. Toxicol Appl Pharmacol 2016; 303:65-78. [PMID: 27129868 PMCID: PMC5830085 DOI: 10.1016/j.taap.2016.04.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/29/2016] [Accepted: 04/26/2016] [Indexed: 12/31/2022]
Abstract
Resveratrol (RVT), a polyphenolic component in grapes and red wine, has been known for its cytoprotective actions against several diseases. However, beneficial effects of RVT against early exposure to endocrine disrupting chemicals (EDCs) have not been understood. EDCs are linked to several ovarian diseases such as premature ovarian failure, polycystic ovary syndrome, early menopause and infertility in women. Hexavalent chromium (CrVI) is a heavy metal EDC, and widely used in >50 industries. Environmental contamination with CrVI in the US is rapidly increasing, predisposing the human to several illnesses including cancers and still birth. Our lab has been involved in determining the molecular mechanism of CrVI-induced female infertility and intervention strategies to mitigate CrVI effects. Lactating mother rats were exposed to CrVI (50ppm potassium dichromate) from postpartum days 1-21 through drinking water with or without RVT (10mg/kg body wt., through oral gavage daily). During this time, F1 females received respective treatments through mother's milk. On postnatal day (PND) 25, blood and the ovary, kidney and liver were collected from the F1 females for analyses. CrVI increased atresia of follicles by increasing cytochrome C and cleaved caspase-3; decreasing antiapoptotic proteins; decreasing estradiol (E2) biosynthesis and enhancing metabolic clearance of E2, increasing oxidative stress and decreasing endogenous antioxidants. RVT mitigated the effects of CrVI by upregulating cell survival proteins and AOXs; and restored E2 levels by inhibiting hydroxylation, glucuronidation and sulphation of E2. This is the first study to report the protective effects of RVT against any toxicant in the ovary.
Collapse
Affiliation(s)
- Sakhila K Banu
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| | - Jone A Stanley
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Kirthiram K Sivakumar
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Joe A Arosh
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Robert C Burghardt
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
50
|
Weiskirchen S, Weiskirchen R. Resveratrol: How Much Wine Do You Have to Drink to Stay Healthy? Adv Nutr 2016; 7:706-18. [PMID: 27422505 PMCID: PMC4942868 DOI: 10.3945/an.115.011627] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Resveratrol is a naturally occurring stilbene endowed with multiple health-promoting effects. It is produced by certain plants including several dietary sources such as grapes, apples, raspberries, blueberries, plums, peanuts, and products derived therefrom (e.g., wine). Resveratrol can be isolated and purified from these biological sources or synthesized in a few steps with an overall high yield. This compound and its glucoside, the trans-polydatin piceid, have received worldwide attention for their beneficial effects on cardiovascular, inflammatory, neurodegenerative, metabolic, and age-related diseases. These health-promoting effects are particularly attractive given the prevalence of resveratrol-based nutraceuticals and the paradoxical epidemiologic observation that wine consumption is inversely correlated to the incidence of coronary heart disease. However, the notion of resveratrol as a "magic bullet" was recently challenged by clinical trials showing that this polyphenol does not have a substantial influence on health status and mortality risk. In the present review, we discuss the proposed therapeutic attributes and the mode of molecular actions of resveratrol. We also cover recent pharmacologic efforts to improve the poor bioavailability of resveratrol and influence the transition between body systems in humans. We conclude with some thoughts about future research directions that might be meaningful for resolving controversies surrounding resveratrol.
Collapse
Affiliation(s)
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, Rheinisch-Westfaelische Technische Hochschule University Hospital Aachen, Aachen, Germany
| |
Collapse
|