1
|
Zhang Y, Li H, Lan Q, Liu X, Wu H, Zhang J, Zhao X, Wang Y. Sinuous Is a Claudin Required for Locust Molt in Locusta migratoria. Genes (Basel) 2024; 15:850. [PMID: 39062629 PMCID: PMC11275452 DOI: 10.3390/genes15070850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
The epidermal cells of insects are polarized epithelial cells that play a pivotal role in the insect's molting process. Sinuous, a pivotal structural protein involved in the formation of septate junctions among epithelial cells, is essential for its physiological function. In this study, to determine whether sinuous participates in the regulation of insect molting, we identified the sinuous gene, Lmsinu, in Locusta migratoria, which encodes a protein belonging to the claudin family and shares 62.6% identity with Drosophila's sinuous protein. Lmsinu is expressed in multiple tissues, and its expression level in the integument significantly increases prior to molting. Knockdown of Lmsinu in L. migratoria results in larval mortality during molting. Furthermore, hematoxylin and eosin and chitin staining demonstrate that the downregulation of Lmsinu led to a prolonged degradation process of the old cuticle during the molting process. Electron microscopy analysis further revealed that knockdown of Lmsinu disrupts the formation of septate junctions among epidermal cells, which are a monolayer of polarized epithelial cells, which may hinder the functionality of epidermal cells during the process of molting. In summary, these findings suggest that Lmsinu plays a role in nymph molting by regulating the formation of septate junctions among epidermal cells.
Collapse
Affiliation(s)
- Yichao Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; (Y.Z.); (H.L.); (Q.L.); (X.L.); (H.W.); (J.Z.); (X.Z.)
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Taiyuan 030006, China
| | - Hongjing Li
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; (Y.Z.); (H.L.); (Q.L.); (X.L.); (H.W.); (J.Z.); (X.Z.)
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Taiyuan 030006, China
- College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Qiuyan Lan
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; (Y.Z.); (H.L.); (Q.L.); (X.L.); (H.W.); (J.Z.); (X.Z.)
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Taiyuan 030006, China
- College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Xiaoman Liu
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; (Y.Z.); (H.L.); (Q.L.); (X.L.); (H.W.); (J.Z.); (X.Z.)
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Taiyuan 030006, China
- College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Haihua Wu
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; (Y.Z.); (H.L.); (Q.L.); (X.L.); (H.W.); (J.Z.); (X.Z.)
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Taiyuan 030006, China
| | - Jianzhen Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; (Y.Z.); (H.L.); (Q.L.); (X.L.); (H.W.); (J.Z.); (X.Z.)
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Taiyuan 030006, China
| | - Xiaoming Zhao
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; (Y.Z.); (H.L.); (Q.L.); (X.L.); (H.W.); (J.Z.); (X.Z.)
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Taiyuan 030006, China
| | - Yanli Wang
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; (Y.Z.); (H.L.); (Q.L.); (X.L.); (H.W.); (J.Z.); (X.Z.)
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Taiyuan 030006, China
| |
Collapse
|
2
|
Dornan AJ, Halberg KV, Beuter LK, Davies SA, Dow JAT. Compromised junctional integrity phenocopies age-dependent renal dysfunction in Drosophila Snakeskin mutants. J Cell Sci 2023; 136:jcs261118. [PMID: 37694602 PMCID: PMC10565245 DOI: 10.1242/jcs.261118] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023] Open
Abstract
Transporting epithelia provide a protective barrier against pathogenic insults while allowing the controlled exchange of ions, solutes and water with the external environment. In invertebrates, these functions depend on formation and maintenance of 'tight' septate junctions (SJs). However, the mechanism by which SJs affect transport competence and tissue homeostasis, and how these are modulated by ageing, remain incompletely understood. Here, we demonstrate that the Drosophila renal (Malpighian) tubules undergo an age-dependent decline in secretory capacity, which correlates with mislocalisation of SJ proteins and progressive degeneration in cellular morphology and tissue homeostasis. Acute loss of the SJ protein Snakeskin in adult tubules induced progressive changes in cellular and tissue architecture, including altered expression and localisation of junctional proteins with concomitant loss of cell polarity and barrier integrity, demonstrating that compromised junctional integrity is sufficient to replicate these ageing-related phenotypes. Taken together, our work demonstrates a crucial link between epithelial barrier integrity, tubule transport competence, renal homeostasis and organismal viability, as well as providing novel insights into the mechanisms underpinning ageing and renal disease.
Collapse
Affiliation(s)
- Anthony J. Dornan
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Kenneth V. Halberg
- Section for Cell and Neurobiology, Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen DK-2100, Denmark
| | - Liesa-Kristin Beuter
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- Department of Animal Ecology and Systematics, Justus-Liebig-University Giessen, Giessen D-35392, Germany
| | - Shireen-Anne Davies
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Julian A. T. Dow
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
3
|
Galenza A, Moreno-Roman P, Su YH, Acosta-Alvarez L, Debec A, Guichet A, Knapp JM, Kizilyaprak C, Humbel BM, Kolotuev I, O'Brien LE. Basal stem cell progeny establish their apical surface in a junctional niche during turnover of an adult barrier epithelium. Nat Cell Biol 2023; 25:658-671. [PMID: 36997641 PMCID: PMC10317055 DOI: 10.1038/s41556-023-01116-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/23/2023] [Indexed: 04/01/2023]
Abstract
Barrier epithelial organs face the constant challenge of sealing the interior body from the external environment while simultaneously replacing the cells that contact this environment. New replacement cells-the progeny of basal stem cells-are born without barrier-forming structures such as a specialized apical membrane and occluding junctions. Here, we investigate how new progeny acquire barrier structures as they integrate into the intestinal epithelium of adult Drosophila. We find they gestate their future apical membrane in a sublumenal niche created by a transitional occluding junction that envelops the differentiating cell and enables it to form a deep, microvilli-lined apical pit. The transitional junction seals the pit from the intestinal lumen until differentiation-driven, basal-to-apical remodelling of the niche opens the pit and integrates the now-mature cell into the barrier. By coordinating junctional remodelling with terminal differentiation, stem cell progeny integrate into a functional, adult epithelium without jeopardizing barrier integrity.
Collapse
Affiliation(s)
- Anthony Galenza
- Department of Molecular & Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Paola Moreno-Roman
- Department of Molecular & Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Foldscope Instruments, Inc., Palo Alto, CA, USA
| | - Yu-Han Su
- Department of Molecular & Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Lehi Acosta-Alvarez
- Department of Molecular & Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Alain Debec
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
- Institute of Ecology and Environmental Sciences, iEES, Sorbonne University, UPEC, CNRS, IRD, INRA, Paris, France
| | - Antoine Guichet
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | | | - Caroline Kizilyaprak
- Université de Lausanne, Bâtiment Biophore, Quartier Sorge, Lausanne, Switzerland
| | - Bruno M Humbel
- Université de Lausanne, Bâtiment Biophore, Quartier Sorge, Lausanne, Switzerland
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Provost's Office, Okinawa Institute of Science and Technology, Tancha, Japan
| | - Irina Kolotuev
- Université de Lausanne, Bâtiment Biophore, Quartier Sorge, Lausanne, Switzerland
| | - Lucy Erin O'Brien
- Department of Molecular & Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Chan-Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
4
|
Chen J, St Johnston D. De novo apical domain formation inside the Drosophila adult midgut epithelium. eLife 2022; 11:e76366. [PMID: 36169289 PMCID: PMC9545526 DOI: 10.7554/elife.76366] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
In the adult Drosophila midgut, basal intestinal stem cells give rise to enteroblasts that integrate into the epithelium as they differentiate into enterocytes. Integrating enteroblasts must generate a new apical domain and break through the septate junctions between neighbouring enterocytes, while maintaining barrier function. We observe that enteroblasts form an apical membrane initiation site (AMIS) when they reach the septate junction between the enterocytes. Cadherin clears from the apical surface and an apical space appears between above the enteroblast. New septate junctions then form laterally with the enterocytes and the AMIS develops into an apical domain below the enterocyte septate junction. The enteroblast therefore forms a pre-assembled apical compartment before it has a free apical surface in contact with the gut lumen. Finally, the enterocyte septate junction disassembles and the enteroblast/pre-enterocyte reaches the gut lumen with a fully formed brush border. The process of enteroblast integration resembles lumen formation in mammalian epithelial cysts, highlighting the similarities between the fly midgut and mammalian epithelia.
Collapse
Affiliation(s)
- Jia Chen
- The Gurdon Institute, University of CambridgeCambridgeUnited Kingdom
| | | |
Collapse
|
5
|
Chen J, St Johnston D. Epithelial Cell Polarity During Drosophila Midgut Development. Front Cell Dev Biol 2022; 10:886773. [PMID: 35846367 PMCID: PMC9281564 DOI: 10.3389/fcell.2022.886773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/30/2022] [Indexed: 11/23/2022] Open
Abstract
The adult Drosophila midgut epithelium is derived from a group of stem cells called adult midgut precursors (AMPs) that are specified during the migration of the endoderm in early embryogenesis. AMPs are maintained and expanded in AMP nests that lie on the basal side of the larval midgut throughout the larval development. During metamorphosis, the larval midgut undergoes histolysis and programmed cell death, while the central cells in the AMP nests form the future adult midgut and the peripheral cells form the transient pupal midgut. Here we review what is known about how cells polarise in the embryonic, larval, pupal and adult midgut, and discuss the open questions about the mechanisms that control the changes in cell arrangements, cell shape and cell polarity during midgut development.
Collapse
Affiliation(s)
| | - Daniel St Johnston
- Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
6
|
Jonusaite S, Rodan AR. Molecular basis for epithelial morphogenesis and ion transport in the Malpighian tubule. CURRENT OPINION IN INSECT SCIENCE 2021; 47:7-11. [PMID: 33581351 PMCID: PMC8353009 DOI: 10.1016/j.cois.2021.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 05/04/2023]
Abstract
During development, the insect Malpighian tubule undergoes several programmed morphogenetic events that give rise to the tubule's ability to transport ions and water at unparalleled speed. Studies in Diptera, in particular, have greatly increased our understanding of the molecular pathways underlying embryonic tubule development. In this review, we discuss recent work that has revealed new insights into the molecular players required for the development and maintenance of structurally and functionally intact adult Malpighian tubules. We highlight the contribution of the smooth septate junction (sSJ) proteins to the morphogenesis and transport function of the epithelial cells of the Drosophila melanogaster Malpighian tubule and also discuss new findings on the role of the GATAe transcription factor. We also consider the roles of sSJ proteins in the fly midgut, as compared to the Malpighian tubule, and the importance of cellular context for the functions of these proteins.
Collapse
Affiliation(s)
- Sima Jonusaite
- Department of Internal Medicine, Division of Nephrology and Hypertension, and Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA; Department of Integrative Biology, University of Guelph, Guelph, Ontario NIG 2W1, Canada
| | - Aylin R Rodan
- Department of Internal Medicine, Division of Nephrology and Hypertension, and Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA; Medical Service, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT, USA.
| |
Collapse
|
7
|
Izumi Y, Furuse K, Furuse M. The novel membrane protein Hoka regulates septate junction organization and stem cell homeostasis in the Drosophila gut. J Cell Sci 2021; 134:jcs.257022. [PMID: 33589496 DOI: 10.1242/jcs.257022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/01/2021] [Indexed: 12/16/2022] Open
Abstract
Smooth septate junctions (sSJs) regulate the paracellular transport in the intestinal tract in arthropods. In Drosophila, the organization and physiological function of sSJs are regulated by at least three sSJ-specific membrane proteins: Ssk, Mesh and Tsp2A. Here, we report a novel sSJ membrane protein, Hoka, which has a single membrane-spanning segment with a short extracellular region, and a cytoplasmic region with Tyr-Thr-Pro-Ala motifs. The larval midgut in hoka mutants shows a defect in sSJ structure. Hoka forms a complex with Ssk, Mesh and Tsp2A, and is required for the correct localization of these proteins to sSJs. Knockdown of hoka in the adult midgut leads to intestinal barrier dysfunction and stem cell overproliferation. In hoka-knockdown midguts, aPKC is upregulated in the cytoplasm and the apical membrane of epithelial cells. The depletion of aPKC and yki in hoka-knockdown midguts results in reduced stem cell overproliferation. These findings indicate that Hoka cooperates with the sSJ proteins Ssk, Mesh and Tsp2A to organize sSJs, and is required for maintaining intestinal stem cell homeostasis through the regulation of aPKC and Yki activities in the Drosophila midgut.
Collapse
Affiliation(s)
- Yasushi Izumi
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki 444-8787, Japan .,Department of Physiological Sciences, The Graduate University of Advanced Studies, SOKENDAI, Okazaki 444-8585, Japan
| | - Kyoko Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki 444-8787, Japan
| | - Mikio Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki 444-8787, Japan.,Department of Physiological Sciences, The Graduate University of Advanced Studies, SOKENDAI, Okazaki 444-8585, Japan
| |
Collapse
|
8
|
Rice C, De O, Alhadyian H, Hall S, Ward RE. Expanding the Junction: New Insights into Non-Occluding Roles for Septate Junction Proteins during Development. J Dev Biol 2021; 9:11. [PMID: 33801162 PMCID: PMC8006247 DOI: 10.3390/jdb9010011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/17/2022] Open
Abstract
The septate junction (SJ) provides an occluding function for epithelial tissues in invertebrate organisms. This ability to seal the paracellular route between cells allows internal tissues to create unique compartments for organ function and endows the epidermis with a barrier function to restrict the passage of pathogens. Over the past twenty-five years, numerous investigators have identified more than 30 proteins that are required for the formation or maintenance of the SJs in Drosophila melanogaster, and have determined many of the steps involved in the biogenesis of the junction. Along the way, it has become clear that SJ proteins are also required for a number of developmental events that occur throughout the life of the organism. Many of these developmental events occur prior to the formation of the occluding junction, suggesting that SJ proteins possess non-occluding functions. In this review, we will describe the composition of SJs, taking note of which proteins are core components of the junction versus resident or accessory proteins, and the steps involved in the biogenesis of the junction. We will then elaborate on the functions that core SJ proteins likely play outside of their role in forming the occluding junction and describe studies that provide some cell biological perspectives that are beginning to provide mechanistic understanding of how these proteins function in developmental contexts.
Collapse
Affiliation(s)
- Clinton Rice
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA; (C.R.); (H.A.)
| | - Oindrila De
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Haifa Alhadyian
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA; (C.R.); (H.A.)
| | | | - Robert E. Ward
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA;
| |
Collapse
|
9
|
Vorgia E, Lamprousi M, Denecke S, Vogelsang K, Geibel S, Vontas J, Douris V. Functional characterization and transcriptomic profiling of a spheroid-forming midgut cell line from Helicoverpa zea (Lepidoptera: Noctuidae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 128:103510. [PMID: 33276037 DOI: 10.1016/j.ibmb.2020.103510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/15/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Insect cell lines have been frequently used in insect science research in recent years. Establishment of cell lines from specialized tissues like the lepidopteran midgut is expected to facilitate research efforts towards the understanding of uptake and metabolic properties, as well as the design of assays for use in pesticide discovery. However, the number of available lines from specialized tissues of insects and the level of understanding of the biological processes taking place in insect cells is far behind mammalian systems. In this study we examine two established cell lines of insect midgut origin, investigate their growth parameters and amenability to transfection and genetic manipulation, and test their potential to form spheroid-like 3D structures. Our results indicate that a midgut-derived cell line from Helicoverpa zea, RP-HzGUT-AW1, is amenable to genetic manipulation by transfection with a standard insect expression vector and has excellent ability to form spheroids. To further investigate the differentiation status of this line, we examined for expression of several candidate marker genes from different midgut cell types, enterocytes (ECs), Goblet cells (GCs), enteroendocrine cells (EEs) and intestinal stem cells (ISCs), indicating that both certain ISC and certain differentiated cell markers were present. To acquire a more detailed perspective of the differentiation landscape of the specific cells, we performed an RNAseq analysis of RP-HzGUT-AW1 grown either in 2D or 3D cultures. We hypothesize that RP-HzGUT-AW1 are in an "arrested" developmental stage between ISC and terminal differentiation. Furthermore, an enrichment of stress response and oxidoreductase genes was observed in the spheroid samples while no significant difference was evident in differentiation markers between cells grown in 2D and 3D. These results render RP-HzGUT-AW1 as the most well-characterized insect gut derived cell line so far, and lay the groundwork for future work investigating midgut cell lines application potential.
Collapse
Affiliation(s)
- Elena Vorgia
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, 700 13, Heraklion Crete, Greece
| | - Mantha Lamprousi
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, 700 13, Heraklion Crete, Greece; Department of Biology, University of Crete, Vassilika Vouton, 71409, Heraklion, Crete, Greece
| | - Shane Denecke
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, 700 13, Heraklion Crete, Greece
| | - Kathrin Vogelsang
- Bayer AG, CropScience Division, R&D Pest Control, D-40789 Monheim, Germany
| | - Sven Geibel
- Bayer AG, CropScience Division, R&D Pest Control, D-40789 Monheim, Germany
| | - John Vontas
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, 700 13, Heraklion Crete, Greece; Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, Greece
| | - Vassilis Douris
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, 700 13, Heraklion Crete, Greece; Department of Biological Applications and Technology, University of Ioannina, 45110, Ioannina, Greece.
| |
Collapse
|
10
|
Rouaud F, Sluysmans S, Flinois A, Shah J, Vasileva E, Citi S. Scaffolding proteins of vertebrate apical junctions: structure, functions and biophysics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183399. [DOI: 10.1016/j.bbamem.2020.183399] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/05/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022]
|
11
|
The Snakeskin-Mesh Complex of Smooth Septate Junction Restricts Yorkie to Regulate Intestinal Homeostasis in Drosophila. Stem Cell Reports 2020; 14:828-844. [PMID: 32330445 PMCID: PMC7220990 DOI: 10.1016/j.stemcr.2020.03.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/27/2022] Open
Abstract
Tight junctions in mammals and septate junctions in insects are essential for epithelial integrity. We show here that, in the Drosophila intestine, smooth septate junction proteins provide barrier and signaling functions. During an RNAi screen for genes that regulate adult midgut tissue growth, we found that loss of two smooth septate junction components, Snakeskin and Mesh, caused a hyperproliferation phenotype. By examining epitope-tagged endogenous Snakeskin and Mesh, we demonstrate that the two proteins are present in the cytoplasm of differentiating enteroblasts and in cytoplasm and septate junctions of mature enterocytes. In both enteroblasts and enterocytes, loss of Snakeskin and Mesh causes Yorkie-dependent expression of the JAK-STAT pathway ligand Upd3, which in turn promotes proliferation of intestinal stem cells. Snakeskin and Mesh form a complex with each other, with other septate junction proteins and with Yorkie. Therefore, the Snakeskin-Mesh complex has both barrier and signaling function to maintain stem cell-mediated tissue homeostasis. Snakeskin and Mesh are septate junction proteins essential for intestinal homeostasis Snakeskin and Mesh act in enteroblasts and enterocytes to regulate stem cell division Snakeskin and Mesh form a complex with and restrict the activity of Yorkie Loss of Snakeskin and Mesh allows Yorkie to promote Upd3 expression and growth
Collapse
|
12
|
Molecular organization, regulation and function of tricellular junctions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183143. [DOI: 10.1016/j.bbamem.2019.183143] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/21/2019] [Accepted: 11/29/2019] [Indexed: 02/07/2023]
|
13
|
Jonusaite S, Beyenbach KW, Meyer H, Paululat A, Izumi Y, Furuse M, Rodan AR. The septate junction protein Mesh is required for epithelial morphogenesis, ion transport, and paracellular permeability in the Drosophila Malpighian tubule. Am J Physiol Cell Physiol 2020; 318:C675-C694. [PMID: 31913700 DOI: 10.1152/ajpcell.00492.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Septate junctions (SJs) are occluding cell-cell junctions that have roles in paracellular permeability and barrier function in the epithelia of invertebrates. Arthropods have two types of SJs, pleated SJs and smooth SJs (sSJs). In Drosophila melanogaster, sSJs are found in the midgut and Malpighian tubules, but the functions of sSJs and their protein components in the tubule epithelium are unknown. Here we examined the role of the previously identified integral sSJ component, Mesh, in the Malpighian tubule. We genetically manipulated mesh specifically in the principal cells of the tubule at different life stages. Tubules of flies with developmental mesh knockdown revealed defects in epithelial architecture, sSJ molecular and structural organization, and lack of urine production in basal and kinin-stimulated conditions, resulting in edema and early adult lethality. Knockdown of mesh during adulthood did not disrupt tubule epithelial and sSJ integrity but decreased the transepithelial potential, diminished transepithelial fluid and ion transport, and decreased paracellular permeability to 4-kDa dextran. Drosophila kinin decreased transepithelial potential and increased chloride permeability, and it stimulated fluid secretion in both control and adult mesh knockdown tubules but had no effect on 4-kDa dextran flux. Together, these data indicate roles for Mesh in the developmental maturation of the Drosophila Malpighian tubule and in ion and macromolecular transport in the adult tubule.
Collapse
Affiliation(s)
- Sima Jonusaite
- Division of Nephrology and Hypertension, Department of Internal Medicine, and Molecular Medicine Program, University of Utah, Salt Lake City, Utah
| | - Klaus W Beyenbach
- Division of Animal Physiology, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Heiko Meyer
- Division of Zoology and Developmental Biology, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany.,Center of Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany
| | - Achim Paululat
- Division of Zoology and Developmental Biology, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany.,Center of Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany
| | - Yasushi Izumi
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, SOKENDAI, Okazaki, Japan
| | - Mikio Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, SOKENDAI, Okazaki, Japan
| | - Aylin R Rodan
- Division of Nephrology and Hypertension, Department of Internal Medicine, and Molecular Medicine Program, University of Utah, Salt Lake City, Utah.,Medical Service, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah
| |
Collapse
|
14
|
Richardson GP, Petit C. Hair-Bundle Links: Genetics as the Gateway to Function. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a033142. [PMID: 30617060 DOI: 10.1101/cshperspect.a033142] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Up to five distinct cell-surface specializations interconnect the stereocilia and the kinocilium of the mature hair bundle in some species: kinocilial links, tip links, top connectors, shaft connectors, and ankle links. In developing hair bundles, transient lateral links are prominent. Mutations in genes encoding proteins associated with these links cause Usher deafness/blindness syndrome or nonsyndromic (isolated) forms of human hereditary deafness, and mice with constitutive or conditional alleles of these genes have provided considerable insight into the molecular composition and function of the different links. We describe the structure of these links and review evidence showing CDH23 and PCDH15 are components of the tip, kinocilial, and transient-lateral links, that stereocilin (STRC) and protein tyrosine phosphatase (PTPRQ) are associated with top and shaft connectors, respectively, and that USH2A and ADGRV1 are associated with the ankle links. Whereas tip links are required for mechanoelectrical transduction, all link proteins play key roles in the normal development and/or the maintenance of hair bundle structure and function. Recent crystallographic and single-particle analyses of PCDH15 and CDH23 provide insight as to how the structure of tip link may contribute to the elastic element predicted to lie in series with the hair cell's mechanoelectrical transducer channel.
Collapse
Affiliation(s)
- Guy P Richardson
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | - Christine Petit
- Institut Pasteur, 75724 Paris Cedex 15, France.,Collège de France, 75231 Paris Cedex 05, France
| |
Collapse
|
15
|
Caccia S, Casartelli M, Tettamanti G. The amazing complexity of insect midgut cells: types, peculiarities, and functions. Cell Tissue Res 2019; 377:505-525. [DOI: 10.1007/s00441-019-03076-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/08/2019] [Indexed: 01/12/2023]
|
16
|
Hu X, Steimel JP, Kapka-Kitzman DM, Davis-Vogel C, Richtman NM, Mathis JP, Nelson ME, Lu AL, Wu G. Molecular characterization of the insecticidal activity of double-stranded RNA targeting the smooth septate junction of western corn rootworm (Diabrotica virgifera virgifera). PLoS One 2019; 14:e0210491. [PMID: 30629687 PMCID: PMC6328145 DOI: 10.1371/journal.pone.0210491] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 12/24/2018] [Indexed: 01/14/2023] Open
Abstract
The western corn rootworm (WCR, Diabrotica virgifera virgifera) gene, dvssj1, is a putative homolog of the Drosophila melanogaster gene, snakeskin (ssk). This gene encodes a membrane protein associated with the smooth septate junction (SSJ) which is required for the proper barrier function of the epithelial lining of insect intestines. Disruption of DVSSJ integrity by RNAi technique has been shown previously to be an effective approach for corn rootworm control, by apparent suppression of production of DVSSJ1 protein leading to growth inhibition and mortality. To understand the mechanism that leads to the death of WCR larvae by dvssj1 double-stranded RNA, we examined the molecular characteristics associated with SSJ functions during larval development. Dvssj1 dsRNA diet feeding results in dose-dependent suppression of mRNA and protein; this impairs SSJ formation and barrier function of the midgut and results in larval mortality. These findings suggest that the malfunctioning of the SSJ complex in midgut triggered by dvssj1 silencing is the principal cause of WCR death. This study also illustrates that dvssj1 is a midgut-specific gene in WCR and its functions are consistent with biological functions described for ssk.
Collapse
Affiliation(s)
- Xu Hu
- DuPont Pioneer, Johnston, Iowa, United States of America
- * E-mail: (XH); (MEN)
| | | | | | | | | | - John P. Mathis
- DuPont Pioneer, Johnston, Iowa, United States of America
| | - Mark E. Nelson
- DuPont Pioneer, Johnston, Iowa, United States of America
- * E-mail: (XH); (MEN)
| | - Albert L. Lu
- DuPont Pioneer, Johnston, Iowa, United States of America
| | - Gusui Wu
- DuPont Pioneer, Hayward, California, United States of America
| |
Collapse
|
17
|
Kolosov D, Donly C, MacMillan H, O'Donnell MJ. Transcriptomic analysis of the Malpighian tubules of Trichoplusia ni: Clues to mechanisms for switching from ion secretion to ion reabsorption in the distal ileac plexus. JOURNAL OF INSECT PHYSIOLOGY 2019; 112:73-89. [PMID: 30562492 DOI: 10.1016/j.jinsphys.2018.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/02/2018] [Accepted: 12/14/2018] [Indexed: 06/09/2023]
Abstract
Excretion of metabolic wastes and toxins in insect Malpighian tubules (MTs) is coupled to secretion of ions and fluid. Larval lepidopterans demonstrate a complex and regionalized MT morphology, and recent studies of larvae of the cabbage looper, Trichoplusia ni, have revealed several unusual aspects of ion transport in the MTs. Firstly, cations are reabsorbed via secondary cells (SCs) in T. ni, whereas in most insects SCs secrete ions. Secondly, SCs are coupled to neighbouring principal cells (PCs) via gap junctions to enable such ion reabsorption. Thirdly, PCs in the SC-containing distal ileac plexus (DIP) region of the tubule reverse from cation secretion to reabsorption in response to dietary ion loading. Lastly, antidiuresis is observed in response to a kinin neuropeptide, which targets both PCs and SCs, whereas in most insects kinins are diuretics that act exclusively via SCs. Recent studies have generated a basic model of ion transport in the DIP of the larval T. ni. RNAseq was used to elucidate previously uncharacterised aspects of ion transport and endocrine regulation in the DIP, with the aim of painting a composite picture of ion transport and identifying putative regulatory mechanisms of ion transport reversal in this tissue. Results indicated an overall expression of 9103 transcripts in the DIP, 993 and 382 of which were differentially expressed in the DIP of larvae fed high-K+ and high-Na+ diets respectively. Differentially expressed transcripts include ion-motive ATPases, ion channels and co-transporters, aquaporins, nutrient and xenobiotic transporters, cell adhesion and junction components, and endocrine receptors. Notably, several transcripts for voltage-gated ion channels and cell volume regulation-associated products were detected in the DIP and differentially expressed in larvae fed ion-rich diet. The study provides insights into the transport of solutes (sugars, amino acids, xenobiotics, phosphate and inorganic ions) by the DIP of lepidopterans. Our data suggest that this region of the MT in lepidopterans (as previously reported) transports cations, fluid, and xenobiotics/toxic metals. Besides this, the DIP expresses genes coding for the machinery involved in Na+- and H+-dependent reabsorption of solutes, chloride transport, and base recovery. Additionally, many of the transcripts expressed by the DIP a capacity of this region to respond to, process, and sometimes produce, neuropeptides, steroid hormones and neurotransmitters. Lastly, the DIP appears to possess an arsenal of septate junction components, differential expression of which may indicate junctional restructuring in the DIP of ion-loaded larvae.
Collapse
Affiliation(s)
| | - Cam Donly
- Department of Biology, University of Western Ontario, Canada; London Research and Development Centre, Agriculture and Agri-Food Canada, Canada
| | | | | |
Collapse
|
18
|
Kolosov D, Jonusaite S, Donini A, Kelly SP, O'Donnell MJ. Septate junction in the distal ileac plexus of larval lepidopteran Trichoplusia ni: alterations in paracellular permeability during ion transport reversal. J Exp Biol 2019; 222:jeb.204750. [DOI: 10.1242/jeb.204750] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/01/2019] [Indexed: 01/18/2023]
Abstract
The Malpighian tubules (MTs) and hindgut together act as the functional kidney in insects. MTs of caterpillars are notably complex and consist of several regions that display prominent differences in ion transport. The distal ileac plexus (DIP) is a region of Malpighian tubule that is of particular interest because it switches from ion secretion to ion reabsorption in larvae fed on ion-rich diets. The pathways of solute transport in the DIP are not well understood, but one potential route is the paracellular pathway between epithelial cells. This pathway is regulated by the septate junctions (SJs) in invertebrates, and in this study, we found regional and cellular heterogeneity in expression of several integral SJ proteins. DIP of larvae fed ion-rich diets demonstrated a reduction in paracellular permeability, coupled with alterations in both SJ morphology and the abundance of its molecular components. Similarly, treatment in vitro with helicokinin (HK), an antidiuretic hormone identified by previous studies, altered mRNA abundance of many SJ proteins and reduced paracellular permeability. HK was also shown to target a secondary cell-specific SJ protein Tsp2A. Taken together, our data suggest that dietary ion loading, known to cause ion transport reversal in the DIP of larval T. ni, leads to alterations in the paracellular permeability, SJ morphology and its molecular component abundance. The results suggest that HK is an important endocrine factor that co-regulates ion transport, water transport and paracellular permeability in MTs of larval lepidopterans. We propose that co-regulation of all three components of the MT function in larval lepidopterans allows for safe toggling between ion secretion and reabsorption in the DIP in response to variations in dietary ion availability.
Collapse
Affiliation(s)
- Dennis Kolosov
- McMaster University, Department of Biology, Hamilton, L8S 4K1, Canada
| | - Sima Jonusaite
- University of Utah, Division of Nephrology and Hypertension, Department of Internal Medicine, Molecular Medicine Program, Salt Lake City, 84132, USA
| | - Andrew Donini
- York University, Department of Biology, M3J 1P3, Canada
| | | | | |
Collapse
|
19
|
Izumi Y, Furuse K, Furuse M. Septate junctions regulate gut homeostasis through regulation of stem cell proliferation and enterocyte behavior in Drosophila. J Cell Sci 2019; 132:jcs.232108. [DOI: 10.1242/jcs.232108] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 08/15/2019] [Indexed: 12/27/2022] Open
Abstract
Smooth septate junctions (sSJs) contribute to the epithelial barrier, which restricts leakage of solutes through the paracellular route of epithelial cells in the Drosophila midgut. We previously identified three sSJ-associated membrane proteins, Ssk, Mesh, and Tsp2A, and showed that these proteins were required for sSJ formation and intestinal barrier function in the larval midgut. Here, we investigated the roles of sSJs in the Drosophila adult midgut. Depletion of any of the sSJ-proteins from enterocytes resulted in remarkably shortened lifespan and intestinal barrier dysfunction in flies. Interestingly, the sSJ-protein-deficient flies showed intestinal hypertrophy accompanied by accumulation of morphologically abnormal enterocytes. The phenotype was associated with increased stem cell proliferation and activation of the MAP kinase and Jak-Stat pathways in stem cells. Loss of cytokines Unpaired2 and Unpaired3, which are involved in Jak-Stat pathway activation, reduced the intestinal hypertrophy, but not the increased stem cell proliferation, in flies lacking Mesh. The present findings suggest that SJs play a crucial role in maintaining tissue homeostasis through regulation of stem cell proliferation and enterocyte behavior in the Drosophila adult midgut.
Collapse
Affiliation(s)
- Yasushi Izumi
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Japan
- Department of Physiological Sciences, SOKENDAI, Okazaki, Japan
| | - Kyoko Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Japan
| | - Mikio Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Japan
- Department of Physiological Sciences, SOKENDAI, Okazaki, Japan
| |
Collapse
|
20
|
Denecke S, Swevers L, Douris V, Vontas J. How do oral insecticidal compounds cross the insect midgut epithelium? INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 103:22-35. [PMID: 30366055 DOI: 10.1016/j.ibmb.2018.10.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/09/2018] [Accepted: 10/21/2018] [Indexed: 06/08/2023]
Abstract
The use of oral insecticidal molecules (small molecules, peptides, dsRNA) via spray or plant mediated applications represents an efficient way to manage damaging insect species. With the exception of Bt toxins that target the midgut epithelium itself, most of these compounds have targets that lie within the hemocoel (body) of the insect. Because of this, one of the greatest factors in determining the effectiveness of an oral insecticidal compound is its ability to traverse the gut epithelium and enter the hemolymph. However, for many types of insecticidal compounds, neither the pathway taken across the gut nor the specific genes which influence uptake are fully characterized. Here, we review how different types of insecticidal compounds enter or cross the midgut epithelium through passive (diffusion) or active (transporter based, endocytosis) routes. A deeper understanding of how insecticidal molecules cross the gut will help to best utilize current insecticides and also provide for more rational design of future ones.
Collapse
Affiliation(s)
- Shane Denecke
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100, Heraklion, Greece.
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology Research Group, Institute of Biosciences & Applications, NCSR "Demokritos", Athens, Greece
| | - Vassilis Douris
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100, Heraklion, Greece
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100, Heraklion, Greece; Department of Crop Science, Pesticide Science Lab, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
21
|
Abstract
Multicellular animals face the principle challenge to deal with two distinct compartments: the internal organismal compartment and the external environment. This challenge is met by the differentiation of cell sheets into epithelia, which provide a dynamic barrier in tissues, organs, and organisms. Cell polarity is key to all functions of epithelia, and compromising polarity causes many severe diseases. Within the past 20 years, research on Drosophila melanogaster discovered a conserved molecular machinery that controls epithelial polarity. Recent findings suggest that the textbook Drosophila-based paradigm of the control of epithelial polarity may not be as universal as previously assumed.
Collapse
Affiliation(s)
- H-Arno J. Müller
- Division of Developmental Genetics, Institute for Biology, University of Kassel, Kassel, Germany
| |
Collapse
|
22
|
Salazar AM, Resnik-Docampo M, Ulgherait M, Clark RI, Shirasu-Hiza M, Jones DL, Walker DW. Intestinal Snakeskin Limits Microbial Dysbiosis during Aging and Promotes Longevity. iScience 2018; 9:229-243. [PMID: 30419503 PMCID: PMC6231084 DOI: 10.1016/j.isci.2018.10.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/24/2018] [Accepted: 10/19/2018] [Indexed: 01/08/2023] Open
Abstract
Intestinal barrier dysfunction is an evolutionarily conserved hallmark of aging, which has been linked to microbial dysbiosis, altered expression of occluding junction proteins, and impending mortality. However, the interplay between intestinal junction proteins, age-onset dysbiosis, and lifespan determination remains unclear. Here, we show that altered expression of Snakeskin (Ssk), a septate junction-specific protein, can modulate intestinal homeostasis, microbial dynamics, immune activity, and lifespan in Drosophila. Loss of Ssk leads to rapid and reversible intestinal barrier dysfunction, altered gut morphology, dysbiosis, and dramatically reduced lifespan. Remarkably, restoration of Ssk expression in flies showing intestinal barrier dysfunction rescues each of these phenotypes previously linked to aging. Intestinal up-regulation of Ssk protects against microbial translocation following oral infection with pathogenic bacteria. Furthermore, intestinal up-regulation of Ssk improves intestinal barrier function during aging, limits dysbiosis, and extends lifespan. Our findings indicate that intestinal occluding junctions may represent prolongevity targets in mammals.
Collapse
Affiliation(s)
- Anna M Salazar
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Martin Resnik-Docampo
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Matthew Ulgherait
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Rebecca I Clark
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Mimi Shirasu-Hiza
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - D Leanne Jones
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - David W Walker
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
23
|
Jing T, Wang F, Qi F, Wang Z. Insect anal droplets contain diverse proteins related to gut homeostasis. BMC Genomics 2018; 19:784. [PMID: 30376807 PMCID: PMC6208037 DOI: 10.1186/s12864-018-5182-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/17/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Insects share similar fundamental molecular principles with mammals in innate immunity. For modulating normal gut microbiota, insects produce phenoloxidase (PO), which is absent in all vertebrates, and reactive nitrogen species (ROS) and antimicrobial proteins (AMPs). However, reports on insect gut phagocytosis are very few. Furthermore, most previous studies measure gene expression at the transcription level. In this study, we provided proteomic evidence on gut modulation of normal microorganisms by investigating the anal droplets from a weevil, Cryptorhynchus lapathi. RESULTS The results showed that the anal droplets contained diverse proteins related to physical barriers, epithelium renewal, pattern recognition, phenoloxidase activation, oxidative defense and phagocytosis, but AMPs were not detected. According to annotations, Scarb1, integrin βν, Dscam, spondin or Thbs2s might mediate phagocytosis. As a possible integrin βν pathway, βν activates Rho by an unknown mechanism, and Rho induces accumulation of mDia, which then promotes actin polymerization. CONCLUSIONS Our results well demonstrated that insect anal droplets can be used as materials to investigate the defense of a host to gut microorganisms and supported to the hypothesis that gut phagocytosis occurs in insects.
Collapse
Affiliation(s)
- Tianzhong Jing
- School of Forestry, Northeast Forestry University, Harbin, 150040, China.
| | - Fuxiao Wang
- School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Fenghui Qi
- School of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Zhiying Wang
- School of Forestry, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
24
|
Chen J, Sayadian AC, Lowe N, Lovegrove HE, St Johnston D. An alternative mode of epithelial polarity in the Drosophila midgut. PLoS Biol 2018; 16:e3000041. [PMID: 30339698 PMCID: PMC6209374 DOI: 10.1371/journal.pbio.3000041] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/31/2018] [Accepted: 10/02/2018] [Indexed: 11/18/2022] Open
Abstract
Apical-basal polarity is essential for the formation and function of epithelial tissues, whereas loss of polarity is a hallmark of tumours. Studies in Drosophila have identified conserved polarity factors that define the apical (Crumbs, Stardust, Par-6, atypical protein kinase C [aPKC]), junctional (Bazooka [Baz]/Par-3), and basolateral (Scribbled [Scrib], Discs large [Dlg], Lethal [2] giant larvae [Lgl]) domains of epithelial cells. Because these conserved factors mark equivalent domains in diverse types of vertebrate and invertebrate epithelia, it is generally assumed that this system underlies polarity in all epithelia. Here, we show that this is not the case, as none of these canonical factors are required for the polarisation of the endodermal epithelium of the Drosophila adult midgut. Furthermore, like vertebrate epithelia but not other Drosophila epithelia, the midgut epithelium forms occluding junctions above adherens junctions (AJs) and requires the integrin adhesion complex for polarity. Thus, Drosophila contains two types of epithelia that polarise by fundamentally different mechanisms. This diversity of epithelial types may reflect their different developmental origins, junctional arrangement, or whether they polarise in an apical-basal direction or vice versa. Since knock-outs of canonical polarity factors in vertebrates often have little or no effect on epithelial polarity and the Drosophila midgut shares several common features with vertebrate epithelia, this diversity of polarity mechanisms is likely to be conserved in other animals.
Collapse
Affiliation(s)
- Jia Chen
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Aram-Christopher Sayadian
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Nick Lowe
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Holly E. Lovegrove
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Daniel St Johnston
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
25
|
Tsuchiya Y, Mii Y, Okada K, Furuse M, Okubo T, Takada S. Ripply3 is required for the maintenance of epithelial sheets in the morphogenesis of pharyngeal pouches. Dev Growth Differ 2018; 60:87-96. [PMID: 29471585 DOI: 10.1111/dgd.12425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/28/2017] [Accepted: 12/30/2017] [Indexed: 01/15/2023]
Abstract
During tissue development, the morphogenesis of epithelial sheets is regulated by many factors, including mechanical force, although the underlying mechanisms remain largely unknown. In the pharyngeal region of the vertebrate embryo, endodermal epithelium is reiteratively folded outward to form pharyngeal pouches, making partitions between the pharyngeal arches. Ripply3, encoding a member of the Ripply family of adaptor proteins, is required for the pouch formation posterior to the 2nd pharyngeal pouch. In this study, we found that the expression of mouse Ripply3 was specifically activated in accordance with the bending of the endodermal epithelium during the pouch formation. In Ripply3-deficient embryos, a continuous monolayer of the endodermal epithelium was not maintained posterior to the 2nd pharyngeal pouch. Corresponding to the endodermal region of the deformed epithelium, the activated form of Integrin β1, which was localized at the basal side of the epithelial cells in the wild-type embryos, was not persistently observed in the mutants. On the other hand, cell proliferation and apoptotic cell death in the endoderm were not obviously affected by the Ripply3 deficiency. Significantly, Ripply3 expressed in cultured cells was found to be preferentially accumulated in the focal adhesions, which are Integrin-mediated adhesive contact sites transmitting mechanical force between the extracellular matrix and attached cells. Furthermore, Ripply3 promoted the maturation of focal adhesions in these cells. Thus, Ripply3 appears to have been activated to enhance the connection between the extracellular matrix and endodermal epithelial cells, as a mechanism to resist the mechanical stress generated during the bending of the epithelial sheets.
Collapse
Affiliation(s)
- Yoshihiro Tsuchiya
- Okazaki Institute for Integrative Bioscience and National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Basic Biology, SOKENDAI (Graduate School for Advanced Studies), Okazaki, Japan.,National Institute for Basic Biology, Okazaki, Japan
| | - Yusuke Mii
- Okazaki Institute for Integrative Bioscience and National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Basic Biology, SOKENDAI (Graduate School for Advanced Studies), Okazaki, Japan.,National Institute for Basic Biology, Okazaki, Japan
| | - Kazunori Okada
- Okazaki Institute for Integrative Bioscience and National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan.,National Institute for Basic Biology, Okazaki, Japan
| | - Mikio Furuse
- National Institute for Physiological Science, Okazaki, Japan
| | - Tadashi Okubo
- Department of Laboratory Animal Science, Kitasato University School of Medicine, Minami-ku, Sagamihara, Japan
| | - Shinji Takada
- Okazaki Institute for Integrative Bioscience and National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Basic Biology, SOKENDAI (Graduate School for Advanced Studies), Okazaki, Japan.,National Institute for Basic Biology, Okazaki, Japan
| |
Collapse
|