1
|
Lu X, Sun Y, Zhang Z, Sun Z, Wang S, Xu E. Regulation of pyroptosis by natural products in ulcerative colitis: mechanisms and therapeutic potential. Front Pharmacol 2025; 16:1573684. [PMID: 40271055 PMCID: PMC12014637 DOI: 10.3389/fphar.2025.1573684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025] Open
Abstract
Ulcerative colitis (UC), a chronic inflammatory bowel disease, is driven by dysregulated immune responses and persistent intestinal inflammation. Pyroptosis, a caspase/gasdermin-mediated inflammatory cell death that exacerbates mucosal damage through excessive cytokine release and epithelial barrier disruption. Although pyroptosis is considered to be a key mechanism in the pathogenesis of UC, the systematic assessment of the role of natural products in targeting the pyroptosis pathway remains a critical research gap. The purpose of this review is to investigate the regulatory effects of natural products on pyroptosis in UC and elucidate the mechanisms of action and potential therapeutic effects. Key findings highlight polyphenols (e.g., resveratrol), flavonoids (e.g., Quercetin), and terpenoids as promising agents that inhibit NLRP3 inflammasome activation, suppress gasdermin D cleavage, and restore barrier integrity, thereby reducing pro-inflammatory cytokine release in preclinical UC models. Current evidence shows enhanced efficacy and safety when these compounds are combined with standard therapies, but clinical translation requires overcoming three key barriers: limited human trial data, uncharacterized polypharmacology, and suboptimal pharmacokinetics needing formulation refinement. Future research should prioritize standardized animal-to-human translational models, mechanistic studies on synergistic pathways, and rigorous clinical validation to harness the full potential of natural products in pyroptosis-targeted UC therapies.
Collapse
Affiliation(s)
- Xiaobei Lu
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yapeng Sun
- Department of Proctology, Third Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Zhaoyi Zhang
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhigang Sun
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Shaohui Wang
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - Erping Xu
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
2
|
Muro P, Jing C, Zhao Z, Jin T, Mao F. The emerging role of honeysuckle flower in inflammatory bowel disease. Front Nutr 2025; 12:1525675. [PMID: 40225345 PMCID: PMC11985448 DOI: 10.3389/fnut.2025.1525675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 03/13/2025] [Indexed: 04/15/2025] Open
Abstract
Crohn's disease (CD) and ulcerative colitis (UC), referred to as inflammatory bowel disease (IBD), pose considerable challenges in treatment because they are chronic conditions that easily relapse. The occurrence of IBD continues to rise in developing countries. Nonetheless, the existing therapies for IBD have limitations and fail to address the needs of the patients thoroughly. There is an increasing need for new, safe, and highly effective alternative medications for IBD patients. Traditional Chinese Medicine (TCM) is employed in drug development and disease management due to its wide-range of biological activities, minimal toxicity, and limited side effects. Extensive research has shown that certain TCM exhibits significant therapeutic benefits for IBD treatments. Honeysuckle (Lonicera japonica) was used in TCM research and clinical settings for the treatment of IBD. Bioactive metabolites in L. japonica, such as luteolin, quercetin, cyanidin, chlorogenic acid (CGA), caffeic acid (CA), and saponin, exhibit significant therapeutic benefits for managing IBD. The honeysuckle flower is a potential candidate in the treatment of IBD due to its anti-inflammatory, immune system-regulating, and antioxidant qualities. This paper reviews the metabolites of the honeysuckle flower as a candidate for the treatment of IBD. It discusses the fundamental mechanism of L. japonica and the potential of its bioactive metabolites in the prevention and treatment of IBD.
Collapse
Affiliation(s)
- Peter Muro
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Caihong Jing
- The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, Jiangsu, China
| | - Zhihan Zhao
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Tao Jin
- Department of Gastrointestinal and Endoscopy, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Fei Mao
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
3
|
Araiza-Alvarado A, Álvarez SA, Gallegos-Infante JA, Sánchez-Burgos JA, Rocha-Guzmán NE, González-Herrera SM, Moreno-Jiménez MR, González-Laredo RF, Cervantes-Cardoza V. Sweetening with Agavins: Its Impact on Sensory Acceptability, Physicochemical Properties, Phenolic Composition and Nutraceutical Potential of Oak Iced Tea. Foods 2025; 14:833. [PMID: 40077536 PMCID: PMC11898482 DOI: 10.3390/foods14050833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/23/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Oak infusions enriched with agavins may offer nutraceutical benefits in the development of iced teas. This study evaluated infusions of Quercus sideroxyla and Quercus eduardii leaves formulated with different concentrations of agavins (0, 2, 6, and 10%), analyzing their physicochemical and sensory properties, chemical stability, and antioxidant capacity. The incorporation of agavins resulted in substantial modifications to physicochemical parameters, including pH, titratable acidity, and soluble solids, thereby enhancing product stability and consistency. Notable distinctions were observed between the two species with respect to their acidogenic response and soluble solid concentration. Interactions between agavins and phenolic compounds, as discerned by UPLC-PDA-ESI-MS/MS and FT-IR, exerted a significant influence on bioactivity of the phenolic constituents, thereby affecting the nutraceutical potential of the infusions. These interactions, facilitated by hydrogen bonds, led to reduction in phenolic acids, such as quinic acid (↓ 43%), and alteration in antioxidant capacity at high concentrations of agavins. The findings underscore the significance of meticulously designing balanced formulations that optimize chemical stability, functionality, and sensory acceptance, thereby ensuring the quality of the final product.
Collapse
Affiliation(s)
- Aylín Araiza-Alvarado
- Laboratorio Nacional CONAHCYT de Apoyo a la Evaluación de Productos Bióticos (LaNAEPBi), Unidad de Servicio Tecnológico Nacional de México, TecNM-I.T. de Durango, Felipe Pescador 1830, Durango 34080, Mexico; (A.A.-A.); (S.A.Á.); (J.A.G.-I.); (S.M.G.-H.); (M.R.M.-J.); (R.F.G.-L.); (V.C.-C.)
| | - Saúl Alberto Álvarez
- Laboratorio Nacional CONAHCYT de Apoyo a la Evaluación de Productos Bióticos (LaNAEPBi), Unidad de Servicio Tecnológico Nacional de México, TecNM-I.T. de Durango, Felipe Pescador 1830, Durango 34080, Mexico; (A.A.-A.); (S.A.Á.); (J.A.G.-I.); (S.M.G.-H.); (M.R.M.-J.); (R.F.G.-L.); (V.C.-C.)
| | - José Alberto Gallegos-Infante
- Laboratorio Nacional CONAHCYT de Apoyo a la Evaluación de Productos Bióticos (LaNAEPBi), Unidad de Servicio Tecnológico Nacional de México, TecNM-I.T. de Durango, Felipe Pescador 1830, Durango 34080, Mexico; (A.A.-A.); (S.A.Á.); (J.A.G.-I.); (S.M.G.-H.); (M.R.M.-J.); (R.F.G.-L.); (V.C.-C.)
| | - Jorge Alberto Sánchez-Burgos
- Food Research Laboratory, Technological Institute of Tepic, National Technological Institute of Mexico, Instituto Tecnológico Avenue No 2595, Lagos del Country, Tepic 63175, Mexico;
| | - Nuria Elizabeth Rocha-Guzmán
- Laboratorio Nacional CONAHCYT de Apoyo a la Evaluación de Productos Bióticos (LaNAEPBi), Unidad de Servicio Tecnológico Nacional de México, TecNM-I.T. de Durango, Felipe Pescador 1830, Durango 34080, Mexico; (A.A.-A.); (S.A.Á.); (J.A.G.-I.); (S.M.G.-H.); (M.R.M.-J.); (R.F.G.-L.); (V.C.-C.)
| | - Silvia Marina González-Herrera
- Laboratorio Nacional CONAHCYT de Apoyo a la Evaluación de Productos Bióticos (LaNAEPBi), Unidad de Servicio Tecnológico Nacional de México, TecNM-I.T. de Durango, Felipe Pescador 1830, Durango 34080, Mexico; (A.A.-A.); (S.A.Á.); (J.A.G.-I.); (S.M.G.-H.); (M.R.M.-J.); (R.F.G.-L.); (V.C.-C.)
| | - Martha Rocío Moreno-Jiménez
- Laboratorio Nacional CONAHCYT de Apoyo a la Evaluación de Productos Bióticos (LaNAEPBi), Unidad de Servicio Tecnológico Nacional de México, TecNM-I.T. de Durango, Felipe Pescador 1830, Durango 34080, Mexico; (A.A.-A.); (S.A.Á.); (J.A.G.-I.); (S.M.G.-H.); (M.R.M.-J.); (R.F.G.-L.); (V.C.-C.)
| | - Rubén Francisco González-Laredo
- Laboratorio Nacional CONAHCYT de Apoyo a la Evaluación de Productos Bióticos (LaNAEPBi), Unidad de Servicio Tecnológico Nacional de México, TecNM-I.T. de Durango, Felipe Pescador 1830, Durango 34080, Mexico; (A.A.-A.); (S.A.Á.); (J.A.G.-I.); (S.M.G.-H.); (M.R.M.-J.); (R.F.G.-L.); (V.C.-C.)
| | - Verónica Cervantes-Cardoza
- Laboratorio Nacional CONAHCYT de Apoyo a la Evaluación de Productos Bióticos (LaNAEPBi), Unidad de Servicio Tecnológico Nacional de México, TecNM-I.T. de Durango, Felipe Pescador 1830, Durango 34080, Mexico; (A.A.-A.); (S.A.Á.); (J.A.G.-I.); (S.M.G.-H.); (M.R.M.-J.); (R.F.G.-L.); (V.C.-C.)
| |
Collapse
|
4
|
Lian Y, Sun J, Yang L, Yu W. A bibliometric and visualization analysis of the role of traditional Chinese medicine in cancer immunotherapy. Front Immunol 2025; 16:1499026. [PMID: 40028340 PMCID: PMC11868050 DOI: 10.3389/fimmu.2025.1499026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
Objective Traditional Chinese medicine (TCM) is used as a complementary treatment for patients with cancer, especially in immunotherapy. Although extensive clinical and basic research has been conducted on TCM in cancer immunotherapy, a comprehensive bibliometric analysis of this field has not yet been performed. This study aimed to investigate the progress and status of TCM, and the research focused on cancer immunotherapy. Methods We collected 1,657 articles on TCM in cancer immunotherapy from 1994 to 2024 from the Web of Science Core Collection database. VOSviewer, CiteSpace, and the Bibliometrix R package were used to analyze countries, institutions, journals, authors, references, and keywords to predict future trends in cancer immunotherapy with TCM. Results The publication rate of TCM in cancer immunotherapy research steadily increased from 1994 to 2018, with a swift growth from 2018 to 2023. China and TCM universities have achieved the most research advancements in this field. The most studied types of cancer are liver, lung, and colorectal cancers. However, few studies exist on upper respiratory tract tumors, cervical cancer, and melanoma, which deserve more attention. The study trend has gradually shifted from in vivo and in vitro models to clinical efficacy. Simultaneously, the focus of research transitioned from compound TCM preparations or classes of ingredients to specific pharmacodynamic ingredients, and the corresponding targets transitioned from cytokines to immune checkpoints. In general, molecular docking combined with multi-omics analysis is a popular and trending research method in TCM for cancer immunotherapy, helping researchers understand the mechanisms of TCM in cancer immunotherapy more comprehensively and accurately. By analyzing the literature, it is evident that TCM-based immunotherapy should contribute to effective maintenance or adjuvant therapy throughout the entire course of cancer rather than only in the late stages. Conclusion This study comprehensively summarized and identified research frontiers providing a reference for promoting the development of TCM immunotherapy preparations and guiding clinical practice. Consequently, more patients with cancer can benefit from immunotherapy.
Collapse
Affiliation(s)
- Yixiao Lian
- Department of Library, Peking University People’s Hospital, Beijing, China
| | - Jie Sun
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People’s Hospital, Beijing, China
| | - Lin Yang
- Department of Library, Peking University People’s Hospital, Beijing, China
| | - Weidong Yu
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
5
|
Tang W, Huang X, Yi YD, Cao F, Deng M, Fan J, Jiang ZX, Tao LM, Wang X, Shi L. Hyaluronic acid-curcumin nanoparticles for preventing the progression of experimental autoimmune uveitis through the Keap1/Nrf2/HO-1 signaling pathway. J Nanobiotechnology 2025; 23:89. [PMID: 39915858 PMCID: PMC11804030 DOI: 10.1186/s12951-024-03082-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/25/2024] [Indexed: 02/09/2025] Open
Abstract
Globally, uveitis is a collection of intraocular inflammatory disorders that affect mainly the uvea, resulting in irreversible blindness and a heavy socioeconomic burden. Excessive autoimmune inflammation and oxidative stress are major drivers that contribute to the initiation and progression of uveitis. Nevertheless, current therapeutic methods for uveitis are limited and are accompanied by several serious adverse effects. Recently, nanotechnology-based antioxidant strategies have provided novel options for the treatment of ocular diseases. Although curcumin (CUR) has prominent antioxidant capacity and reactive oxygen species (ROS) scavenging ability, its low bioavailability and undetermined mechanisms limit its extensive application. This investigation demonstrated that esterified hyaluronic acid-curcumin nanoparticles (HA-CUR NPs) with superior aqueous dispersion exhibited exceptional antioxidant enzyme mimetic activity, incorporating superoxide dismutase (SOD), glutathione (GSH), catalase (CAT), and free radical scavenging ability. Further in vitro and in vivo experimental results validated the protective function of HA-CUR NPs against oxidative stress-induced damage and inflammatory responses, attenuated pathological progression, relieved microvascular damage, and regulated fundus blood flow in retinal vascular networks. This may be attributable to the specific ability of HA-CUR NPs to target the CD44 receptor and activate the Keap1/Nrf2/HO-1 signaling pathway, suggesting a potential mechanism. In summary, this study revealed that HA-CUR NPs, which are composed of a natural product and biomacromolecules with outstanding artificial antioxidant enzyme activities, may be novel agents for effectively and safely treating uveitis and other ROS-related diseases.
Collapse
Affiliation(s)
- Weiwei Tang
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, P. R. China
| | - Xiaomin Huang
- Eye Institute, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, NHC Key Laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, 200031, P. R. China
| | - Yun-Di Yi
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, P. R. China
| | - Fan Cao
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, P. R. China
| | - Manli Deng
- Eye Institute, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, NHC Key Laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, 200031, P. R. China
| | - Jiawei Fan
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, P. R. China
| | - Zheng-Xuan Jiang
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, P. R. China.
| | - Li-Ming Tao
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, P. R. China.
| | - Xianwen Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, P. R. China.
| | - Lei Shi
- Department of Ophthalmology, Anhui No. 2 Provincial People's Hospital, Hefei, 230041, P. R. China.
- Anhui Province Key Laboratory of Occupational Health, Anhui No. 2 Provincial People's Hospital, Hefei, 230041, P. R. China.
| |
Collapse
|
6
|
Xu MR, Lin CH, Wang CH, Wang SY. Investigate the metabolic changes in intestinal diseases by employing a 1H-NMR-based metabolomics approach on Caco-2 cells treated with cedrol. Biofactors 2025; 51:e2132. [PMID: 39415440 DOI: 10.1002/biof.2132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024]
Abstract
Mitochondrial dysfunction may precipitate intestinal dysfunction, while inflammatory bowel disease manifests as a chronic inflammatory ailment affecting the gastrointestinal tract. This condition disrupts the barrier function of the intestinal epithelium and alters metabolic products. Increasing mitochondrial adenosine triphosphate (ATP) synthesis in intestinal epithelial cells presents a promising avenue for colitis treatments. Nevertheless, the impact of cedrol on ATP and the intestinal barrier remains unexplored. Hence, this study is dedicated to examining the cedrol's protective effect on an inflammatory cocktail (IC)-induced intestinal epithelial barrier dysfunction in Caco-2 cells. The finding reveals that cedrol enhances ATP content and the transepithelial electrical resistance value in the intestinal epithelial barrier. Moreover, cedrol mitigates the IC-induced decrease in the messenger ribonucleic acid (mRNA) expression of tight junction proteins (ZO-1, Occludin, and Claudin-1), thereby ameliorating intestinal epithelial barrier dysfunction. Furthermore, nuclear magnetic resonance (NMR)-based metabolomic analysis indicated that IC-exposed Caco-2 cells are restored by cedrol treatments. Notably, cedrol elevates metabolites such as amino acids, thereby enhancing the intestinal barrier. In conclusion, cedrol alleviates IC-induced intestinal epithelial barrier dysfunction by promoting ATP-dependent proliferation of Caco-2 cells and bolstering amino acid levels to sustain tight junction messenger ribonucleic acid expression.
Collapse
Affiliation(s)
- Mo-Rong Xu
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taiwan
- Department of Forestry, National Chung Hsing University, Taichung, Taiwan
| | - Chia-Hsin Lin
- Department of Forestry, National Chung Hsing University, Taichung, Taiwan
| | - Chung Hsuan Wang
- Special Crop and Metabolome Discipline Cluster, Academy Circle Economy, National Chung Hsing University, Taichung, Taiwan
| | - Sheng-Yang Wang
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taiwan
- Department of Forestry, National Chung Hsing University, Taichung, Taiwan
- Special Crop and Metabolome Discipline Cluster, Academy Circle Economy, National Chung Hsing University, Taichung, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
7
|
Huang Y, Tang Y, Zhang R, Wu X, Yan L, Chen X, Wu Q, Chen Y, Lv Y, Su Y. Role of periodontal ligament fibroblasts in periodontitis: pathological mechanisms and therapeutic potential. J Transl Med 2024; 22:1136. [PMID: 39709490 PMCID: PMC11663348 DOI: 10.1186/s12967-024-05944-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/05/2024] [Indexed: 12/23/2024] Open
Abstract
Periodontal ligament fibroblasts (PDLFs) play a crucial role in the etiology of periodontitis and periodontal tissue regeneration. In healthy periodontal tissues, PDLFs maintain the homeostasis of periodontal soft and hard tissues as well as the local immune microenvironment. PDLFs also have the potential for multidirectional transdifferentiation and are involved in periodontal tissue regeneration. On the other hand, PDLFs can become dysfunctional and acquire an inflammatory phenotype to secret various inflammatory cytokines when affected by pathological factors. These cytokines further trigger immune and inflammatory events, and lead to destruction of periodontal soft and hard tissues as well as damage to the regenerative potential of PDLFs. This review summarizes the physiological functions of PDLFs. Meanwhile, this review also highlights recent insights into the pathological mechanisms driving the development of periodontitis through dysfunctional PDLFs and the negative impact on periodontal tissue regeneration. Additionally, this paper summarizes strategies for targeting PDLFs to treat periodontitis, involving blocking multiple stages of the inflammatory response induced by PDLFs and promoting the multidirectional transdifferentiation of PDLFs. Future research directions are proposed to address important questions that have not yet been answered in this field. This article provides a reference for understanding the important role of PDLFs in the pathological mechanisms of periodontitis and for developing new strategies for targeting PDLFs in periodontitis treatment.
Collapse
Affiliation(s)
- Yijie Huang
- Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Ying Tang
- Department of Prosthodontics, Huangpu District Dental Disease Prevention and Treatment Institute, Shanghai, 200001, China
| | - Ruiqi Zhang
- Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Xiao Wu
- Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Li Yan
- Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Xiling Chen
- Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Qianqi Wu
- Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Yiyan Chen
- Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Yingtao Lv
- Department of Prosthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yuan Su
- Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China.
- Department of Periodontology, Stomatological Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
8
|
Li X, Zhu R, Liu Q, Sun H, Sheng H, Zhu L. Effects of traditional Chinese medicine polysaccharides on chronic diseases by modulating gut microbiota: A review. Int J Biol Macromol 2024; 282:136691. [PMID: 39437951 DOI: 10.1016/j.ijbiomac.2024.136691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Intestinal tract is the largest immune system of human body. Gut microbiota (GM) can produce a large number of metabolites, such as short-chain fatty acids and bile acids, which regulate the physiological health of the host and affect the development of disease. In recent years, traditional Chinese medicine (TCM) polysaccharides have attracted extensive attention with multiple biological activities and low toxicity. TCM polysaccharides can promote the growth of intestinal beneficial bacteria and inhibit the growth of harmful bacteria by regulating the structure and function of GM, thus playing a crucial role in preventing or treating chronic diseases such as inflammatory bowel disease (IBD), obesity, type 2 diabetes mellitus (T2DM), liver diseases, cancer, etc. In this paper, the research progress of TCM polysaccharides in the treatment of chronic diseases such as inflammatory bowel disease, obesity, T2DM, liver diseases, cancer, etc. by modulating GM was reviewed. Meanwhile, this review makes an in-depth discussion on the shortcomings of the research of TCM polysaccharides on chronic diseases by modulating GM, and new valuable prospection for the future researches of TCM polysaccharides are proposed, which will provide new ideas for the further study of TCM polysaccharides.
Collapse
Affiliation(s)
- Xinyu Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Riran Zhu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Qian Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Henglai Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Huagang Sheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Liqiao Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
9
|
Kaur M, Chatterjee D, Singla S, Singh IP, Jena G. Coloprotective effects of chebulic myrobalan extract by regulation of AMPK-SIRT1 signaling: A pharmacological and histopathological evaluation. Tissue Cell 2024; 91:102592. [PMID: 39490247 DOI: 10.1016/j.tice.2024.102592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Ulcerative colitis is a chronic, refractory disease caused by dysregulation of mucosal immune responses to the indigenous bacterial flora as well as genetic and environmental variables. Recently, there has been increasing interest towards the use of herbal medicines for the treatment of ulcerative colitis and the potential benefits could lie in their high patient acceptability, effectiveness, safety, and relatively low cost. It has been reported that Chebulic myrobalan (Terminalia chebula) exhibits anti-oxidant, anti-inflammatory and immunomodulatory properties. The present study was designed to evaluate the protective potential of extract of dried fruit pulp of T. chebula against Dextran sulphate sodium (DSS)-induced ulcerative colitis in male BALB/c mice. Three cycles of DSS (3 % w/v in drinking water), each followed by a seven-day remission phase were used to induce ulcerative colitis in mice. Animals were treated with T. chebula (300 mg/kg and 600 mg/kg) starting from Ist remission period to the end of the study. Different biochemical assays, histological evaluation and molecular analysis were performed to evaluate the protective effects of T. chebula extract in DSS induced colitis. T. chebula modulates the expression of nuclear factor kappa B, adenosine monophosphate kinase, tumour necrosis factor-alpha, sirtuin 1 and interleukin-1β. Furthermore, it also accorded coloprotective effects against DNA damage, apoptosis, inflammation and nitrosative stress. Finally, it was found that the high dose of the T. chebula extract (600 mg/kg) was found to be more effective than a low dose (300 mg/kg) in restoring the ulcerative colitis induced colonic damage.
Collapse
Affiliation(s)
- Mandeep Kaur
- Facility for Risk Assessment and Intervention Studies, Dept. of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Punjab 160062, India
| | - Debanjan Chatterjee
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, SAS Nagar, Punjab 160062, India
| | - Shivani Singla
- Facility for Risk Assessment and Intervention Studies, Dept. of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Punjab 160062, India
| | - Inder Pal Singh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, SAS Nagar, Punjab 160062, India.
| | - Gopabandhu Jena
- Facility for Risk Assessment and Intervention Studies, Dept. of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Punjab 160062, India.
| |
Collapse
|
10
|
Zhao P, Ning J, Huang J, Huang X. Mechanism of Resveratrol on LPS/ATP-induced pyroptosis and inflammatory response in HT29 cells. Autoimmunity 2024; 57:2427094. [PMID: 39534992 DOI: 10.1080/08916934.2024.2427094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/25/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Pyroptosis plays an important role in maintenance of intestinal homeostasis, the abnormal activation of NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome can promote the event and development of ulcerative colitis (UC). Its protective effects such as inhibiting pyroptosis in various inflammation-related diseases have been demonstrated, but whether resveratrol (RES) can also alleviate the progression of the disease by inhibiting pyroptosis in UC and the mechanism have rarely been studied. In this study, lipopolysaccharide (LPS) combined with adenosine triphosphate (ATP) was used to induce HT29 human colon cancer cells to construct an intestinal epithelial cell pyroptosis and inflammation model in vitro to investigate the anti-inflammatory effect of RES, reveal the regulatory mechanism of RES on pyroptosis, and provide a new theoretical basis for the treatment of UC. In vitro experiences, HT29 cells were dividing into control group, LPS/ATP group, RES low-dose group, RES high-dose group, NF-κB inhibitor pyrrolidine dithiocarbamate group (PDTC group), and LPS/ATP+PDTC group. The mRNA expressions of pyroptosis-related indicators such as NLRP3, apoptosis-associated speck-like protein containing CARD (ASC), Caspase-1(CASP1), IL-18, IL-1β, and inflammatory factors such as TNF-α and IL-6 were detected by qRT-PCR. The protein expressions of pyroptosis-related indicators NLRP3, ASC, CASP1, IL-18, IL-1β, NF-κB-p65 in the nucleus, and IκBα and p-IκBα in the cytoplasm were detected by Western blot. Immunofluorescence saw the distribution and expression of NLRP3, ASC and NF-κB-p65 protein in each group. The morphology and degree of pyroptosis in each group were observed by transmission electron microscope. The results showed that compared with the control group, the pyroptosis-related proteins including NLRP3, ASC, CASP1, IL-18, IL-1β, and inflammatory factors including TNF-α and IL-6 in the LPS/ATP group were increased, and LPS/ATP activated the activity of NF-κB signaling pathway. Compared with the LPS/ATP group, RES downregulated the expression of pyroptosis-related proteins and inflammatory factors in HT29 cells, and inhibited the activation of the NF-κB signaling pathway in HT29 cells pyroptosis. RES down-regulates the pyroptosis of HT29 cells induced by LPS/ATP and the expression of pyroptosis-related indicators NLRP3, ASC, CASP1, IL-18, IL-1β and inflammatory factors TNF-α and IL-6 in the inflammatory response and inhibits the occurrence of pyroptosis. The mechanism is related to the inhibition of NF-κB pathway activity.
Collapse
Affiliation(s)
- Peizhuang Zhao
- Department of Geriatrics and Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiajia Ning
- Department of Geriatrics and Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jun Huang
- Department of Geriatrics and Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xue Huang
- Department of Geriatrics and Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
11
|
Han N, Li J, Li Y, Zhao F, Wang J, Ye P, Zeng Z. Xanthohumol ameliorates dextran sodium sulfate-induced colitis in mice by inhibiting of NF-κB signaling pathways and modulating intestinal microbiota. Eur J Nutr 2024; 64:21. [PMID: 39576384 DOI: 10.1007/s00394-024-03525-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/18/2024] [Indexed: 11/24/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xanthohumol (XN), an isoprenylated flavonoid natural product found only in hops, possesses a variety of biological activities such as anticancer, anti-inflammatory, hepatoprotective, and anti-obesity. AIM OF THE STUDY The aim of this study was to investigate the effects and mechanisms of XN on the treatment of colitis. MATERIALS AND METHODS First, acute colitis was induced by using distilled water containing 3% DSS for 10 consecutive days. The therapeutic efficacy of XN was assessed by an established DSS-induced mouse colitis model. Subsequently, disease activity index (DAI) and colon length of mice were assessed. The health of the intestines was assessed by histopathological analysis. Inflammatory factors, IL-1β, IL-6, and TNF-α, were detected in colon tissues by ELISA.Finally, mouse intestinal contents were extracted and subjected to 16 S rRNA Sequencing, and the gut microbiota was analysed for Alpha-diversity and Beta-diversity. RESULTS The results showed that XN ameliorated DSS-induced colitis. Furthermore, XN reduced pro-inflammatory cytokine levels such as IL-1β, IL-6, and TNF-α, as well as inhibited the activation of the TLR4/NF-κB pathway, all of which helped to mitigate the inflammatory response. Finally, we also found that XN alleviated intestinal dysbiosis in colitis mice. CONCLUSION In conclusion, our study demonstrated that XN provides protective effects against colitis, and has the potential to be further explored as a lead compound for the treatment of inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Ning Han
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jie Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yangyang Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Feiei Zhao
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jun Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Peiyu Ye
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
12
|
Wu Q, Liu K, Hou R, Wu X, Ruan X, Wang M, Sun Z, Meng L, Dai G, Li C, Wu J, Mu G. Integrative Lipid Pseudotargeted Metabolomics and Amino Acids Targeted Metabolomics Unravel the Therapeutic Mechanism of Rhizoma Paridis Saponins on Experimental Colitis of Damp-Heat Type. Drug Des Devel Ther 2024; 18:5087-5108. [PMID: 39554759 PMCID: PMC11568858 DOI: 10.2147/dddt.s476494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/14/2024] [Indexed: 11/19/2024] Open
Abstract
Purpose Inflammatory bowel disease (IBD) is a serious disease that affects the metabolism and inflammatory responses of human beings. From the perspective of traditional Chinese medicine, damp-heat syndrome is one of the main syndromes of IBD. Rhizoma Paridis, also known as the root of Paris polyphylla, a well-known herbal medicine used in China, is used to treat IBD with damp-heat syndrome (IBD-DH). However, uncertainty still exists regarding the underlying mechanisms and the impact of Rhizoma Paridis on IBD-DH. Methods The rats in the model (DAT) and medication administration (Rhizoma Paridis total saponins (RPTS) and Pennogenin (PN)) groups were given a high temperature and high humidity environment, high fat and high sugar diet combined with 2,4,6-trinitrobenzene sulfonic acid (TNBS) to establish the model of experimental colitis of damp-heat type, and the normal control group (RNC) rats were given a normal diet at normal temperature and humidity. Damp-heat control group (DNC) was set with the same condition as DAT without TNBS. Hematoxylin-Eosin (HE) staining was used to observe the histopathological morphology of the rat colorectum. The expression of the metabolism-related genes (Phospholipase A2 (sPLA2, cPLA2), and phosphatidylethanolamine N-methyltransferase (PEMT)) was assessed by using real-time quantitative PCR analysis (RT-qPCR). And the levels of the metabolism-related proteins (sPLA2, cPLA2), S100A8/9, Arg-1, and cytokines were detected by enzyme-linked immunosorbent assay (ELISA) kit. To investigate lipids and amino acids which closely associated with the IBD and IBD-DH, lipid pseudotargeted metabolomics with UHPLC-TQ/MS analysis method, as well as targeted quantitative amino acid analysis were performed. Results Our data showed that RPTS (50 mg/kg) and PN (20 mg/kg) significantly ameliorated the severity of TNBS-induced colitis and downregulated the levels of circulating proinflammatory cytokines. Compared with RNC group, lipid pseudotargeted metabolomics demonstrated that glycerophospholipids, sphingolipids, carnitine, and glycerolipids were the four most perturbed lipid classes, and amino acids targeted metabolomics demonstrated that serine, N-acetylneuraminic acid, histidine, proline, taurine, and kynurenine changed significantly in DAT group . Correlation analyses showed tight associations between most of differential metabolites and proinflammatory cytokines. RPTS and PN both regulated glycerophospholipid metabolism and sphingolipid metabolism. However, both of them did not have a significant effect on amino acid modulation. RPTS and PN potentially regulated sPLA2, cPLA2, and PEMT. Conclusion These results showed that RPTS (50 mg/kg) and PN (20 mg/kg) effectively alleviated rats' colitis of damp-heat type, affected cytokines, and altered lipid metabolism without significant modulation on amino acid metabolism.
Collapse
Affiliation(s)
- Qi Wu
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, People’s Republic of China
| | - Kexin Liu
- Department of Gastroenterology, The 981th Hospital of the Joint Logistics Support Force of the Chinese People’s Liberation Army, Chengde, Hebei, 067000, People’s Republic of China
| | - Ruijuan Hou
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, People’s Republic of China
| | - Xingxing Wu
- Department of Gastroenterology, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, 450053, People’s Republic of China
| | - Xiaoyu Ruan
- Internal Medicine Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, People’s Republic of China
| | - Mao Wang
- Ethics Committee, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, People’s Republic of China
| | - Zhiting Sun
- Institute of Chinese Medicine of Nanjing University, Nanjing Drum Tower Hospital, Drum Tower Clinical Medicine College of Nanjing University of Chinese Medicine, Nanjing, 210008, People’s Republic of China
| | - Lingchang Meng
- Institute of Chinese Medicine of Nanjing University, Nanjing Drum Tower Hospital, Drum Tower Clinical Medicine College of Nanjing University of Chinese Medicine, Nanjing, 210008, People’s Republic of China
| | - Guoliang Dai
- Clinical Pharmacology Laboratory, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, People’s Republic of China
| | - Changyin Li
- Clinical Pharmacology Laboratory, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, People’s Republic of China
| | - Jing Wu
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, People’s Republic of China
- Institute of Chinese Medicine of Nanjing University, Nanjing Drum Tower Hospital, Drum Tower Clinical Medicine College of Nanjing University of Chinese Medicine, Nanjing, 210008, People’s Republic of China
| | - Genglin Mu
- Institute of Chinese Medicine of Nanjing University, Nanjing Drum Tower Hospital, Drum Tower Clinical Medicine College of Nanjing University of Chinese Medicine, Nanjing, 210008, People’s Republic of China
| |
Collapse
|
13
|
Xu Y, Chen Z, Hao W, Yang Z, Farag M, Vong CT, Wang Y, Wang S. Berberine and magnolol exert cooperative effects on ulcerative colitis in mice by self-assembling into carrier-free nanostructures. J Nanobiotechnology 2024; 22:538. [PMID: 39227962 PMCID: PMC11373475 DOI: 10.1186/s12951-024-02804-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024] Open
Abstract
The risk of ulcerative colitis (UC) is increasing worldwide with limited success using classical drugs, which has underscored the development of novel agents. Recently, carrier-free molecular assembly has been proven to be an effective drug delivery system, but it has yet to be examined for UC drug development using phytochemicals. Based on traditional Chinese medicine compatibility and potential medicinal uses, a pair of natural compounds, berberine (BBR) and magnolol (MAG), were found to self-assemble into nanostructures in aqueous solutions. Spectral analysis revealed that the assembly mechanisms of BBR and MAG were mediated through charge interactions and π-π stacking. Pharmacokinetic studies and animal imaging showed that BBR-MAG self-assembly (BM) effectively promoted the oral bioavailability and biodistribution of BBR in the colon. BM exhibited superior effects in regulating inflammatory factors, maintaining colon barrier integrity, and regulating gut microbiota in a dextran sulfate sodium salt-induced colitis mouse model. Additionally, no apparent signs of toxicity were observed, suggesting that BM has a favorable safety profile. This study presents a new strategy for UC management and highlights the cooperative effects of combined phytochemicals.
Collapse
Affiliation(s)
- Yida Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Zhejie Chen
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wei Hao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Zhengming Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Mohamed Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasrel Aini St., Cairo, 11562, Egypt
| | - Chi Teng Vong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
14
|
Lan M, Lin C, Zeng L, Hu S, Shi Y, Zhao Y, Liu X, Sun J, Liang G, Huang M. Linderanine C regulates macrophage polarization by inhibiting the MAPK signaling pathway against ulcerative colitis. Biomed Pharmacother 2024; 178:117239. [PMID: 39098180 DOI: 10.1016/j.biopha.2024.117239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic non-specific inflammatory disease involving the mucosa and submucosa of the rectum and colon. Lindera aggregate (Sims) Kosterm is a traditional Chinese herb used for thousands of years in the treatment of gastrointestinal diseases. Previously, we have demonstrated that the extracts of Lindera aggregate have good anti-UC effects, but their pharmacodynamic active components have not been fully clarified. Therefore, we explored the therapeutic effect of Linderanine C (LDC), a characteristic component of Lindera aggregata, on UC and its mechanism in this study. Firstly, we found that LDC could significantly reduce the disease activity index of UC and improve shortened colon and pathological changes in vivo. Colon tissue transcriptomics suggested that the anti-UC effect of LDC might be related to its anti-inflammatory activity. Cellular experiments revealed that LDC could inhibit the expression of the M1 cell marker CD86 in RAW264.7 cells, reduce the production of inflammatory mediators such as IL-6 and TNF-α, and have good anti-inflammatory activity in vitro. Cellular transcriptomics reveal the potential involvement of the MAPK signaling pathway in the anti-inflammatory effect of LDC. The co-culture assay confirmed that LDC could significantly reduce inflammation-mediated intestinal epithelial cell injury. In conclusion, LDC was able to inhibit macrophage M1 polarization and reduce inflammatory mediator production by inhibiting the MAPK signaling pathway, effectively improving UC.
Collapse
Affiliation(s)
- Mengyao Lan
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Cailu Lin
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Lulu Zeng
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Shijie Hu
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Yuan Shi
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Yan Zhao
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Xin Liu
- Department of Colorectal Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Jinfeng Sun
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China
| | - Guang Liang
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China; Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China.
| | - Mincong Huang
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China.
| |
Collapse
|
15
|
Wang H, Zheng Y, Yang M, Wang L, Xu Y, You S, Mao N, Fan J, Ren S. Gut microecology: effective targets for natural products to modulate uric acid metabolism. Front Pharmacol 2024; 15:1446776. [PMID: 39263572 PMCID: PMC11387183 DOI: 10.3389/fphar.2024.1446776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
Gut microecology,the complex community consisting of microorganisms and their microenvironments in the gastrointestinal tract, plays a vital role in maintaining overall health and regulating various physiological and pathological processes. Recent studies have highlighted the significant impact of gut microecology on the regulation of uric acid metabolism. Natural products, including monomers, extracts, and traditional Chinese medicine formulations derived from natural sources such as plants, animals, and microorganisms, have also been investigated for their potential role in modulating uric acid metabolism. According to research, The stability of gut microecology is a crucial link for natural products to maintain healthy uric acid metabolism and reduce hyperuricemia-related diseases. Herein, we review the recent advanced evidence revealing the bidirectional regulation between gut microecology and uric acid metabolism. And separately summarize the key evidence of natural extracts and herbal formulations in regulating both aspects. In addition,we elucidated the important mechanisms of natural products in regulating uric acid metabolism and secondary diseases through gut microecology, especially by modulating the composition of gut microbiota, gut mucosal barrier, inflammatory response, purine catalyzation, and associated transporters. This review may offer a novel insight into uric acid and its associated disorders management and highlight a perspective for exploring its potential therapeutic drugs from natural products.
Collapse
Affiliation(s)
- Hui Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yixuan Zheng
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mengfan Yang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yao Xu
- Chengdu Medical College, Chengdu, China
| | - Siqi You
- Chengdu Medical College, Chengdu, China
| | - Nan Mao
- Chengdu Medical College, Chengdu, China
- Department of Nephrology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Junming Fan
- Chengdu Medical College, Chengdu, China
- Department of Nephrology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Sichong Ren
- Chengdu Medical College, Chengdu, China
- Department of Nephrology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- TCM Preventative Treatment Research Center of Chengdu Medical College, Chengdu, China
| |
Collapse
|
16
|
Geng Z, Zuo L, Li J, Yin L, Yang J, Duan T, Wang L, Zhang X, Song X, Wang Y, Hu J. Ginkgetin improved experimental colitis by inhibiting intestinal epithelial cell apoptosis through EGFR/PI3K/AKT signaling. FASEB J 2024; 38:e23817. [PMID: 39003633 DOI: 10.1096/fj.202400211rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024]
Abstract
Excessive apoptosis of intestinal epithelial cells leads to intestinal barrier dysfunction, which is not only one of the pathological features of inflammatory bowel disease (IBD) but also a therapeutic target. A natural plant extract, Ginkgetin (GK), has been reported to have anti-apoptotic activity, but its role in IBD is unknown. This study aimed to explore whether GK has anti-colitis effects and related mechanisms. An experimental colitis model induced by dextran sulfate sodium (DSS) was established, and GK was found to relieve colitis in DSS-induced mice as evidenced by improvements in weight loss, colon shortening, Disease Activity Index (DAI), macroscopic and tissue scores, and proinflammatory mediators. In addition, in DSS mice and TNF-α-induced colonic organoids, GK protected the intestinal barrier and inhibited intestinal epithelial cell apoptosis, by improving permeability and inhibiting the number of apoptotic cells and the expression of key apoptotic regulators (cleaved caspase 3, Bax and Bcl-2). The underlying mechanism of GK's protective effect was explored by bioinformatics, rescue experiments and molecular docking, and it was found that GK might directly target and activate EGFR, thereby interfering with PI3K/AKT signaling to inhibit apoptosis of intestinal epithelial cells in vivo and in vitro. In conclusion, GK inhibited intestinal epithelial apoptosis in mice with experimental colitis, at least in part, by activating EGFR and interfering with PI3K/AKT activation, explaining the underlying mechanism for ameliorating colitis, which may provide new options for the treatment of IBD.
Collapse
Affiliation(s)
- Zhijun Geng
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, Anhui, China
| | - Lugen Zuo
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, Anhui, China
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Jing Li
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, Anhui, China
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Lixia Yin
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- School of Clinical Medicine, Bengbu Medical University, Bengbu, Anhui, China
| | - Jingjing Yang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- School of Clinical Medicine, Bengbu Medical University, Bengbu, Anhui, China
| | - Ting Duan
- School of Clinical Medicine, Bengbu Medical University, Bengbu, Anhui, China
| | - Lian Wang
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, Anhui, China
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Xiaofeng Zhang
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, Anhui, China
| | - Xue Song
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, Anhui, China
| | - Yueyue Wang
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, Anhui, China
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Jianguo Hu
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, Anhui, China
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| |
Collapse
|
17
|
Li J, Wu H, Zhou J, Jiang R, Zhuo Z, Yang Q, Chen H, Sha W. Ruscogenin Attenuates Ulcerative Colitis in Mice by Inhibiting Caspase-1-Dependent Pyroptosis via the TLR4/NF-κB Signaling Pathway. Biomedicines 2024; 12:989. [PMID: 38790951 PMCID: PMC11117655 DOI: 10.3390/biomedicines12050989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/17/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic inflammatory disorders affecting the digestive tract, including ulcerative colitis and Crohn's disease. Ruscogenin, a prominent steroidal sapogenin present in radix ophiopogon japonicus, has shown a protective effect on attenuating the inflammatory response associated with inflammatory diseases, but the efficacy of ruscogenin in IBD remains unclear. The aim of this study is to explore the effect of ruscogenin on intestinal barrier dysfunction and inflammatory responses as well as the underlying mechanism in ulcerative colitis. A dextran sulfate sodium salt (DSS)-induced C57BL/6 mouse colitis model was employed for the in vivo studies, while in vitro experiments were performed in THP-1 cells and human intestinal epithelial cells involved in inducing inflammatory responses and pyroptosis using LPS/nigericin. The results indicated that ruscogenin treatment attenuated the symptoms of ulcerative colitis, reduced the release of inflammatory cytokines and the expression of pyroptosis-associated proteins, and restored the integrity of the intestinal epithelial barrier in colon tissue in mice. Moreover, ruscogenin inhibited LPS/nigericin-induced pyroptosis in THP-1 cells. Mechanically, ruscogenin inhibited NLRP3 inflammasome activation and canonical pyroptosis, at least in part, through the suppression of the TLR4/NF-κB signaling pathway. These findings might provide new insights and a solid foundation for further exploration into the therapeutic potential of ruscogenin in the treatment of IBD.
Collapse
Affiliation(s)
- Jingwei Li
- Department of Gastroenterology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; (J.L.); (R.J.); (Z.Z.); (Q.Y.)
| | - Huihuan Wu
- Department of Gastroenterology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan 528200, China;
| | - Jialiang Zhou
- Department of Neonatal Surgery, Guangdong Women and Children Hospital, Guangzhou 511400, China
| | - Rui Jiang
- Department of Gastroenterology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; (J.L.); (R.J.); (Z.Z.); (Q.Y.)
| | - Zewei Zhuo
- Department of Gastroenterology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; (J.L.); (R.J.); (Z.Z.); (Q.Y.)
| | - Qi Yang
- Department of Gastroenterology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; (J.L.); (R.J.); (Z.Z.); (Q.Y.)
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; (J.L.); (R.J.); (Z.Z.); (Q.Y.)
| | - Weihong Sha
- Department of Gastroenterology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; (J.L.); (R.J.); (Z.Z.); (Q.Y.)
| |
Collapse
|
18
|
Taher MA, Laboni AA, Islam MA, Hasnat H, Hasan MM, Ferdous J, Shompa SA, Khan M. Isolation, characterization and pharmacological potentials of methanol extract of Cassia fistula leaves: Evidenced from mice model along with molecular docking analysis. Heliyon 2024; 10:e28460. [PMID: 38590868 PMCID: PMC10999937 DOI: 10.1016/j.heliyon.2024.e28460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/10/2024] Open
Abstract
The purpose of the current investigation was to conduct a detailed analysis of the chemical components and medicinal properties of the methanolic crude extract derived from the leaves of Cassia fistula. This analysis was carried out using both experimental (in vivo) and computational (in silico) methods. Eleven chemicals were chromatographically isolated using GC-MS/MS, which utilizes a library of NIST and Wiley 2020 versions. FTIR analysis of the extract was performed to identify the functional group of the compounds. The glucose-lowering capacity, analgesic, and anti-diarrheal activities of methanolic crude extract were analyzed utilizing a well-known oral glucose tolerance test, tail immersion method, writhing assay, and castor oil-induced diarrheal mice methods, respectively. After 60 min, 120 min, and 180 min of loading the drugs, a significant reduction of blood glucose levels was examined (p < 0.05) in all the extracts of this plant (200 mg/kg, 400 mg/kg and 600 mg/kg) utilized in this research at a time-dependent manner. Similarly, all the crude extracts showed significant (p < 0.05) effects against pain centrally and peripherally compared to the standard drug morphine (2 mg/kg bw) and diclofenac sodium (50 mg/kg bw). Moreover, the methanol extract (400 mg/kg bw) manifested anti-diarrheal efficacy by inhibiting 72.0 % of the diarrheal episode in mice compared to the standard drug loperamide (inhibition = 80.0%). The results of the computational investigations corroborated existing in-vivo findings. Greater or close to equivalent binding affinity to the active binding sites of kappa opioid receptor, glucose transporter 3 (GLUT 3), and cyclooxygenase 2 was indicative of the potential anti-diarrheal, hypoglycemic, and analgesic characteristics of the isolated compounds (COX-2). Moreover, anticancer and antimicrobial potentiality was also found impressive through evaluation of binding affinity with epidermal growth factor receptor (EGFR) and dihydrofolate reductase (DHFR) receptors. Results from this study indicated that C. fistula might be a beneficial natural resource for treating diarrhea, hyperglycemia, and pain. However, additional research is required to conduct a comprehensive phytochemical screening and establish precise action mechanisms of the crude extract or the plant-derived compounds.
Collapse
Affiliation(s)
- Mohammad Abdullah Taher
- Bangladesh Reference Institute for Chemical Measurements (BRiCM), Laboratory Road, Dhaka, 1205, Bangladesh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Bangladesh
| | - Aysha Akter Laboni
- Bangladesh Reference Institute for Chemical Measurements (BRiCM), Laboratory Road, Dhaka, 1205, Bangladesh
| | - Md Ashraful Islam
- Department of Pharmacy, State University of Bangladesh, Dhaka, Bangladesh
| | - Hasin Hasnat
- Department of Pharmacy, State University of Bangladesh, Dhaka, Bangladesh
| | | | | | | | - Mala Khan
- Bangladesh Reference Institute for Chemical Measurements (BRiCM), Laboratory Road, Dhaka, 1205, Bangladesh
| |
Collapse
|
19
|
Di Y, Song Y, Xu K, Wang Q, Zhang L, Liu Q, Zhang M, Liu X, Wang Y. Chicoric Acid Alleviates Colitis via Targeting the Gut Microbiota Accompanied by Maintaining Intestinal Barrier Integrity and Inhibiting Inflammatory Responses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6276-6288. [PMID: 38485738 DOI: 10.1021/acs.jafc.3c08363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Polyphenols have shown great potential to prevent ulcerative colitis. As a natural plant polyphenol, chicoric acid (CA) has antioxidant and anti-inflammatory properties. This study explored the intervention effects and potential mechanism of CA on dextran sodium sulfate (DSS)-induced colitis mice. The results showed that CA alleviated the symptoms of colitis and maintained the intestinal barrier integrity. CA significantly downregulated the mRNA expression levels of inflammatory factors including IL-6, IL-1β, TNF-α, IFN-γ, COX-2, and iNOS. In addition, CA modulated the gut microbiota by improving the microbial diversity, reducing the abundance of Gammaproteobacteriaand Clostridium_XI and increasing the abundance ofBarnesiellaandLachnospiraceae. Further fecal microbiota transplantation experiments showed that FM from CA donor mice significantly alleviated the symptoms of colitis, verifying the key role of gut microbiota. These results indicate that CA effectively relieves DSS-induced colitis via targeting gut microbiota along with preserving intestinal barrier function and suppressing inflammatory responses.
Collapse
Affiliation(s)
- Yan Di
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Yi Song
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Kejia Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Qianxu Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Li Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Qian Liu
- College of Food Science and Technology, Northwest University, Xi'an 710069, PR China
| | - Min Zhang
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, PR China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| |
Collapse
|
20
|
Ocampo YC, Castro JP, Pájaro IB, Caro D, Talero E, Motilva V, Franco LA. Protective effect of sucrose esters from cape gooseberry (Physalis peruviana L.) in TNBS-induced colitis. PLoS One 2024; 19:e0299687. [PMID: 38512973 PMCID: PMC10957089 DOI: 10.1371/journal.pone.0299687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/15/2024] [Indexed: 03/23/2024] Open
Abstract
Phytotherapy is an attractive strategy to treat inflammatory bowel disease (IBD) that could be especially useful in developing countries. We previously demonstrated the intestinal anti-inflammatory effect of the total ethereal extract from the Physalis peruviana (Cape gooseberry) calyces in TNBS-induced colitis. This work investigates the therapeutic potential of Peruviose A and B, two sucrose esters that constitute the major metabolites of its calyces. The effect of the Peruvioses A and B mixture on TNBS-induced colitis was studied after 3 (preventive) and 15-days (therapy set-up) of colitis induction in rats. Colonic inflammation was assessed by measuring macroscopic/histologic damage, MPO activity, and biochemical changes. Additionally, LPS-stimulated RAW 264.7 macrophages were treated with test compounds to determine the effect on cytokine imbalance in these cells. Peruvioses mixture ameliorated TNBS-induced colitis in acute (preventive) or established (therapeutic) settings. Although 3-day treatment with compounds did not produce a potent effect, it was sufficient to significantly reduce the extent/severity of tissue damage and the microscopic disturbances. Beneficial effects in the therapy set-up were substantially higher and involved the inhibition of pro-inflammatory enzymes (iNOS, COX-2), cytokines (TNF-α, IL-1β, and IL-6), as well as epithelial regeneration with restoration of goblet cells numbers and expression of MUC-2 and TFF-3. Consistently, LPS-induced RAW 264.7 cells produced less NO, PGE2, TNF-α, IL-6, and MCP-1. These effects might be related to the inhibition of the NF-κB signaling pathway. Our results suggest that sucrose esters from P. peruviana calyces, non-edible waste from fruit production, might be useful as an alternative IBD treatment.
Collapse
Affiliation(s)
- Yanet C. Ocampo
- Biological Evaluation of Promising Substances Group, Faculty of Pharmaceutical Science, Universidad de Cartagena, Cartagena, Colombia
| | - Jenny P. Castro
- Biological Evaluation of Promising Substances Group, Faculty of Pharmaceutical Science, Universidad de Cartagena, Cartagena, Colombia
- Faculty of Chemistry and Pharmacy, Universidad del Atlántico, Barranquilla, Colombia
| | - Indira B. Pájaro
- Biological Evaluation of Promising Substances Group, Faculty of Pharmaceutical Science, Universidad de Cartagena, Cartagena, Colombia
- Faculty of Chemistry and Pharmacy, Universidad del Atlántico, Barranquilla, Colombia
| | - Daneiva Caro
- Biological Evaluation of Promising Substances Group, Faculty of Pharmaceutical Science, Universidad de Cartagena, Cartagena, Colombia
| | - Elena Talero
- Department of Pharmacology, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Virginia Motilva
- Department of Pharmacology, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Luis A. Franco
- Biological Evaluation of Promising Substances Group, Faculty of Pharmaceutical Science, Universidad de Cartagena, Cartagena, Colombia
| |
Collapse
|
21
|
Zou JY, Chen QL, Luo XC, Damdinjav D, Abdelmohsen UR, Li HY, Battulga T, Chen HB, Wang YQ, Zhang JY. Natural products reverse cancer multidrug resistance. Front Pharmacol 2024; 15:1348076. [PMID: 38572428 PMCID: PMC10988293 DOI: 10.3389/fphar.2024.1348076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/19/2024] [Indexed: 04/05/2024] Open
Abstract
Cancer stands as a prominent global cause of death. One of the key reasons why clinical tumor chemotherapy fails is multidrug resistance (MDR). In recent decades, accumulated studies have shown how Natural Product-Derived Compounds can reverse tumor MDR. Discovering novel potential modulators to reduce tumor MDR by Natural Product-Derived Compounds has become a popular research area across the globe. Numerous studies mainly focus on natural products including flavonoids, alkaloids, terpenoids, polyphenols and coumarins for their MDR modulatory activity. Natural products reverse MDR by regulating signaling pathways or the relevant expressed protein or gene. Here we perform a deep review of the previous achievements, recent advances in the development of natural products as a treatment for MDR. This review aims to provide some insights for the study of multidrug resistance of natural products.
Collapse
Affiliation(s)
- Jia-Yu Zou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qi-Lei Chen
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Xiao-Ci Luo
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Davaadagva Damdinjav
- School of Pharmacy, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Usama Ramadan Abdelmohsen
- Deraya Center for Scientific Research, Deraya University, New Minia, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Hong-Yan Li
- Ministry of Education Engineering Research Center of Tibetan Medicine Detection Technology, Xizang Minzu University, Xianyang, China
| | - Tungalag Battulga
- School of Pharmacy, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Hu-Biao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Yu-Qing Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- The Affiliated TCM Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jian-Ye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- The Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, China
| |
Collapse
|
22
|
Li Y, Wang M, Su J, Zhong R, Yin S, Zhao Z, Sun Z. Hypersampsonone H attenuates ulcerative colitis via inhibition of PDE4 and regulation of cAMP/PKA/CREB signaling pathway. Int Immunopharmacol 2024; 128:111490. [PMID: 38218008 DOI: 10.1016/j.intimp.2024.111490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/15/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024]
Abstract
BACKGROUND AND OBJECTIVES Ulcerative colitis (UC) is a recurrent intestinal inflammatory disease which poses a serious threat to the life of patients. However, there are no specific drugs for UC yet. Hypericum sampsonii Hance (HS) is a Chinese herbal medicine traditionally used to treat enteritis and dysentery. Our previous studies have demonstrated that HS holds potential anti-UC effects, and a novel compound named Hypersampsonone H (HS-1) isolated from HS possesses significant anti-inflammatory activity. However, the beneficial effects of HS-1 on UC remain unclear. This study aimed to investigate the therapeutic effects of HS-1 on UC and its potential mechanisms, both in vitro and in vivo. METHODS The in vitro model was employed using LPS-induced RAW264.7 cells to investigate the anti-inflammatory effects of HS-1 and its possible mechanisms. Furthermore, the therapeutic efficacy and potential mechanisms of HS-1 against dextran sulfate sodium (DSS)-induced acute colitis were assessed through histopathological examination, biochemical analysis, and molecular docking. RESULTS In vitro, HS-1 significantly reduced LPS-induced inflammatory responses, as indicated by inhibiting NO production, down-regulating the overexpression of COX-2 and iNOS, as well as regulating the imbalanced levels of IL-6, TNF-α, and IL-10. Moreover, HS-1 also inhibited the expression of PDE4, elevated the intracellular cAMP level, and promoted the phosphorylation of CREB, thereby activating the PKA/CREB pathway in RAW264.7 cells. In vivo, HS-1 demonstrated therapeutic capacity against DSS-induced colitis by alleviating the symptoms of colitis mice, regulating the abnormal expression of inflammatory mediators, protecting the integrity of intestinal epithelial barrier, and reducing tissue fibrosis. Consistently, HS-1 was found to decrease the expression of PDE4 isoforms, subsequently activating the cAMP/PKA/CREB signaling pathway. Furthermore, the molecular docking results indicated that HS-1 exhibited a high affinity for PDE4, particularly PDE4D. Further mechanistic validation in vitro demonstrated that HS-1 possessed a synergistic effect on forskolin and an antagonistic effect on H-89 dihydrochloride, thereby exerting anti-inflammatory effects through the cAMP/PKA/CREB signaling pathway. CONCLUSION We disclose that HS-1 serves as a promising candidate drug for the treatment of UC by virtue of its ability to reduce DSS-induced colitis via the inhibition of PDE4 and the activation of cAMP/PKA/CREB signaling pathway.
Collapse
Affiliation(s)
- Yanzhen Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Mingqiang Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jianhui Su
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ruimin Zhong
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - Sheng Yin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhongxiang Zhao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Zhanghua Sun
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China.
| |
Collapse
|
23
|
Esmaealzadeh N, Ram M, Abdolghaffari A, Marques AM, Bahramsoltani R. Toll-like receptors in inflammatory bowel disease: A review of the role of phytochemicals. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155178. [PMID: 38007993 DOI: 10.1016/j.phymed.2023.155178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 10/18/2023] [Accepted: 10/31/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic inflammation within the gastrointestinal tract with a remarkable impact on patients' quality of life. Toll-like receptors (TLR), as a key contributor of immune system in inflammation, has a critical role in the pathogenesis of IBD and thus, can be a suitable target of therapeutic agents. Medicinal plants have long been considered as a source of bioactive agents for different diseases, including IBD. PURPOSE This review discusses current state of the art on the role of plant-derived compounds for the management of IBD with a focus on TLRs. METHODS Electronic database including PubMed, Web of Science, and Scopus were searched up to January 2023 and all studies in which anticolitis effects of a phytochemical was assessed via modulation of TLRs were considered. RESULTS Different categories of phytochemicals, including flavonoids, lignans, alkaloids, terpenes, saccharides, and saponins have demonstrated modulatory effects on TLR in different animal and cell models of bowel inflammation. Flavonoids were the most studied phytochemicals amongst others. Also, TLR4 was the most important type of TLRs which were modulated by phytochemicals. Other mechanisms such as inhibition of pro-inflammatory cytokines, nuclear factor-κB pathway, nitric oxide synthesis pathway, cyclooxygenase-2, lipid peroxidation, as well as induction of endogenous antioxidant defense mechanisms were also reported for phytochemicals in various IBD models. CONCLUSION Taken together, a growing body of pre-clinical evidence support the efficacy of herbal compounds for the treatment of IBD via modulation of TLRs. Future clinical studies are recommended to assess the safety and efficacy of these compounds in human.
Collapse
Affiliation(s)
- Niusha Esmaealzadeh
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahboobe Ram
- Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran; PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amirhossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - André Mesquita Marques
- Department of Natural Products, Institute of Drug Technology (Farmanguinhos), FIOCRUZ, Rio de Janeiro, Brazil
| | - Roodabeh Bahramsoltani
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran; PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
24
|
Harwansh RK, Bhati H, Deshmukh R. Recent Updates on the Therapeutics Benefits, Clinical Trials, and Novel Delivery Systems of Chlorogenic Acid for the Management of Diseases with a Special Emphasis on Ulcerative Colitis. Curr Pharm Des 2024; 30:420-439. [PMID: 38299405 DOI: 10.2174/0113816128295753240129074035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 02/02/2024]
Abstract
Ulcerative colitis (UC) is a multifactorial disorder of the large intestine, especially the colon, and has become a challenge globally. Allopathic medicines are primarily available for the treatment and prevention of UC. However, their uses are limited due to several side effects. Hence, an alternative therapy is of utmost importance in this regard. Herbal medicines are considered safe and effective for managing human health problems. Chlorogenic acid (CGA), the herbal-derived bioactive, has been reported for pharmacological effects like antiinflammatory, immunomodulatory, antimicrobial, hepatoprotective, antioxidant, anticancer, etc. This review aims to understand the antiinflammatory and chemopreventive potential of CGA against UC. Apart from its excellent therapeutic potential, it has been associated with low absorption and poor oral bioavailability. In this context, colon-specific novel drug delivery systems (NDDS)are pioneering to overcome these problems. The pertinent literature was compiled from a thorough search on various databases such as ScienceDirect, PubMed, Google Scholar, etc., utilizing numerous keywords, including ulcerative colitis, herbal drugs, CGA, pharmacological activities, mechanism of actions, nanoformulations, clinical updates, and many others. Relevant publications accessed till now were chosen, whereas non-relevant papers, unpublished data, and non-original articles were excluded. The present review comprises recent studies on pharmacological activities and novel drug delivery systems of CGA for managing UC. In addition, the clinical trials of CGA against UC have been discussed.
Collapse
Affiliation(s)
- Ranjit K Harwansh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Hemant Bhati
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| |
Collapse
|
25
|
Lee JW, Kim EN, Jeong GS. Anti-Inflammatory Herbal Extracts and Their Drug Discovery Perspective in Atopic Dermatitis. Biomol Ther (Seoul) 2024; 32:25-37. [PMID: 38148551 PMCID: PMC10762282 DOI: 10.4062/biomolther.2023.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 12/28/2023] Open
Abstract
Atopic dermatitis (AD) is an allergic disorder characterized by skin inflammation. It is well known that the activation of various inflammatory cells and the generation of inflammatory molecules are closely linked to the development of AD. There is accumulating evidence demonstrating the beneficial effects of herbal extracts (HEs) on the regulation of inflammatory response in both in vitro and in vivo studies of AD. This review summarizes the anti-atopic effects of HEs and its associated underlying mechanisms, with a brief introduction of in vitro and in vivo experiment models of AD based on previous and recent studies. Thus, this review confirms the utility of HEs for AD therapy.
Collapse
Affiliation(s)
- Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Eun-Nam Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Gil-Saeng Jeong
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
26
|
Lin WS, Cheng WC, Pan MH. Virofree Associates with the Modulation of Gut Microbiomes and Alleviation of DSS-Induced IBD Symptoms in Mice. ACS OMEGA 2023; 8:41427-41437. [PMID: 37969979 PMCID: PMC10633932 DOI: 10.1021/acsomega.3c05159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/29/2023] [Indexed: 11/17/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic, nonspecific inflammation of the intestines that primarily comprises Crohn's disease and ulcerative colitis. The incidence and prevalence of IBD have been increasing globally, highlighting the significance of research and prophylactic interventions. Virofree, a mixture of various botanical extracts (including grapes, cherries, olive leaves, marigolds, green tea, and others), has shown significant potential in disease prevention. This study examined the effects of Virofree on intestinal inflammation and the gut microbiota in mice using a dextran sulfate sodium (DSS)-induced model. The mice showed no adverse reactions when administered Virofree. Virofree administration reduced the disease activity index as indicated by amelioration of DSS-induced symptoms in the mice, including weight loss, diarrhea, and rectal bleeding. Regarding the gut microbiota, Virofree intervention modulated the DSS-induced decrease in gut microbial diversity; the Virofree group showed no increase in the phyla Proteobacteria or Verrucomicrobia while displaying an increase in the genus Duncaniella, bacteria that may have protective properties. These findings suggest that Virofree may have a direct or indirect impact on the composition of the gut microbiota and that it can alleviate the imbalance of the microbiome and intestinal inflammation caused by DSS treatment.
Collapse
Affiliation(s)
- Wei-Sheng Lin
- Institute
of Food Science and Technology, National
Taiwan University, Taipei 10617, Taiwan
| | - Wan-Chen Cheng
- Institute
of Food Science and Technology, National
Taiwan University, Taipei 10617, Taiwan
| | - Min-Hsiung Pan
- Institute
of Food Science and Technology, National
Taiwan University, Taipei 10617, Taiwan
- Department
of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Department
of Health and Nutrition Biotechnology, Asia
University, Taichung 41354, Taiwan
| |
Collapse
|
27
|
Rashid PT, Hossain MJ, Zahan MS, Hasan CM, Rashid MA, Al-Mansur MA, Haque MR. Chemico-pharmacological and computational studies of Ophiorrhiza fasciculata D. Don and Psychotria silhetensis Hook. f. focusing cytotoxic, thrombolytic, anti-inflammatory, antioxidant, and antibacterial properties. Heliyon 2023; 9:e20100. [PMID: 37809757 PMCID: PMC10559867 DOI: 10.1016/j.heliyon.2023.e20100] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 08/21/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
The current study sought to examine the pharmacological potentials of crude methanolic extracts of Ophiorrhiza fasciculata and Psychotria silhetensis, as well as their various solvent fractionates, with a focus on cytotoxic, thrombolytic, membrane stabilizing, antioxidant, and antibacterial activities via in vitro and in silico approaches. The extensive chromatographic and spectroscopic analyses confirmed and characterized two compounds as (±)-licarin B (1) and stigmasterol (2) from O. fasciculata and P. silhetensis, respectively. Petroleum ether soluble fraction of O. fasciculata and the aqueous soluble fraction of P. silhetensis showed the lowest 50% lethal concentrations (1.41 and 1.94 μg/mL, respectively) in brine shrimp bioassay. Likewise, petroleum ether soluble fraction of O. fasciculata and aqueous soluble fraction of P. silhetensis showed the highest thrombolytic activity with 46.66% and 50.10% lyses of the clot, respectively. The methanol and dichloromethane soluble fractions of O. fasciculata reduced erythrocyte hemolysis by 64.03% and 37.08%, respectively, under hypotonic and heat-induced conditions, compared to 81.97% and 42.12% for standard acetylsalicylic acid. In antioxidant activity test, aqueous soluble fraction O. fasciculata (IC50 = 7.22 μg/mL) revealed promising antioxidant potentialities in comparison to standard butylated hydroxytoluene (IC50 = 21.20 μg/mL). In antibacterial screening, chloroform, and dichloromethane soluble fractions of P. silhetensis showed a mild antibacterial activity compared with the standard drug ciprofloxacin. Additionally, the molecular docking study corroborated the current in vitro findings, and the isolated two constituents had higher binding affinities toward epidermal growth factor receptor, tissue plasminogen activator, vFLIP-IKK gamma stapled peptide dimer, glutathione reductase, and dihydrofolate reductase enzyme than their corresponding standard drugs. In addition, the both isolated compounds exerted favorable pharmacokinetics (absorption, distribution, metabolism, excretion) and toxicological profiles with drug-like qualities in computational-based ADMET and drug likeliness analyses. The current research suggests that both plants have potential as a natural treatment for treating thrombosis, inflammation, and oxidative stress. However, more thorough research is required to thoroughly screen for phytochemicals and pinpoint the precise mechanisms of action of the bioactive metabolites derived from these plants against a broad range of molecular targets.
Collapse
Affiliation(s)
- Parisa Tamannur Rashid
- Phytochemical Research Laboratory, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
- Department of Pharmacy, East West University, Dhaka, Bangladesh
| | - Md Jamal Hossain
- Phytochemical Research Laboratory, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka 1205, Bangladesh
| | - Miss Sharmin Zahan
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka 1205, Bangladesh
| | - Choudhury Mahmood Hasan
- Phytochemical Research Laboratory, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Mohammad A. Rashid
- Phytochemical Research Laboratory, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Muhammad Abdullah Al-Mansur
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr. Qudrat-I-Khuda Road, Dhanmondi, Dhaka-1205, Bangladesh
| | - Mohammad Rashedul Haque
- Phytochemical Research Laboratory, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|
28
|
Yuan S, Wang KS, Meng H, Hou XT, Xue JC, Liu BH, Cheng WW, Li J, Zhang HM, Nan JX, Zhang QG. The gut microbes in inflammatory bowel disease: Future novel target option for pharmacotherapy. Biomed Pharmacother 2023; 165:114893. [PMID: 37352702 DOI: 10.1016/j.biopha.2023.114893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/09/2023] [Accepted: 05/13/2023] [Indexed: 06/25/2023] Open
Abstract
Gut microbes constitute the main microbiota in the human body, which can regulate biological processes such as immunity, cell proliferation, and differentiation, hence playing a specific function in intestinal diseases. In recent years, gut microbes have become a research hotspot in the pharmaceutical field. Because of their enormous number, diversity, and functional complexity, gut microbes have essential functions in the development of many digestive diseases. Inflammatory bowel disease (IBD) is a chronic non-specific inflammatory disease with a complex etiology, the exact cause and pathogenesis are unclear. There are no medicines that can cure IBD, and more research on therapeutic drugs is urgently needed. It has been reported that gut microbes play a critical role in pathogenesis, and there is a tight and complex association between gut microbes and IBD. The dysregulation of gut microbes may be a predisposing factor for IBD, and at the same time, IBD may exacerbate gut microbes' disorders, but the mechanism of interaction between the two is still not well defined. The study of the relationship between gut microbes and IBD is not only important to elucidate the pathogenesis but also has a positive effect on the treatment based on the regimen of regulating gut microbes. This review describes the latest research progress on the functions of gut microbes and their relationship with IBD, which can provide reference and assistance for further research. It may provide a theoretical basis for the application of probiotics, fecal microbiota transplantation, and other therapeutic methods to regulate gut microbes in IBD.
Collapse
Affiliation(s)
- Shuo Yuan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Ke-Si Wang
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Huan Meng
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Xiao-Ting Hou
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Jia-Chen Xue
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China; Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, 116001, China
| | - Bao-Hong Liu
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Wen-Wen Cheng
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Jiao Li
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Hua-Min Zhang
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Ji-Xing Nan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Qing-Gao Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China.
| |
Collapse
|
29
|
Zhao H, Ma X, Song J, Jiang J, Fei X, Luo Y, Ru Y, Luo Y, Gao C, Kuai L, Li B. From gut to skin: exploring the potential of natural products targeting microorganisms for atopic dermatitis treatment. Food Funct 2023; 14:7825-7852. [PMID: 37599562 DOI: 10.1039/d3fo02455e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Atopic dermatitis (AD) is the most common chronic inflammatory skin disease. Recent studies have revealed that interactions between pathogenic microorganisms, which have a tendency to parasitize the skin of AD patients, play a significant role in the progression of the disease. Furthermore, specific species of commensal bacteria in the human intestinal tract can have a profound impact on the immune system by promoting inflammation and pruritogenesis in AD, while also regulating adaptive immunity. Natural products (NPs) have emerged as promising agents for the treatment of various diseases. Consequently, there is growing interest in utilizing natural products as a novel therapeutic approach for managing AD, with a focus on modulating both skin and gut microbiota. In this review, we discuss the mechanisms and interplay between the skin and gut microbiota in relation to AD. Additionally, we provide a comprehensive overview of recent clinical and fundamental research on NPs targeting the skin and gut microbiota for AD treatment. We anticipate that our work will contribute to the future development of NPs and facilitate research on microbial mechanisms, based on the efficacy of NPs in treating AD.
Collapse
Affiliation(s)
- Hang Zhao
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xin Ma
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jiankun Song
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jingsi Jiang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Xiaoya Fei
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Yue Luo
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Yi Ru
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chunjie Gao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bin Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
30
|
Zeng DY, Chen Z, Hong MZ, Jiang LP, Chen XN, Xue HX, Pan JS, Zhu Y. Traditional Chinese medicine invigorating the spleen and kidney promotes HBsAg seroclearance in the mouse model. J Med Virol 2023; 95:e28979. [PMID: 37522253 DOI: 10.1002/jmv.28979] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023]
Abstract
Traditional Chinese medicine (TCM) is often used as an adjuvant or alternative therapy for abnormal liver biochemistry or liver fibrosis associated with chronic hepatitis B (CHB). However, the role of TCM in HBsAg seroclearance remains unclear. We aimed at exploring the role and possible mechanisms of TCM in HBsAg seroclearance. Fifteen widely used TCM granules invigorating the spleen and kidneys were screened. C57BL/6J mice were administered daily with TCM granules by gavage for 1 week. The effect of TCM on the M1 polarization of macrophages was measured using a CD86 assay. According to the principles of formulating prescriptions, three single TCM with the most noticeable effect on M1 polarization, accompanied by two other TCM granules, were used to develop a TCM formula. The hepatitis B virus-expressing mouse model was constructed by hydrodynamic injection of the pAAV/HBV1.2 plasmid. Hepatitis B virus-expressing mice were gavaged daily with phosphate-buffered saline (PBS), TCM formula, or Codonopsis Radix, for 1 week. HBsAg, HBeAg, and hepatitis B virus DNA levels were measured. In addition, gut microbiota was profiled using 16S rDNA sequencing. Several TCM granules showed significant effects on M1 polarization. The TCM formula accelerated HBsAg seroclearance compared with the Codonopsis Radix and PBS groups. Intrahepatic M1 polarization, as indicated by flow cytometry and immunohistochemistry, was induced in the TCM formula and Codonopsis Radix groups. The abundance of Alloprevotella significantly increased in the TCM formula and Codonopsis Radix groups. These results demonstrate that the TCM formula for invigorating the spleen and kidney can accelerate HBsAg seroclearance. This effect can be attributed, at least in part, to M1 polarization of intrahepatic macrophages.
Collapse
Affiliation(s)
- Dan-Yi Zeng
- Department of Hepatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Hepatology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Zhan Chen
- Department of Hepatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Hepatology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Mei-Zhu Hong
- Department of Traditional Chinese Medicine, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Ling-Ping Jiang
- Department of Hepatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Hepatology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Xiao-Ning Chen
- Department of Hepatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Hepatology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Han-Xin Xue
- Department of Hepatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Hepatology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Jin-Shui Pan
- Department of Hepatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Hepatology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Yueyong Zhu
- Department of Hepatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Hepatology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
31
|
Lee SH, Kim HR, Noh EM, Park JY, Kwak MS, Jung YJ, Yang HJ, Ryu MS, Seo HY, Jang H, Kim SY, Park MH. Anti-Inflammatory Effect and Signaling Mechanism of Glycine max Hydrolyzed with Enzymes from Bacillus velezensis KMU01 in a Dextran-Sulfate-Sodium-Induced Colitis Mouse Model. Nutrients 2023; 15:3029. [PMID: 37447355 DOI: 10.3390/nu15133029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The purpose of this study was to investigate the effect that Glycine max hydrolyzed with enzymes from Bacillus velezensis KMU01 has on dextran-sulfate-sodium (DSS)-induced colitis in mice. Hydrolysis improves functional health through the bioconversion of raw materials and increase in intestinal absorption rate and antioxidants. Therefore, G. max was hydrolyzed in this study using a food-derived microorganism, and its anti-inflammatory effect was observed. Enzymatically hydrolyzed G. max (EHG) was orally administered once daily for four weeks before DSS treatment. Colitis was induced in mice through the consumption of 5% (w/v) DSS in drinking water for eight days. The results showed that EHG treatment significantly alleviated DSS-induced body weight loss and decreased the disease activity index and colon length. In addition, EHG markedly reduced tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 production, and increased that of IL-10. EHG improved DSS-induced histological changes and intestinal epithelial barrier integrity in mice. Moreover, we found that the abundance of 15 microorganisms changed significantly; that of Proteobacteria and Escherichia coli, which are upregulated in patients with Crohn's disease and ulcerative colitis, decreased after EHG treatment. These results suggest that EHG has a protective effect against DSS-induced colitis and is a potential candidate for colitis treatment.
Collapse
Affiliation(s)
- Seung-Hyeon Lee
- Jeonju AgroBio-Materials Institute, Wonjangdong-gil 111-27, Deokjin-gu, Jeonju-si 54810, Jeollabuk-do, Republic of Korea
| | - Ha-Rim Kim
- Jeonju AgroBio-Materials Institute, Wonjangdong-gil 111-27, Deokjin-gu, Jeonju-si 54810, Jeollabuk-do, Republic of Korea
| | - Eun-Mi Noh
- Jeonju AgroBio-Materials Institute, Wonjangdong-gil 111-27, Deokjin-gu, Jeonju-si 54810, Jeollabuk-do, Republic of Korea
| | - Jae Young Park
- Jeonju AgroBio-Materials Institute, Wonjangdong-gil 111-27, Deokjin-gu, Jeonju-si 54810, Jeollabuk-do, Republic of Korea
| | - Mi-Sun Kwak
- Kookmin Bio Co., Ltd., 303, Cheonjam-ro, Wansan-gu, Jeonju-si 55069, Jeollabuk-do, Republic of Korea
| | - Ye-Jin Jung
- Kookmin Bio Co., Ltd., 303, Cheonjam-ro, Wansan-gu, Jeonju-si 55069, Jeollabuk-do, Republic of Korea
| | - Hee-Jong Yang
- Microbial Institute for Fermentation Industry, Minsokmaeul-gil 61-27, Sunchang 56048, Jeollabuk-do, Republic of Korea
| | - Myeong Seon Ryu
- Microbial Institute for Fermentation Industry, Minsokmaeul-gil 61-27, Sunchang 56048, Jeollabuk-do, Republic of Korea
| | - Hyang-Yim Seo
- Jeonbuk Institute for Food-Bioindustry, Wonjangdong-gil 111-18, Deokjin-gu, Jeonju-si 54810, Jeollabuk-do, Republic of Korea
| | - Hansu Jang
- Jeonbuk Institute for Food-Bioindustry, Wonjangdong-gil 111-18, Deokjin-gu, Jeonju-si 54810, Jeollabuk-do, Republic of Korea
| | - Seon-Young Kim
- Jeonju AgroBio-Materials Institute, Wonjangdong-gil 111-27, Deokjin-gu, Jeonju-si 54810, Jeollabuk-do, Republic of Korea
| | - Mi Hee Park
- Jeonju AgroBio-Materials Institute, Wonjangdong-gil 111-27, Deokjin-gu, Jeonju-si 54810, Jeollabuk-do, Republic of Korea
| |
Collapse
|
32
|
Li M, Tao Y, Sun Y, Wu J, Zhang F, Wen Y, Gong M, Yan J, Liang H, Bai X, Niu J, Miao Y. Constructing a prediction model of inflammatory bowel disease recurrence based on factors affecting the quality of life. Front Med (Lausanne) 2023; 10:1041505. [PMID: 36968835 PMCID: PMC10034041 DOI: 10.3389/fmed.2023.1041505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 02/15/2023] [Indexed: 03/11/2023] Open
Abstract
AimThis study aimed to determine the factors affecting the quality of life of patients with inflammatory bowel disease (IBD) and to construct a disease recurrence prediction model based on these influencing factors.MethodsA prospective, single-center study in China was conducted between October 2020 and March 2021. The quality of life of patients was assessed using the Inflammatory Bowel Disease Questionnaire (IBDQ). Multiple stepwise regression analysis was used to analyze the factors influencing the quality of life of patients with IBD. The chi-square test and the point-biserial correlation analysis were performed to identify factors associated with clinical recurrence. A binary logistic regression model was constructed to predict the recurrence. The receiver operating characteristic curve was used to evaluate the prediction model. Patients with IBD from April 2021 to June 2021 were randomly included for model verification to evaluate the disease recurrence prediction model.ResultsThe average IBDQ score of patients with IBD was 172.2 ± 35.0 (decreased by 23.2%). The scores of all dimensions of the IBDQ were decreased, especially emotional function and systemic symptoms. Disease activity, age, extraintestinal manifestations (EIMs), and annual household income were important factors influencing the IBDQ scores of patients with ulcerative colitis, and these accounted for ~57.0% of the factors affecting the quality of life. Disease activity, EIMs, and occupational stress were important factors influencing the IBDQ scores of patients with Crohn's disease, and they accounted for approximately 75.1% of the factors affecting the quality of life. Annual household income, occupational stress, and IBDQ scores were independent risk factors for recurrence. The area under the curve of the recurrence prediction model was 81.1%. The sensitivity and specificity were 81.7 and 71.7%, respectively. The Youden index of the model was 0.534. The established recurrence prediction model has good discriminant validity in the validation cohort.ConclusionThe quality of life of patients with IBD was generally poor. The use of factors affecting the quality of life to predict disease recurrence has high predictive value and can support the management of IBD by selecting patients at a higher risk for relapse.
Collapse
Affiliation(s)
- Maojuan Li
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, Yunnan, China
| | - Yan Tao
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, Yunnan, China
| | - Yang Sun
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, Yunnan, China
| | - Jing Wu
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, Yunnan, China
| | - Fengrui Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, Yunnan, China
| | - Yunling Wen
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, Yunnan, China
| | - Min Gong
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, Yunnan, China
| | - Jingxian Yan
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, Yunnan, China
| | - Hao Liang
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, Yunnan, China
| | - Xinyu Bai
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, Yunnan, China
| | - Junkun Niu
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, Yunnan, China
- Junkun Niu
| | - Yinglei Miao
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, Yunnan, China
- *Correspondence: Yinglei Miao
| |
Collapse
|
33
|
Lin WS, Chueh TL, Nagabhushanam K, Ho CT, Pan MH. Piceatannol and 3'-Hydroxypterostilbene Alleviate Inflammatory Bowel Disease by Maintaining Intestinal Epithelial Integrity and Regulating Gut Microbiota in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1994-2005. [PMID: 36688924 DOI: 10.1021/acs.jafc.2c08170] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Inflammatory bowel disease has become a significant health concern across the globe, causing frequent and long-term harm to the digestive system. This study evaluated the effect of piceatannol (PIC) and 3'-hydroxypterostilbene (HPSB) on dextran sulfate sodium (DSS)-induced colitis in mice and investigated whether their effects are exerted through the amelioration of gut barrier dysfunction to reduce the severity of colitis. The findings showed that both PIC and HPSB attenuated inflammation by inhibiting the TNF-α/NF-κB/MLC pathway and reducing NLRP3 inflammasome activation. However, PIC was comparably effective in modulating tight junctions. The results may be attributed to the effect of PIC on reducing cell apoptosis-associated protein expression, including Bax/Bcl-2 and caspase-3 activation. Furthermore, microbiota analysis revealed that both PIC and HPSB increased representative probiotic species, including Akkermansiaceae and Lactobacillus intestinalis, and exhibited inhibitory effects on several bacterial species (Spiroplasmataceae and Acholeplasmataceae). Based on linear discriminant analysis effect size, butyrate-producing bacteria were identified as a biomarker in the PIC group. Overall, the results demonstrated that PIC repressed inflammation, inhibited cell apoptosis, and regulated microbiota composition. Consequently, PIC is more effective in maintaining gut barrier integrity than HPSB, and it is a promising ingredient in the development of functional food for colitis prevention.
Collapse
Affiliation(s)
- Wei-Sheng Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Tai-Ling Chueh
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | | | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901-8520, United States
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
34
|
Fonseca Machado APD, do Nascimento RDP, Marostica Junior MR. Conclusion: Future directions. NATURAL PLANT PRODUCTS IN INFLAMMATORY BOWEL DISEASES 2023:443-445. [DOI: 10.1016/b978-0-323-99111-7.00008-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
35
|
Wang J, Cao W, Ji T, Zhao M, Liu T, Wu J, Feng F, Zhou A, Peng X. Gut microbiota and transcriptome profiling revealed the protective effect of aqueous extract of Tetrastigma hemsleyanum leaves on ulcerative colitis in mice. Curr Res Food Sci 2022; 6:100426. [PMID: 36618099 PMCID: PMC9816909 DOI: 10.1016/j.crfs.2022.100426] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/17/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Tetrastigma hemsleyanum, a traditional Chinese medicinal plant, possesses various biological activities, including anti-inflammatory and immunomodulatory functions. The purpose of this study was to determine the alleviating effect of the water extract of Tetrastigma hemsleyanum leaves (THLW) on ulcerative colitis (UC) and its relationship with gut microbiota. The administration of THLW significantly decreased the severity of dextran sulfate sodium (DSS)-induced intestinal damage, as demonstrated by the stabilization of body weight and colon length, and decreased disease activity index (DAI) and histological scores. THLW also decreased NF-κB protein expression in colon tissues and reduced the serum levels of IL-6, IL-1β, and TNF-α. Further co-housing experiment confirmed that the anti-UC effect of THLW was possibly by regulating the structure and composition of gut microbiota, including increasing the abundance of Oscillospiraceae, Prevotellaceae and Corynebacterium. Additionally, the expression of genes related to inflammation and immunity was also regulated by THLW treatment as evidenced by transcriptome analysis. These results suggested that the protective effect of THLW on DSS-induced colitis was mediated by alleviating inflammation and modulating the microbiota composition. This work proved the potent protective effects of THLW treatment on colitis and may have potential for UC relief.
Collapse
Affiliation(s)
- Jing Wang
- Ningbo Innovation Center, Zhejiang University, Ningbo, 315100, China,College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China,School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, China
| | - Wen Cao
- Zhejiang Pharmaceutical College, Ningbo, 315100, China
| | - Tao Ji
- Zhejiang Pharmaceutical College, Ningbo, 315100, China
| | - Minjie Zhao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Tao Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Junhao Wu
- Ningbo Innovation Center, Zhejiang University, Ningbo, 315100, China,College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Fengqin Feng
- Ningbo Innovation Center, Zhejiang University, Ningbo, 315100, China,College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Aicun Zhou
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, 311300, China
| | - Xin Peng
- Ningbo Innovation Center, Zhejiang University, Ningbo, 315100, China,Zhejiang Pharmaceutical College, Ningbo, 315100, China,Ningbo Municipal Hospital of TCM, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, 315010, China,Corresponding author. Ningbo Innovation Center, Zhejiang University, Ningbo, 315100, China
| |
Collapse
|
36
|
Yang C, Du Y, Zhao A, Liu L, Ren D, Niu P, Zhang X, Wang Y, Zhao Y, Yang X. Dietary Turmeric Consumption Alleviates Ulcerative Colitis via Restoring Tryptophan Metabolism and Alleviating Gut Microbiota Dysbiosis in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15213-15224. [PMID: 36413756 DOI: 10.1021/acs.jafc.2c04509] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This study was designed to first verify the protective capacity of turmeric powder (TP) as a traditional cooking spice against dextran sulfate sodium (DSS)-induced intestinal inflammation and intestine microbiota imbalance. The DSS-induced mice were fed a standard rodent chow supplemented with or without TP (8%) for 37 days. The results indicated that the pathological phenotype, gut barrier disruption, and colon inflammation of DSS-induced mice were significantly improved through supplementation of TP. In addition, 16S rRNA-based microbiota or targeted metabolomics analysis indicated that TP ameliorated intestinal microbiota dysbiosis caused by DSS and particularly enhanced the abundances of probiotics correlated with tryptophan metabolism, such as Lactobacillus and Bifidobacterium, where the cecal tryptophan was metabolized to indole-3-propionic acid and indole-3-acetic acid. Consumption of TP markedly enhanced the expression levels of colonic aromatic hydrocarbon receptors and further increased the expressions of intestinal tight junction proteins and interleukin-22 in the colitis mice. Collectively, these findings manifest the protective actions of dietary TP consumption against ulcerative colitis via restoring the intestinal microbiota disorders, promoting microbial metabolism, and improving intestinal barrier damage.
Collapse
Affiliation(s)
- Chengcheng Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yao Du
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Aiqing Zhao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Lei Liu
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Daoyuan Ren
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Pengfei Niu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xiangnan Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yu Wang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yan Zhao
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
37
|
Wang M, Li J, Yin Y, Liu L, Wang Y, Qu Y, Hong Y, Ji S, Zhang T, Wang N, Liu J, Cao X, Zao X, Zhang S. Network pharmacology and in vivo experiment-based strategy to investigate mechanisms of JingFangFuZiLiZhong formula for ulcerative colitis. Ann Med 2022; 54:3219-3233. [PMID: 36382627 PMCID: PMC9673803 DOI: 10.1080/07853890.2022.2095665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Ulcerative colitis (UC), a chronic inflammatory disease, often cause carcinogenesis, disability, and intestinal perforation. The JingFangFuZiLiZhong formula (JFFZLZ) shows a good effect against UC in the clinic. Hence, we aim to investigate the mechanisms between JFFZLZ and UC via network pharmacology data mining and in vivo experiments. METHODS We obtained active constituents and related targets from public databases. The overlapped genes between JFFZLZ and UC targets were further analysed by enrichment analysis. The active constituents and hub targets were used to construct molecule docking analysis. We finally screened out nine hub targets and their expressions were verified in the Gene Expression Omnibus database and UC rats' colon tissues after JFFZLZ treatment. RESULTS The results implied that JFFZLZ mainly regulated signal transduction, metabolites production, and inflammation pathways. The expression of STAT3, CXCL8, IL6, CXCL12, TNF, TP53, and PTPN11 were both upregulated in colon tissues of UC patients and UC rats. While RELA, EGFR, and TP53 were downregulated in UC patients, but upregulated in UC rats. Furthermore, JFFZLZ could repair UC rats' colon mucosal damage and promote the healing of ulcers via regulating the hub targets. CONCLUSION These results elucidated that the anti-UC effect of JFFZLZ was closely related to the inhibition of inflammatory response, inhibition of oxidative stress, and repairing colon mucosal damage through different signal pathways. The findings could contribute to a better understanding of the regulation mechanisms in JFFZLZ against UC.Key messagesJFFZLZ could reduce the inflammatory infiltration and repair UC rats' colon mucosal damage.Through the network pharmacology-based strategy and public database mining, we obtained the hub targets and key pathways between JFFZLF and UC.The mechanism of JFFZLZ against UC was inhibition of inflammatory response and oxidative stress by regulating the expression of the hub targets.
Collapse
Affiliation(s)
- Mengyuan Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Jianan Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China.,CHINA-JAPAN friendship Hospital, Beijing, China
| | - Yuzhang Yin
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Liying Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Yifei Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Ying Qu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Yanqiu Hong
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Shuangshuang Ji
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Tao Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Nan Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Jinlong Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Xu Cao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Xiaobin Zao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Shuxin Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
38
|
Bian Z, Qin Y, Li L, Su L, Fei C, Li Y, Hu M, Chen X, Zhang W, Mao C, Yuan X, Lu T, Ji D. Schisandra chinensis (Turcz.) Baill. Protects against DSS-induced colitis in mice: Involvement of TLR4/NF-κB/NLRP3 inflammasome pathway and gut microbiota. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115570. [PMID: 35868549 DOI: 10.1016/j.jep.2022.115570] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE the fruit of Schisandra chinensis (Turcz.) Baill. (SC) is an important traditional Chinese herbal medicine, which has been widely used in traditional Chinese medicine (TCM) for treating intestinal diseases. It is also traditionally used as health product and medicine in Russia and other countries. However, the effect of SC ethanol extract on anti-ulcerative colitis (UC) has not been systematically studied yet. AIM OF THE STUDY We investigated the protective effects and underlying action mechanisms of SC extract (SCE) for UC treatment. MATERIALS AND METHODS An animal model of UC induced by dextran sulfate sodium (DSS) was established. After oral administration of SCE, the Disease Activity Index (DAI) was calculated, the length of colon measured, levels of proinflammatory factors determined, and histopathology carried out to assess the therapeutic efficacy of SCE on UC. The effects of SCE on the toll-like receptor 4/nuclear factor-kappa B/nucleotide-binding and oligomerization domain-like receptor family pyrin domain containing 3 inflammasome (TLR4/NF-κB/NLRP3 inflammasome) signaling pathway were evaluated by western blotting. High-throughput sequencing was done to reveal the effect of SCE on the change of the gut microbiota (GM) in mice with DSS-induced colitis. RESULTS SCE significantly reduced the DAI score, restored colon-length shortening, and ameliorated colonic histopathologic injury in mice with DSS-induced colitis. SCE inhibited the inflammatory response by regulating the TLR4/NF-κB/NLRP3 inflammasome pathway in mice with UC. SCE also maintained gut barrier function by increasing the levels of zonula occludens (ZO)-1 and occludin. 16S rRNA sequencing showed that SCE could reverse the GM imbalance caused by UC. CONCLUSIONS SCE can ameliorate DSS-induced colitis, and that its effects might be associated with suppression of the TLR4/NF-κB/NLRP3 inflammasome pathway and GM regulation, which may provide significant supports for the development of potential candidates for UC treatment.
Collapse
Affiliation(s)
- Zhenhua Bian
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Department of Pharmacy, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, 214071, China.
| | - Yuwen Qin
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Lin Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Lianlin Su
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Chenghao Fei
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yu Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Minmin Hu
- Department of Pharmacy, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, 214071, China.
| | - Xiaowei Chen
- Department of Pharmacy, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, 214071, China.
| | - Wei Zhang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Chunqin Mao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xiaohang Yuan
- Department of Pharmacy, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, 214071, China.
| | - Tulin Lu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - De Ji
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
39
|
Mass Spectrometric Identification of Licania rigida Benth Leaf Extracts and Evaluation of Their Therapeutic Effects on Lipopolysaccharide-Induced Inflammatory Response. Molecules 2022; 27:molecules27196291. [PMID: 36234829 PMCID: PMC9571113 DOI: 10.3390/molecules27196291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022] Open
Abstract
Licania rigida Benth has been evaluated as an alternative drug to treat diseases associated with inflammatory processes. This study evaluated the anti-inflammatory effects of aqueous and hydroalcoholic leaf extracts of L. rigida with inflammation induced by lipopolysaccharides in in vitro and in vivo inflammation models. The phytochemical profile of the extracts, analyzed by ultra-fast liquid chromatography coupled with tandem mass spectrometry, revealed the presence of gallic and ellagic acids in both extracts, whereas isovitexin, ferulate, bulky amino acids (e.g., phenylalanine), pheophorbide, lactic acid, and pyridoxine were detected in the hydroalcoholic extract. The extracts displayed the ability to modulate in vitro and in vivo inflammatory responses, reducing approximately 50% of pro-inflammatory cytokine secretion (TNF-α, IL-1β, and IL-6), and inhibiting both NO production and leukocyte migration by approximately 30 and 40% at 100 and 500 µg/mL, respectively. Overall, the results highlight and identify, for the first time, the ability of L. rigida leaf extract to modulate inflammatory processes. These data suggest that the leaf extracts of this plant have potential in the development of herbal formulations for the treatment of inflammation.
Collapse
|
40
|
Farzana M, Hossain MJ, El-Shehawi AM, Sikder MAA, Rahman MS, Al-Mansur MA, Albogami S, Elseehy MM, Roy A, Uddin MA, Rashid MA. Phenolic Constituents from Wendlandia tinctoria var. grandis (Roxb.) DC. Stem Deciphering Pharmacological Potentials against Oxidation, Hyperglycemia, and Diarrhea: Phyto-Pharmacological and Computational Approaches. Molecules 2022; 27:5957. [PMID: 36144691 PMCID: PMC9505740 DOI: 10.3390/molecules27185957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Wendlandia tinctoria var. grandis (Roxb.) DC. (Family: Rubiaceae) is a semi-evergreen shrub distributed over tropical and subtropical Asia. The present research intended to explore the pharmacological potential of the stem extract of W. tinctoria, focusing on the antioxidant, hypoglycemic, and antidiarrheal properties, and to isolate various secondary metabolites as mediators of such activities. A total of eight phenolic compounds were isolated from the dichloromethane soluble fraction of the stem extract of this plant, which were characterized by electrospray ionization (ESI) mass spectrometric and 1H NMR spectroscopic data as liquiritigenin (1), naringenin (2), apigenin (3), kaempferol (4), glabridin (5), ferulic acid (6), 4-hydroxybenzoic acid (7), and 4-hydroxybenzaldehyde (8). The dichloromethane soluble fraction exhibited the highest phenolic content (289.87 ± 0.47 mg of GAE/g of dried extract) and the highest scavenging activity (IC50 = 18.83 ± 0.07 µg/mL) against the DPPH free radical. All of the isolated compounds, except 4-hydroxybenzaldehyde, exerted a higher antioxidant effect (IC50 = 6.20 ± 0.10 to 16.11 ± 0.02 μg/mL) than the standard butylated hydroxytoluene (BHT) (IC50 = 17.09 ± 0.01 μg/mL). Significant hypoglycemic and antidiarrheal activities of the methanolic crude extract at both doses (200 mg/kg bw and 400 mg/kg bw) were observed in a time-dependent manner. Furthermore, the computational modeling study supported the current in vitro and in vivo findings, and the isolated constituents had a higher or comparable binding affinity for glutathione reductase and urase oxidase enzymes, glucose transporter 3 (GLUT 3), and kappa-opioid receptor, inferring potential antioxidant, hypoglycemic, and antidiarrheal properties, respectively. This is the first report of all of these phenolic compounds being isolated from this plant species and even the first demonstration of the plant stem extract's antioxidant, hypoglycemic, and antidiarrheal potentials. According to the current findings, the W. tinctoria stem could be a potential natural remedy for treating oxidative stress, hyperglycemia, and diarrhea. Nevertheless, further extensive investigation is crucial for thorough phytochemical screening and determining the precise mechanisms of action of the plant-derived bioactive metabolites against broad-spectrum molecular targets.
Collapse
Affiliation(s)
- Mamtaz Farzana
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md. Jamal Hossain
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka 1205, Bangladesh
| | - Ahmed M. El-Shehawi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Md. Al Amin Sikder
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Mohammad Sharifur Rahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Muhammad Abdullah Al-Mansur
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr. Qudrat-I-Khuda Road, Dhanmondi, Dhaka 1205, Bangladesh
| | - Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mona M. Elseehy
- Department of Genetics, Faculty of Agriculture, University of Alexandria, Alexandria 21545, Egypt
| | - Arpita Roy
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida 201310, India
| | - M. Aftab Uddin
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Dhaka, Dhaka 1000, Bangladesh
| | - Mohammad A. Rashid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|
41
|
Li C, Wang L, Zhao J, Wei Y, Zhai S, Tan M, Guan K, Huang Z, Chen C. Lonicera rupicola Hook.f.et Thoms flavonoids ameliorated dysregulated inflammatory responses, intestinal barrier, and gut microbiome in ulcerative colitis via PI3K/AKT pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154284. [PMID: 35777121 DOI: 10.1016/j.phymed.2022.154284] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Lonicera rupicola Hook.f.et Thoms (LRH) is used as a customary medicinal herb in Tibetans. And LRH flavonoids have excellent anti-inflammatory and antioxidant pharmacological activities. However, the specific effects of LRH and its mechanism remain unknown, and there is a deficiency of systematic research, leading to the waste of LRH as a medicinal resource. PURPOSE In this study, in an attempt to rationalize the development and utilization of Tibetan herbal resources, the therapeutic efficacy and the underlying molecular mechanisms of LRH flavonoids on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) were investigated, establishing the favorable basis for the pharmacodynamic material basis of LRH and providing a scientific basis for the discovery of new drugs for the treatment of UC. METHODS Firstly, ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) was used for identification and detection of the flavonoid components of LRH. Meanwhile, their potential targets, biological functions and signaling pathways were predicted with the assistance of network pharmacology analysis. Subsequently, pharmacological efficacy of LRH were evaluated by body weight loss, colon length, disease activity index (DAI), histology observation and the expression levels of inflammatory mediators, messenger RNA (mRNA) and tight junction proteins. Moreover, in the present investigation, we also profiled the gut microbiome via high-throughput sequencing of the V3-V4 region of 16S ribosomal DNA (rDNA) for bacterial community composition and diversity by Illumina MiSeq platforms. Finally, the key regulatory proteins in the PI3K/AKT pathways were measured to investigate their underlying molecular mechanisms. RESULTS A total of 37 LRH flavonoid components were identified and detected by UPLC-MS/MS, and 12 potential active components were obtained after screening. 137 of their common targets with UC were further predicted. GO and KEGG pathway enrichment analysis and molecular docking experiments demonstrated that LRH flavonoids could interfere with UC through "multi-component-multi-target-multi-pathway". In the animal experiments, LRH flavonoids could significantly attenuate UC as demonstrated by reducing the body weight loss and DAI, restoring colon length, decreasing oxidative stress, and improving the intestinal epithelial cell barrier. The mRNA and proteins expression levels of inflammatory mediators were returned to dynamic balance following LRH flavonoids treatment. 16S rDNA sequence analysis indicated that LRH flavonoids promoted the recovery of gut microbiome. And the PI3K/AKT pathway was significantly suppressed by LRH flavonoids. CONCLUSIONS LRH flavonoids exhibited multifaceted protective effects against DSS-induced UC in mice through mitigating colon inflammation and oxidative stress, restoring epithelial barrier function, and improving the gut microenvironment potentially through modulation of the PI3K/AKT pathway. This finding demonstrated that LRH flavonoids possessed great potential for becoming an excellent drug for the treatment of UC.
Collapse
Affiliation(s)
- Congcong Li
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Lu Wang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China
| | - Juebo Zhao
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Yucai Wei
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Shuo Zhai
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Min Tan
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Kuikui Guan
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Zhihong Huang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China.
| | - Chaoxi Chen
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China.
| |
Collapse
|
42
|
Tackling Inflammatory Bowel Diseases: Targeting Proinflammatory Cytokines and Lymphocyte Homing. Pharmaceuticals (Basel) 2022; 15:ph15091080. [PMID: 36145301 PMCID: PMC9502105 DOI: 10.3390/ph15091080] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/21/2022] Open
Abstract
Inflammatory bowel diseases (IBDs) are characterized by chronic inflammatory disorders that are a result of an abnormal immune response mediated by a cytokine storm and immune cell infiltration. Proinflammatory cytokine therapeutic agents, represented by TNF inhibitors, have developed rapidly over recent years and are promising options for treating IBD. Antagonizing interleukins, interferons, and Janus kinases have demonstrated their respective advantages in clinical trials and are candidates for anti-TNF therapeutic failure. Furthermore, the blockade of lymphocyte homing contributes to the excessive immune response in colitis and ameliorates inflammation and tissue damage. Factors such as integrins, selectins, and chemokines jointly coordinate the accumulation of immune cells in inflammatory regions. This review assembles the major targets and agents currently targeting proinflammatory cytokines and lymphatic trafficking to facilitate subsequent drug development.
Collapse
|
43
|
Honokiol alleviates ulcerative colitis by targeting PPAR-γ-TLR4-NF-κB signaling and suppressing gasdermin-D-mediated pyroptosis in vivo and in vitro. Int Immunopharmacol 2022; 111:109058. [PMID: 35901530 DOI: 10.1016/j.intimp.2022.109058] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/21/2022] [Accepted: 07/11/2022] [Indexed: 12/11/2022]
Abstract
Ulcerative colitis (UC) is a chronic, idiopathic relapsing inflammatory bowel disease. Honokiol is a major active component of the traditional Chinese medicinal herb Magnolia officinalis, which has been widely used in traditional prescriptions to treat tumors, inflammation, and gastrointestinal disorders. In this study, we investigated the ability of this polyphenolic compound to suppress UC in mice and the possible regulatory mechanism. A mouse model of UC induced with dextran sulfate sodium (DSS) in 40 male C57BL/6J mice was used for the in vivo study, and in vitro experiments were performed in mouse RAW264.7 macrophages. Lipopolysaccharide was used to induce the inflammatory response. The mouse bodyweights, stool consistency, and bleeding were determined and the disease activity indices calculated. RAW264.7 macrophages were cultured with or without either honokiol or lipopolysaccharide. Gene and protein expression was analyzed with RT-PCR and western blotting, respectively. GW6471 and GW9662 were used to interrupt the transcription of peroxisome proliferator activated receptor alpha (PPAR-α) and peroxisome proliferator activated receptor gamma (PPAR-γ). Both the in vivo and in vitro experimental results showed that the oral administration of honokiol markedly attenuated the severity of UC by reducing the inflammatory signals and restoring the integrity of the colon. Honokiol dramatically reduced the proinflammatory cytokines TNF-α, IL6, IL1β, and IFN-γ in mice with DSS-induced UC. It also upregulated PPAR-γ expression, and downregulated the TLR4-NF-κB signaling pathway. Moreover, honokiol inhibited gasdermin-D-mediated cell pyroptosis. These findings demonstrate for the first time that honokiol exerts a strong anti-inflammatory effect in a mouse model of UC, and that its underlying mechanism is associated with the activation of the PPAR-γ-TLR4-NF-κB signaling pathway and gasdermin-D-mediated macrophage pyroptosis. Therefore, honokiol may be a promising new drug for the clinical management of UC.
Collapse
|
44
|
Enhanced Oral Bioavailability of MT-102, a New Anti-inflammatory Agent, via a Ternary Solid Dispersion Formulation. Pharmaceutics 2022; 14:pharmaceutics14071510. [PMID: 35890405 PMCID: PMC9323944 DOI: 10.3390/pharmaceutics14071510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 01/25/2023] Open
Abstract
This study aimed to develop a solid dispersion (SD) of MT-102, a new anti-inflammatory agent, to improve its oral bioavailability. The ternary SD formulations of MT-102 (a poorly soluble extract of Isatis indigotica and Juglans mandshurica) were prepared using a solvent evaporation method with various drug/excipient ratios. Following that, the effectiveness of various SDs as an oral formulation of MT-102 was investigated using indirubin as a marker component. By forming SDs with hydrophilic polymers, the aqueous solubility of indirubin was significantly increased. SD-F4, containing drug, poloxamer 407 (P407), and povidone K30 (PVP K30) at a 1:2:2 weight ratio, exhibited the optimal dissolution profiles in the acidic to neutral pH range. Compared to pure MT-102 and a physical mixture, SD-F4 increased indirubin’s dissolution from MT-102 by approximately 9.86-fold and 2.21-fold, respectively. Additionally, SD-F4 caused the sticky extract to solidify, resulting in improved flowability and handling. As a result, compared to pure MT-102, the oral administration of SD-F4 significantly improved the systemic exposure of MT-102 in rats. Overall, the ternary SD formulation of MT-102 with a blended mixture of P407 and PVP K30 appeared to be effective at improving the dissolution and oral absorption of MT-102.
Collapse
|
45
|
Biomarkers of Metabolomics in Inflammatory Bowel Disease and Damp-Heat Syndrome: A Preliminary Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3319646. [PMID: 35815273 PMCID: PMC9270137 DOI: 10.1155/2022/3319646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/04/2022] [Accepted: 06/02/2022] [Indexed: 11/17/2022]
Abstract
Aims This study aims to investigate the potential biomarkers of inflammatory bowel disease (IBD) and IBD with damp-heat syndrome (IBD-DH) by metabolomics. Methods Plasma and urine samples were collected from 15 healthy controls and 30 IBD patients, including 15 IBD-DH and 15 IBD with spleen deficiency syndrome (IBD-SD), which was coded as SF8G and SF70 according to the International Classification of Diseases Eleventh Revision (ICD-11) issued by World Health Organization. Pseudotargeted metabolomics method was used based on ultra-high-performance liquid chromatography-high-resolution mass spectrometry and triple-quadrupole mass spectrometry. Results Under the condition of false discovery rate (FDR) < 0.05, variable importance projection (VIP) > 1.0, and fold change (FC) > 1.5 or < 2/3, we found 57 plasma differential metabolites and 20 urinary differential metabolites in IBD. Then, with area under the curve (AUC) ≥ 0.85 and FC ≥ 2 or ≤ 0.3, 11 potential biomarkers were identified, such as acylcarnitine (ACar 20:4, ACar 18:1, and ACar 20:3), 3-indoleacetic acid, hippuric acid, and dehydroepiandrosterone sulfate, which is related to intestinal microbiota and immune response. However, less obvious differences were observed in IBD-DH when compared with IBD-SD. Under the condition of FDR < 0.2, VIP >1.0, and FC > 1.5 or < 2/3, we identified 16 plasma differential metabolites. In urine samples, IBD-DH and IBD-SD had the same metabolite pattern. With AUC ≥ 0.80, 7 differential plasma metabolites, mainly glycerophospholipids, were identified in IBD-DH. Kyoto Encyclopedia of Genes and Genomes analysis indicated that metabolic pathways, such as citrate cycle and amino acids metabolism, were mainly responsible for the distinction between IBD and healthy controls, whereas glycerophospholipid metabolism perturbation was not only a manifestation of IBD but also an important pathway to distinguish two subtypes defined by traditional medicine, IBD-DH and IBD-SD. Conclusion In this study, we found that several metabolites of aromatic acids and lipid derivatives could act as potential biomarkers to discriminate IBD from healthy controls. Glycerophospholipids metabolites might be used to differentiate IBD-DH from IBD-SD.
Collapse
|
46
|
Wei J, Wang B, Chen Y, Wang Q, Ahmed AF, Zhang Y, Kang W. The Immunomodulatory Effects of Active Ingredients From Nigella sativa in RAW264.7 Cells Through NF-κB/MAPK Signaling Pathways. Front Nutr 2022; 9:899797. [PMID: 35711536 PMCID: PMC9194833 DOI: 10.3389/fnut.2022.899797] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/22/2022] [Indexed: 12/11/2022] Open
Abstract
Nigella sativa is a valuable herb for its functional compositions in both food and medication. N. sativa seeds can enhance immunity, anti-inflammation and analgesia and hypoglycemia, but most of the related researches are related to volatile oil and extracts, and the activity and mechanism of compounds is not clear. In this study, Ethyl-α-D-galactopyranoside (EG), Methyl-α-D-glucoside (MG), 3-O-[β-D-xylopyranose-(1 → 3)-α-L-rhamnose-(1 → 2)-α-L-arabinose]-28-O-[α-L-rhamnose-(1 → 4)-β-D-glucopyranose-L-(1 → 6)-β-D-glucopyranose]-hederagenin (HXRARG) and 3-O-[β-D-xylopyranose-(1 → 3)-α-L-rhamnose-(1 → 2)-α-L-arabinose]-hederagenin (HXRA) were isolated and identified from N. sativa seeds. In addition, four compounds could activate NF-κB pathway by promoting the expression of phosphorylation of P65 and IκBα, promoting the phosphorylation of JNK, Erk and P38 to activate MAPK signaling pathway, enhancing the proliferation and phagocytic activity of RAW264.7 cells, and promoting the release of NO, TNF-α and IL-6 on RAW264.7 cell in vitro. The results showed that N. sativa can be used as dietary supplement to enhance immune.
Collapse
Affiliation(s)
- Jinfeng Wei
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Shenzhen Research Institute of Henan University, Shenzhen, China
| | - Baoguang Wang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
| | - Yixiao Chen
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
| | - Qiuyi Wang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
| | - Adel F. Ahmed
- Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng, China
- Medicinal and Aromatic Plants Researches Department, Horticulture Research Institute, Agricultural Research Center, Giza, Egypt
| | - Yan Zhang
- Hebei Food Safety Key Laboratory, Hebei Food Inspection and Research Institute, Shijiazhuang, China
| | - Wenyi Kang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Shenzhen Research Institute of Henan University, Shenzhen, China
- Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng, China
| |
Collapse
|
47
|
Chen Q, Zhang YL, Zhang ZW, Chen YJ, Tang YJ, Qiao D, Dai YC, Tang ZP. Jianpi Qingchang Decoction Ameliorates Chronic Colitis in Piroxicam-Induced IL-10 Knockout Mice by Inhibiting Endoplasmic Reticulum Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:7378807. [PMID: 35186102 PMCID: PMC8849791 DOI: 10.1155/2022/7378807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/06/2022] [Accepted: 01/17/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Excessive endoplasmic reticulum (ER) stress in intestinal epithelial cells (IEC) may lead to impaired intestinal mucosal barrier function and then participate in the pathogenesis of ulcerative colitis (UC). Jianpi Qingchang decoction (JPQCD) has been shown to have protective effects on UC. However, further studies are needed to determine whether JPQCD regulates PERK/eIF2α/ATF4/CHOP pathways to play a role in treating UC. METHODS IL-10 -/- mice were randomly assigned into five groups: control, model, low-dose JPQCD (JPQCD L), middle-dose JPQCD (JPQCD M), and high-dose JPQCD (JPQCD H). All groups except for the control group were given model feed containing 200 ppm piroxicam for 10 d to induce colitis. As a comparison, we used wild-type mice that were the progeny of IL-10 +/- matings, bred in the same facility. The control group and wild-type mice were fed with common feed. At the same time, mice in each group were given corresponding drugs by gavage for 14 d. The disease activity index of mice in each group was evaluated daily. Colon tissues of mice were collected, colon length was measured, and pathological changes and ultrastructure of colon epithelial cells were observed. The effects of JPQCD on the PERK/eIF2α/ATF4/CHOP pathways were evaluated by western blotting and reverse transcription-polymerase chain reaction (RT-PCR). The expression of CHOP in colon tissue was detected by tissue immunofluorescence assay. The expression of NF-κB, p-NF-κB p65 protein was analyzed by western blotting; the level of IL-17 in colon tissue was detected by enzyme-linked immunosorbent assay (ELISA) and verified by examining NF-κB and IL-17 mRNA levels by RT-PCR. RESULTS Compared with the control group, the model group showed significant colitis symptoms and severe colonic tissue damage. The results showed that JPQCD significantly reduced body weight loss, ameliorated disease activity index, and restored colon length in IL-10 -/- mice with piroxicam-induced colitis. Western blotting and RT-PCR showed that the PERK/eIF2α/ATF4/CHOP pathway was activated in colon tissue of model mice, suggesting that the pathway is involved in the pathogenesis of ulcerative colitis (UC) and could become a potential therapeutic target. The JPQCD treatment inhibited the activation of the PERK/eIF2α/ATF4/CHOP pathway, alleviated the ER stress, and played a role in preventing and treating UC. In addition, JPQCD can also downregulate the protein of NF-κB, p-NF-κB p65, downregulate the mRNA expression of NF-κB, and reduce the content of IL-17 and its mRNA expression in colon tissues. CONCLUSION JPQCD may play a protective role in UC by regulating the PERK/eIF2α/ATF4/CHOP signaling pathway and relieving endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Qian Chen
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Ya-Li Zhang
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Zi-Wei Zhang
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yu-Jun Chen
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Ying-Jue Tang
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Dan Qiao
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Yan-Cheng Dai
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Zhi-Peng Tang
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
48
|
Wang X, Xu L, Wang T, Xu J, Fan F, Zhang Y, Wang J, Cao Q. Pulsatilla decoction alleviates colitis by enhancing autophagy and regulating PI3K‑Akt‑mTORC1 signaling pathway. Mol Med Rep 2022; 25:108. [PMID: 35103289 PMCID: PMC8822884 DOI: 10.3892/mmr.2022.12624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 04/07/2021] [Indexed: 12/27/2022] Open
Abstract
The aim of the present study was to investigate the therapeutic effect of Pulsatilla decoction (PD) on ulcerative colitis (UC) and to elucidate its potential molecular mechanisms. C57BL/6 mice expressing natural killer (NK)1.1 were used as experimental animals in the present study and a model of oxazolone‑induced colitis was established. Mice were randomly divided into the following five groups: i) PD group; ii) oxazolone‑induced colitis group; iii) IL‑13 intervention group; iv) 5‑aminosalicylic acid positive control group; and v) negative control group (equal volume saline gavage). A total of 10 animals were used in each group. The effects of PD on UC and the association between this regimen and the PI3K‑Akt‑mTORC1 signaling pathway were evaluated by disease activity index (DAI), hematoxylin and eosin staining, reverse transcription‑quantitative PCR (RT‑qPCR), immunofluorescence assay, ELISA and western blotting. The UC models were successfully established by injecting oxazolone gavage solution. Clinical colitis evaluation and histological examination revealed that PD reduced the DAI values in oxazolone‑induced colitis in mice and the degree of infiltration in NK1.1 cells. PD significantly reduced the secretion of IL‑13, as determined using an ELISA. In addition, western blotting and RT‑qPCR analyses demonstrated that Beclin1 and LC3II/I expression levels were downregulated following treatment of the mice with PD. In addition, PD not only partially restored alterations in the expression of tight junction proteins in the colon tissues, but also suppressed the activation of the PI3K‑Akt‑mTORC1 signaling pathway. The data indicated that this regimen could alleviate oxazolone‑induced UC in mice, which could significantly reduce tissue inflammation and autophagy. The mechanism of action was associated with the PI3K‑Akt‑mTORC1 signaling pathway.
Collapse
Affiliation(s)
- Xuewei Wang
- Division of Gastroenterology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Lijun Xu
- Division of Gastroenterology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Tao Wang
- Division of Gastroenterology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Jian Xu
- Division of Gastroenterology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Fugang Fan
- Division of Gastroenterology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Yu Zhang
- Division of Gastroenterology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Jinpin Wang
- Division of Gastroenterology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Qin Cao
- Division of Gastroenterology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| |
Collapse
|
49
|
Lashgari NA, Momeni Roudsari N, Khayatan D, Shayan M, Momtaz S, Roufogalis BD, Abdolghaffari AH, Sahebkar A. Ginger and its constituents: Role in treatment of inflammatory bowel disease. Biofactors 2022; 48:7-21. [PMID: 34882874 DOI: 10.1002/biof.1808] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/15/2021] [Indexed: 12/19/2022]
Abstract
Inflammatory bowel diseases (IBD), with obscure etiology, are rising and are of worldwide concern. Of the various components of IBD pathogenesis and progression, irritation appears to play a major part. Investigations on the molecular and cellular pathways that activate the IBD provide the focus for the development of useful therapies. Ginger (the rhizome of Zingiber officinale) has a broad spectrum of clinical applications due to its anti-inflammatory and anti-oxidative functions. Inflammation and oxidative stress are the key pathogenic factors in many diseases, including IBD. The most established components of ginger are phenolic compounds called gingerols. A wide range of pharmacological activities of the potential therapeutic benefit of Z. officinale have been detailed. In this regard, the anti-inflammatory activity of ginger has been documented by many researchers. It was shown that ginger is a potent inhibitor of the nuclear factor kappa B (NF-κB), signal transducer of activators of transcription (STATs), Nod-like receptor family proteins (NLRPs), toll-like receptors (TLRs), mitogen-activated protein kinase (MAPKs), and mTOR (mTOR) pathways, as well as inhibiting various pro-inflammatory cytokines. In the present report, the potential application of ginger in the management of IBD is reviewed in detail, with an emphasis on the relevant properties of ginger and its bioactive components. The significance of the functions, side effects, and delivery of ginger to the digestive system for particular application in IBD are also considered.
Collapse
Affiliation(s)
- Naser-Aldin Lashgari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nazanin Momeni Roudsari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Danial Khayatan
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Shayan
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Basil D Roufogalis
- Discipline of Pharmacology, School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia
- National Institute of Complementary Medicine, Western Sydney University, Westmead, New South Wales, Australia
| | - Amir Hossein Abdolghaffari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Australia
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
50
|
Chen S, Chen Z, Wang Y, Hao W, Yuan Q, Zhou H, Gao C, Wang Y, Wu X, Wang S. Targeted delivery of Chinese herb pair-based berberine/tannin acid self-assemblies for the treatment of ulcerative colitis. J Adv Res 2021; 40:263-276. [PMID: 36100331 PMCID: PMC9481968 DOI: 10.1016/j.jare.2021.11.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/24/2021] [Indexed: 01/01/2023] Open
Abstract
A colon-targeted hyaluronic acid-coated berberine/tannin acid nanostructure (HTB) was developed HTB could localize in inflamed colon in colitis mice HTB exerted strong therapeutic efficacy in mouse model of colitis HTB regulated gut barrier function and apoptosis in colitis mice HTB partially recovered DSS-mediated gut microbiome alteration
Introduction Ulcerative colitis (UC) is a chronic recurrent idiopathic disease characterized by damage to the colonic epithelial barrier and disruption of inflammatory homeostasis. At present, there is no curative therapy for UC, and the development of effective and low-cost therapies is strongly advocated. Objectives Multiple lines of evidence support that tannic acid (TA) and berberine (BBR), two active ingredients derived from Chinese herb pair (Rhei Radix et Rhizoma and Coptidis Rhizoma), have promising therapeutic effects on colonic inflammation. This study aims to develop a targeted delivery system based on BBR/TA-based self-assemblies for the treatment of UC. Methods TA and BBR self-assemblies were optimized, and hyaluronic acid (HA) was coated to achieve targeted colon delivery via HA-cluster of differentiation 44 (CD44) interactions. The system was systematically characterized and dextran sodium sulfate (DSS)-induced mouse colitis model was further used to investigate the biodistribution behavior, effect and mechanism of the natural system. Results TA and BBR could self-assemble into stable particles (TB) and HA-coated TB (HTB) further increased cellular uptake and accumulation in inflamed colon lesions. Treatment of HTB inhibited pro-inflammatory cytokine levels, restored expression of tight junction-associated proteins and recovered gut microbiome alteration, thereby exerting anti-inflammatory effects against DSS-induced acute colitis. Conclusion Our targeted strategy may provide a convenient and powerful platform for UC and reveal new modes of application of herbal combinations.
Collapse
|