1
|
Ren T, Fan X, Wu Q, Wu Y, Sun X, Tong H. Structural insights and therapeutic potential of plant-based pectin as novel therapeutic for type 2 diabetes mellitus: A review. Int J Biol Macromol 2025; 307:141876. [PMID: 40064270 DOI: 10.1016/j.ijbiomac.2025.141876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
Type 2 diabetes mellitus (T2DM) is a global health challenge with limited efficacy of current treatments, necessitating alternative therapies. Plant-derived pectin, composed of galacturonic acid and structural domains such as homogalacturonan, has shown promise as an anti-diabetic agent. Pectin exerts its therapeutic effects through multiple mechanisms, including enhancing β-cell function, regulating glucose metabolism, improving insulin sensitivity, inhibiting digestive enzymes, and restoring gut microbiota balance. Its bioactivity is influenced by physicochemical properties like molecular weight, degree of methylation, and structural complexity. This review explores the anti-diabetic potential of pectin, its structure-activity relationships, and mechanisms of action, providing insights for its development as a novel therapeutic agent in T2DM management.
Collapse
Affiliation(s)
- Ting Ren
- School of Pharmaceutical Sciences, Jilin Medical University, Jilin 132013, China
| | - Xinrong Fan
- Department of Durg Preparation, Lishui Hospital of Traditional Chinese Medicine, Lishui 323000, China
| | - Qifang Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yu Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xin Sun
- School of Pharmaceutical Sciences, Jilin Medical University, Jilin 132013, China.
| | - Haibin Tong
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, China.
| |
Collapse
|
2
|
Asad D, Zreqat Q, Idais S, Hussein B, Ayyad A, Hunjul M, AbuGharbieh HMI, Neiroukh H, Zuhour A, AbuKhalaf S, Al-Atrash N, Alzughayyar R, Njoum Y, Hallak H. Prevalence of gastroparesis symptoms and its associated factors among type 2 diabetes mellitus patients in West Bank in Palestine: a national cross-sectional study. Front Med (Lausanne) 2025; 12:1499725. [PMID: 40012984 PMCID: PMC11862999 DOI: 10.3389/fmed.2025.1499725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 01/21/2025] [Indexed: 02/28/2025] Open
Abstract
Introduction Diabetic gastroparesis (DGP) is defined as delayed gastric emptying without any mechanical obstruction in diabetic patients. Methods We conducted a cross-sectional study using an Arabic-validated translated version of the Gastroparesis Cardinal Symptom Index (GCSI). A total of 3,542 diabetic patients were interviewed, of whom 91.6% were finally included in the analysis. Results DGP symptoms were present in 14.5% of the study population, of which 10.2% had a GCSI score of severe disease. Further analysis of individuals with GCSI scores≥1.9 (14.5%; 470) revealed that 50.8% of them visited a doctor at least once, and 18% had been hospitalized due to DGP symptoms. However, only nine patients (1.9%) were diagnosed with DGP. The most common symptoms were stomach fullness and early satiety. The binary regression model showed that DGP symptoms were more likely to occur in patients who had diabetes for >10 years and glycosylated hemoglobin >9. Furthermore, the model revealed that females were at a higher risk of developing DGP. Discussion This was the first study in Palestine on DGP, which showed that the condition is underdiagnosed. This is not only because of the unavailability of standard diagnostic methods but also due to the under appreciation of gastrointestinal complaints in diabetic patients.
Collapse
Affiliation(s)
- Diya Asad
- Faculty of Medicine, Al-Quds University, Jerusalem, Palestine
| | - Qusai Zreqat
- Faculty of Medicine, Al-Quds University, Jerusalem, Palestine
| | - Shahd Idais
- Faculty of Medicine, Al-Quds University, Jerusalem, Palestine
| | - Bara'ah Hussein
- Faculty of Medicine, Al-Quds University, Jerusalem, Palestine
- Medical Research Club, Al-Quds University, Jerusalem, Palestine
| | - Alaa Ayyad
- Faculty of Medicine, Al-Quds University, Jerusalem, Palestine
| | - Marah Hunjul
- School of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | | | - Haroun Neiroukh
- School of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Areen Zuhour
- Palestinian Medical Complex, Ramallah, Palestine
| | | | - Nour Al-Atrash
- Faculty of Medicine, Al-Quds University, Jerusalem, Palestine
| | - Roa Alzughayyar
- School of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Yumna Njoum
- Faculty of Medicine, Al-Quds University, Jerusalem, Palestine
| | - Hussein Hallak
- Faculty of Medicine, Al-Quds University, Jerusalem, Palestine
| |
Collapse
|
3
|
Wu HHL, Bhagavath V, Nguyen LT, Chinnadurai R, Goldys EM, Pollock CA, Saad S. Association Between Glycemic Control and Complications With Concentration of Urinary Exfoliated Proximal Tubule Kidney Cells in People With Diabetes Mellitus. J Diabetes Res 2025; 2025:1273073. [PMID: 39850513 PMCID: PMC11756946 DOI: 10.1155/jdr/1273073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 01/06/2025] [Indexed: 01/25/2025] Open
Abstract
Background: Emerging evidence suggests cell exfoliation could be operating under the control of cell metabolism. It is unclear if there are associations between the concentration of exfoliated kidney proximal tubule cells (PTCs) in urine with glycemic control and complications. Our study is aimed at exploring this. Methods: Urine samples were collected from 122 adult study participants and stored at -80°C. Exfoliated PTCs were extracted from thawed urine using a validated specific immunomagnetic separation method based on anti-CD13 and anti-SGLT-2 antibodies. The number of PTCs was assessed using brightfield microscopy. Study participants were grouped into those with no diabetes mellitus (DM) and those with DM. Individuals with DM were further subgrouped into those with and without retinopathy. Adjusted Poisson regression analysis was conducted for the DM cohort, investigating associations between demographic, clinical, and biochemical parameters with mean urinary exfoliated PTCs. Results: The adjusted Poisson regression analysis noted sex to have a significant association with mean number of urinary exfoliated PTCs, with a lower incidence rate in males compared to females (incidence rate ratio (IRR) 0.56, 95% CI 0.35-0.89, p = 0.014). Each 1% increase in glycated haemoglobin (HbA1c) was associated with an increase of 1.03 times in mean exfoliated PTCs (IRR 1.03, 95% CI 1.01-1.04, p = 0.007), and DM patients with retinopathy had an increase of 1.68 times in mean exfoliated PTCs compared to those without retinopathy (IRR 1.68, 95% CI 1.07-2.62, p = 0.024). No significant associations were observed with albuminuria or estimated glomerular filtration rate (eGFR). Conclusions: Our results indicate increased shedding of PTCs into the urinary tract in patients with poorer glycemic control, particularly those with diabetic retinopathy and in females.
Collapse
Affiliation(s)
- Henry H. L. Wu
- Renal Research Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital & The University of Sydney, Sydney, Australia
- ARC Centre of Excellence for Nanoscale Biophotonics, School of Biomedical Engineering, The University of New South Wales, Sydney, Australia
| | - Venkatesha Bhagavath
- Biostatistics Support and Consultation Services, Northern Sydney Local Health District, Sydney, Australia
| | - Long The Nguyen
- Renal Research Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital & The University of Sydney, Sydney, Australia
| | - Rajkumar Chinnadurai
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Ewa M. Goldys
- ARC Centre of Excellence for Nanoscale Biophotonics, School of Biomedical Engineering, The University of New South Wales, Sydney, Australia
| | - Carol A. Pollock
- Renal Research Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital & The University of Sydney, Sydney, Australia
- Department of Renal Medicine, Royal North Shore Hospital, Northern Sydney Local Health District, Sydney, Australia
| | - Sonia Saad
- Renal Research Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital & The University of Sydney, Sydney, Australia
| |
Collapse
|
4
|
Tao W, Liu D, Guo Z, Han P, Ma Y, Wu M, Zhang R, He J. Physicochemical properties, structural characterization, and antidiabetic activity of selenylated low molecular weight apple pectin in HFD/STZ-induced type 2 diabetic mice. Carbohydr Polym 2025; 348:122790. [PMID: 39562068 DOI: 10.1016/j.carbpol.2024.122790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/03/2024] [Accepted: 09/20/2024] [Indexed: 11/21/2024]
Abstract
A novel selenylated low molecular weight apple pectin (Se-LMWAP) was prepared through enzymatic modification combined with selenylation. The physicochemical properties, the structural characterization of Se-LMWAP were evaluated by FT-IR, NMR and SEM. Moreover, the antidiabetic activity and potential mechanism of Se-LMWAP were investigated using high-fat diet (HFD)/streptozotocin (STZ)-induced type 2 diabetic mice. The results revealed that the physicochemical properties of Se-LMWAP were distinctly improved after modifications, and the primary structure was not altered significantly compared to apple pectin and low molecular weight apple pectin. Se-LMWAP had a relative molecular weight of 8.91 × 103 Da (accounted for 61.3 %) and total selenium content of 148.3 ± 2.0 μgselenium/gsample. It consisted of Rha, Ara, Gal, Glc, Xyl and GalA at a molar ratio of 0.093:0.014:0.132:0.020:0.118:0.622, with the selenium substitution occurred at the C-6 position. Se-LMWAP was able to significantly reduce weight loss, hyperglycemia, oxidative stress and liver, kidney and pancreas damage. Additionally, improved glucose tolerance, relieved lipid metabolism disorders, elevated hepatic glycogen content and ameliorated insulin resistance were observed in the Se-LMWAP group. Overall, Se-LMWAP can be used as a promising dietary selenium supplement to exert -antidiabetic effect through modulating hepatic glucose metabolism and liver insulin-signaling transduction and oxidative stress.
Collapse
Affiliation(s)
- Wen Tao
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, No.36 Huanhu Middle Road, Jinyinhu District, Wuhan 430023, PR China
| | - Diguo Liu
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, No.36 Huanhu Middle Road, Jinyinhu District, Wuhan 430023, PR China
| | - Ziqi Guo
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, No.36 Huanhu Middle Road, Jinyinhu District, Wuhan 430023, PR China
| | - Pengfei Han
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, No.36 Huanhu Middle Road, Jinyinhu District, Wuhan 430023, PR China
| | - Yan Ma
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, No.36 Huanhu Middle Road, Jinyinhu District, Wuhan 430023, PR China
| | - Muci Wu
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, No.36 Huanhu Middle Road, Jinyinhu District, Wuhan 430023, PR China
| | - Rui Zhang
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, No.36 Huanhu Middle Road, Jinyinhu District, Wuhan 430023, PR China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, No.36 Huanhu Middle Road, Jinyinhu District, Wuhan 430023, PR China.
| | - Jingren He
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, No.36 Huanhu Middle Road, Jinyinhu District, Wuhan 430023, PR China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, No.36 Huanhu Middle Road, Jinyinhu District, Wuhan 430023, PR China.
| |
Collapse
|
5
|
Xu H, Miao F, Fan Y. A bibliometric analysis of diabetic gastroparesis from 1979 to 2024. Front Med (Lausanne) 2024; 11:1445276. [PMID: 39450111 PMCID: PMC11500038 DOI: 10.3389/fmed.2024.1445276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/09/2024] [Indexed: 10/26/2024] Open
Abstract
Objective Gastroparesis is one of the complications of diabetes mellitus, which has a major impact on the quality of life of patients, and the limited therapeutic options currently available make it a public health problem. No bibliometric studies on diabetic gastroparesis have been published to date. Therefore, the aim of this paper is to summarize and analyze the research hotspots for researchers. Methods Research articles related to Diabetic gastroparesis were searched in Web of Science Core Collection (WOSCC), and relevant information was extracted after screening. A comprehensive bibliometric analysis of 699 publications was conducted using Microsoft Excel 2019, Citespace and VOSviewers. Result A total of 699 papers from 738 institutions in 41 countries were retrieved. Publications in this field have increased rapidly since 1979. USA (n = 370) and Mayo Clinical (n = 69) were the most productive country and institution, respectively. Neurogastroenterology and Motility (n = 67) was the most published journal with Parkman, Henry P. (n = 40) having the highest number of articles; Gastroenterology and Mccallum, Richard W. were the most influential journals and authors. Conclusions The research hotspots of Diabetic gastroparesis are mainly focused on treatment modalities and pathological mechanisms. Future research in diabetic gastroparesis will focus on exploring the pathomechanisms, finding long-term effective treatments, and improving patients' quality of life.
Collapse
Affiliation(s)
| | | | - Yushan Fan
- College of Acupuncture-Moxibustion and Tuina, Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
6
|
Liu T, Zhu C, Duan Z, Ma P, Ma X, Fan D. Network Pharmacological Analysis Combined with Experimental Verification to Explore the Effect of Ginseng Polypeptide on the Improvement of Diabetes Symptoms in db/db Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18537-18551. [PMID: 39129180 DOI: 10.1021/acs.jafc.4c04949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Diabetes mellitus is a typical metabolic disease that has become a major threat to human health worldwide. Ginseng polypeptide (GP), a small molecule active substance isolated from ginseng, has shown positive hypoglycemic effects in preliminary studies. However, its mechanism in ameliorating multiorgan damage in db/db mice is unclear. In this study, we utilized network pharmacology, molecular docking, and animal experiments to explore the targets and biological mechanisms of GP to ameliorate multiorgan damage in T2DM. The results showed that GP improves T2DM by inhibiting inflammation and oxidative damage, thereby alleviating hyperglycemia, insulin resistance, and multiorgan damage in db/db mice. These effects are potentially mediated through the PI3K-Akt signaling pathway and the MAPK signaling pathway. This study establishes GP's efficacy in alleviating T2DM and provides a robust theoretical basis for the development of new drugs or functional foods for treating this disease.
Collapse
Affiliation(s)
- Tianzhu Liu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Chenhui Zhu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Zhiguang Duan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Pei Ma
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Xiaoxuan Ma
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| |
Collapse
|
7
|
Xu M, Wang Y, Wang X, Pu Z, Liu Y, Jiang C, Shen X, Sun H, Xie H. Unveiling the Influence of a High-Fat Meal on the Pharmacokinetics of Oral Globalagliatin, A Glucokinase Activator, in Healthy Chinese Volunteers. Drugs R D 2024; 24:41-50. [PMID: 37985605 PMCID: PMC11035525 DOI: 10.1007/s40268-023-00448-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 11/22/2023] Open
Abstract
INTRODUCTION Glucokinase (GK) plays a pivotal role in maintaining glucose homeostasis; globalagliatin, a newly developed drug, is a GK activator (GKA). This study constitutes a randomized, open-label, two-cycle, two-crossover, single-dose, phase I clinical trial conducted at a single center with healthy Chinese volunteers, aiming to examine the influence of a high-fat meal on the pharmacokinetics (PK) of orally administered globalagliatin. METHODS Twenty-four healthy volunteers were randomly divided into two groups, with a washout period of 16 days between the two cycles. The first cycle involved Group 1 volunteers who were orally administered globalagliatin 80 mg with 240 mL of water while fasting on Day 1. In contrast, Group 2 volunteers began oral administration of globalagliatin 80 mg with 240 mL of water, 30 min after consuming a high-fat meal (where high-fat content contributed to 54% of the total calories; the high-calorie meal amounted to 988.4 kcal). After the washout period, both groups of volunteers entered the second cycle of drug administration, with meals and medication being swapped on Day 17. Each volunteer collected blood samples at the following time points: 0 h (within 1 h before administration), and 0.5, 1, 2, 3, 4, 5, 6, 8, 12, 24, 48, 72, 96, 120, and 168 h after administration on both trial Day 1 and Day 17. The primary and secondary PK parameters were collected. The validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was used to determine the concentration of globalagliatin in collected plasma samples, and the results were analyzed using Phoenix WinNonlin software. Safety evaluation was conducted by detecting or observing various adverse events (AEs) and serious AEs (SAEs). RESULTS All 24 healthy Chinese volunteers enrolled completed the study and underwent PK analysis. The maximum concentration (Cmax; ng/mL), area under the plasma concentration-time curve (AUC) from time zero to time of the last quantifiable concentration (AUCt; h·ng/mL), and AUC from time zero extrapolated to infinity (AUC∞; h·ng/mL) of fasting administration were 22.35 ± 7.02, 725.74 ± 303.04, and 774.07 ± 343.89, respectively, while the Cmax, AUCt, and AUC∞ administered after a high-fat meal were 28.95 ± 12.60, 964.84 ± 333.99, and 1031.28 ± 392.80, respectively. The geometric mean ratios of Cmax, AUCt, and AUC∞ for high-fat meal/fasting administration of globalagliatin were 124.81%, 135.24%, and 135.42%, respectively, with 90% confidence intervals of 109.97-141.65, 124.24-147.20, and 124.42-147.39, respectively. Compared with the fasting state, healthy volunteers who consumed a high-fat meal showed a 24.8% increase in Cmax, a 35.2% increase in AUCt, and a 35.4% increase in AUC∞. The geometric mean of Tmax was 4.69 h under fasting conditions and 5.93 h in a high-fat state, with a median of 4.98 h. Among the 24 enrolled volunteers, 9 cases (37.5%) had 11 AEs, and 6 cases (25.0%) had 7 adverse drug reactions (ADRs) after medication, all of which were cured or improved without taking any treatment measures. There were no SAEs in this study, no volunteers withdrew from the study due to AEs or ADRs, and no hypoglycemic events occurred during the trial. CONCLUSION A high-fat meal increased the Cmax, AUCt, and AUC∞ of globalagliatin compared with fasting conditions in healthy Chinese adult volunteers. Meanwhile, globalagliatin showed favorable safety and tolerability under fasting or high-fat meal conditions.
Collapse
Affiliation(s)
- Maodi Xu
- The Drug Evaluation Center, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Yaqin Wang
- The Drug Evaluation Center, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Xiaohu Wang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Zhichen Pu
- The Drug Evaluation Center, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Ya Liu
- The Drug Evaluation Center, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Cuilian Jiang
- Suzhou Yabao Pharmaceutical R&D Co., Ltd, Suzhou, China
| | - Xiaokun Shen
- Suzhou Yabao Pharmaceutical R&D Co., Ltd, Suzhou, China
| | - Hua Sun
- The Drug Evaluation Center, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China.
| | - Haitang Xie
- The Drug Evaluation Center, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China.
| |
Collapse
|
8
|
Kubohara Y, Fukunaga Y, Shigenaga A, Kikuchi H. Dictyostelium Differentiation-Inducing Factor 1 Promotes Glucose Uptake via Direct Inhibition of Mitochondrial Malate Dehydrogenase in Mouse 3T3-L1 Cells. Int J Mol Sci 2024; 25:1889. [PMID: 38339168 PMCID: PMC10855897 DOI: 10.3390/ijms25031889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Differentiation-inducing factor 1 (DIF-1), found in Dictyostelium discoideum, has antiproliferative and glucose-uptake-promoting activities in mammalian cells. DIF-1 is a potential lead for the development of antitumor and/or antiobesity/antidiabetes drugs, but the mechanisms underlying its actions have not been fully elucidated. In this study, we searched for target molecules of DIF-1 that mediate the actions of DIF-1 in mammalian cells by identifying DIF-1-binding proteins in human cervical cancer HeLa cells and mouse 3T3-L1 fibroblast cells using affinity chromatography and liquid chromatography-tandem mass spectrometry and found mitochondrial malate dehydrogenase (MDH2) to be a DIF-1-binding protein in both cell lines. Since DIF-1 has been shown to directly inhibit MDH2 activity, we compared the effects of DIF-1 and the MDH2 inhibitor LW6 on the growth of HeLa and 3T3-L1 cells and on glucose uptake in confluent 3T3-L1 cells in vitro. In both HeLa and 3T3-L1 cells, DIF-1 at 10-40 μM dose-dependently suppressed growth, whereas LW6 at 20 μM, but not at 2-10 μM, significantly suppressed growth in these cells. In confluent 3T3-L1 cells, DIF-1 at 10-40 μM significantly promoted glucose uptake, with the strongest effect at 20 μM DIF-1, whereas LW6 at 2-20 μM significantly promoted glucose uptake, with the strongest effect at 10 μM LW6. Western blot analyses showed that LW6 (10 μM) and DIF-1 (20 μM) phosphorylated and, thus, activated AMP kinase in 3T3-L1 cells. Our results suggest that MDH2 inhibition can suppress cell growth and promote glucose uptake in the cells, but appears to promote glucose uptake more strongly than it suppresses cell growth. Thus, DIF-1 may promote glucose uptake, at least in part, via direct inhibition of MDH2 and a subsequent activation of AMP kinase in 3T3-L1 cells.
Collapse
Affiliation(s)
- Yuzuru Kubohara
- Laboratory of Health and Life Science, Graduate School of Health and Sports Science, Juntendo University, Inzai 270-1695, Japan
| | - Yuko Fukunaga
- Department of Animal Risk Management, Faculty of Risk and Crisis Management, Chiba Institute of Science, Choshi 288-0025, Japan;
| | - Ayako Shigenaga
- Institute of Health and Sports Science & Medicine, Juntendo University, Inzai 270-1695, Japan;
| | - Haruhisa Kikuchi
- Division of Natural Medicines, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan;
| |
Collapse
|
9
|
El-Nashar HAS, Taleb M, El-Shazly M, Zhao C, Farag MA. Polysaccharides (pectin, mucilage, and fructan inulin) and their fermented products: A critical analysis of their biochemical, gut interactions, and biological functions as antidiabetic agents. Phytother Res 2024; 38:662-693. [PMID: 37966040 DOI: 10.1002/ptr.8067] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/29/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023]
Abstract
Diabetes mellitus is a globally metabolic endocrine syndrome marked by a deficiency of insulin secretion (type-1 DM) or glucose intolerance arising from insulin response impairment (type-2 DM) leading to abnormal glucose metabolism. With an increasing interest in natural dietary components for diabetes management, the identification of novel agents witnessed major discoveries. Plant-derived mucilage, pectin, and inulin are important non-starch polysaccharides that exhibit effective antidiabetic properties often termed soluble dietary fiber (SDF). SDF affects sugar metabolism through multiple mechanisms affecting glucose absorption and diffusion, modulation of carbohydrate metabolizing enzymes (α-amylase and α-glucosidase), ameliorating β-pancreatic cell dysfunction, and improving insulin release or sensitivity. Certain SDFs inhibit dipeptidyl peptidase-4 and influence the expression levels of genes related to glucose metabolism. This review is designed to discuss holistically and critically the antidiabetic effects of major SDF and their underlying mechanisms of action. This review should aid drug discovery approaches in developing novel natural antidiabetic drugs from SDF.
Collapse
Affiliation(s)
- Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed Taleb
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University-Gaza, Gaza, Palestine
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Chao Zhao
- College of Marine Sciences, Fujian Agricultural and Forestry University, Fuzhou, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
10
|
Chen X, Liu Y, Ren L, Dai X, Zhao J, Gao C, Zhang S, Dong J, Zhao Z, Li Y, Wang J, Zhao H, Gong G, He X, Bian Y. Extraction, purification, structural characteristics and biological properties of the polysaccharides from Armillaria mellea (Vahl) P. Kumm.: A review. Int J Biol Macromol 2024; 259:129175. [PMID: 38181916 DOI: 10.1016/j.ijbiomac.2023.129175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/01/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
Armillaria mellea (Vahl) P. Kumm. is a well-known homoeopathic plant with medicinal and culinary uses. Modern phytochemical researchers have successfully extracted and purified over 40 types of A. mellea polysaccharides (AMPs) from the fruiting bodies, hyphae and fermentation broth of A. mellea, and some of them have been analyzed and identified by their chemical structures. The impressive biological activity of these polysaccharides has been recognized by scientists worldwide. Many studies show that AMPs have remarkable antioxidant, anti-diabetic, anti-tumor, anti-inflammatory, immunoregulatory, hypolipidemic, thrombectomy, anti-aging, pulmonary protective, hepatic protective, anti-Alzheimer's properties, etc. However, the current understanding of the relationships between their chemical structure and biological activity, toxicological effects and pharmacokinetics remains limited. This article provides a systematic review of the research conducted over the past decades on the extraction and purification methods, structural characteristics, biological activity and mechanism of action of AMPs. The aim is to provide a research base that will benefit the future application of AMPs as therapeutic drugs and functional foods, and also provide insights for the further development of AMPs.
Collapse
Affiliation(s)
- Xufei Chen
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yinghai Liu
- Department of Anesthesiology, General Hospital of the Western Theater Command of the Chinese People's Liberation Army, Chengdu, Sichuan 610036, China
| | - Ling Ren
- Department of Anesthesiology, General Hospital of the Western Theater Command of the Chinese People's Liberation Army, Chengdu, Sichuan 610036, China
| | - Xufen Dai
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Juanjuan Zhao
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Chunli Gao
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Shengxiang Zhang
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Jianhui Dong
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Zeyuan Zhao
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yanfeng Li
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Jia Wang
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Hui Zhao
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Gu Gong
- Department of Anesthesiology, General Hospital of the Western Theater Command of the Chinese People's Liberation Army, Chengdu, Sichuan 610036, China
| | - Xirui He
- School of Bioengineering, Zhuhai Campus, Zunyi Medical University, Zhuhai, Guangdong 519041, China.
| | - Yangyang Bian
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
11
|
Yang MH, Yang Y, Zhou X, Chen HG. Advances in polysaccharides of natural source of anti-diabetes effect and mechanism. Mol Biol Rep 2024; 51:101. [PMID: 38217792 DOI: 10.1007/s11033-023-09081-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/29/2023] [Indexed: 01/15/2024]
Abstract
PURPOSE Diabetes is a chronic disease in metabolic disorder, and the pathology is characterized by insulin resistance and insulin secretion disorder in blood. In current, many studies have revealed that polysaccharides extracted from natural sources with significant anti-diabetic effects. Natural polysaccharides can ameliorate diabetes through different action mechanisms. All these polysaccharides are expected to have an important role in the clinic. METHODS Existing polysaccharides for the treatment of diabetes are reviewed, and the mechanism of polysaccharides in the treatment of diabetes and its structural characteristics are described in detail. RESULTS This article introduced the natural polysaccharide through different mechanisms of action in the treatment of diabetes, including oxidative stress, apoptosis, inflammatory response and regulation of intestinal bacteria. Natural polysaccharides can treat of diabetes by regulating signaling pathways is also a research hotspot. In addition, the structural characteristics of polysaccharides were explored. There are some structure-activity relationships between natural polysaccharides and the treatment of diabetes.
Collapse
Affiliation(s)
- Mao-Hui Yang
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, 550001, China
| | - Yan Yang
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, 550001, China
| | - Xin Zhou
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, 550001, China
| | - Hua-Guo Chen
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China.
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, 550001, China.
| |
Collapse
|
12
|
Hamed YS, Ahsan HM, Hussain M, Ahmad I, Tian B, Wang J, Zou XG, Bu T, Ming C, Rayan AM, Yang K. Polysaccharides from Brassica rapa root: Extraction, purification, structural features, and biological activities. A review. Int J Biol Macromol 2024; 254:128023. [PMID: 37952795 DOI: 10.1016/j.ijbiomac.2023.128023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Brassica rapa (B. rapa) roots are attracting increased attention from nutritionists and health-conscious customers because of their remarkable performance in supplying necessary nutrients. Polysaccharides are major biologically active substances in B. rapa roots, which come in a variety of monosaccharides with different molar ratios and glycosidic bond types. Depending on the source, extraction, separation, and purification methods of B. rapa roots polysaccharides (BRP); different structural features, and pharmacological activities are elucidated. Polysaccharides from B. rapa roots possess a range of nutritional, biological, and health-enhancing characteristics, including anti-hypoxic, antifatigue, immunomodulatory, hypoglycemic, anti-tumor, and antioxidant activities. This paper reviewed extraction and purification methods, structural features, and biological activities as well as correlations between the structural and functional characteristics of polysaccharides from the B. rapa roots. Ultimately, this work will serve as useful reference for understanding the connections between polysaccharide structure and biological activity and developing novel BRP-based functional foods.
Collapse
Affiliation(s)
- Yahya S Hamed
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China; Food Technology Department, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt.
| | - Hafiz Muhammad Ahsan
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China; Department of Human Nutrition, Faculty of Food Science and Nutrition, Bahahuddin Zakaria University, Multan, Pakistan
| | - Muhammad Hussain
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China
| | - Ishtiaq Ahmad
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China
| | - Baoming Tian
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China
| | - Jian Wang
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China
| | - Xian-Guo Zou
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China
| | - Tingting Bu
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China
| | - Cai Ming
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China
| | - Ahmed M Rayan
- Food Technology Department, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Kai Yang
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China
| |
Collapse
|
13
|
Du C, Zuo F, Cao Y, Zang Y. Anti-diabetic effects of natural and modified 'Ganzhou' navel orange peel pectin on type 2 diabetic mice via gut microbiota. Food Funct 2023; 14:10977-10990. [PMID: 38014521 DOI: 10.1039/d3fo04118b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Pectin, a kind of dietary fiber, has attracted much attention owing to its beneficial effect on human health in recent years. In this study, the effects of both 'Ganzhou' navel orange peel pectin (GOP) and modified GOP (MGOP) on type 2 diabetes (T2DM) were investigated. The results indicated that GOP and MGOP intervention had positive effects on T2DM in C57BL/6 mice. After modification, pectin can be changed into low methoxy pectin (LMP) and the content of GalA can increase, which endow MGOP with significant effects on improving lipid metabolism (TC, TG, and LDL-C decreased by 30.46%, 50%, and 37.56%, respectively, and HDL-C increased by 56%) and OGTT, further reducing insulin resistance (insulin decreased by 74.35%). In addition, MGOP was superior to GOP in improving oxidative stress (GSH and GSH-Px increased by 52.05% and 29.08% respectively, and MDA decreased by 84.02%), inhibiting inflammation and promoting SCFA synthesis. 16S rRNA analysis showed that MGOP changed the composition of intestinal microbiota in diabetic mice, decreased the abundance of Alistipes, Helicobacter and Oscillibacter, and increased the relative abundance of Dubosiella, Akkermansiaceae, and Atopobiaceae. The phenotypes of the gut microbiome also changed accordingly, which showed that MGOP significantly inhibited the growth of Gram-negative bacteria and potential pathogenic bacteria and reversed the related complications. Taken together, our findings revealed that MGOP intake regulated lipid metabolism and oxidative stress and improved the gut health of mice, with promising effects against T2DM and related complications.
Collapse
Affiliation(s)
- Chao Du
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China
- National Coarse Cereals Engineering Research Center, Daqing, Heilongjiang, China.
| | - Feng Zuo
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China
- National Coarse Cereals Engineering Research Center, Daqing, Heilongjiang, China.
| | - Yang Cao
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China
- National Coarse Cereals Engineering Research Center, Daqing, Heilongjiang, China.
| | - Yanqing Zang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China
- National Coarse Cereals Engineering Research Center, Daqing, Heilongjiang, China.
| |
Collapse
|
14
|
Muema FW, Nanjala C, Oulo MA, Wangchuk P. Phytochemical Content and Antidiabetic Properties of Most Commonly Used Antidiabetic Medicinal Plants of Kenya. Molecules 2023; 28:7202. [PMID: 37894680 PMCID: PMC10609527 DOI: 10.3390/molecules28207202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Traditional medicinal plants have been used for decades in folk medicines in the treatment and management of several ailments and diseases including diabetes, pain, ulcers, cancers, and wounds, among others. This study focused on the phytochemical and antidiabetic activity of the commonly used antidiabetic medicinal species in Kenya. Phytochemical profiling of these species revealed flavonoids and terpenoids as the major chemical classes reported which have been linked with strong biological activities against the aforementioned diseases, among others. However, out of the selected twenty-two species, many of the natural product isolation studies have focused on only a few species, as highlighted in the study. All of the examined crude extracts from thirteen antidiabetic species demonstrated strong antidiabetic activities by inhibiting α-glucosidase and α-amylase among other mechanisms, while nine are yet to be evaluated for their antidiabetic activities. Isolated compounds S-Methylcysteine sulfoxide, quercetin, alliuocide G, 2-(3,4-Dihydroxybenzoyl)-2,4,6-trihydroxy-3 (2H)-benzofuranone, Luteolin-7-O-D-glucopyranoside, quercetin, 1,3,11α-Trihydroxy-9-(3,5,7-trihydroxy-4H-1-benzopyran-7-on-2-yl)-5α-(3,4-dihydroxy-phenyl)-5,6,11-hexahydro-5,6,11-trioxanaphthacene-12-one and [1,3,11α-Trihydroxy-9-(3,5,7-trihydroxy-4H-1-benzopyran-7-on-2-yl)-5α-(3,4-dihydroxy-phenyl)-5,6,11-hexahydro-5,6,11-trioxanaphthacene-12-one]-4'-O-D-gluco-pyranoside from Allium cepa have been found to exhibit significant antidiabetic activities. With the huge number of adults living with diabetes in Kenya and the available treatment methods being expensive yet not so effective, this study highlights alternative remedies by documenting the commonly used antidiabetic medicinal plants. Further, the study supports the antidiabetic use of these plants with the existing pharmacological profiles and highlights research study gaps. Therefore, it is urgent to conduct natural products isolation work on the selected antidiabetic species commonly used in Kenya and evaluate their antidiabetic activities, both in vitro and in vivo, to validate their antidiabetic use and come up with new antidiabetic drugs.
Collapse
Affiliation(s)
- Felix Wambua Muema
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (F.W.M.); (M.A.O.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Consolata Nanjala
- College of Science and Engineering, James Cook University, Cairns, QLD 4870, Australia;
- Australian Tropical Herbarium, James Cook University, Cairns, QLD 4878, Australia
| | - Millicent Akinyi Oulo
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (F.W.M.); (M.A.O.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Phurpa Wangchuk
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Building E4, McGregor Rd., Smithfield, Cairns, QLD 4878, Australia
| |
Collapse
|
15
|
Macvanin MT, Gluvic Z, Bajic V, Isenovic ER. Novel insights regarding the role of noncoding RNAs in diabetes. World J Diabetes 2023; 14:958-976. [PMID: 37547582 PMCID: PMC10401459 DOI: 10.4239/wjd.v14.i7.958] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/01/2023] [Accepted: 05/22/2023] [Indexed: 07/12/2023] Open
Abstract
Diabetes mellitus (DM) is a group of metabolic disorders defined by hyperglycemia induced by insulin resistance, inadequate insulin secretion, or excessive glucagon secretion. In 2021, the global prevalence of diabetes is anticipated to be 10.7% (537 million people). Noncoding RNAs (ncRNAs) appear to have an important role in the initiation and progression of DM, according to a growing body of research. The two major groups of ncRNAs implicated in diabetic disorders are miRNAs and long noncoding RNAs. miRNAs are single-stranded, short (17-25 nucleotides), ncRNAs that influence gene expression at the post-transcriptional level. Because DM has reached epidemic proportions worldwide, it appears that novel diagnostic and therapeutic strategies are required to identify and treat complications associated with these diseases efficiently. miRNAs are gaining attention as biomarkers for DM diagnosis and potential treatment due to their function in maintaining physiological homeostasis via gene expression regulation. In this review, we address the issue of the gradually expanding global prevalence of DM by presenting a complete and up-to-date synopsis of various regulatory miRNAs involved in these disorders. We hope this review will spark discussion about ncRNAs as prognostic biomarkers and therapeutic tools for DM. We examine and synthesize recent research that used novel, high-throughput technologies to uncover ncRNAs involved in DM, necessitating a systematic approach to examining and summarizing their roles and possible diagnostic and therapeutic uses.
Collapse
Affiliation(s)
- Mirjana T Macvanin
- Department of Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| | - Zoran Gluvic
- Department of Endocrinology and Diabetes, Clinic for Internal Medicine, Zemun Clinical Hospital, School of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Vladan Bajic
- Department of Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| |
Collapse
|
16
|
Zang Y, Du C, Xin R, Cao Y, Zuo F. Anti-diabetic effect of modified 'Guanximiyou' pummelo peel pectin on type 2 diabetic mice via gut microbiota. Int J Biol Macromol 2023; 242:124865. [PMID: 37207756 DOI: 10.1016/j.ijbiomac.2023.124865] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/21/2023]
Abstract
This study aimed to investigate the mechanisms of nature and modified 'Guanximiyou' pummelo peel pectin (GGP and MGGP) in alleviating T2DM through in vitro and in vivo. After modification, pectin was transformed from high methoxy pectin (HMP) to low methoxy pectin (LMP), and the content of galacturonic acid was increased. These made MGGP have stronger antioxidant capacity and better inhibition effect on corn starch digestion in vitro. In vivo experiments have shown that both GGP and MGGP inhibited the development of diabetes after 4 weeks of ingestion. However, MGGP can more effectively reduce blood glucose and regulate lipid metabolism, and has significant antioxidant capacity and the ability to promote SCFAs secretion. In addition, 16S rRNA analysis showed that MGGP changed the composition of intestinal microbiota in diabetic mice, decreased the abundance of Proteobacteria, and increased the relative abundance of Akkermansia, Lactobacillus, Oscillospirales and Ruminococcaceae. The phenotypes of the gut microbiome also changed accordingly, indicating that MGGP can inhibit the growth of pathogenic bacteria, alleviate intestinal functional metabolic disorders and reverse the potential risk of related complications. Altogether, our findings demonstrate that MGGP, as a dietary polysaccharide, may inhibit the development of diabetes by reversing the imbalance of gut microbiota.
Collapse
Affiliation(s)
- Yanqing Zang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Chao Du
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Ru Xin
- Heilongjiang Nursing College, Daqing, Heilongjiang 150086, China
| | - Yang Cao
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China.
| | - Feng Zuo
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China.
| |
Collapse
|
17
|
Dabral S, Khan IA, Pant T, Khan S, Prakash P, Parvez S, Saha N. Deciphering the Precise Target for Saroglitazar Associated Antiangiogenic Effect: A Computational Synergistic Approach. ACS OMEGA 2023; 8:14985-15002. [PMID: 37151537 PMCID: PMC10157850 DOI: 10.1021/acsomega.2c07570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/13/2023] [Indexed: 05/09/2023]
Abstract
Antidiabetic drugs that have a secondary pharmacological effect on angiogenesis inhibition may help diabetic patients delay or avoid comorbidities caused by angiogenesis including malignancies. In recent studies, saroglitazar has exhibited antiangiogenic effects in diabetic retinopathy. The current study investigates the antiangiogenic effects of saroglitazar utilizing the chicken chorioallantoic membrane (CAM) assay and then identifies its precise mode of action on system-level protein networks. To determine the regulatory effect of saroglitazar on the protein-protein interaction network (PIN), 104 target genes were retrieved and tested using an acid server and Swiss target prediction tools. A string-based interactome was created and analyzed using Cytoscape. It was determined that the constructed network was scale-free, making it biologically relevant. Upon topological analysis of the network, 37 targets were screened on the basis of centrality values. Submodularization of the interactome resulted in the formation of four clusters. A total of 20 common targets identified in topological analysis and modular analysis were filtered. A total of 20 targets were compiled and were integrated into the pathway enrichment analysis using ShinyGO. The majority of hub genes were associated with cancer and PI3-AKT signaling pathways. Molecular docking was utilized to reveal the most potent target, which was validated by using molecular dynamic simulations and immunohistochemical staining on the chicken CAM. The comprehensive study offers an alternate research paradigm for the investigation of antiangiogenic effects using CAM assays. This was followed by the identification of the precise off-target use of saroglitazar using system biology and network pharmacology to inhibit angiogenesis.
Collapse
Affiliation(s)
- Swarna Dabral
- Department
of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Imran Ahmd Khan
- Department
of Chemistry, School of Chemical and Life Science, Jamia Hamdard, New Delhi 110062, India
| | - Tarun Pant
- Department
of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Sabina Khan
- Department
of Pathology, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard, New Delhi 110062, India
| | - Prem Prakash
- Protein
Assembly Laboratory, JH-Institute of Molecular Medicine, Jamia Hamdard University, New Delhi 110062, India
| | - Suhel Parvez
- Department
of Medical Elementology and Toxicology, School of Chemical and Life
Science, Jamia Hamdard University, New Delhi 110062, India
| | - Nilanjan Saha
- Centre
for Translational and Clinical Research, School of Chemical and Life
Science, Jamia Hamdard UniversityNew Delhi 110062, India
- . Phone: 9873013366
| |
Collapse
|
18
|
Wang H, Cheng Y, Zhang X, Wang Y, Zhao H. Comparative analysis of physicochemical properties, ginsenosides content and α-amylase inhibitory effects in white ginseng and red ginseng. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
19
|
Anshika, Pandey RK, Singh L, Kumar S, Singh P, Pathak M, Jain S. Plant bioactive compounds and their mechanistic approaches in the treatment of diabetes: a review. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-022-00443-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abstract
Background
Diabetes mellitus (DM) is a growing disease across the world; diabetes is a complex metabolic disorder in which blood glucose concentration level increases and continue for a prolonged period due to a decrease secretion of insulin or action, resulting in the disorder of carbohydrate, lipid, and protein metabolism. The plant-related bioactive compounds have proven their efficacy with least toxicities and can be utilized for the disease treatment. Our objective is to elucidate the mechanism of action of plant bioactive compounds which can give future direction in diabetes treatment.
Main body
In this review paper, we briefly study more than 200 research papers related to disease and bioactive compounds that have therapeutic applicability in treatment. The plant contains many bio-active compounds which possess in vitro and in vivo anti-diabetic effect which may be responsible for the hypoglycaemic property by inhibiting the digestive enzyme i.e. alpha-amylase and alpha-glucosidase, by producing mimetic action of insulin, by reducing the oxidative stress, by showing antihyperglycemic activity and hypolipidemic activity, by inhibition of aldose reductase, and by increasing or enhancing glucose uptake and insulin secretion.
Conclusion
Our study revealed that terpenes, tannin, flavonoids, saponin, and alkaloids are important bioactive constituents for anti-diabetic activity. The mechanistic approach on alpha-glucosidase and alpha-amylase, hypolipidemic activity, and AR inhibitory action clear-cut explain the therapeutic applicability of these bioactive compounds in disease. Plants that contain these bioactive compounds can be good drug candidates for future research on diabetes treatment.
Collapse
|
20
|
Recent advances in Mung bean polysaccharides: Extraction, physicochemical properties and biological activities. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Qin G, Xu W, Liu J, Zhao L, Chen G. Purification, characterization and hypoglycemic activity of glycoproteins obtained from pea (Pisum sativum L.). FOOD SCIENCE AND HUMAN WELLNESS 2021. [DOI: 10.1016/j.fshw.2021.02.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
22
|
Role of pectin in the current trends towards low-glycaemic food consumption. Food Res Int 2021; 140:109851. [DOI: 10.1016/j.foodres.2020.109851] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 12/16/2022]
|
23
|
Singh RP, Tingirikari JMR. Agro waste derived pectin poly and oligosaccharides: Synthesis and functional characterization. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101910] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Gullón P, del Río PG, Gullón B, Oliveira D, Costa P, Lorenzo JM. Pectooligosaccharides as Emerging Functional Ingredients: Sources, Extraction Technologies, and Biological Activities. SUSTAINABLE PRODUCTION TECHNOLOGY IN FOOD 2021:71-92. [DOI: 10.1016/b978-0-12-821233-2.00004-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
25
|
Guo M, Shao S, Wang D, Zhao D, Wang M. Recent progress in polysaccharides from Panax ginseng C. A. Meyer. Food Funct 2020; 12:494-518. [PMID: 33331377 DOI: 10.1039/d0fo01896a] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Panax ginseng C. A. Meyer (P. ginseng) has a long history of medicinal use and can treat a variety of diseases. P. ginseng contains a variety of active ingredients, such as saponins, polypeptides, volatile oils, and polysaccharides. Among them, saponins have always been considered as the main components responsible for its pharmacological activities. However, more and more studies have shown that polysaccharides play an indispensable role in the medicinal value of ginseng. Modern biological and medical studies have found that ginseng polysaccharides have complex structural characteristics and diverse biological activities, such as immune regulation, anti-tumor, antioxidant, hypoglycemic, and anti-radiation functions, among others. Additionally, the structural characteristics of ginseng polysaccharides are closely related to their activity. In this review, the research background, extraction, purification, structural characteristics, and biological activities of ginseng polysaccharides from different parts of P. ginseng (roots, flowers stems and leaves, and berries) under different growth conditions (artificially cultivated ginseng, mountain ginseng, and wild ginseng) are summarized. The structural characteristics of purified polysaccharides were reviewed. Meanwhile, their biological activities were introduced, and some possible mechanisms were listed. Furthermore, the structure-activity relationship of polysaccharides was discussed. Some research perspectives for the study of ginseng polysaccharides were also provided.
Collapse
Affiliation(s)
- Mingkun Guo
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130021, China
| | | | | | | | | |
Collapse
|
26
|
Liu H, Lu X, Hu Y, Fan X. Chemical constituents of Panax ginseng and Panax notoginseng explain why they differ in therapeutic efficacy. Pharmacol Res 2020; 161:105263. [PMID: 33127555 DOI: 10.1016/j.phrs.2020.105263] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 02/06/2023]
Abstract
Panax ginseng (Meyer) and Panax notoginseng (Burkill), belonging to the family Araliaceae, are used worldwide as medicinal and functional herbs. Numerous publications over the past decades have revealed that both P. notoginseng and P. ginseng contain important bioactive ingredients such as ginsenosides and exert multiple pharmacological effects on nervous system and immune diseases. However, based on traditional Chinese medicine (TCM) theory, their applications clearly differ as ginseng reinforces vital energy and notoginseng promotes blood circulation. In this article, we review the similarities and differences between ginseng and notoginseng in terms of their chemical composition and pharmacological effects. Their chemical comparisons indicate that ginseng contains more polysaccharides and amino acids, while notoginseng has more saponins, volatile oil, and polyacetylenes. Regarding pharmacological effects, ginseng exhibits better protective effects on cardiovascular disease, nerve disease, cancer, and diabetes mellitus, whereas notoginseng displays a superior protective effect on cerebrovascular disease. The evidence presented in this review facilitates further research and clinical applications of these two herbs, and exploration of the relationship between the chemical components and disease efficacy may be the critical next step.
Collapse
Affiliation(s)
- Hanbing Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoyan Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yang Hu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaohui Fan
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
27
|
Zaitseva O, Khudyakov A, Sergushkina M, Solomina O, Polezhaeva T. Pectins as a universal medicine. Fitoterapia 2020; 146:104676. [DOI: 10.1016/j.fitote.2020.104676] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/19/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023]
|
28
|
Zhao W, Huang A, Yan Z, Bie Z, Chen Y. Dual boronate affinity nanoparticles-based plasmonic immunosandwich assay for specific and sensitive detection of ginsenosides. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 234:118258. [PMID: 32200230 DOI: 10.1016/j.saa.2020.118258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 06/10/2023]
Abstract
Ginsenoside is a large family of triterpenoid saponins from Panax ginseng with various important biological functions. It is crucial to develop effective analytical approach for qualitative and quantitative analysis of ginsenosides. Herein, a dual boronate affinity nanoparticles-based plasmonic immunosandwich assay has been developed for analysis of ginsenosides. An imprinted Au NPs-coated glass slide was prepared via controllable oriented surface imprinting and used as specific extraction substrate for target molecules. In the meantime, Ag-cored Raman nanotags were used for specific labeling of target molecules. The MIP-based recognitions ensured the specificity of the assay, while enhanced Raman signal derived from the imprinted substrate-target-nanotags sandwich-like complexes provided high sensitivity. The proposed immunosandwich assay exhibited wide linear range (10 ng/mL to 10 μg/mL), high sensitive (LOD: 1.7 ng/mL, LOQ: 5 ng/mL) and good reproducibility (RSD: 8.6%). For real-world applications, successful quantitative analysis of ginsenoside Re in ginseng was performed. Therefore, this dual boronate affinity nanoparticles-based plasmonic immunosandwich assay holds great promise in many important applications such as pharmaceutical analysis.
Collapse
Affiliation(s)
- Weiman Zhao
- School of Pharmacy, Bengbu Medical University, 2600 Donghai Avenue, Bengbu 233000, China
| | - Ailan Huang
- Department of Chemistry, Bengbu Medical University, 2600 Donghai Avenue, Bengbu 233000, China
| | - Zhifeng Yan
- Department of Chemistry, Bengbu Medical University, 2600 Donghai Avenue, Bengbu 233000, China
| | - Zijun Bie
- School of Pharmacy, Bengbu Medical University, 2600 Donghai Avenue, Bengbu 233000, China; Department of Chemistry, Bengbu Medical University, 2600 Donghai Avenue, Bengbu 233000, China
| | - Yang Chen
- School of Pharmacy, Bengbu Medical University, 2600 Donghai Avenue, Bengbu 233000, China; Department of Chemistry, Bengbu Medical University, 2600 Donghai Avenue, Bengbu 233000, China.
| |
Collapse
|
29
|
Wang M, Li H, Liu W, Cao H, Hu X, Gao X, Xu F, Li Z, Hua H, Li D. Dammarane-type leads panaxadiol and protopanaxadiol for drug discovery: Biological activity and structural modification. Eur J Med Chem 2020; 189:112087. [PMID: 32007667 DOI: 10.1016/j.ejmech.2020.112087] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/14/2019] [Accepted: 01/20/2020] [Indexed: 12/13/2022]
Abstract
Based on the definite therapeutic benefits, such as neuroprotective, cardioprotective, anticancer, anti-diabetic and so on, the Panax genus which contains many valuable plants, including ginseng (Panax ginseng C.A. Meyer), notoginseng (Panax notoginseng) and American ginseng (Panax quinquefolius L.), attracts research focus. Actually, the biological and pharmacological effects of the Panax genus are mainly attributed to the abundant ginsenosides. However, the low membrane permeability and the gastrointestinal tract influence seriously limit the absorption and bioavailability of ginsenosides. The acid or base hydrolysates of ginsenosides, 20 (R,S)-panaxadiol and 20 (R,S)-protopanaxadiol showed improved bioavailability and diverse pharmacological activities. Moreover, relative stable skeletons and active hydroxyl group at C-3 position and other reactive sites are suitable for structural modification to improve biological activities. In this review, the pharmacological activities of panaxadiol, protopanaxadiol and their structurally modified derivatives are comprehensively summarized.
Collapse
Affiliation(s)
- Mingying Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Haonan Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Weiwei Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Hao Cao
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Xu Hu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Xiang Gao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Fanxing Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Zhanlin Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China.
| |
Collapse
|
30
|
Li C, Wang Z, Wang T, Wang G, Li G, Sun C, Lin J, Sun L, Sun X, Cho S, Wang H, Gao Y, Tian J. Repeated-dose 26-week oral toxicity study of ginsenoside compound K in Beagle dogs. JOURNAL OF ETHNOPHARMACOLOGY 2020; 248:112323. [PMID: 31639487 DOI: 10.1016/j.jep.2019.112323] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/06/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginsenoside compound K (CK), a product produced by the intestinal bacteria-mediated breakdown of ginsenoside, exhibits a wide array of pharmacological activities against diverse targets. However, few of preclinical safety evaluation of CK is reported. AIMS OF THE STUDY The present study therefore sought to assess the toxicity of oral CK in Beagle dogs over a 26-week period. MATERIAL AND METHODS All dogs received 4, 12, or 36 mg/kg oral CK doses for 26 weeks with regular monitoring, followed by a 4-week recovery period. Animals were monitored through measurements of temperature, weight, food intake, blood chemistry and hematological findings, electrocardiogram (ECG) measurements, urinalysis, gross necropsy and organ weight and tissue histopathology. RESULTS Animals in the 36 mg/kg group exhibited an apparent reduction in body weight over the study period, in addition to the presence of focal liver necrosis and increased plasma enzyme levels (alanine aminotransferase, ALT; alkaline phosphatase, ALP) consistent with hepatotoxicity, although there was some evidence suggesting this toxicity was reversible. Animals in the 4 and 12 mg/kg groups did not exhibit any apparent toxicity for any measured parameters. CONCLUSION These results thus indicate that the no observed adverse effect level (NOAEL) in dogs is 12 mg/kg.
Collapse
Affiliation(s)
- Chunmei Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Zhezhe Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Tong Wang
- School of Life Science, Yantai University, Yantai, 264005, PR China
| | - Guangfei Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Guisheng Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Chengfeng Sun
- School of Life Science, Yantai University, Yantai, 264005, PR China
| | - Jian Lin
- School of Life Science, Yantai University, Yantai, 264005, PR China
| | - Liqin Sun
- School of Life Science, Yantai University, Yantai, 264005, PR China
| | - Xilin Sun
- Yantai Laishan Changen Hospital, Yantai, 264005, PR China
| | - Susan Cho
- NutraSource, Inc., Clarksville, MD, 21029, USA
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Yonglin Gao
- School of Life Science, Yantai University, Yantai, 264005, PR China.
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China.
| |
Collapse
|
31
|
Review of Ginseng Anti-Diabetic Studies. Molecules 2019; 24:molecules24244501. [PMID: 31835292 PMCID: PMC6943541 DOI: 10.3390/molecules24244501] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/03/2019] [Accepted: 12/06/2019] [Indexed: 12/22/2022] Open
Abstract
Ginseng is one of the most valuable and commonly used Chinese medicines not only in ancient China but also worldwide. Ginsenosides, also known as saponins or triterpenoids, are thought to be responsible for the beneficial effects of ginseng. In this review, we summarize recent publications on anti-diabetic studies of ginseng extracts and ginsenosides in cells, animals, and humans. It seems that the anti-diabetic effect of ginseng is positive for type 2 diabetic patients but has no significant impact on prediabetes or healthy adults. Regulation of insulin secretion, glucose uptake, anti-oxidative stress, and anti-inflammatory pathways may be the mechanisms involved with ginseng's anti-diabetic effects. Taken together, this summary provides evidence for the anti-diabetes effects of ginseng extracts and ginsenosides as well as the underlying mechanisms of their impact on diabetes.
Collapse
|
32
|
Wu D, Zheng J, Mao G, Hu W, Ye X, Linhardt RJ, Chen S. Rethinking the impact of RG-I mainly from fruits and vegetables on dietary health. Crit Rev Food Sci Nutr 2019; 60:2938-2960. [PMID: 31607142 DOI: 10.1080/10408398.2019.1672037] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Rhamnogalacturonan I (RG-I) pectin is composed of backbone of repeating disaccharide units →2)-α-L-Rhap-(1→4)-α-D-GalpA-(1→ and neutral sugar side-chains mainly consisting of arabinose and galactose having variable types of linkages. However, since traditional pectin extraction methods damages the RG-I structure, the characteristics and health effects of RG-I remains unclear. Recently, many studies have focused on RG-I, which is often more active than the homogalacturonan (HG) portion of pectic polysaccharides. In food products, RG-I is common to fruits and vegetables and possesses many health benefits. This timely and comprehensive review describes the many different facets of RG-I, including its dietary sources, history, metabolism and potential functionalities, all of which have been compiled to establish a platform for taking full advantage of the functional value of RG-I pectin.
Collapse
Affiliation(s)
- Dongmei Wu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Jiaqi Zheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Guizhu Mao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Weiwei Hu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| |
Collapse
|
33
|
Bai L, Li X, He L, Zheng Y, Lu H, Li J, Zhong L, Tong R, Jiang Z, Shi J, Li J. Antidiabetic Potential of Flavonoids from Traditional Chinese Medicine: A Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:933-957. [PMID: 31248265 DOI: 10.1142/s0192415x19500496] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Diabetes mellitus (DM) is a group of metabolic disorders in which high blood sugar levels occur over a prolonged period. Approximately 4% of the global population is affected by DM. Western medical treatment methods for diabetes including injection or oral hypoglycemic drugs have some toxic or side effects, economic pressures, and so on. Many researchers turn to discover new drugs from natural products or Traditional Chinese Medicine (TCM). Flavonoids are widely distributed in plants, and many studies have shown that flavonoids possess antidiabetic properties, exhibiting not only well-recognized antidiabetic and hypoglycemic activities but also activity in the treatment of diabetic complications. In this review, we systematically summarized anti-diabetic flavonoid compounds based on structure classification by examining the PubMed, Springer Link, Web of Science, and CNKI databases. There are 13 flavonoid compounds listed which have been studied extensively and have antidiabetic features respectively. Apigenin, baicalein, and catechin mainly reduces blood glucose via anti-oxidation; hesperidin is good for diabetic neuropathy; glycyrrhiza flavonoids have a significant effect on gestational DM; quercetin takes advantage of crossing the blood–brain barrier and improving renal function. Some compounds have protective and preventive effects on diabetic complications, such as kaempferol and puerarin which are beneficial to cardiomyopathy; myricetin has therapeutic potential in the treatment of DN; dihydromyricetin might improve CI. It is a pity or might be a pointcut that most studies remain in the animal experimental stage, and further investigation should be carried out.
Collapse
Affiliation(s)
- Lan Bai
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| | - Xiaofang Li
- Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Li He
- Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Yu Zheng
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| | - Haiying Lu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| | - Jinqi Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| | - Lei Zhong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| | - Rongsheng Tong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| | - Zhongliang Jiang
- Department of Hematology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Jianyou Shi
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| | - Jian Li
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
34
|
Chen LX, Qi YL, Qi Z, Gao K, Gong RZ, Shao ZJ, Liu SX, Li SS, Sun YS. A Comparative Study on the Effects of Different Parts of Panax ginseng on the Immune Activity of Cyclophosphamide-Induced Immunosuppressed Mice. Molecules 2019; 24:E1096. [PMID: 30897728 PMCID: PMC6470474 DOI: 10.3390/molecules24061096] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/10/2019] [Accepted: 03/16/2019] [Indexed: 01/07/2023] Open
Abstract
The objective of the present study was to compare the effects of the immunological activity of various parts (root/stem/leaf/flower/seed) of five-year-old ginseng on the immune system of immunosuppressive mice. Immunosuppression was induced by cyclophosphamide (CTX) in the mouse model, whereas levamisole hydrochloride tablet (LTH) was used for the positive control group. We found that ginseng root (GRT), ginseng leaf (GLF), and ginseng flower (GFR) could relieve immunosuppression by increased viability of NK cells, enhanced immune organ index, improved cell-mediated immune response, increased content of CD4⁺ and ratio of CD4⁺/CD8⁺, and recovery of macrophage function, including carbon clearance, phagocytic rate, and phagocytic index, in immunodeficient mice. However, ginseng stem (GSM) and ginseng seed (GSD) could only enhance the thymus indices, carbon clearance, splenocyte proliferation, NK cell activities, and the level of IL-4 in immunosuppressed mice. In CTX-injected mice, GRT and GFR remarkably increased the protein expression of Nrf2, HO-1, NQO1, SOD1, SOD2, and CAT in the spleen. As expected, oral administration of GRT and GFR markedly enhanced the production of cytokines, such as IL-1β, IL-4, IL-6, IFN-γ, and TNF-α, compared with the CTX-induced immunosuppressed mice, and GRT and GFR did this relatively better than GSM, GLF, and GSD. This study provides a theoretical basis for further study on different parts of ginseng.
Collapse
Affiliation(s)
- Li-Xue Chen
- Institute of Special Animals and Plants Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Yu-Li Qi
- Institute of Special Animals and Plants Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Zeng Qi
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Kun Gao
- Institute of Special Animals and Plants Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Rui-Ze Gong
- Institute of Special Animals and Plants Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
| | - Zi-Jun Shao
- Institute of Special Animals and Plants Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Song-Xin Liu
- Institute of Special Animals and Plants Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Shan-Shan Li
- Institute of Special Animals and Plants Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
| | - Yin-Shi Sun
- Institute of Special Animals and Plants Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
35
|
Zheng Y, Bai L, Zhou Y, Tong R, Zeng M, Li X, Shi J. Polysaccharides from Chinese herbal medicine for anti-diabetes recent advances. Int J Biol Macromol 2019; 121:1240-1253. [DOI: 10.1016/j.ijbiomac.2018.10.072] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 10/10/2018] [Accepted: 10/14/2018] [Indexed: 12/11/2022]
|
36
|
Bray JK, Chiu GS, McNeil LK, Moon ML, Wall R, Towers AE, Freund GG. Switching from a high-fat cellulose diet to a high-fat pectin diet reverses certain obesity-related morbidities. Nutr Metab (Lond) 2018; 15:55. [PMID: 30093912 PMCID: PMC6080522 DOI: 10.1186/s12986-018-0294-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/25/2018] [Indexed: 12/19/2022] Open
Abstract
Background Reducing caloric intake is a proven intervention for mitigating and modulating morbidities associated with overnutrition. Caloric restriction is difficult to affect clinically, therefore, dietary interventions that ameliorate the adverse consequences of overnutrition in the presence of a high-calorie diet would be of value. Methods Mice were fed an obesogenic diet containing 60% fat + 10% cellulose (HFC), or a control diet containing 10% fat + 10% cellulose (LFC) for 12 wks. Subgroups of mice were then switched from HFC to each of the following diets for an additional 5 wks: 1) 60% fat + 10% pectin (HFP), 2) LFC or 3) 10% fat + 10% pectin (LFP). To test for statistical differences, one-way or two-way ANOVAs were used with or without repeated measurements as needed. Results In comparison to HFC, HFP prevented additional weight gain while LFC and LFP triggered weight loss of 22.2 and 25.4%, respectively. Mice continued on HFC experienced a weight increase of 26% during the same 5 wk. interval. After 12 wks, HFC decreased mouse locomotion by 18% when compared to control diet, but a diet switch to LFC or LFP restored mouse movement. Importantly, HFP, LFC, and LFP reduced fasting blood glucose when compared to HFC. Likewise, HFP, LFC and LFP improved glucose tolerance and decreased fatty liver by 37.9, 49.8, 53.6 and 20.2%, 37.2, 43.7%, respectively. Conclusions Taken together, the results indicate that the dietary fiber pectin can mitigate some adverse consequences of overnutrition even in the presence of high-fat.
Collapse
Affiliation(s)
- Julie K Bray
- 1Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois, Urbana, IL USA
| | - Gabriel S Chiu
- 1Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois, Urbana, IL USA.,2Division of Nutritional Sciences, University of Illinois, Urbana, IL USA
| | - Leslie K McNeil
- 1Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois, Urbana, IL USA
| | - Morgan L Moon
- 1Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois, Urbana, IL USA.,2Division of Nutritional Sciences, University of Illinois, Urbana, IL USA
| | - Robyn Wall
- 1Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois, Urbana, IL USA
| | - Albert E Towers
- 1Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois, Urbana, IL USA.,2Division of Nutritional Sciences, University of Illinois, Urbana, IL USA
| | - Gregory G Freund
- 1Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois, Urbana, IL USA.,2Division of Nutritional Sciences, University of Illinois, Urbana, IL USA.,3Department of Animal Sciences, University of Illinois, Urbana, IL USA.,4Department of Pathology, College of Medicine, University of Illinois at Urbana Champaign, 506 South Mathews Avenue, Urbana, IL 61801 USA
| |
Collapse
|
37
|
Tan H, Chen W, Liu Q, Yang G, Li K. Pectin Oligosaccharides Ameliorate Colon Cancer by Regulating Oxidative Stress- and Inflammation-Activated Signaling Pathways. Front Immunol 2018; 9:1504. [PMID: 30013563 PMCID: PMC6036268 DOI: 10.3389/fimmu.2018.01504] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/18/2018] [Indexed: 12/20/2022] Open
Abstract
Colon cancer (CC) is the third common neoplasm worldwide, and it is still a big challenge for exploring new effective medicine for treating CC. Natural product promoting human health has become a hot topic and attracted many researchers recently. Pectin, a complex polysaccharide in plant cell wall, mainly consists of four major types of polysaccharides: homogalacturonan, xylogalacturonan, rhamnogalacturonan I and II, all of which can be degraded into various pectin oligosaccharides (POS) and may provide abundant resource for exploring potential anticancer drugs. POS have been regarded as a novel class of potential functional food with multiple health-promoting properties. POS have antibacterial activities against some aggressive and recurrent bacterial infection and exert beneficial immunomodulation for controlling CC risk. However, the molecular functional role of POS in the prevention of CC risk and progression remains doubtful. The review focuses on antioxidant and anti-inflammatory roles of POS for promoting human health by regulating some potential oxidative and inflammation-activated pathways, such as ATP-activated protein kinase (AMPK), nuclear factor erythroid-2-related factor-2 (Nrf2), and nuclear factor-κB (NF-κB) pathways. The activation of these signaling pathways increases the antioxidant and antiinflammatory activities, which will result in the apoptosis of CC cells or in the prevention of CC risk and progression. Thus, POS may inhibit CC development by affecting antioxidant and antiinflammatory signaling pathways AMPK, Nrf2, and NF-κB. However, POS also can activate signal transduction and transcriptional activator 1 and 3 signaling pathway, which will reduce antioxidant and anti-inflammatory properties and promote CC progression. Specific structural and structurally modified POS may be associated with their functions and should be deeply explored in the future. The present review paper lacks the important information for the linkage between the specific structure of POS and its function. To further explore the effects of prebiotic potential of POS and their derivatives on human immunomodulation in the prevention of CC, the specific POS with a certain degree of polymerization or purified polymers are highly demanded to be performed in clinical practice.
Collapse
Affiliation(s)
- Haidong Tan
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Wei Chen
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Qishun Liu
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Guojun Yang
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Kuikui Li
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| |
Collapse
|