1
|
Pei X, Cui F, Chen Y, Yang Z, Xie Z, Wen Y. miR-214-3p Promotes ox-LDL-Induced Macrophages Ferroptosis and Inflammation via GPX4. J Inflamm Res 2025; 18:3937-3950. [PMID: 40125091 PMCID: PMC11927573 DOI: 10.2147/jir.s507076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/04/2025] [Indexed: 03/25/2025] Open
Abstract
Purpose Atherosclerosis (AS) is a chronic inflammatory disease caused by the dysregulation of lipid metabolism. It has been established that oxidized low-density lipoprotein (ox-LDL)-induced macrophage inflammation and ferroptosis play important roles in AS. However, the mechanism by which ox-LDL induces inflammation in macrophages requires further investigation. Materials and Methods A foam cell model derived from ox-LDL-induced macrophages was constructed to study its mechanism of action. The levels of interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α were evaluated using an Enzyme-Linked Immunosorbent Assay (ELISA). Oil Red O staining was used to detect intracellular lipid accumulation levels. Lactate dehydrogenase (LDH), malondialdehyde (MDA), reactive oxygen species (ROS), and Fe2+ levels were assessed. Dual-luciferase and RNA-binding protein immunoprecipitation (RIP) experiments validated the binding relationship between microRNA (miR)-214-3p and glutathione peroxidase 4 (GPX4). Results The levels of IL-6, IL-1β, and TNF-α were significantly increased in ox-LDL-induced macrophages, accompanied by increased lipid accumulation, indicating the promotion of foam cell formation. Additionally, ox-LDL increased LDH, MDA, ROS, and Fe2+. The expression of miR-214-3p positively correlated with ox-LDL concentration in macrophages. Treatment with an miR-214-3p inhibitor reduces lipid accumulation, inflammatory responses, and ferroptosis in macrophages. Dual-luciferase and RIP experiments confirmed that miR-214-3p regulates GPX4 transcription. Silenced GPX4 reversed the inflammatory effects of the miR-214-3p inhibitor on ox-LDL-induced macrophages. Low GPX4 expression also increased lipid accumulation and ferroptosis in macrophages. Conclusion miR-214-3p promotes macrophage ferroptosis and inflammation induced by ox-LDL. This mechanism may be associated with miR-214-3p-induced GPX4 expression, which underscores the therapeutic significance of targeting macrophage inflammation and ferroptosis in addressing AS.
Collapse
Affiliation(s)
- Xueliang Pei
- Department of Cardiovascular Surgery, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, People’s Republic of China
| | - Facai Cui
- Clinical Laboratory, Henan Provincial People’s Hospital, Zhengzhou, Henan, People’s Republic of China
| | - Yu Chen
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Zhiyuan Yang
- Department of Cardiovascular Surgery, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, People’s Republic of China
| | - Zhouliang Xie
- Department of Cardiovascular Surgery, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, People’s Republic of China
| | - Yongjin Wen
- Department of Cardiovascular Surgery, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, People’s Republic of China
| |
Collapse
|
2
|
Hu X, Zhang P, Wang T, Li Q, Li M, Zhao Z, Yu R, Tan Y, Yao C. MiR-33 as a novel diagnostic biomarker for distinguishing cholesterol from adenomatous polyps: a case-control study. Hereditas 2025; 162:37. [PMID: 40087680 PMCID: PMC11907919 DOI: 10.1186/s41065-025-00407-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 03/04/2025] [Indexed: 03/17/2025] Open
Abstract
Cholecystectomy is often excessively utilized in the management of gallbladder polyps. It is crucial to effectively differentiate between adenomatous and cholesterol polyps to reduce unnecessary cholecystectomies. This study aimed to investigate the potential of miR-33 as a novel diagnostic biomarker for distinguishing cholesterol from adenomatous polyps. Gallbladder specimens were retrospectively collected from gallbladder polyp patients who underwent laparoscopic cholecystectomy at the Second Department of General Surgery, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, between June 2021 and December 2021. Pathological analysis categorized the specimens into two groups: the cholesterol polyp group (n = 13) and the adenomatous polyp group (n = 12). The expression levels of miR-33a and miR-33b in both groups were assessed using real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). MiR-33a level and the miR-33a/miR-33b ratio were significantly lower in cholesterol polyps than in adenomatous polyps (p < 0.05). Spearman correlation analysis showed a strong positive correlation between miR-33a and miR-33b (r = 0.956, p < 0.001). Stepwise logistic regression analysis revealed that decreased miR-33b and elevated miR-33a/miR-33b ratio are independent risk factors for cholesterol polyps (p < 0.05). A predictive model was constructed, with the model's AUC for diagnosing adenomatous polyps being 0.885 (95% CI: 0.753-1.000, p = 0.001), exhibiting a notable specificity of 84.62% and a sensitivity of 83.33% at a cut-off of 0.424. MiR-33 could serve as a novel diagnostic biomarker for distinguishing cholesterol from adenomatous polyps to facilitate the diagnosis and treatment of clinicians.
Collapse
Affiliation(s)
- Xia Hu
- The First Clinical Medical College, Beijing University of Chinese Medicine, No. 5 Haiyuncang, Dongcheng District, Beijing, 100700, China
| | - Ping Zhang
- The Second Department of General Surgery, Dongzhimen Hospital, Beijing University of Chinese Medicine, No.5 Haiyuncang, Dongcheng District, Beijing, 100700, China
| | - Tong Wang
- The Second Department of General Surgery, Dongzhimen Hospital, Beijing University of Chinese Medicine, No.5 Haiyuncang, Dongcheng District, Beijing, 100700, China
| | - Quanzhi Li
- The First Clinical Medical College, Beijing University of Chinese Medicine, No. 5 Haiyuncang, Dongcheng District, Beijing, 100700, China
| | - Minjia Li
- The First Clinical Medical College, Beijing University of Chinese Medicine, No. 5 Haiyuncang, Dongcheng District, Beijing, 100700, China
| | - Zhuohan Zhao
- The First Clinical Medical College, Beijing University of Chinese Medicine, No. 5 Haiyuncang, Dongcheng District, Beijing, 100700, China
| | - Rui Yu
- School of Life Sciences, Beijing University of Chinese Medicine, No.11 East Beisanhuan Road, Chaoyang District, Beijing, 100105, China
| | - Yan Tan
- School of Life Sciences, Beijing University of Chinese Medicine, No.11 East Beisanhuan Road, Chaoyang District, Beijing, 100105, China.
| | - Chengli Yao
- The Second Department of General Surgery, Dongzhimen Hospital, Beijing University of Chinese Medicine, No.5 Haiyuncang, Dongcheng District, Beijing, 100700, China.
| |
Collapse
|
3
|
Bamahel AS, Sun X, Wu W, Mu C, Liu J, Bi S, Xu H. Regulatory Roles and Therapeutic Potential of miR-122-5p in Hypoxic-Ischemic Brain Injury: Comprehensive Review. Cell Biochem Biophys 2025:10.1007/s12013-025-01686-6. [PMID: 40016565 DOI: 10.1007/s12013-025-01686-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2025] [Indexed: 03/01/2025]
Abstract
In the regulation of gene expression, epigenetic factors, including non-coding RNAs (ncRNAs) play a role in genetics. Among the ncRNA family, microRNAs (miRNAs) have gained significant attention for their involvement in post-transcriptional gene regulation, with profound implications for both normal and pathological processes including neurological diseases such as hypoxic-ischemic brain injury. A specific miRNA, called miR-122-5p, has gained attention in hypoxic-ischemic conditions, where it modulates critical pathways such as inflammation, oxidative stress, and neuronal survival. The purpose of this review is to highlight recent advances in the biogenesis, expression, and regulation of miR-122-5p, focusing on its role in hypoxic-ischemic conditions and its potential as a therapeutic target. We first studied the therapeutic strategies and potential clinical applications of miR-122-5p, our research showing it interacts with key transcription factors, such as HIF-1α and NF-κB, influencing cellular responses to low oxygen levels. Our findings revealed that miR-122-5p plays a vital role in hypoxic-ischemic brain injury, with its abnormal levels strongly associated with increased brain damage and neuroinflammation, suggesting its potential as a promising therapeutic target. Furthermore, miR-122-5p influences various biological processes in the brain, such as metabolism and blood vessel formation. The use of miR-122-5p inhibitor has been shown to increase autophagy, reduce apoptosis, and decrease oxidative stress and inflammation, thereby protecting neurons and improving outcomes in hypoxic encephalopathy by targeting multiple genes related to these processes. Conversely, miR-122-5p mimics exacerbate oxidative stress and reduce autophagy. These findings highlight the therapeutic potential of miR-122-5p inhibition in reducing brain injury and promoting recovery in hypoxic-ischemic encephalopathy through enhanced neuroprotective mechanisms and the suppression of harmful cellular processes. However, further experimental studies are needed to fully understand the therapeutic potential of targeting miR-122-5p and its related genes in hypoxic-ischemic encephalopathy.
Collapse
Affiliation(s)
| | - Xun Sun
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Wei Wu
- Public Health College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Chenxi Mu
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Jia Liu
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Sheng Bi
- Clinical Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Hui Xu
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China.
| |
Collapse
|
4
|
Huang K, Pokhrel A, Echesabal-Chen J, Scott J, Bruce T, Jo H, Stamatikos A. Inhibiting MiR-33a-3p Expression Fails to Enhance ApoAI-Mediated Cholesterol Efflux in Pro-Inflammatory Endothelial Cells. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:329. [PMID: 40005445 PMCID: PMC11857470 DOI: 10.3390/medicina61020329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/08/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
Background and Objectives: Atherosclerosis is an inflammatory condition that results in cholesterol accumulating within vessel wall cells. Atherosclerotic cardiovascular disease is the leading cause of mortality worldwide due to this disease being a major contributor to myocardial infarctions and cerebrovascular accidents. Research suggests that cholesterol accumulation occurring precisely within arterial endothelial cells triggers atherogenesis and exacerbates atherosclerosis. Furthermore, inflamed endothelium acts as a catalyst for atherosclerotic development. Therefore, enhancing cholesterol removal specifically in pro-inflammatory endothelial cells may be a potential treatment option for atherosclerosis. While we have previously shown that inhibiting the microRNA guide strand miR-33a-5p within pro-inflammatory endothelial cells increases both ABCA1 expression and apoAI-mediated cholesterol efflux, it is unknown whether inhibiting the miR-33a-3p passenger strand in pro-inflammatory endothelial cells causes similar atheroprotective effects. In this study, this is what we aimed to test. Materials and Methods: We used plasmid transfection to knockdown miR-33a-3p expression within cultured pro-inflammatory immortalized mouse aortic endothelial cells (iMAECs). We compared ABCA1 expression and apoAI-mediated cholesterol efflux within these cells to cultured pro-inflammatory iMAECs transfected with a control plasmid. Results: The knockdown of miR-33a-3p expression within pro-inflammatory iMAECs resulted in a significant increase in ABCA1 mRNA expression. However, the inhibition of miR-33a-3p did not significantly increase ABCA1 protein expression within pro-inflammatory iMAECs. Moreover, we failed to detect a significant increase in apoAI-mediated cholesterol efflux within pro-inflammatory iMAECs from miR-33a-3p knockdown. Conclusions: Our results indicative that the knockdown of miR-33a-3p alone does not enhance ABCA1-dependent cholesterol efflux within pro-inflammatory endothelial cells. To gain any atheroprotective benefit from inhibiting miR-33a-3p within pro-inflammatory endothelium, additional anti-atherogenic strategies would likely be needed in unison.
Collapse
Affiliation(s)
- Kun Huang
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (K.H.); (A.P.); (J.E.-C.)
| | - Achala Pokhrel
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (K.H.); (A.P.); (J.E.-C.)
| | - Jing Echesabal-Chen
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (K.H.); (A.P.); (J.E.-C.)
| | - Justin Scott
- Clemson Light Imaging Facility, Clemson University, Clemson, SC 29634, USA; (J.S.); (T.B.)
| | - Terri Bruce
- Clemson Light Imaging Facility, Clemson University, Clemson, SC 29634, USA; (J.S.); (T.B.)
| | - Hanjoong Jo
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA;
| | - Alexis Stamatikos
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (K.H.); (A.P.); (J.E.-C.)
| |
Collapse
|
5
|
Tasouli-Drakou V, Ogurek I, Shaikh T, Ringor M, DiCaro MV, Lei K. Atherosclerosis: A Comprehensive Review of Molecular Factors and Mechanisms. Int J Mol Sci 2025; 26:1364. [PMID: 39941130 PMCID: PMC11818631 DOI: 10.3390/ijms26031364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 01/30/2025] [Accepted: 02/01/2025] [Indexed: 02/16/2025] Open
Abstract
Atherosclerosis, a condition characterized by the accumulation of lipids and a culprit behind cardiovascular events, has long been studied. However, in recent years, there has been an increase in interest in its initiation, with researchers shifting focus from traditional pathways involving the vascular infiltration of oxidized lipids and towards the novel presence of chronic inflammatory pathways. The accumulation of pro-inflammatory cytokines, in combination with the activation of transcription factors, creates a positive feedback loop that drives the creation and progression of atherosclerosis. From the upregulation of the nod-like receptor protein 3 (NLRP3) inflammasome and the Notch and Wnt pathways to the increased expression of VEGF-A and the downregulation of connexins Cx32, Cx37, and Cx40, these processes contribute further to endothelial dysfunction and plaque formation. Herein, we aim to provide insight into the molecular pathways and mechanisms implicated in the initiation and progression of atherosclerotic plaques, and to review the risk factors associated with their development.
Collapse
Affiliation(s)
- Vasiliki Tasouli-Drakou
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at the University of Nevada, Las Vegas, NV 89106, USA; (I.O.); (T.S.); (M.R.); (M.V.D.)
| | - Ian Ogurek
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at the University of Nevada, Las Vegas, NV 89106, USA; (I.O.); (T.S.); (M.R.); (M.V.D.)
| | - Taha Shaikh
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at the University of Nevada, Las Vegas, NV 89106, USA; (I.O.); (T.S.); (M.R.); (M.V.D.)
| | - Marc Ringor
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at the University of Nevada, Las Vegas, NV 89106, USA; (I.O.); (T.S.); (M.R.); (M.V.D.)
| | - Michael V. DiCaro
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at the University of Nevada, Las Vegas, NV 89106, USA; (I.O.); (T.S.); (M.R.); (M.V.D.)
| | - KaChon Lei
- Department of Cardiovascular Medicine, University of Nevada, Las Vegas, NV 89106, USA;
| |
Collapse
|
6
|
Ndoj K, Meurs A, Papaioannou D, Bjune K, Zelcer N. The low-density lipoprotein receptor: Emerging post-transcriptional regulatory mechanisms. Atherosclerosis 2025; 401:119082. [PMID: 39700747 DOI: 10.1016/j.atherosclerosis.2024.119082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/11/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024]
Abstract
Cholesterol is a vital component of cellular membranes and is an essential molecule in mammalian physiology. Yet dysregulation of hepatic cholesterol metabolism and an increase in plasma cholesterol is linked to development of atherosclerotic cardiovascular disease. Maintaining tight regulation of cholesterol homeostasis is therefore essential, elegantly highlighted by the control of hepatic low-density lipoprotein receptor (LDLR) abundance and associated lipoprotein clearance. The LDLR was discovered in the 1970's in the seminal work of Brown and Goldstein. This was followed by the development of statins, which promote hepatic clearance of LDL via the LDLR pathway. The discovery two decades ago of Proprotein Convertase Subtilisin-Kexin Type 9 (PCSK9), a secreted protein that binds to the LDLR ectodomain and promotes its degradation, and the clinical development of PCSK9 inhibitors has ushered an effort to uncover additional mechanisms that govern the function and abundance of the LDLR. In recent years this has led to the identification of novel post-transcriptional and post-translational mechanisms that govern the LDLR. This review focuses on these emerging regulatory mechanisms and specifically discusses: (1) Regulation of the LDLR mRNA by RNA-binding proteins and microRNAs, (2) Ubiquitin-dependent degradation of the LDLR protein by the E3 ubiquitin ligases inducible degrader of the LDLR (IDOL) and GOLIATH (RNF130), (3) Control of the LDLR pathway by the asialoglycoprotein receptor 1 (ASGR1), and (4) The role of LDLR ectodomain shedding mediated by membrane-type 1 matrix metalloprotease (MT1-MMP), Bone morphogenetic protein 1 (BMP1), and γ-secretase. Understanding the contribution of these emerging mechanisms to regulation of the LDLR is important for the development of novel LDLR-focused lipid-lowering strategies.
Collapse
Affiliation(s)
- Klevis Ndoj
- Department of Medical Biochemistry, Amsterdam UMC Location AMC, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Institute, Amsterdam UMC, Meibergdreef 9, 1105AZ, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences (ACS) Institute, Amsterdam UMC, Meibergdreef 9, 1105AZ, Amsterdam, the Netherlands
| | - Amber Meurs
- Department of Medical Biochemistry, Amsterdam UMC Location AMC, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Institute, Amsterdam UMC, Meibergdreef 9, 1105AZ, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences (ACS) Institute, Amsterdam UMC, Meibergdreef 9, 1105AZ, Amsterdam, the Netherlands
| | - Dimitra Papaioannou
- Department of Medical Biochemistry, Amsterdam UMC Location AMC, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, the Netherlands
| | - Katrine Bjune
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Noam Zelcer
- Department of Medical Biochemistry, Amsterdam UMC Location AMC, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Institute, Amsterdam UMC, Meibergdreef 9, 1105AZ, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences (ACS) Institute, Amsterdam UMC, Meibergdreef 9, 1105AZ, Amsterdam, the Netherlands.
| |
Collapse
|
7
|
Razi S, Khojini JY, Norioun H, Hayati MJ, Naseri N, Tajbaksh A, Gheibihayat SM. MicroRNA-mediated regulation of Ferroptosis: Implications for disease pathogenesis and therapeutic interventions. Cell Signal 2024; 125:111503. [PMID: 39510403 DOI: 10.1016/j.cellsig.2024.111503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/05/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
Ferroptosis, a form of iron-dependent regulated cell death, is characterized by the accumulation of lipid peroxides and distinctive morphological features. Moreover, the reduction of intracellular antioxidant enzyme expression or activity, specifically glutathione peroxidase 4 (GPX4) results in activation of the endogenous pathway of ferroptosis. In this review, we aimed to explore the intricate interplay between microRNAs (miRNAs) and ferroptosis, shedding light on its implications in various disease pathologies. This review delves into the role of miRNAs in modulating key regulators of ferroptosis, including genes involved in iron metabolism, lipid peroxidation, and antioxidant defenses. Furthermore, the potential of targeting miRNAs for therapeutic interventions in ferroptosis-related diseases, such as cancer, neurodegenerative disorders, and ischemia/reperfusion injury, is highlighted.
Collapse
Affiliation(s)
- Shokufeh Razi
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Javad Yaghmoorian Khojini
- Department of Medical Biotechnology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hamid Norioun
- Medical Genetics Department, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mohammad Javad Hayati
- Department of Medical Biotechnology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Nasim Naseri
- Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Amir Tajbaksh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
8
|
Das Gupta A, Park J, Sorrells JE, Kim H, Krawczynska N, Pradeep D, Wang Y, Vidana Gamage HE, Nelczyk AT, Boppart SA, Boppart MD, Nelson ER. 27-Hydroxycholesterol Enhances Secretion of Extracellular Vesicles by ROS-Induced Dysregulation of Lysosomes. Endocrinology 2024; 165:bqae127. [PMID: 39298675 PMCID: PMC11448339 DOI: 10.1210/endocr/bqae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/30/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Extracellular vesicles (EVs) serve as crucial mediators of cell-to-cell communication in normal physiology as well as in diseased states; they have been largely studied in regard to their role in cancer progression. However, the mechanisms by which their biogenesis and secretion are regulated by metabolic or endocrine factors remain unknown. Here, we delineate a mechanism by which EV secretion is regulated by a cholesterol metabolite, 27-hydroxycholesterol (27HC), where treatment of myeloid immune cells (RAW 264.7 and J774A.1) with 27HC impairs lysosomal homeostasis, leading to shunting of multivesicular bodies (MVBs) away from lysosomal degradation, toward secretion as EVs. This altered lysosomal function is likely caused by mitochondrial dysfunction and subsequent increase in reactive oxygen species (ROS). Interestingly, cotreatment with a mitochondria-targeted antioxidant rescued the lysosomal impairment and attenuated the 27HC-mediated increase in EV secretion. Overall, our findings establish how a cholesterol metabolite regulates EV secretion and paves the way for the development of strategies to regulate cancer progression by controlling EV secretion.
Collapse
Affiliation(s)
- Anasuya Das Gupta
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jaena Park
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Janet E Sorrells
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hannah Kim
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Natalia Krawczynska
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Dhanya Pradeep
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yu Wang
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hashni Epa Vidana Gamage
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Adam T Nelczyk
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Stephen A Boppart
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Interdisciplinary Health Sciences Institute, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- NIH/NIBIB Center for Label-free Imaging and Multi-scale Biophotonics (CLIMB), University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Marni D Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Erik R Nelson
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology- Anticancer Discovery from Pets to People, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
9
|
Yang B, Cao P, Bao G, Wu M, Chen W, Wu S, Luo D, Bi P. Inhibiting miRNA-146a suppresses mouse gallstone formation by regulating LXR/megalin/cubilin-media cholesterol absorption. Heliyon 2024; 10:e36679. [PMID: 39296173 PMCID: PMC11407981 DOI: 10.1016/j.heliyon.2024.e36679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/21/2024] Open
Abstract
Background miRNA has been implicated in regulating cholesterol homeostasis, a critical factor in gallstone formation. Here, we focused on elucidating the role of miR-146a in this pathological process. Methods C57BL/6 mice were fed with lithogenic diet (LD) and injected with miR-146 antagomir (anta-146) via the tail vein for various weeks. The gallbladders and liver tissues were collected for cholesterol crystal imaging, gallstone mass quantification, and molecular analysis. Levels of cholesterol, bile salt, phospholipids, and metabolic parameters in serum and bile were assessed by ELISA. A 3' UTR reporter gene assay was used to verify the direct target genes for miR-146. The relative expression of metabolism genes was analyzed by quantitative real-time PCR and immunoblotting. Results miR-146a-5p expression was reduced in mice and clinical samples with gallstones. Anta-146 treatment effectively prevented LD-induced gallstone formation in mice without hepatic and cholecystic damage. The mice treated with anta-146 exhibited beneficial alterations in bile cholesterol and bile acids and lipid levels in the blood. A key biliary cholesterol transporter-Megalin was identified as a direct target of miR-146. Anta-146 administration upregulated megalin expression, thereby ameliorating impaired gallbladder cholesterol absorption associated with the LXR-megalin/cubilin pathway. Conclusion The data demonstrates that miR-146 modulates gallbladder cholesterol absorption by targeting megalin, and prevents the pathogenesis of cholesterol gallstones.
Collapse
Affiliation(s)
- Bin Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Pingli Cao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Guoqing Bao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ming Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Weihong Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shuangyan Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ding Luo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Pinduan Bi
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
10
|
Wang Y, Li F, Gao X, Yu H, Du Z, Li L, Du Y, Hu C, Qin Y. miR-181d-5p ameliorates hypercholesterolemia by targeting PCSK9. J Endocrinol 2024; 262:e230402. [PMID: 38940622 PMCID: PMC11301420 DOI: 10.1530/joe-23-0402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/27/2024] [Indexed: 06/29/2024]
Abstract
Hypercholesterolemia is an independent risk factor for cardiovascular disease and lowering circulating levels of low-density lipoprotein cholesterol (LDL-C) can prevent and reduce cardiovascular events. MicroRNA-181d (miR-181d) can reduce the levels of triglycerides and cholesterol esters in cells. However, it is not known whether miR-181d-5p can lower levels of circulating LDL-C. Here, we generated two animal models of hypercholesterolemia to analyze the potential relationship between miR-181d-5p and LDL-C. In hypercholesterolemia model mice, adeno-associated virus (AAV)-mediated liver-directed overexpression of miR-181d-5p decreased the serum levels of cholesterol and LDL-C and the levels of cholesterol and triglyceride in the liver compared with control mice. Target Scan 8.0 indicated Proprotein convertase subtilisin/kexin type 9 (PCSK9) to be a possible target gene of miR-181d-5p, which was confirmed by in vitro experiments. miR-181d-5p could directly interact with both the PCSK9 3'-UTR and promoter to inhibit PCSK9 translation and transcription. Furthermore, Dil-LDL uptake assays in PCSK9 knockdown Huh7 cells demonstrated that miR-181d-5p promotion of LDL-C absorption was dependent on PCSK9. Collectively, our findings show that miR-181d-5p targets the PCSK9 3'-UTR to inhibit PCSK9 expression and to reduce serum LDL-C. miR-181d-5p is therefore a new therapeutic target for the development of anti-hypercholesterolemia drugs.
Collapse
Affiliation(s)
- Yu Wang
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Fan Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiaoqian Gao
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Huahui Yu
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zhiyong Du
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Linyi Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yunhui Du
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Chaowei Hu
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yanwen Qin
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Li W, Lv Y, Sun Y. Roles of non-coding RNA in megakaryocytopoiesis and thrombopoiesis: new target therapies in ITP. Platelets 2023; 34:2157382. [PMID: 36550091 DOI: 10.1080/09537104.2022.2157382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Noncoding RNAs (ncRNAs) are a group of RNA molecules that cannot encode proteins, and a better understanding of the complex interaction networks coordinated by ncRNAs will provide a theoretical basis for the development of therapeutics targeting the regulatory effects of ncRNAs. Platelets are produced upon the differentiation of hematopoietic stem cells into megakaryocytes, 1011 per day, and are renewed every 8-9 days. The process of thrombopoiesis is affected by multiple factors, in which ncRNAs also exert a significant regulatory role. This article reviewed the regulatory roles of ncRNAs, mainly microRNAs (miRNAs), circRNAs (circular RNAs), and long non-coding RNAs (lncRNAs), in thrombopoiesis in recent years as well as their roles in primary immune thrombocytopenia (ITP).
Collapse
Affiliation(s)
- Wuquan Li
- College of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yan Lv
- College of Life Science, Yantai University, Yantai, China
| | - Yeying Sun
- College of Pharmacy, Binzhou Medical University, Yantai, China
| |
Collapse
|
12
|
Yang J, Lee R, Henning SM, Xing E, Huang J, Yang S, Garcia MC, Surampudi V, Heber D, Li Z. Concentrated Grape Powder Consumption Modulates Cholesterol Metabolism and Homeostasis in Healthy Subjects. Mol Nutr Food Res 2023; 67:e2300224. [PMID: 37672802 DOI: 10.1002/mnfr.202300224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
SCOPE Four weeks' of concentrated grape powder (GP) consumption reduces circulating cholesterol in healthy free-living subjects consuming a low-fiber/low-polyphenol diet. Here, the study aims to investigate the underlying mechanisms for cholesterol reduction by evaluating biomarkers of cholesterol de novo biosynthesis, intestinal absorption, miRNA involved in transcriptional regulation of cholesterol metabolism, as well as cholesterol oxidation. METHODS AND RESULTS Fasting plasma samples collected from 19 healthy free-living subjects at baseline and week 4 of GP consumption are used in this study. Gas chromatography-mass (GC-MS) analysis of plasma samples shows that lathosterol, a precursor of cholesterol synthesis, is significantly decreased after GP consumption indicating reduced cholesterol de novo biosynthesis. Markers of intestinal absorption, campesterol, and β-sitosterol are not changed. Realtime PCR shows that plasma exosomal miRNA-1 is increased after GP consumption. GC-MS also shows that GP consumption reduces the plasma cholesterol oxidation product 27-hydroxycholesterol (27-HC). CONCLUSIONS This study enhances the understanding of the mechanisms of the cholesterol lowering effects of GP, and provides new insights into the potential health benefits of grape consumption.
Collapse
Affiliation(s)
- Jieping Yang
- Center for Human Nutrition, David Geffen School of Medicine at UCLA, Los Angeles, CA, 1083390095, USA
| | - Rupo Lee
- Center for Human Nutrition, David Geffen School of Medicine at UCLA, Los Angeles, CA, 1083390095, USA
| | - Susanne M Henning
- Center for Human Nutrition, David Geffen School of Medicine at UCLA, Los Angeles, CA, 1083390095, USA
| | - Emily Xing
- Center for Human Nutrition, David Geffen School of Medicine at UCLA, Los Angeles, CA, 1083390095, USA
| | - Jianjun Huang
- Center for Human Nutrition, David Geffen School of Medicine at UCLA, Los Angeles, CA, 1083390095, USA
| | - Scarlet Yang
- Center for Human Nutrition, David Geffen School of Medicine at UCLA, Los Angeles, CA, 1083390095, USA
| | - Michael C Garcia
- Center for Human Nutrition, David Geffen School of Medicine at UCLA, Los Angeles, CA, 1083390095, USA
| | - Vijaya Surampudi
- Center for Human Nutrition, David Geffen School of Medicine at UCLA, Los Angeles, CA, 1083390095, USA
| | - David Heber
- Center for Human Nutrition, David Geffen School of Medicine at UCLA, Los Angeles, CA, 1083390095, USA
| | - Zhaoping Li
- Center for Human Nutrition, David Geffen School of Medicine at UCLA, Los Angeles, CA, 1083390095, USA
- Department of Medicine, VA Greater Los Angeles Health Care System, Los Angeles, CA, 90073, USA
| |
Collapse
|
13
|
Kozlov D, Rodimova S, Kuznetsova D. The Role of MicroRNAs in Liver Functioning: from Biogenesis to Therapeutic Approaches (Review). Sovrem Tekhnologii Med 2023; 15:54-79. [PMID: 39967915 PMCID: PMC11832066 DOI: 10.17691/stm2023.15.5.06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Indexed: 01/03/2025] Open
Abstract
Molecular diagnostics based on small non-coding RNA molecules (in particular microRNA) is a new direction in modern biomedicine and is considered a promising method for identification of a wide range of pathologies at an early stage, clinical phenotype assessment, as well as monitoring the course of the disease, evaluation of therapy efficacy and the risk of the disease recurrence. Currently, the role of microRNAs as the most important epigenetic regulator in cancer development has been proven within the studies of normal and pathogenic processes. However, currently, there are insignificant studies devoted to studying the role of microRNAs in functioning of other organs and tissues, as well as to development of possible therapeutic approaches based on microRNAs. A huge number of metabolic processes in the liver are controlled by microRNAs, which creates enormous potential for the use of microRNAs as a diagnostic marker and makes it a target for therapeutic intervention in metabolic, oncological, and even viral diseases of this organ. This review examines various aspects of biological functions of microRNAs in different types of liver cells. Both canonical and non-canonical pathways of biogenesis, epigenetic regulation mediated by microRNAs, as well as the microRNAs role in intercellular communication and the course of viral diseases are shown. The potential of microRNAs as a diagnostic marker for various liver pathologies is described, as well as therapeutic approaches and medicines based on microRNAs, which are approved for clinical use and currently being developed.
Collapse
Affiliation(s)
- D.S. Kozlov
- Laboratory Assistant, Scientific Laboratory of Molecular Biotechnologies, I Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Student, Institute of Biology and Biomedicine; National Research Lobachevsky State University of Nizhny Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603022, Russia
| | - S.A. Rodimova
- Junior Researcher, Laboratory of Regenerative Medicine; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Junior Researcher, Scientific Laboratory of Molecular Biotechnologies, Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - D.S. Kuznetsova
- PhD, Head of the Scientific Laboratory of Molecular Biotechnologies, Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Head of the Research Laboratory for Molecular Genetic Researches, Institute of Clinical Medicine; National Research Lobachevsky State University of Nizhny Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603022, Russia
| |
Collapse
|
14
|
Meng X, Eslami Y, Derafsh E, Saihood A, Emtiazi N, Yasamineh S, Gholizadeh O, Pecho RDC. The roles of different microRNAs in the regulation of cholesterol in viral hepatitis. Cell Commun Signal 2023; 21:231. [PMID: 37710249 PMCID: PMC10500852 DOI: 10.1186/s12964-023-01250-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/30/2023] [Indexed: 09/16/2023] Open
Abstract
Cholesterol plays a significant role in stabilizing lipid or membrane rafts, which are specific cellular membrane structures. Cholesterol is involved in numerous cellular processes, including regulating virus entry into the host cell. Multiple viruses have been shown to rely on cholesterol for virus entry and/or morphogenesis. Research indicates that reprogramming of the host's lipid metabolism is associated with hepatitis B virus (HBV) and hepatitis C virus (HCV) infections in the progression to severe liver disease for viruses that cause chronic hepatitis. Moreover, knowing the precise mode of viral interaction with target cells sheds light on viral pathogenesis and aids in the development of vaccines and therapeutic targets. As a result, the area of cholesterol-lowering therapy is quickly evolving and has many novel antiviral targets and medications. It has been shown that microRNAs (miRNAs) either directly or indirectly target the viral genome, preventing viral replication. Moreover, miRNAs have recently been shown to be strong post-transcriptional regulators of the genes involved in lipid metabolism, particularly those involved in cholesterol homeostasis. As important regulators of lipid homeostasis in several viral infections, miRNAs have recently come to light. In addition, multiple studies demonstrated that during viral infection, miRNAs modulate several enzymes in the mevalonate/cholesterol pathway. As cholesterol metabolism is essential to the life cycle of viral hepatitis and other viruses, a sophisticated understanding of miRNA regulation may contribute to the development of a novel anti-HCV treatment. The mechanisms underlying the effectiveness of miRNAs as cholesterol regulators against viral hepatitis are explored in this review. Video Abstract.
Collapse
Affiliation(s)
- Xuan Meng
- Hepatobiliary Surgery Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu 221002 China
| | - Yeganeh Eslami
- Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ehsan Derafsh
- Windsor University, School of Medicine, St. Kitts, Canada
| | - Anwar Saihood
- Department of Microbiology, college of medicine, University of Al-Qadisiyah, Baqubah, Iraq
| | - Nikoo Emtiazi
- Department of Pathology, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Omid Gholizadeh
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
15
|
Graham A. Modulation of the Cellular microRNA Landscape: Contribution to the Protective Effects of High-Density Lipoproteins (HDL). BIOLOGY 2023; 12:1232. [PMID: 37759631 PMCID: PMC10526091 DOI: 10.3390/biology12091232] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
High-density lipoproteins (HDL) play an established role in protecting against cellular dysfunction in a variety of different disease contexts; however, harnessing this therapeutic potential has proved challenging due to the heterogeneous and relative instability of this lipoprotein and its variable cargo molecules. The purpose of this study is to examine the contribution of microRNA (miRNA; miR) sequences, either delivered directly or modulated endogenously, to these protective functions. This narrative review introduces the complex cargo carried by HDL, the protective functions associated with this lipoprotein, and the factors governing biogenesis, export and the uptake of microRNA. The possible mechanisms by which HDL can modulate the cellular miRNA landscape are considered, and the impact of key sequences modified by HDL is explored in diseases such as inflammation and immunity, wound healing, angiogenesis, dyslipidaemia, atherosclerosis and coronary heart disease, potentially offering new routes for therapeutic intervention.
Collapse
Affiliation(s)
- Annette Graham
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Cowcaddens Road, Glasgow G4 0BA, UK
| |
Collapse
|
16
|
Li Z, Zhao Y, Suguro S, Suguro R. MicroRNAs Regulate Function in Atherosclerosis and Clinical Implications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:2561509. [PMID: 37675243 PMCID: PMC10480027 DOI: 10.1155/2023/2561509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/05/2023] [Accepted: 08/10/2023] [Indexed: 09/08/2023]
Abstract
Background Atherosclerosis is considered the most common cause of morbidity and mortality worldwide. Athermanous plaque formation is pathognomonic of atherosclerosis. The main feature of atherosclerosis is the formation of plaque, which is inseparable from endothelial cells, vascular smooth muscle cells, and macrophages. MicroRNAs, a small highly conserved noncoding ribonucleic acid (RNA) molecule, have multiple biological functions, such as regulating gene transcription, silencing target gene expression, and affecting protein translation. MicroRNAs also have various pharmacological activities, such as regulating cell proliferation, apoptosis, and metabolic processes. It is noteworthy that many studies in recent years have also proved that microRNAs play a role in atherosclerosis. Methods To summarize the functions of microRNAs in atherosclerosis, we reviewed all relevant articles published in the PubMed database before June 2022, with keywords "atherosclerosis," "microRNA," "endothelial cells," "vascular smooth muscle cells," "macrophages," and "cholesterol homeostasis," briefly summarized a series of research progress on the function of microRNAs in endothelial cells, vascular smooth muscle cells, and macrophages and atherosclerosis. Results and Conclusion. In general, the expression levels of some microRNAs changed significantly in different stages of atherosclerosis pathogenesis; therefore, MicroRNAs may become new diagnostic biomarkers for atherosclerosis. In addition, microRNAs are also involved in the regulation of core processes such as endothelial dysfunction, plaque formation and stabilization, and cholesterol metabolism, which also suggests the great potential of microRNAs as a therapeutic target.
Collapse
Affiliation(s)
- Zhaoyi Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
| | - Yidan Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
| | - Sei Suguro
- Faculty of Medicine, School of Pharmacy, The Chinese University of Hong Kong, Shatin New Territories, Hong Kong SAR, China
| | - Rinkiko Suguro
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
| |
Collapse
|
17
|
Morales C, Arias-Carrasco R, Maracaja-Coutinho V, Seron P, Lanas F, Salazar LA, Saavedra N. Differences in Bacterial Small RNAs in Stool Samples from Hypercholesterolemic and Normocholesterolemic Subjects. Int J Mol Sci 2023; 24:ijms24087213. [PMID: 37108373 PMCID: PMC10138442 DOI: 10.3390/ijms24087213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/13/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Cholesterol metabolism is important at the physiological level as well as in several diseases, with small RNA being an element to consider in terms of its epigenetic control. Thus, the aim of this study was to identify differences between bacterial small RNAs present at the gut level in hypercholesterolemic and normocholesterolemic individuals. Twenty stool samples were collected from hypercholesterolemic and normocholesterolemic subjects. RNA extraction and small RNA sequencing were performed, followed by bioinformatics analyses with BrumiR, Bowtie 2, BLASTn, DESeq2, and IntaRNA, after the filtering of the reads with fastp. In addition, the prediction of secondary structures was obtained with RNAfold WebServer. Most of the small RNAs were of bacterial origin and presented a greater number of readings in normocholesterolemic participants. The upregulation of small RNA ID 2909606 associated with Coprococcus eutactus (family Lachnospiraceae) was presented in hypercholesterolemic subjects. In addition, a positive correlation was established between small RNA ID 2149569 from the species Blautia wexlerae and hypercholesterolemic subjects. Other bacterial and archaeal small RNAs that interacted with the LDL receptor (LDLR) were identified. For these sequences, the prediction of secondary structures was also obtained. There were significant differences in bacterial small RNAs associated with cholesterol metabolism in hypercholesterolemic and normocholesterolemic participants.
Collapse
Affiliation(s)
- Cristian Morales
- Centro de Biología Molecular y Farmacogenética, Núcleo Científico-Tecnológico en Biorecursos BIOREN, Universidad de La Frontera, Temuco 4811230, Chile
- Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Temuco 4801076, Chile
| | - Raul Arias-Carrasco
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Santiago 8330378, Chile
| | - Vinicius Maracaja-Coutinho
- Advanced Center for Chronic Diseases-ACCDiS, Facultad de Química y Ciencias Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile
| | - Pamela Seron
- Departamento de Ciencias de La Rehabilitación, Facultad de Medicina, Universidad de La Frontera, Temuco 4781151, Chile
| | - Fernando Lanas
- Departamento de Medicina Interna, Facultad de Medicina, Universidad de La Frontera, Temuco 4781151, Chile
| | - Luis A Salazar
- Centro de Biología Molecular y Farmacogenética, Núcleo Científico-Tecnológico en Biorecursos BIOREN, Universidad de La Frontera, Temuco 4811230, Chile
- Departamento de Ciencias Básicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| | - Nicolás Saavedra
- Centro de Biología Molecular y Farmacogenética, Núcleo Científico-Tecnológico en Biorecursos BIOREN, Universidad de La Frontera, Temuco 4811230, Chile
- Departamento de Ciencias Básicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
18
|
Levstek T, Karun T, Rehberger Likozar A, Šebeštjen M, Trebušak Podkrajšek K. Interplay between microRNAs, Serum Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9), and Lipid Parameters in Patients with Very High Lipoprotein(a) Treated with PCSK9 Inhibitors. Genes (Basel) 2023; 14:genes14030632. [PMID: 36980904 PMCID: PMC10048228 DOI: 10.3390/genes14030632] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) has an important function in the regulation of lipid metabolism. PCSK9 reduces hepatic low-density lipoprotein receptors, thereby increasing low-density lipoprotein cholesterol levels. However, its regulation remains to be elucidated, including post-transcriptional regulation by microRNAs (miRNAs). We aimed to explore the interplay between miRNAs, total serum PCSK9, and lipids during treatment with PCSK9 inhibitors. A total of 64 patients with stable coronary artery disease and very high lipoprotein(a) levels and 16 sex- and age-matched control subjects were enrolled. Patients received a PCSK9 inhibitor (evolocumab or alirocumab). Total serum PCSK9 levels were measured by immunoassay. RNA was isolated from plasma using magnetic beads, and expression of selected miRNAs was analyzed by quantitative PCR. Total serum PCSK9 levels were significantly higher in control subjects compared with patients. After 6 months of treatment with PCSK9 inhibitors, total serum PCSK9 levels increased significantly. The expression of miR-191-5p was significantly lower, and the expression of miR-224-5p and miR-483-5p was significantly higher in patients compared with control subjects. Using linear regression, the expression of miR-483-5p significantly predicted the serum PCSK9 level at baseline. After the 6-month period of therapy, the expression of miR-191-5p and miR-483-5p significantly increased. Our results support a role for miR-483-5p in regulating circulating PCSK9 in vivo. The difference in expression of miR-191-5p, miR-224-5p, and miR-337-3p between patients and control subjects suggests their possible role in the pathogenesis of coronary artery disease.
Collapse
Affiliation(s)
- Tina Levstek
- Laboratory for Translational Medical Biochemistry, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, University Medical Centre Ljubljana, Vrazov trg 1, 1000 Ljubljana, Slovenia
| | - Tina Karun
- Laboratory for Translational Medical Biochemistry, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Andreja Rehberger Likozar
- Department of Vascular Diseases, University Medical Centre Ljubljana, Zaloška cesta 7, 1000 Ljubljana, Slovenia
| | - Miran Šebeštjen
- Department of Vascular Diseases, University Medical Centre Ljubljana, Zaloška cesta 7, 1000 Ljubljana, Slovenia
- Department of Cardiology, University Medical Centre Ljubljana, Zaloška cesta 7, 1000 Ljubljana, Slovenia
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Zaloška cesta 7, 1000 Ljubljana, Slovenia
| | - Katarina Trebušak Podkrajšek
- Laboratory for Translational Medical Biochemistry, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, University Medical Centre Ljubljana, Vrazov trg 1, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
19
|
Giannella A, Castelblanco E, Zambon CF, Basso D, Hernandez M, Ortega E, Alonso N, Mauricio D, Avogaro A, Ceolotto G, Vigili de Kreutzenberg S. Circulating Small Noncoding RNA Profiling as a Potential Biomarker of Atherosclerotic Plaque Composition in Type 1 Diabetes. Diabetes Care 2023; 46:551-560. [PMID: 36577032 PMCID: PMC10020028 DOI: 10.2337/dc22-1441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 12/05/2022] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Cardiovascular disease (CVD) accounts for most deaths in patients with type 1 diabetes (T1D); however, the determinants of plaque composition are unknown. miRNAs regulate gene expression, participate in the development of atherosclerosis, and represent promising CVD biomarkers. This study analyzed the circulating miRNA expression profile in T1D with either carotid calcified (CCP) or fibrous plaque (CFP). RESEARCH DESIGN AND METHODS Circulating small noncoding RNAs were sequenced and quantified using next-generation sequencing and bioinformatic analysis in an exploratory set of 26 subjects with T1D with CCP and in 25 with CFP. Then, in a validation set of 40 subjects with CCP, 40 with CFP, and 24 control subjects with T1D, selected miRNA expression was measured by digital droplet PCR. Putative gene targets enriched for pathways implicated in atherosclerosis/vascular calcification/diabetes were analyzed. The patients' main clinical characteristics were also recorded. RESULTS miR-503-5p, let-7d-5p, miR-106b-3p, and miR-93-5p were significantly upregulated, while miR-10a-5p was downregulated in patients with CCP compared with CFP (all fold change >±1.5; P < 0.05). All candidate miRNAs showed a significant correlation with LDL-cholesterol, direct for the upregulated and inverse for the downregulated miRNA, in CCP. Many target genes of upregulated miRNAs in CCP participate in osteogenic differentiation, apoptosis, inflammation, cholesterol metabolism, and extracellular matrix organization. CONCLUSIONS These findings characterize miRNAs and their signature in the regulatory network of carotid plaque phenotype in T1D, providing new insights into plaque pathophysiology and possibly novel biomarkers of plaque composition.
Collapse
Affiliation(s)
| | - Esmeralda Castelblanco
- Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
- Unitat de Suport a la Recerca Barcelona, Institut Universitari d’Investigació en Atenció Primària Jordi Gol i Gurina, Barcelona, Spain
| | | | - Daniela Basso
- Department of Medicine, University of Padova, Padova, Italy
| | - Marta Hernandez
- Department of Endocrinology & Nutrition, Hospital Arnau de Vilanova and Institut d’Investigació Biomédica de Lleida, Lleida, Spain
| | - Emilio Ortega
- Department of Endocrinology & Nutrition, Diabetes Unit, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Center for Biomedical Research on Pathophysiology of Obesity and Nutrition, Instituto de Salud Carlos III, Madrid, Spain
| | - Nuria Alonso
- Department of Endocrinology and Nutrition, Health Sciences Research Institute and University Hospital Germans Trias i Pujol, Badalona, Spain
- CIBERDEM, Barcelona, Spain
| | - Didac Mauricio
- Unitat de Suport a la Recerca Barcelona, Institut Universitari d’Investigació en Atenció Primària Jordi Gol i Gurina, Barcelona, Spain
- CIBERDEM, Barcelona, Spain
- Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau and Sant Pau Biomedical Research Institute, Barcelona, Spain
- Faculty of Medicine, University of Vic–Central University of Catalonia, Vic, Spain
| | - Angelo Avogaro
- Department of Medicine, University of Padova, Padova, Italy
- Corresponding authors: Saula Vigili de Kreutzenberg, , and Angelo Avogaro,
| | | | - Saula Vigili de Kreutzenberg
- Department of Medicine, University of Padova, Padova, Italy
- Corresponding authors: Saula Vigili de Kreutzenberg, , and Angelo Avogaro,
| |
Collapse
|
20
|
Zhang WC, Skiados N, Aftab F, Moreno C, Silva L, Corbilla PJA, Asara JM, Hata AN, Slack FJ. MicroRNA-21 guide and passenger strand regulation of adenylosuccinate lyase-mediated purine metabolism promotes transition to an EGFR-TKI-tolerant persister state. Cancer Gene Ther 2022; 29:1878-1894. [PMID: 35840668 PMCID: PMC9750876 DOI: 10.1038/s41417-022-00504-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/15/2022] [Accepted: 06/28/2022] [Indexed: 01/25/2023]
Abstract
In EGFR-mutant lung cancer, drug-tolerant persister cells (DTPCs) show prolonged survival when receiving EGFR tyrosine kinase inhibitor (TKI) treatments. They are a likely source of drug resistance, but little is known about how these cells tolerate drugs. Ribonucleic acids (RNAs) molecules control cell growth and stress responses. Nucleic acid metabolism provides metabolites, such as purines, supporting RNA synthesis and downstream functions. Recently, noncoding RNAs (ncRNAs), such as microRNAs (miRNAs), have received attention due to their capacity to repress gene expression via inhibitory binding to downstream messenger RNAs (mRNAs). Here, our study links miRNA expression to purine metabolism and drug tolerance. MiR-21-5p (guide strand) is a commonly upregulated miRNA in disease states, including cancer and drug resistance. However, the expression and function of miR-21-3p (passenger strand) are not well understood. We found that upregulation of miR-21-5p and miR-21-3p tune purine metabolism leading to increased drug tolerance. Metabolomics data demonstrated that purine metabolism was the top pathway in the DTPCs compared with the parental cells. The changes in purine metabolites in the DTPCs were partially rescued by targeting miR-21. Analysis of protein levels in the DTPCs showed that reduced expression of adenylosuccinate lyase (ADSL) was reversed after the miR-21 knockdown. ADSL is an essential enzyme in the de novo purine biosynthesis pathway by converting succino-5-aminoimidazole-4-carboxamide riboside (succino-AICAR or SAICAR) to AICAR (or acadesine) as well as adenylosuccinate to adenosine monophosphate (AMP). In the DTPCs, miR-21-5p and miR-21-3p repress ADSL expression. The levels of top decreased metabolite in the DTPCs, AICAR was reversed when miR-21 was blocked. AICAR induced oxidative stress, evidenced by increased reactive oxygen species (ROS) and reduced expression of nuclear factor erythroid-2-related factor 2 (NRF2). Concurrently, miR-21 knockdown induced ROS generation. Therapeutically, a combination of AICAR and osimertinib increased ROS levels and decreased osimertinib-induced NRF2 expression. In a MIR21 knockout mouse model, MIR21 loss-of-function led to increased purine metabolites but reduced ROS scavenging capacity in lung tissues in physiological conditions. Our data has established a link between ncRNAs, purine metabolism, and the redox imbalance pathway. This discovery will increase knowledge of the complexity of the regulatory RNA network and potentially enable novel therapeutic options for drug-resistant patients.
Collapse
Affiliation(s)
- Wen Cai Zhang
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
- Department of Cancer Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA.
| | - Nicholas Skiados
- Department of Cancer Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA
| | - Fareesa Aftab
- Department of Cancer Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA
| | - Cerena Moreno
- Department of Cancer Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA
| | - Luis Silva
- Department of Cancer Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA
| | - Paul Joshua Anthony Corbilla
- Department of Cancer Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA
| | - John M Asara
- Department of Medicine, Division of Signal Transduction, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Aaron N Hata
- Department of Medicine, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - Frank J Slack
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
21
|
Regulation of Cholesterol Metabolism by Phytochemicals Derived from Algae and Edible Mushrooms in Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2022; 23:ijms232213667. [PMID: 36430146 PMCID: PMC9697193 DOI: 10.3390/ijms232213667] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Cholesterol synthesis occurs in almost all cells, but mainly in hepatocytes in the liver. Cholesterol is garnering increasing attention for its central role in various metabolic diseases. In addition, cholesterol is one of the most essential elements for cells as both a structural source and a player participating in various metabolic pathways. Accurate regulation of cholesterol is necessary for the proper metabolism of fats in the body. Disturbances in cholesterol homeostasis have been linked to various metabolic diseases, such as hyperlipidemia and non-alcoholic fatty liver disease (NAFLD). For many years, the use of synthetic chemical drugs has been effective against many health conditions. Furthermore, from ancient to modern times, various plant-based drugs have been considered local medicines, playing important roles in human health. Phytochemicals are bioactive natural compounds that are derived from medicinal plants, fruit, vegetables, roots, leaves, and flowers and are used to treat a variety of diseases. They include flavonoids, carotenoids, polyphenols, polysaccharides, vitamins, and more. Many of these compounds have been proven to have antioxidant, anti-inflammatory, antiobesity and antihypercholesteremic activity. The multifaceted role of phytochemicals may provide health benefits to humans with regard to the treatment and control of cholesterol metabolism and the diseases associated with this disorder, such as NAFLD. In recent years, global environmental climate change, the COVID-19 pandemic, the current war in Europe, and other conflicts have threatened food security and human nutrition worldwide. This further emphasizes the urgent need for sustainable sources of functional phytochemicals to be included in the food industry and dietary habits. This review summarizes the latest findings on selected phytochemicals from sustainable sources-algae and edible mushrooms-that affect the synthesis and metabolism of cholesterol and improve or prevent NAFLD.
Collapse
|
22
|
Ediriweera MK. Use of cholesterol metabolism for anti-cancer strategies. Drug Discov Today 2022; 27:103347. [PMID: 36087905 DOI: 10.1016/j.drudis.2022.103347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/08/2022] [Accepted: 09/02/2022] [Indexed: 11/03/2022]
Abstract
Irregularities in cholesterol metabolism occur in a range of human cancers. Cholesterol precursors and derivatives support tumorigenesis and weaken immune responses. Intriguing preclinical and clinical findings demonstrate that cholesterol biosynthesis inhibition achieved by targeting major events and metabolites in cholesterol metabolism is an ideal anti-tumor strategy. Investigations addressing the effects of β-hydroxy β-methylglutaryl-CoA (HMG-CoA) reductase (HMGCR), 2,3-oxidosqualene cyclase (OSC), squalene synthase (SQS), liver X receptors (LXR), and cholesterol trafficking and esterification inhibition on cancer progression have shown encouraging results. Notably, manipulation of cholesterol metabolism strengthens the function of immune cells in the tumor microenvironment (TME). In this review, I discuss the role of cholesterol metabolism in cancer progression and the latest research related to cholesterol metabolism-based anti-cancer therapies and intend to bring this stylish biochemistry topic to the Sri Lankan research landscape.
Collapse
Affiliation(s)
- Meran Keshawa Ediriweera
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Colombo, Colombo 08, Sri Lanka.
| |
Collapse
|
23
|
Khan AA, Gupta V, Mahapatra NR. Key regulatory miRNAs in lipid homeostasis: implications for cardiometabolic diseases and development of novel therapeutics. Drug Discov Today 2022; 27:2170-2180. [PMID: 35550438 DOI: 10.1016/j.drudis.2022.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/24/2022] [Accepted: 05/04/2022] [Indexed: 12/11/2022]
Abstract
Dysregulation of lipid metabolism is associated with cardiovascular/metabolic diseases, including atherosclerosis, liver diseases and type 2 diabetes mellitus (T2DM). Several miRNAs have been reported as regulators of different stages of lipid homeostasis, including cholesterol/fatty acid biosynthesis, degradation, transport, storage, and low-density (LDL) and high-density lipoprotein (HDL) formation. Indeed, various miRNAs are emerging as attractive therapeutic candidates for metabolic/cardiovascular disease (CVD). Here, we summarize the roles of miR-19b, miR-20a, miR-21, miR-27, miR-29, miR-34a, miR-144, miR-148a, and miR-199a in post-transcriptional regulation of genes involved in lipid metabolism and their therapeutic potential. We also discuss experimental strategies for further development of these miRNAs as novel cardiometabolic therapeutics. Teaser: miRNAs have emerged as crucial regulators of lipid homeostasis. Here, we highlight key miRNAs that regulate lipid metabolism and their therapeutic potential in cardiometabolic disease states.
Collapse
Affiliation(s)
- Abrar A Khan
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Vinayak Gupta
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; Department of Biotechnology, Bennett University, Plot No. 8-11, Techzone II, Greater Noida 201310, Uttar Pradesh, India
| | - Nitish R Mahapatra
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.
| |
Collapse
|
24
|
Yang A, Chen H, Lin J, Han M, Yuan X, Zhang T, Nian Q, Peng M, Li D, Wu C, He X. Comprehensive analysis of peripheral blood non-coding RNAs identifies a diagnostic panel for fungal infection after transplantation. Bioengineered 2022; 13:4039-4050. [PMID: 35129049 PMCID: PMC8974173 DOI: 10.1080/21655979.2022.2032963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The occurrence of fungal infection seriously affects the survival and life quality of transplanted patients. The accurate diagnosis is of particular importance in the early stage of infection. To develop a novel diagnostic method for this kind of patient, we established a post-transplant immunosuppressed mice model with fungus inoculation and collected their peripheral blood at specific time points after infection. After screening by microarray, differentially expressed miRNAs and lncRNAs were selected and homologously analyzed with those of human beings from the gene database. These miRNAs and lncRNAs candidates were validated by qRT-PCR in peripheral blood samples from transplanted patients. We found that, compared with normal transplanted patients, the levels of miR-215 and miR-let-7 c were up-regulated in the plasma of patients with fungal infection (P < 0.01), while levels of miR-154, miR-193a, NR_027669.1, and NR_036506.1 were down-regulated in their peripheral blood mononuclear cells (P < 0.01). Principal component analysis shows that the expression pattern of the above RNAs was different between the two groups. A 6-noncoding-RNA detection panel was established by the support vector machine analysis, whose area under the ROC curve was 0.927. The accuracy, precision, sensitivity, and specificity of this model were 0.928, 0.919, 0.944, and 0.910, respectively. Though our detection panel has excellent diagnostic efficacy, its clinical application value still needs to be further confirmed by multi-center prospective clinical trials.
Collapse
Affiliation(s)
- Anli Yang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Huadi Chen
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Jianwei Lin
- Department of Hepatobiliary and Pancrease Surgery, Shenzhen People's Hospital, Shenzhen, China
| | - Ming Han
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Xiaopeng Yuan
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Tao Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Qingwei Nian
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Mengran Peng
- Dermatology Department, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dian Li
- Department of Data Science, Dana Farber Cancer Institute, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Chenglin Wu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Xiaoshun He
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| |
Collapse
|
25
|
Kaur S, Elkahloun AG, Petersen JD, Arakelyan A, Livak F, Singh SP, Margolis L, Zimmerberg J, Roberts DD. CD63 + and MHC Class I + Subsets of Extracellular Vesicles Produced by Wild-Type and CD47-Deficient Jurkat T Cells Have Divergent Functional Effects on Endothelial Cell Gene Expression. Biomedicines 2021; 9:1705. [PMID: 34829933 PMCID: PMC8615535 DOI: 10.3390/biomedicines9111705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 12/02/2022] Open
Abstract
T cells and endothelial cells engage in bidirectional communication that regulates angiogenesis and T cell transmigration. Extracellular vesicles (EVs) mediate intercellular communication by the transfer of bioactive molecules including RNAs. EVs produced by a given cell type are heterogeneous in their RNA content, but it is unclear how specific EV surface markers relate to their functional effects on target cells. Our previous work established that Jurkat T cell EVs bearing CD63, MHC-I, or CD47 surface markers contain distinct noncoding RNA populations. The present study reveals that CD63+ and MHC-I+ EVs from CD47-deficient Jurkat T cells are enriched in small non-coding RNAs relative to EVs from wild-type Jurkat T cells. CD47-deficient Jurkat T cells secrete more CD63+ and MHC-I+ EVs, but MHC-I+ EVs are selectively taken up more by human umbilical vein endothelial cells. Transcriptomics analysis of endothelial cells treated with CD63+ or MHC-I+ EVs showed surface marker- and CD47-dependent changes in gene expression in the target cells. Gene set enrichment analysis identified CD47-dependent, and surface marker-dependent effects of T cell EVs on VEGF and inflammatory signaling, cell cycle, and lipid and cholesterol metabolism. Thus, subsets of T cell EVs differentially regulate endothelial cell metabolism and inflammatory and angiogenic responses.
Collapse
Affiliation(s)
- Sukhbir Kaur
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Abdel G. Elkahloun
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Jennifer D. Petersen
- Section on Integrative Biophysics, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (J.D.P.); (J.Z.)
| | - Anush Arakelyan
- Section on Intercellular Interactions, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (A.A.); (L.M.)
| | - Ferenc Livak
- Flow Cytometry Core, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Satya P. Singh
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Leonid Margolis
- Section on Intercellular Interactions, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (A.A.); (L.M.)
| | - Joshua Zimmerberg
- Section on Integrative Biophysics, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (J.D.P.); (J.Z.)
| | - David D. Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|