1
|
Ma D, Chen J, Shi Y, Gao H, Wei Z, Fan J, Wang L. Dysregulation of TCONS_00006091 contributes to the elevated risk of oral squamous cell carcinoma by upregulating SNAI1, IRS and HMGA2. Sci Rep 2024; 14:9616. [PMID: 38671227 PMCID: PMC11053020 DOI: 10.1038/s41598-024-60310-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 04/21/2024] [Indexed: 04/28/2024] Open
Abstract
In this study, we aimed to study the role of TCONS_00006091 in the pathogenesis of oral squamous cellular carcinoma (OSCC) transformed from oral lichen planus (OLP). This study recruited 108 OSCC patients which transformed from OLP as the OSCC group and 102 OLP patients with no sign of OSCC as the Control group. ROC curves were plotted to measure the diagnostic values of TCONS_00006091, miR-153, miR-370 and let-7g, and the changes in gene expressions were measured by RT-qPCR. Sequence analysis and luciferase assays were performed to analyze the molecular relationships among these genes. Cell proliferation and apoptosis were observed via MTT and FCM. TCONS_00006091 exhibited a better diagnosis value for OSCC transformed from OLP. OSCC group showed increased TCONS_00006091 expression and decreased expressions of miR-153, miR-370 and let-7g. The levels of SNAI1, IRS and HMGA2 was all significantly increased in OSCC patients. And TCONS_00006091 was found to sponge miR-153, miR-370 and let-7g, while these miRNAs were respectively found to targe SNAI1, IRS and HMGA2. The elevated TCONS_00006091 suppressed the expressions of miR-153, miR-370 and let-7g, leading to the increased expression of SNAI1, IRS and HMGA2. Also, promoted cell proliferation and suppressed apoptosis were observed upon the over-expression of TCONS_00006091. This study demonstrated that the expressions of miR-153, miR-370 and let-7g were down-regulated by the highly expressed TCONS_00006091 in OSCC patients, which accordingly up-regulated the expressions of SNAI1, IRS and HMGA2, resulting in the promoted cell proliferation and suppressed cell apoptosis.
Collapse
Affiliation(s)
- Danhua Ma
- Department of Stomatology, Ningbo No. 2 Hospital, No. 41 Northwest Street, Ningbo, 315010, Zhejiang, China
| | - Jijun Chen
- Department of Stomatology, Ningbo No. 2 Hospital, No. 41 Northwest Street, Ningbo, 315010, Zhejiang, China
| | - Yuyuan Shi
- Department of Stomatology, Ningbo No. 2 Hospital, No. 41 Northwest Street, Ningbo, 315010, Zhejiang, China
| | - Hongyan Gao
- Department of Stomatology, Ningbo No. 2 Hospital, No. 41 Northwest Street, Ningbo, 315010, Zhejiang, China
| | - Zhen Wei
- Department of Stomatology, Ningbo No. 2 Hospital, No. 41 Northwest Street, Ningbo, 315010, Zhejiang, China
| | - Jiayan Fan
- Department of Stomatology, Ningbo No. 2 Hospital, No. 41 Northwest Street, Ningbo, 315010, Zhejiang, China
| | - Liang Wang
- Department of Stomatology, Ningbo No. 2 Hospital, No. 41 Northwest Street, Ningbo, 315010, Zhejiang, China.
| |
Collapse
|
2
|
MicroRNA-370 as a negative regulator of signaling pathways in tumor cells. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
3
|
Lv Q, Xia Q, Li A, Wang Z. circRNA_101277 Influences Cisplatin Resistance of Colorectal Cancer Cells by Modulating the miR-370/IL-6 Axis. Genet Res (Camb) 2022; 2022:4237327. [PMID: 35356749 PMCID: PMC8938145 DOI: 10.1155/2022/4237327] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/21/2022] [Indexed: 01/05/2023] Open
Abstract
Background Colorectal cancer (CRC) is among the most prevalent malignancies globally. Early detection of precancerous lesions through routine colonoscopy has led to a dramatic reduction in CRC-related incidence and mortality among those between the ages of 50 and 70. However, in those where the disease progresses to an advanced stage, chemotherapy remains the primary available treatment option, and the associated 5-year survival rate remains low. The identification of genes associated with CRC chemoresistance would thus be a beneficial approach to identifying novel treatments for this deadly disease. Methods The expression of circRNA_101277, miR-370, and IL-6 was assessed via qRT-PCR. IL-6 levels were measured with a human IL-6 ELISA kit based on the provided protocols. CRC cellular proliferation and cisplatin IC50 values were quantified via MTT assays. Luciferase assays were used to detect circRNA_101277 and miR-370 binding sites or miR-370 and IL-6 binding sites. Results circRNA_101277 was increased in CRC tissues compared with control samples. circRNA_101277 overexpression was evident in CRC cells, and knockdown of this circRNA suppressed cellular proliferation and cisplatin resistance in these cancer cells. At a mechanistic level, circRNA_101277 was found to function by sequestering miR-370, thereby upregulating the miR-370 target gene IL-6 and promoting cisplatin resistance via this miR-370/IL-6 axis. Conclusion In summary, our data highlight circRNA_101277 as a novel driver of CRC cell cisplatin resistance that functions by sequestering miR-370 and thereby enhancing IL-6 expression. These findings suggest that this circRNA_101277/miR-370/IL-6 axis may represent a critical axis of chemoresistance in CRC that can be targeted to diagnose and/or treat this cancer.
Collapse
Affiliation(s)
- Qing Lv
- Gastrointestinal Surgery, Wuhan Union Hospital, Wuhan, China
| | - Qinghua Xia
- Gastrointestinal Surgery, Wuhan Union Hospital, Wuhan, China
| | - Anshu Li
- Gastrointestinal Surgery, Wuhan Union Hospital, Wuhan, China
| | - Zhiyong Wang
- Gastrointestinal Surgery, Wuhan Union Hospital, Wuhan, China
| |
Collapse
|
4
|
Chen W, Lv X, Zhang W, Hu T, Cao X, Ren Z, Getachew T, Mwacharo JM, Haile A, Sun W. Non-Coding Transcriptome Provides Novel Insights into the Escherichia coli F17 Susceptibility of Sheep Lamb. BIOLOGY 2022; 11:348. [PMID: 35336723 PMCID: PMC8945857 DOI: 10.3390/biology11030348] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/11/2022] [Accepted: 02/18/2022] [Indexed: 01/16/2023]
Abstract
It has long been recognized that enterotoxigenic Escherichia coli (ETEC) is the major pathogen responsible for vomiting and diarrhea. E. coli F17, a main subtype of ETEC, is characterized by high morbidity and mortality in young livestock. However, the transcriptomic basis underlying E. coli F17 infection has not been fully understood. In this study, RNA sequencing was performed to explore the expression profiles of circRNAs and miRNAs in the jejunum of E. coli F17-antagonism (AN) and -sensitive (SE) lambs. A total of 16,534 circRNAs and 271 miRNAs (125 novel miRNAs and 146 annotated miRNAs) were screened, and 214 differentially expressed (DE) circRNAs and 53 DE miRNAs were detected between the AN and SE lambs (i.e., novel_circ_0025840, novel_circ_0022779, novel_miR_107, miR-10b). Functional enrichment analyses showed that source genes of DE circRNAs were mainly involved in metabolic-related pathways, while target genes of DE miRNAs were mainly enriched in the immune response pathways. Then, a two-step machine learning approach combining Random Forest (RF) and XGBoost (candidates were first selected by RF and further assessed by XGBoost) was performed, which identified 44 circRNAs and 39 miRNAs as potential biomarkers (i.e., novel_circ_0000180, novel_circ_0000365, novel_miR_192, oar-miR-496-3p) for E. coli infection. Furthermore, circRNA-related and lncRNA-related ceRNA networks were constructed, containing 46 circRNA-miRNA-mRNA competing triplets and 630 lncRNA-miRNA-mRNA competing triplets, respectively. By conducting a serious of bioinformatic analyses, our results revealed important circRNAs and miRNAs that could be potentially developed as candidate biomarkers for intestinal inflammatory response against E. coli F17 infection; our study can provide novel insights into the underlying mechanisms of intestinal immunity.
Collapse
Affiliation(s)
- Weihao Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.C.); (W.Z.); (T.H.); (Z.R.)
| | - Xiaoyang Lv
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.L.); (X.C.)
| | - Weibo Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.C.); (W.Z.); (T.H.); (Z.R.)
| | - Tingyan Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.C.); (W.Z.); (T.H.); (Z.R.)
| | - Xiukai Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.L.); (X.C.)
| | - Ziming Ren
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.C.); (W.Z.); (T.H.); (Z.R.)
| | - Tesfaye Getachew
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia; (T.G.); (J.M.M.); (A.H.)
| | - Joram M. Mwacharo
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia; (T.G.); (J.M.M.); (A.H.)
| | - Aynalem Haile
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia; (T.G.); (J.M.M.); (A.H.)
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.C.); (W.Z.); (T.H.); (Z.R.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.L.); (X.C.)
| |
Collapse
|
5
|
Karmakar M, Lai PC, Sinha S, Glaser S, Chakraborty S. Identification of miR-203a, mir-10a, and miR-194 as predictors for risk of lymphovascular invasion in head and neck cancers. Oncotarget 2021; 12:1499-1519. [PMID: 34316330 PMCID: PMC8310671 DOI: 10.18632/oncotarget.28022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/22/2021] [Indexed: 11/25/2022] Open
Abstract
Lymphovascular invasion (LVI) is an important prognostic indicator of lymph node metastasis and disease aggressiveness but clear molecular mechanisms mediating this in head and neck cancers (HNSC) remain undefined. To identify important microRNAs (miRNAs) in HNSC that associate with and are also predictive of increased risk of LVI, we used a combination of clustering algorithms, multiple regression analyses and machine learning approaches and analyzed miRNA expression profiles in the TCGA HNSC database. As the first step, we identified miRNAs with increased association with LVI as a binary variable. In order to determine whether the identified miRNAs would show functional clusters that are also indicative of increased risk for LVI, we carried out unsupervised as well as supervised clustering. Our results identified distinct clusters of miRNAs that are predictive of increased LVI. We further refined these findings using a Random forest approach, and miR-203a-3p, mir-10a-5p, and miR-194-5p to be most strongly associated with LVI. Pathway enrichment analysis showed these miRNAs targeted genes involved in Hippo signaling and fatty acid oxidation pathways that are mediators of lymph node metastasis. Specific association was also identified between the miRNAs associated with LVI and expression of several lymphangiogenic genes that could be critical for determination of therapeutic strategies.
Collapse
Affiliation(s)
- Moumita Karmakar
- Department of Statistics, Texas A&M University, College Station, TX 77843, USA
| | - Pei-Chun Lai
- Department of Statistics, Texas A&M University, College Station, TX 77843, USA
| | - Samiran Sinha
- Department of Statistics, Texas A&M University, College Station, TX 77843, USA
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M Health Science Center, College of Medicine, Medical Research and Education Building, Bryan, TX 77807, USA
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M Health Science Center, College of Medicine, Medical Research and Education Building, Bryan, TX 77807, USA
| |
Collapse
|
6
|
Zhang M, Xian HC, Dai L, Tang YL, Liang XH. MicroRNAs: emerging driver of cancer perineural invasion. Cell Biosci 2021; 11:117. [PMID: 34187567 PMCID: PMC8243427 DOI: 10.1186/s13578-021-00630-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
The perineural invasion (PNI), which refers to tumor cells encroaching on nerve, is a clinical feature frequently occurred in various malignant tumors, and responsible for postoperative recurrence, metastasis and decreased survival. The pathogenesis of PNI switches from 'low-resistance channel' hypothesis to 'mutual attraction' theory between peripheral nerves and tumor cells in perineural niche. Among various molecules in perineural niche, microRNA (miRNA) as an emerging modulator of PNI through generating RNA-induced silencing complex (RISC) to orchestrate oncogene and anti-oncogene has aroused a wide attention. This article systematically reviewed the role of microRNA in PNI, promising to identify new biomarkers and offer cancer therapeutic targets.
Collapse
Affiliation(s)
- Mei Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), No.14, Sec. 3, Renminnan Road, Chengdu, 610041, China
| | - Hong-Chun Xian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology (Sichuan University), No.14, Sec. 3, Renminnan Road, Chengdu, 610041, China
| | - Li Dai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), No.14, Sec. 3, Renminnan Road, Chengdu, 610041, China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology (Sichuan University), No.14, Sec. 3, Renminnan Road, Chengdu, 610041, China.
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), No.14, Sec. 3, Renminnan Road, Chengdu, 610041, China.
| |
Collapse
|
7
|
Luo Y, Cui C, Han X, Wang Q, Zhang C. The role of miRNAs in polycystic ovary syndrome with insulin resistance. J Assist Reprod Genet 2021; 38:289-304. [PMID: 33405004 PMCID: PMC7884539 DOI: 10.1007/s10815-020-02019-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/22/2020] [Indexed: 02/07/2023] Open
Abstract
PURPOSE This review aims to summarize the key findings of several miRNAs and their roles in polycystic ovary syndrome with insulin resistance, characterize the disease pathogenesis, and establish a new theoretical basis for diagnosing, treating, and preventing polycystic ovary syndrome. METHODS Relevant scientific literature was covered from 1992 to 2020 by searching the PubMed database with search terms: insulin/insulin resistance, polycystic ovary syndrome, microRNAs, and metabolic diseases. References of relevant studies were cross-checked. RESULTS The related miRNAs (including differentially expressed miRNAs) and their roles in pathogenesis, and possible therapeutic targets and pathways, are discussed, highlighting controversies and offering thoughts for future directions. CONCLUSION We found abundant evidence on the role of differentially expressed miRNAs with its related phenotypes in PCOS. Considering the essential role of insulin resistance in the pathogenesis of PCOS, the alterations of associated miRNAs need more research attention. We speculate that race/ethnicity or PCOS phenotype and differences in methodological differences might lead to inconsistencies in research findings; thus, several miRNA profiles need to be investigated further to qualify for the potential therapeutic targets for PCOS-IR.
Collapse
Affiliation(s)
- Yingliu Luo
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan Province, People's Republic of China
| | - Chenchen Cui
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan Province, People's Republic of China
- Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, 450003, Henan Province, People's Republic of China
| | - Xiao Han
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan Province, People's Republic of China
| | - Qian Wang
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan Province, People's Republic of China
- Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, 450003, Henan Province, People's Republic of China
| | - Cuilian Zhang
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan Province, People's Republic of China.
| |
Collapse
|
8
|
Sorgini A, Kim HAJ, Zeng PYF, Shaikh MH, Mundi N, Ghasemi F, Di Gravio E, Khan H, MacNeil D, Khan MI, Mendez A, Yoo J, Fung K, Lang P, Palma DA, Mymryk JS, Barrett JW, Patel KB, Boutros PC, Nichols AC. Analysis of the TCGA Dataset Reveals that Subsites of Laryngeal Squamous Cell Carcinoma are Molecularly Distinct. Cancers (Basel) 2020; 13:cancers13010105. [PMID: 33396315 PMCID: PMC7794818 DOI: 10.3390/cancers13010105] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/16/2020] [Accepted: 12/26/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Squamous cell carcinomas from different parts of the larynx have distinct presentations and prognoses, but the molecular basis for this discrepancy has yet to be characterized. We aimed to determine whether different types of mutations at the DNA, mRNA, and protein levels exist to explain the differential prognoses observed. We found that cancers of the supraglottis had higher overall and smoking-associated genome mutations. Further, supraglottic cancers had a significantly poorer prognosis when other clinical variables and mutational status were controlled for. Different protein pathways were enriched in each subsite: muscle-related in the glottis and neural in the supraglottis. Specific cancer-related proteins were also differentially abundant between the supraglottis and glottis. Our findings may partially explain therapeutic response differences, but further study is required for validation. Abstract Laryngeal squamous cell carcinoma (LSCC) from different subsites have distinct presentations and prognosis. In this study, we carried out a multiomic comparison of LSCC subsites. The Cancer Genome Atlas (TCGA) LSCC cohort was analyzed in the R statistical environment for differences between supraglottic and glottic cancers in single nucleotide variations (SNVs), copy number alterations (CNAs), mRNA abundance, protein abundance, pathway overrepresentation, tumor microenvironment (TME), hypoxia status, and patient outcome. Supraglottic cancers had significantly higher overall and smoking-associated SNV mutational load. Pathway analysis revealed upregulation of muscle related pathways in glottic cancer and neural pathways in supraglottic cancer. Proteins involved in cancer relevant signaling pathways including PI3K/Akt/mTOR, the cell cycle, and PDL1 were differentially abundant between subsites. Glottic and supraglottic tumors have different molecular profiles, which may partially account for differences in presentation and response to therapy.
Collapse
Affiliation(s)
- Alana Sorgini
- Department of Otolaryngology, Head and Neck Surgery, University of Western Ontario, London, ON N6A 5W9, Canada; (A.S.); (H.A.J.K.); (P.Y.F.Z.); (M.H.S.); (N.M.); (E.D.G.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
| | - Hugh Andrew Jinwook Kim
- Department of Otolaryngology, Head and Neck Surgery, University of Western Ontario, London, ON N6A 5W9, Canada; (A.S.); (H.A.J.K.); (P.Y.F.Z.); (M.H.S.); (N.M.); (E.D.G.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
| | - Peter Y. F. Zeng
- Department of Otolaryngology, Head and Neck Surgery, University of Western Ontario, London, ON N6A 5W9, Canada; (A.S.); (H.A.J.K.); (P.Y.F.Z.); (M.H.S.); (N.M.); (E.D.G.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
| | - Mushfiq Hassan Shaikh
- Department of Otolaryngology, Head and Neck Surgery, University of Western Ontario, London, ON N6A 5W9, Canada; (A.S.); (H.A.J.K.); (P.Y.F.Z.); (M.H.S.); (N.M.); (E.D.G.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
| | - Neil Mundi
- Department of Otolaryngology, Head and Neck Surgery, University of Western Ontario, London, ON N6A 5W9, Canada; (A.S.); (H.A.J.K.); (P.Y.F.Z.); (M.H.S.); (N.M.); (E.D.G.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
| | - Farhad Ghasemi
- Department of General Surgery, University of Western Ontario, London, ON N6A 5C5, Canada;
| | - Eric Di Gravio
- Department of Otolaryngology, Head and Neck Surgery, University of Western Ontario, London, ON N6A 5W9, Canada; (A.S.); (H.A.J.K.); (P.Y.F.Z.); (M.H.S.); (N.M.); (E.D.G.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
| | - Halema Khan
- Department of Otolaryngology, Head and Neck Surgery, University of Western Ontario, London, ON N6A 5W9, Canada; (A.S.); (H.A.J.K.); (P.Y.F.Z.); (M.H.S.); (N.M.); (E.D.G.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
| | - Danielle MacNeil
- Department of Otolaryngology, Head and Neck Surgery, University of Western Ontario, London, ON N6A 5W9, Canada; (A.S.); (H.A.J.K.); (P.Y.F.Z.); (M.H.S.); (N.M.); (E.D.G.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
- Department of Oncology, University of Western Ontario, London, ON N6A 5W9, Canada;
| | - Mohammed Imran Khan
- Department of Otolaryngology, Head and Neck Surgery, University of Western Ontario, London, ON N6A 5W9, Canada; (A.S.); (H.A.J.K.); (P.Y.F.Z.); (M.H.S.); (N.M.); (E.D.G.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
| | - Adrian Mendez
- Department of Otolaryngology, Head and Neck Surgery, University of Western Ontario, London, ON N6A 5W9, Canada; (A.S.); (H.A.J.K.); (P.Y.F.Z.); (M.H.S.); (N.M.); (E.D.G.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
- Department of Oncology, University of Western Ontario, London, ON N6A 5W9, Canada;
| | - John Yoo
- Department of Otolaryngology, Head and Neck Surgery, University of Western Ontario, London, ON N6A 5W9, Canada; (A.S.); (H.A.J.K.); (P.Y.F.Z.); (M.H.S.); (N.M.); (E.D.G.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
- Department of Oncology, University of Western Ontario, London, ON N6A 5W9, Canada;
| | - Kevin Fung
- Department of Otolaryngology, Head and Neck Surgery, University of Western Ontario, London, ON N6A 5W9, Canada; (A.S.); (H.A.J.K.); (P.Y.F.Z.); (M.H.S.); (N.M.); (E.D.G.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
- Department of Oncology, University of Western Ontario, London, ON N6A 5W9, Canada;
| | - Pencilla Lang
- Department of Oncology, University of Western Ontario, London, ON N6A 5W9, Canada;
| | - David A. Palma
- Department of Otolaryngology, Head and Neck Surgery, University of Western Ontario, London, ON N6A 5W9, Canada; (A.S.); (H.A.J.K.); (P.Y.F.Z.); (M.H.S.); (N.M.); (E.D.G.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
- Department of Oncology, University of Western Ontario, London, ON N6A 5W9, Canada;
| | - Joe S. Mymryk
- Department of Otolaryngology, Head and Neck Surgery, University of Western Ontario, London, ON N6A 5W9, Canada; (A.S.); (H.A.J.K.); (P.Y.F.Z.); (M.H.S.); (N.M.); (E.D.G.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
- Department of Oncology, University of Western Ontario, London, ON N6A 5W9, Canada;
- Department of Microbiology & Immunology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - John W. Barrett
- Department of Otolaryngology, Head and Neck Surgery, University of Western Ontario, London, ON N6A 5W9, Canada; (A.S.); (H.A.J.K.); (P.Y.F.Z.); (M.H.S.); (N.M.); (E.D.G.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
- Department of Oncology, University of Western Ontario, London, ON N6A 5W9, Canada;
| | - Krupal B. Patel
- Department of Otolaryngology, Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Paul C. Boutros
- Department of Human Genetics, University of California, Los Angeles, CA 90095, USA;
- Department of Urology, University of California, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
- Institute for Precision Health, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, CA 90095, USA
| | - Anthony C. Nichols
- Department of Otolaryngology, Head and Neck Surgery, University of Western Ontario, London, ON N6A 5W9, Canada; (A.S.); (H.A.J.K.); (P.Y.F.Z.); (M.H.S.); (N.M.); (E.D.G.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
- Department of Oncology, University of Western Ontario, London, ON N6A 5W9, Canada;
- Correspondence: ; Tel.: +519-685-8804
| |
Collapse
|
9
|
Lulli V, Buccarelli M, Ilari R, Castellani G, De Dominicis C, Di Giamberardino A, D′Alessandris QG, Giannetti S, Martini M, Stumpo V, Boe A, De Luca G, Biffoni M, Marziali G, Pallini R, Ricci-Vitiani L. Mir-370-3p Impairs Glioblastoma Stem-Like Cell Malignancy Regulating a Complex Interplay between HMGA2/HIF1A and the Oncogenic Long Non-Coding RNA (lncRNA) NEAT1. Int J Mol Sci 2020; 21:ijms21103610. [PMID: 32443824 PMCID: PMC7279259 DOI: 10.3390/ijms21103610] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive and prevalent form of a human brain tumor in adults. Several data have demonstrated the implication of microRNAs (miRNAs) in tumorigenicity of GBM stem-like cells (GSCs). The regulatory functions of miRNAs in GSCs have emerged as potential therapeutic candidates for glioma treatment. The current study aimed at investigating the function of miR-370-3p in glioma progression, as aberrant expression of miR-370-3p, is involved in various human cancers, including glioma. Analyzing our collection of GBM samples and patient-derived GSC lines, we found the expression of miR-370-3p significantly downregulated compared to normal brain tissues and normal neural stem cells. Restoration of miR-370-3p expression in GSCs significantly decreased proliferation, migration, and clonogenic abilities of GSCs, in vitro, and tumor growth in vivo. Gene expression analysis performed on miR-370-3p transduced GSCs, identified several transcripts involved in Epithelial to Mesenchymal Transition (EMT), and Hypoxia signaling pathways. Among the genes downregulated by the restored expression of miR-370-3p, we found the EMT-inducer high-mobility group AT-hook 2 (HMGA2), the master transcriptional regulator of the adaptive response to hypoxia, Hypoxia-inducible factor (HIF)1A, and the long non-coding RNAs (lncRNAs) Nuclear Enriched Abundant Transcript (NEAT)1. NEAT1 acts as an oncogene in a series of human cancers including gliomas, where it is regulated by the Epidermal Growth Factor Receptor (EGFR) pathways, and contributes to tumor growth and invasion. Noteworthy, the expression levels of miR-370-3p and NEAT1 were inversely related in both GBM tumor specimens and GSCs, and a dual-luciferase reporter assay proved the direct binding between miR-370-3p and the lncRNAs NEAT1. Our results identify a critical role of miR-370-3p in the regulation of GBM development, indicating that miR-370-3p acts as a tumor-suppressor factor inhibiting glioma cell growth, migration and invasion by targeting the lncRNAs NEAT1, HMGA2, and HIF1A, thus, providing a potential candidate for GBM patient treatment.
Collapse
Affiliation(s)
- Valentina Lulli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (V.L.); (M.B.); (R.I.); (G.C.); (C.D.D.); (A.D.G.); (G.D.L.); (M.B.)
| | - Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (V.L.); (M.B.); (R.I.); (G.C.); (C.D.D.); (A.D.G.); (G.D.L.); (M.B.)
| | - Ramona Ilari
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (V.L.); (M.B.); (R.I.); (G.C.); (C.D.D.); (A.D.G.); (G.D.L.); (M.B.)
| | - Giorgia Castellani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (V.L.); (M.B.); (R.I.); (G.C.); (C.D.D.); (A.D.G.); (G.D.L.); (M.B.)
| | - Chiara De Dominicis
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (V.L.); (M.B.); (R.I.); (G.C.); (C.D.D.); (A.D.G.); (G.D.L.); (M.B.)
| | - Alessandra Di Giamberardino
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (V.L.); (M.B.); (R.I.); (G.C.); (C.D.D.); (A.D.G.); (G.D.L.); (M.B.)
| | - Quintino Giorgio D′Alessandris
- Department of Neuroscience, Institute of Neurosurgery, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS; 00168 Rome, Italy; (Q.G.D.); (V.S.); (R.P.)
| | - Stefano Giannetti
- Department of Neuroscience, Institute of Anatomy, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Maurizio Martini
- Department of Health Science and Public Health, Institute of Pathology, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Vittorio Stumpo
- Department of Neuroscience, Institute of Neurosurgery, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS; 00168 Rome, Italy; (Q.G.D.); (V.S.); (R.P.)
| | - Alessandra Boe
- Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Gabriele De Luca
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (V.L.); (M.B.); (R.I.); (G.C.); (C.D.D.); (A.D.G.); (G.D.L.); (M.B.)
| | - Mauro Biffoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (V.L.); (M.B.); (R.I.); (G.C.); (C.D.D.); (A.D.G.); (G.D.L.); (M.B.)
| | - Giovanna Marziali
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (V.L.); (M.B.); (R.I.); (G.C.); (C.D.D.); (A.D.G.); (G.D.L.); (M.B.)
- Correspondence: (G.M.); (L.R.-V.)
| | - Roberto Pallini
- Department of Neuroscience, Institute of Neurosurgery, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS; 00168 Rome, Italy; (Q.G.D.); (V.S.); (R.P.)
| | - Lucia Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (V.L.); (M.B.); (R.I.); (G.C.); (C.D.D.); (A.D.G.); (G.D.L.); (M.B.)
- Correspondence: (G.M.); (L.R.-V.)
| |
Collapse
|
10
|
Hsu PJ, Yan K, Shi H, Izumchenko E, Agrawal N. Molecular biology of oral cavity squamous cell carcinoma. Oral Oncol 2020; 102:104552. [PMID: 31918173 DOI: 10.1016/j.oraloncology.2019.104552] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/30/2019] [Accepted: 12/21/2019] [Indexed: 12/23/2022]
Abstract
Oral cavity squamous cell carcinoma (OCSCC) is a heterogeneous and complex disease that arises due to dysfunction of multiple molecular signaling pathways. Recent advances in high-throughput genetic sequencing technologies coupled with innovative analytical techniques have begun to characterize the molecular determinants driving OCSCC. An understanding of the key molecular signaling networks underlying the initiation and progression of is essential for informing treatment of the disease. In this chapter, we discuss recent findings of key genes altered in OCSCC and potential treatments targeting these genes.
Collapse
Affiliation(s)
- Phillip J Hsu
- Medical Scientist Training Program, The University of Chicago, Chicago, IL 60637, USA
| | - Kenneth Yan
- Section of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Chicago Medicine, Chicago, IL 60637, USA
| | - Hailing Shi
- Department of Chemistry and Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Evgeny Izumchenko
- Section of Hematology Oncology, Department of Medicine, University of Chicago Medicine, Chicago, IL 60637, USA
| | - Nishant Agrawal
- Section of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Chicago Medicine, Chicago, IL 60637, USA.
| |
Collapse
|
11
|
Pulati N, Zhang Z, Gulimilamu A, Qi X, Yang J. HPV16+‐miRNAs in cervical cancer and the anti‐tumor role played by miR‐5701. J Gene Med 2019; 21:e3126. [PMID: 31498525 DOI: 10.1002/jgm.3126] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/15/2019] [Accepted: 08/30/2019] [Indexed: 12/19/2022] Open
Affiliation(s)
- Nuerbieke Pulati
- Department of Radiation OncologyPeople's Hospital of Xinjiang Uygur Autonomous Region Urumqi Xinjiang China
| | - Zegao Zhang
- Department of Radiation OncologyPeople's Hospital of Xinjiang Uygur Autonomous Region Urumqi Xinjiang China
| | - Aireti Gulimilamu
- Department of Radiation OncologyPeople's Hospital of Xinjiang Uygur Autonomous Region Urumqi Xinjiang China
| | - Xiaoli Qi
- Department of Radiation OncologyPeople's Hospital of Xinjiang Uygur Autonomous Region Urumqi Xinjiang China
| | - Jie Yang
- Department of Radiation OncologyPeople's Hospital of Xinjiang Uygur Autonomous Region Urumqi Xinjiang China
| |
Collapse
|
12
|
Elevated microRNA-145 inhibits the development of oral squamous cell carcinoma through inactivating ERK/MAPK signaling pathway by down-regulating HOXA1. Biosci Rep 2019; 39:BSR20182214. [PMID: 31138758 PMCID: PMC6591566 DOI: 10.1042/bsr20182214] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/19/2019] [Accepted: 05/08/2019] [Indexed: 01/18/2023] Open
Abstract
Background: Oral cancer is one of the most frequent solid cancers worldwide, and oral squamous cell carcinoma (OSCC) constitutes approximately 90% of oral cancers. The discovery of reliable prognostic indicators would be a potential strategy for OSCC treatment. In the present study, we aim to explore the underlying mechanism by which microRNA-145 (miR-145) affected OSCC. Methods: Forty-eight patients diagnosed with OSCC were enrolled to obtain the OSCC tissues and adjacent normal tissues. The targeting relationship between miR-145 and Homeobox A1 (HOXA1) was verified. In order to assess the effects of miR-145 in OSCC and the detailed regulatory mechanism, the SCC-9 cell line was adopted, in which expression of miR-145 and HOXA1 were altered by transfection. Then, a series of in vitro and in vivo experiments were performed to evaluate the cell viability, migration, invasion, and tumor growth. Results: miR-145 was poorly expressed and HOXA1 was highly expressed in OSCC. HOXA1 was verified as a target of miR-145 to mediate the activation of the extracellular signal-regulated kinase/mitogen activated protein kinase (ERK/MAPK) signaling pathway. In the circumstance of miR-145 elevation or HOXA1 depletion, the SCC-9 cell line manifested with inhibited cell viability, invasion, and migration in vitro, coupled with reduced tumor growth in vivo, with a decreased expression of ERK/MAPK signaling pathway-related genes/proteins. Conclusion: These findings suggested that miR-145 can inhibit HOXA1 to inactivate the ERK/MAPK signaling pathway, thereby suppressing OSCC cell proliferation, migration, and invasion to further inhibit the development of OSCC, highlighting a novel therapeutic target for the OSCC treatment.
Collapse
|
13
|
Zhang X, Xue XC, Wang Y, Cao FF, You J, Uzan G, Peng B, Zhang DH. Celastrol Reverses Palmitic Acid-Induced Insulin Resistance in HepG2 Cells via Restoring the miR-223 and GLUT4 Pathway. Can J Diabetes 2019; 43:165-172. [DOI: 10.1016/j.jcjd.2018.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 05/27/2018] [Accepted: 07/12/2018] [Indexed: 11/27/2022]
|
14
|
Gu Y, Becker V, Zhao Y, Menger MD, Laschke MW. miR-370 inhibits the angiogenic activity of endothelial cells by targeting smoothened (SMO) and bone morphogenetic protein (BMP)-2. FASEB J 2019; 33:7213-7224. [PMID: 30865837 DOI: 10.1096/fj.201802085rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
MicroRNAs (miRNAs) crucially modulate fundamental biologic processes such as angiogenesis. In the present study, we focused on the molecular function of miRNA-370-3p (miR-370) in regulating the angiogenic activity of endothelial cells (ECs). Transfection with miR-370 mimic (miR-370m) significantly inhibited the sprouting of human dermal microvascular EC (HDMEC) and HUVEC spheroids and mouse aortic rings, whereas miR-370 inhibitor (miR-370i) promoted sprout formation. Additional in vitro assays demonstrated the pleiotropic inhibitory effects of miR-370m on HDMEC proliferation, migration, and tube formation. Moreover, Matrigel plugs containing miR-370m-transfected HDMECs exhibited a reduced microvessel density after implantation into CD1 nude mice when compared with controls. In contrast, miR-370i exerted proangiogenic effects. Mechanistic analyses revealed that miR-370 directly targets smoothened (SMO) and down-regulates bone morphogenetic protein (BMP)-2 expression in HDMECs. Accordingly, inhibition of SMO by cyclopamine reversed miR-370i-induced HDMEC proliferation and migration. In addition, BMP-2 treatment counteracted miR-370m-suppressed tube formation of HDMECs, whereas blockade of BMP-2 with neutralizing antibody significantly inhibited miR-370i-induced tube formation. Taken together, these novel findings indicate that miR-370 is a potent inhibitor of angiogenesis, which directly targets SMO and BMP-2.-Gu, Y., Becker, V., Zhao, Y., Menger, M. D., Laschke, M. W. miR-370 inhibits the angiogenic activity of endothelial cells by targeting smoothened (SMO) and bone morphogenetic protein (BMP)-2.
Collapse
Affiliation(s)
- Yuan Gu
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany; and
| | - Vivien Becker
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany; and
| | - Yingjun Zhao
- Department of Oncology, Fudan University Shanghai Cancer Center-Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany; and
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany; and
| |
Collapse
|
15
|
Ye H, Wang X, Wang L, Chu X, Hu X, Sun L, Jiang M, Wang H, Wang Z, Zhao H, Yang X, Wang J. Full high-throughput sequencing analysis of differences in expression profiles of long noncoding RNAs and their mechanisms of action in systemic lupus erythematosus. Arthritis Res Ther 2019; 21:70. [PMID: 30836987 PMCID: PMC6402184 DOI: 10.1186/s13075-019-1853-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 02/24/2019] [Indexed: 11/17/2022] Open
Abstract
Background The specific function of long noncoding RNAs (lncRNAs) in systemic lupus erythematosus (SLE) and the mechanism of their involvement in related pathological changes remain to be elucidated, so, in this study, we analyzed the differences in the expression profiles of lncRNAs and their mechanisms of action in SLE using full high-throughput sequencing, bioinformatics, etc. methods. Methods We used high-throughput sequencing to detect differences in the expression profiles of lncRNAs, miRNAs, and mRNAs in PBMCs from patients with SLE at the genome-wide level. Next, we predicted target genes of 30 lincRNAs (long intergenic noncoding RNAs) by constructing a coexpression network of differential lincRNAs and mRNAs and identified the role of lincRNAs. Then, we analyzed the coexpression network of 23 optimized lincRNAs and their corresponding 353 miRNAs, evaluated the cis- and trans-effects of these lincRNAs, and performed GO and KEGG analyses of target genes. We also selected 8 lincRNAs and 2 newly discovered lncRNAs for q-PCR validation and lncRNA–miRNA–mRNA analysis. Finally, we also analyzed respectively the relation between lncRNAs and gender bias in SLE patients using RT-qPCR, the relation between Systemic Lupus Erythematosus Disease Activity Index score and the “IFN signature” using ELISA, and the relation between the differential expression of lncRNAs and a change in the number of a cell type of PBMCs in SLE patients using RT-qPCR. Results The profiles of 1087 lncRNAs, 102 miRNAs, and 4101 mRNAs in PBMCs significantly differed between patients with SLE and healthy controls. The coexpression network analysis showed that the network contained 23 lincRNAs and 353 mRNAs. The evaluation of the cis- and trans-effects showed that the 23 lincRNAs acted on 704 target genes. GO and KEGG analyses of the target genes predicted the biological functions of the 23 lincRNAs. q-PCR validation showed 7 lincRNAs and 2 novel lncRNAs were identical to the sequencing results. The ceRNA network contained 7 validated lincRNAs, 15 miRNAs, and 155 mRNAs. In addition, the differential expression of lncRNAs may be gender dependent in SLE patients, SLE patients also exhibit a robust “IFN signature,” and PBMCs exhibiting differential expression of lncRNAs may be due to a change in the number of a cell type. Conclusion This work determined specific lncRNAs that play important biological functions in the pathogenesis of lupus and provided a new direction for diagnosis and treatment of disease. Electronic supplementary material The online version of this article (10.1186/s13075-019-1853-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hui Ye
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Xue Wang
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Lei Wang
- School of the Second Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xiaoying Chu
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xuanxuan Hu
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Li Sun
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Minghua Jiang
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Hong Wang
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Zihan Wang
- School of Stomatology, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Han Zhao
- School of the Second Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xinyu Yang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Jianguang Wang
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
16
|
Cirillo F, Catellani C, Lazzeroni P, Sartori C, Nicoli A, Amarri S, La Sala GB, Street ME. MiRNAs Regulating Insulin Sensitivity Are Dysregulated in Polycystic Ovary Syndrome (PCOS) Ovaries and Are Associated With Markers of Inflammation and Insulin Sensitivity. Front Endocrinol (Lausanne) 2019; 10:879. [PMID: 31920988 PMCID: PMC6923204 DOI: 10.3389/fendo.2019.00879] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/29/2019] [Indexed: 11/18/2022] Open
Abstract
Objective: MicroRNAs (miRNAs) are gene expression regulators. Altered miRNA levels are associated with diabetes, insulin resistance, and inflammation. Insulin resistance and inflammation are both features of Polycystic ovary syndrome (PCOS). The aim of this study was first to assess differences in selected miRNAs (miR-146a, miR-155, miR-320, miR-370, miR-486), involved in insulin sensitivity regulation and inflammation, in women with or without PCOS. Second, to investigate relationships among these miRNAs, insulin, High mobility group box 1 (HMGB1), and IL-6 in follicular fluid (FF), serum 17-beta estradiol (E2), and the number of dominant follicles. Methods: Thirty PCOS and thirty-six non-PCOS women undergoing in vitro fertilization were enrolled. RNA from granulosa cells (GC) and FF was extracted and the specific miRNAs were evaluated using qRT-PCR. HMGB1, insulin, and IL-6 in FF, and serum E2 were assayed using specific kits. Results: MiR-146a, miR-155, miR-486 were upregulated and miR-320 and miR-370 were downregulated in GC from the PCOS patients. In FF, miR-146a, miR-155, and miR-486 showed lower levels in PCOS, whereas miR-320 and miR-370 showed an opposite trend but no significant changes were observed. These miRNAs showed relationships with Body Mass Index (BMI), age, E2, number of dominant follicles, insulin, and HMGB1. Conclusion: In conclusion, the miRNAs analyzed showed changes in PCOS ovaries and had relationships with indices of inflammation and insulin sensitivity within the ovary, providing evidence for new regulatory mechanisms.
Collapse
Affiliation(s)
- Francesca Cirillo
- Division of Pediatric Endocrinology and Diabetology, Department of Mother and Child, Azienda USL–IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Cecilia Catellani
- Division of Pediatric Endocrinology and Diabetology, Department of Mother and Child, Azienda USL–IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Pietro Lazzeroni
- Division of Pediatric Endocrinology and Diabetology, Department of Mother and Child, Azienda USL–IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Chiara Sartori
- Division of Pediatric Endocrinology and Diabetology, Department of Mother and Child, Azienda USL–IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Alessia Nicoli
- Center of Reproductive Medicine and Surgery, Department Mother and Child, Azienda USL–IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Sergio Amarri
- Division of Pediatric Endocrinology and Diabetology, Department of Mother and Child, Azienda USL–IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Giovanni Battista La Sala
- Center of Reproductive Medicine and Surgery, Department Mother and Child, Azienda USL–IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Maria Elisabeth Street
- Division of Pediatric Endocrinology and Diabetology, Department of Mother and Child, Azienda USL–IRCCS di Reggio Emilia, Reggio Emilia, Italy
- *Correspondence: Maria Elisabeth Street
| |
Collapse
|
17
|
The non-coding landscape of head and neck squamous cell carcinoma. Oncotarget 2018; 7:51211-51222. [PMID: 27323410 PMCID: PMC5239470 DOI: 10.18632/oncotarget.9979] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 05/05/2016] [Indexed: 01/05/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is an aggressive disease marked by frequent recurrence and metastasis and stagnant survival rates. To enhance molecular knowledge of HNSCC and define a non-coding RNA (ncRNA) landscape of the disease, we profiled the transcriptome-wide dysregulation of long non-coding RNA (lncRNA), microRNA (miRNA), and PIWI-interacting RNA (piRNA) using RNA-sequencing data from 422 HNSCC patients in The Cancer Genome Atlas (TCGA). 307 non-coding transcripts differentially expressed in HNSCC were significantly correlated with patient survival, and associated with mutations in TP53, CDKN2A, CASP8, PRDM9, and FBXW7 and copy number variations in chromosomes 3, 5, 7, and 18. We also observed widespread ncRNA correlation to concurrent TP53 and chromosome 3p loss, a compelling predictor of poor prognosis in HNSCCs. Three selected ncRNAs were additionally associated with tumor stage, HPV status, and other clinical characteristics, and modulation of their expression in vitro reveals differential regulation of genes involved in epithelial-mesenchymal transition and apoptotic response. This comprehensive characterization of the HNSCC non-coding transcriptome introduces new layers of understanding for the disease, and nominates a novel panel of transcripts with potential utility as prognostic markers or therapeutic targets.
Collapse
|
18
|
Epigenetics and MicroRNAs in Cancer. Int J Mol Sci 2018; 19:ijms19020459. [PMID: 29401683 PMCID: PMC5855681 DOI: 10.3390/ijms19020459] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 02/08/2023] Open
Abstract
The ability to reprogram the transcriptional circuitry by remodeling the three-dimensional structure of the genome is exploited by cancer cells to promote tumorigenesis. This reprogramming occurs because of hereditable chromatin chemical modifications and the consequent formation of RNA-protein-DNA complexes that represent the principal actors of the epigenetic phenomena. In this regard, the deregulation of a transcribed non-coding RNA may be both cause and consequence of a cancer-related epigenetic alteration. This review summarizes recent findings that implicate microRNAs in the aberrant epigenetic regulation of cancer cells.
Collapse
|
19
|
Involvement of inflammation and its related microRNAs in hepatocellular carcinoma. Oncotarget 2017; 8:22145-22165. [PMID: 27888618 PMCID: PMC5400654 DOI: 10.18632/oncotarget.13530] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 11/02/2016] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most commonly diagnosed type of cancer. The tumor inflammatory microenvironment regulates almost every step towards liver tumorigenesis and subsequent progression, and regulation of the inflammation-related signaling pathways, cytokines, chemokines and non-coding RNAs influences the proliferation, migration and metastasis of liver tumor cells. Inflammation fine-tunes the cancer microenvironment to favor epithelial-mesenchymal transition, in which cancer stem cells maintain tumorigenic potential. Emerging evidence points to inflammation-related microRNAs as crucial molecules to integrate the complex cellular and molecular crosstalk during HCC progression. Thus understanding the mechanisms by which inflammation regulates microRNAs might provide novel and admissible strategies for preventing, diagnosing and treating HCC. In this review, we will update three hypotheses of hepatocarcinogenesis and elaborate the most predominant inflammation signaling pathways, i.e. IL-6/STAT3 and NF-κB. We also try to summarize the crucial tumor-promoting and tumor-suppressing microRNAs and detail how they regulate HCC initiation and progression and collaborate with other critical modulators in this review.
Collapse
|
20
|
Ning T, Zhang H, Wang X, Li S, Zhang L, Deng T, Zhou L, Liu R, Wang X, Bai M, Ge S, Li H, Huang D, Ying G, Ba Y. miR-370 regulates cell proliferation and migration by targeting EGFR in gastric cancer. Oncol Rep 2017; 38:384-392. [DOI: 10.3892/or.2017.5660] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/30/2016] [Indexed: 11/06/2022] Open
|
21
|
Zhu J, Zhu F, Song W, Zhang B, Zhang X, Jin X, Li H. Altered miR-370 expression in hepatic ischemia-reperfusion injury correlates with the level of nuclear kappa B (NF-κB) related factors. Gene 2016; 607:23-30. [PMID: 28043920 DOI: 10.1016/j.gene.2016.12.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/20/2016] [Accepted: 12/23/2016] [Indexed: 01/24/2023]
Abstract
BACKGROUND & AIMS MicroRNAs (miRNAs) are a class of small endogenous, non-coding RNAs that regulate gene expression at both the transcription and translation levels. Whether miRNAs have taken part in liver ischemia-reperfusion (IR) injury was rarely reported. The purpose of this article is to investigate the potential role of miR-370 in hepatic IR injury. METHODS Male C57BL/6 mice were divided into 5 groups (sham-operated group, I/R group, IPC group, antagomir-370 group and antagomir-NC), and the expression levels of miR-370 were assessed by quantitative real-time PCR. Serum enzyme analysis and histological examination of liver were used as the index of the effect of miR-370 on hepatic IR injury and following treatment of mice with antagomir-370 or antagomir-NC. The classical pathway factors of NF-κB (TAK1, TAB1, TAB2, IkBα, IKKα, IKKβ, p50, p65) were studied by quantitative real-time PCR and Western blot. RESULTS The results showed that the IR group's miR-370 expression level was significantly upregulated as compared with the sham-operated group and IPC group. Also inhibition of miR-370 led to the low expression levels of miR-370 and low levels of serum aminotransferase and hepatic histological damage as compared with the IR group. Quantitative real-time PCR showed the levels of TAK1, TAB1, TAB2, IkBα, IKKα, p65 was elevated when improving the miR-370 levels, at the same time, Western blot showed the levels of TAK1, TAB1, TAB2, IkBα, IKKα, IKKβ, p50, p65 were all elevated. CONCLUSION miR-370 acting via NF-κB might play a crucial role in hepatic IR injury, and inhibition of miR-370 could alleviate the injury to the liver. And miR-370 might positively regulated the NF-κB pathway.
Collapse
Affiliation(s)
- Jie Zhu
- College of Medicine, Ningbo University, China
| | - Fangfang Zhu
- Ningbo Medical Centre of LIHuiLi Hospital, China
| | - Wenfeng Song
- The First Affiliated Hospital, College Of Medicine, Zhejiang University
| | - Bin Zhang
- Ningbo Medical Centre of LIHuiLi Hospital, China
| | - Xie Zhang
- Ningbo Medical Centre of LIHuiLi Hospital, China
| | | | - Hong Li
- Ningbo Medical Centre of LIHuiLi Hospital, China.
| |
Collapse
|
22
|
Zhu J, Zhang B, Song W, Zhang X, Wang L, Yin B, Zhu F, Yu C, Li H. A literature review on the role of miR-370 in disease. GENE REPORTS 2016; 4:37-44. [DOI: 10.1016/j.genrep.2016.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
23
|
Mollainezhad H, Eskandari N, Pourazar A, Salehi M, Andalib A. Expression of microRNA-370 in human breast cancer compare with normal samples. Adv Biomed Res 2016; 5:129. [PMID: 27563639 PMCID: PMC4976524 DOI: 10.4103/2277-9175.186987] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 02/17/2015] [Indexed: 12/14/2022] Open
Abstract
Background: Breast cancer is the second leading cause of deaths from cancer in the woman. MicroRNAs (miRNAs) are endogenous noncoding RNAs that are known critical player in carcinogenesis. The role of miR-370 in malignancies remains controversial because of its levels varying in different cancers according to its targets while the role of miR-370 in breast cancer has not been addressed so far. The aim of this study was to identify the expression pattern of miR-370 in human breast cancer tissue compared to adjacent healthy tissue. Materials and Methods: Twenty-two fresh frozen tissues (normal and malignant) from patients with breast cancer were examined for miR-370 by quantitative real-time polymerase chain reaction method at 2013. Results: We observed up-regulation (six-fold higher) of miR-370 in breast cancer tissue compared with normal adjacent tissue. Tumor samples in stage III, invasive ductal type, larger tumor size, human epidermal growth-factor receptor 2+, estrogen receptor/progesterone receptor−, P53 − status showed significantly increased expression in miR-370. Conclusion: Together, miR-370 may acts as an onco-miRNA, and it may have a novel role in breast cancer. Detection of miR-370 and its targets could be helpful as a diagnostic biomarker and therapeutic target.
Collapse
Affiliation(s)
- Halimeh Mollainezhad
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nahid Eskandari
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Applied Physiology Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbasali Pourazar
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mansoor Salehi
- Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alireza Andalib
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
24
|
Peng Z, Wu T, Li Y, Xu Z, Zhang S, Liu B, Chen Q, Tian D. MicroRNA-370-3p inhibits human glioma cell proliferation and induces cell cycle arrest by directly targeting β-catenin. Brain Res 2016; 1644:53-61. [PMID: 27138069 DOI: 10.1016/j.brainres.2016.04.066] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 04/19/2016] [Accepted: 04/27/2016] [Indexed: 01/25/2023]
Abstract
OBJECTIVE The aim of this study was to explore the expression and biological role of miR-370-3p in human gliomas. METHODS Clinical specimens from the brains of 20 glioma patients and 10 healthy controls were obtained to quantify the expression level of miR-370-3p using quantitative real-time PCR. Oligonucleotide mimics of miR-370-3p were transfected into U251 and U87-MG cells for a gain of function assay. The CCK-8 assay, colony formation assay, EdU assay and flow cytometry were used to evaluate the roles of miR-370-3p in cell proliferation and the cell cycle regulation. Western blot and luciferase activity assays were used to investigate the reciprocal relationship between miR-370-3p and its predicted target, β-catenin. RESULTS miR-370-3p expression was frequently found to be decreased in glioma tissues, and its expression level was negatively correlated with the malignant degree of the glioma. Overexpression of miR-370-3p showed a significant inhibitory effect on cell proliferation and accompanied cell cycle G0/G1 arrest in U251 and U87-MG cells. Furthermore, miR-370-3p inhibited the expression of the canonical Wnt pathway downstream targets cyclin D1 and c-myc via direct binding interaction with the 3'-untranslated region of β-catenin mRNA. Reintroduction of β-catenin could partially reverse the anti-proliferation effect of miR-370-3p. Finally, in 20 glioma tissues the expression of miR-370-3p was negatively correlated with both protein and mRNA levels of β-catenin. CONCLUSION miR-370-3p suppresses glioma cell growth by directly targeting β-catenin, suggesting that the miR-370-3p/β-catenin axis may be a target for glioma therapy.
Collapse
Affiliation(s)
- Zesheng Peng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Tingfeng Wu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Yuntao Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Zhou Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Shenqi Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Baohui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Daofeng Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China.
| |
Collapse
|
25
|
Yang CC, Tu HF, Wu CH, Chang HC, Chiang WF, Shih NC, Lee YS, Kao SY, Chang KW. Up-regulation of HB-EGF by the COX-2/PGE2 signaling associates with the cisplatin resistance and tumor recurrence of advanced HNSCC. Oral Oncol 2016; 56:54-61. [PMID: 27086487 DOI: 10.1016/j.oraloncology.2016.03.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/10/2016] [Accepted: 03/12/2016] [Indexed: 12/14/2022]
Abstract
OBJECTIVES When treating advanced HNSCC, a cisplatin-based systemic regimen benefit patient survival. However, chemoresistance will greatly reduce the effectiveness of this approach. The identification of molecules that contribute to cisplatin resistance may potentially improve the survival. Both HB-EGF and COX-2 have been reported to increase cisplatin-resistance. Here, we have focused on the regulation of HB-EGF/COX-2 and their roles in cisplatin resistance. MATERIALS AND METHODS IHC staining was used to measure the expression levels of HB-EGF and COX-2 on the tissue microarray from 43 tissue samples of patients with advanced HNSCC. siRNA, western blot and qRT-PCR were used to dissect the regulation between EGF, Akt, COX-2, PGE2, and cisplatin sensitivity. The correlation between HB-EGF, COX2 and HNSCC progression was analyzed by the receiver operating characteristic (ROC) curve and Kaplan-Meier disease free survival. RESULTS Patients of advanced HNSCC patients with increased HB-EGF and COX-2 expression have higher tumor recurrent rates that was related to cisplatin resistance. The resistance was mediated via an increased expression of HB-EGF and COX-2. The activation of Akt by either EGF or areca nut extract were able to upregulate COX-2, which would increase the expression of HB-EGF in a PGE2 dependent manner. Inhibition and knockdown of COX-2 resulted in a decrease in HB-EGF. In the tissue samples from HNSCC patients, there was a significant positive correlation between the expression of COX-2 and HB-EGF. CONCLUSION Our results suggested that COX-2 and HB-EGF are important in development of HNSCC cisplatin resistance. These findings may help the development of new strategies for overcoming cisplatin resistance.
Collapse
Affiliation(s)
- Cheng-Chieh Yang
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan; School of Dentistry, National Yang-Ming University, Taipei, Taiwan; Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsi-Feng Tu
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan; School of Dentistry, National Yang-Ming University, Taipei, Taiwan; National Yang-Ming University Hospital, Taiwan
| | - Cheng-Hsien Wu
- Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsiu-Chuan Chang
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Fan Chiang
- School of Dentistry, National Yang-Ming University, Taipei, Taiwan; Oral and Maxillofacial Surgery Section, Chi Mei Hospital, Liouying, Taiwan
| | - Nai-Chia Shih
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Yong-Syu Lee
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Shou-Yen Kao
- Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Kuo-Wei Chang
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan; School of Dentistry, National Yang-Ming University, Taipei, Taiwan; Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
26
|
Abstract
Liver cancer, primarily hepatocellular carcinoma (HCC), is a major cause of cancer-related death worldwide. HCC is a suitable model of inflammation-induced cancer because more than 90% of HCC cases are caused by liver damage and chronic inflammation. Several inflammatory response pathways, such as NF-κB and JAK/STAT3 signaling pathways, play roles in the crosstalk between inflammation and HCC. MicroRNAs (miRNAs) are evolutionarily conserved, short endogenous, non-coding single-stranded RNAs that are involved in various biological and pathological processes by regulating gene expression and protein translation. Evidence showed that miRNAs play a pivotal role in hepatitis virus infection and serve as promoters or inhibitors of inflammatory response. Aberrant miRNA was observed during liver inflammation and HCC. Many dysregulated miRNAs modulate the initiation and progression of inflammation-induced HCC. This review summarizes the role and functions of miRNAs in inflammation-associated HCC, as well as the designed therapeutics targeting miRNAs to treat liver inflammation and HCC.
Collapse
Affiliation(s)
- Lin Huan
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lin-Hui Liang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiang-Huo He
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
27
|
Sim J, Ahn H, Abdul R, Kim H, Yi KJ, Chung YM, Chung MS, Paik SS, Song YS, Jang K. High MicroRNA-370 Expression Correlates with Tumor Progression and Poor Prognosis in Breast Cancer. J Breast Cancer 2015; 18:323-8. [PMID: 26770238 PMCID: PMC4705083 DOI: 10.4048/jbc.2015.18.4.323] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 09/18/2015] [Indexed: 12/12/2022] Open
Abstract
Purpose Deregulation of microRNA-370 (miR-370) has been reported in various cancers, in which it can act as either an oncogene or a tumor suppressor gene. However, the clinicopathologic significance of miR-370 expression in breast cancer has not been studied. Methods The expression of miR-370 was determined with quantitative real-time polymerase chain reaction in 60 formalin-fixed, paraffin-embedded primary breast cancer tissues. Additionally, the protein expression levels of previously known targets of miR-370, such as FOXM1, FOXO1, and FOXO3a, were detected using immunohistochemistry. Finally, we analyzed its correlation with target protein expression, clinicopathologic features, and clinical outcome. Results High levels of miR-370 expression correlated with lymph node metastasis (p=0.009), advanced stage (p=0.002), and frequent perineural invasion (p=0.042). Moreover, patients with high miR-370 expression had poor disease-free survival compared with the low-expression group. However, no correlation was observed between miR-370 and its target protein expression. Conclusion Our results indicate that upregulation of miR-370 in breast cancer is correlated with breast cancer progression and that it might be a potential biomarker for predicting clinical outcomes.
Collapse
Affiliation(s)
- Jongmin Sim
- Department of Pathology, Hanyang University College of Medicine, Seoul, Korea
| | - Hyein Ahn
- Department of Pathology, Hanyang University College of Medicine, Seoul, Korea
| | - Rehman Abdul
- Department of Pathology, Hanyang University College of Medicine, Seoul, Korea
| | - Hyunsung Kim
- Department of Pathology, Hanyang University College of Medicine, Seoul, Korea
| | - Ki-Jong Yi
- Department of Pathology, Hanyang University College of Medicine, Seoul, Korea
| | - Yu-Min Chung
- Department of Pathology, Hanyang University College of Medicine, Seoul, Korea
| | - Min Sung Chung
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Seung Sam Paik
- Department of Pathology, Hanyang University College of Medicine, Seoul, Korea
| | - Young Soo Song
- Department of Pathology, Hanyang University College of Medicine, Seoul, Korea
| | - Kiseok Jang
- Department of Pathology, Hanyang University College of Medicine, Seoul, Korea
| |
Collapse
|
28
|
Wu L, Shi B, Huang K, Fan G. MicroRNA-128 suppresses cell growth and metastasis in colorectal carcinoma by targeting IRS1. Oncol Rep 2015; 34:2797-805. [PMID: 26352220 DOI: 10.3892/or.2015.4251] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/03/2015] [Indexed: 01/24/2023] Open
Abstract
Evidence has shown that microRNAs play important roles in tumor development, progression, and metastasis. miR-128 has been reported to be deregulated in different tumor types, whereas the function of miR-128 in colorectal carcinoma (CRC) largely remains to be elucidated. The aim of the present study was to investigate the clinical significance, biological effects and underlying mechanisms of miR-128 in CRC using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting. It was found that the expression of miR-128 was downregulated in CRC tissues and cell lines as determined by RT-qPCR. Furthermore, the expression of miR-128 in tumor tissues was significantly negatively correlated with TNM stage and lymph node metastasis in CRC patients. Functional assay revealed that the overexpression of miR-128 inhibited CRC cell proliferation, colony formation, migration and invasion and promoted apoptosis in vitro, and suppressed CRC xenograft tumor growth in vivo. In addition, insulin receptor substrate 1 (IRS1), a key mediator in oncogenic insulin-like growth factor (IGF) signaling, was confirmed as a direct target of miR-128 by a luciferase reporter assay. Western blot analysis indicated that the overexpression of miR-128 significantly downregulated IRS1 expression and its downstream Akt signaling in CRC cells. Moreover, miR-128 was negatively associated with IRS1 in CRC tissues compared to adjacent non-tumor tissues. Taken together, these data suggested that miR-128 serves as a tumor suppressor and blocks CRC growth and metastasis by targeting IRS1.
Collapse
Affiliation(s)
- Lan Wu
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Bo Shi
- The Experiment Center, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Kexin Huang
- The Experiment Center, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Guoyu Fan
- Department of Oncology, The Center Hospital of Jilin City, Fengman, Jilin 132011, P.R. China
| |
Collapse
|
29
|
Lu CH, Hou QR, Deng LF, Fei C, Xu WP, Zhang Q, Wu KM, Ning BF, Xie WF, Zhang X. MicroRNA-370 Attenuates Hepatic Fibrogenesis by Targeting Smoothened. Dig Dis Sci 2015; 60:2038-48. [PMID: 25686745 DOI: 10.1007/s10620-015-3585-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 02/05/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Recent research shows that abnormal expression of microRNA plays an important role in the process of hepatic fibrosis . miR-370 has been reported to be involved in liver function and is suppressed during hepatic carcinogenesis. The aim of this study was to investigate the role of miR-370 in hepatic fibrosis. METHODS The expression levels of miR-370 in rat fibrotic livers and activated hepatic stellate cells (HSCs) were evaluated by quantitative real-time PCR. The effect of miR-370 on the activation of HSCs was analyzed by flow cytometric analyses, real-time PCR and Western blot. Adenovirus carrying miR-370 was injected through the tail vein to access the effect of miR-370 on hepatic fibrosis induced by CCl4 in rats. The downstream targets of miR-370 were predicted by the Target Scan database and verified by luciferase assays, real-time PCR and Western blot in HSCs and were further confirmed by immunohistochemistry in vivo. RESULTS Real-time PCR showed that miR-370 expression was significantly reduced in rat fibrotic livers and TGFβ1-stimulated HSCs. Overexpression of miR-370 inhibited the proliferation of HSC-T6 cells via inducing cell apoptosis and suppressed the activation of HSCs. Upregulation of miR-370 obviously attenuated the CCl4-induced liver fibrosis in rats. miR-370 was directly bound to the 3'UTR of Smoothened (SMO) and suppressed the expression of SMO in HSCs and fibrotic livers. CONCLUSIONS Our study demonstrated that miR-370 plays an inhibitory role in hepatic fibrogenesis by targeting SMO. Restoration of miR-370 may have beneficial effects on the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Cui-Hua Lu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong, 226001, Jiangsu, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hakuno F, Fukushima T, Yoneyama Y, Kamei H, Ozoe A, Yoshihara H, Yamanaka D, Shibano T, Sone-Yonezawa M, Yu BC, Chida K, Takahashi SI. The Novel Functions of High-Molecular-Mass Complexes Containing Insulin Receptor Substrates in Mediation and Modulation of Insulin-Like Activities: Emerging Concept of Diverse Functions by IRS-Associated Proteins. Front Endocrinol (Lausanne) 2015; 6:73. [PMID: 26074875 PMCID: PMC4443775 DOI: 10.3389/fendo.2015.00073] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/25/2015] [Indexed: 12/25/2022] Open
Abstract
Insulin-like peptides, such as insulin-like growth factors (IGFs) and insulin, induce a variety of bioactivities, such as growth, differentiation, survival, increased anabolism, and decreased catabolism in many cell types and in vivo. In general, IGFs or insulin bind to IGF-I receptor (IGF-IR) or insulin receptor (IR), activating the receptor tyrosine kinase. Insulin receptor substrates (IRSs) are known to be major substrates of receptor kinases, mediating IGF/insulin signals to direct bioactivities. Recently, we discovered that IRSs form high-molecular-mass complexes (referred to here as IRSomes) even without IGF/insulin stimulation. These complexes contain proteins (referred to here as IRSAPs; IRS-associated proteins), which modulate tyrosine phosphorylation of IRSs by receptor kinases, control IRS stability, and determine intracellular localization of IRSs. In addition, in these complexes, we found not only proteins that are involved in RNA metabolism but also RNAs themselves. Thus, IRSAPs possibly contribute to modulation of IGF/insulin bioactivities. Since it is established that disorder of modulation of insulin-like activities causes various age-related diseases including cancer, we could propose that the IRSome is an important target for treatment of these diseases.
Collapse
Affiliation(s)
- Fumihiko Hakuno
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Toshiaki Fukushima
- Laboratory of Biomedical Chemistry, Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Biological Sciences, Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, Kanagawa, Japan
| | - Yosuke Yoneyama
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroyasu Kamei
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Atsufumi Ozoe
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hidehito Yoshihara
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Daisuke Yamanaka
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takashi Shibano
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Meri Sone-Yonezawa
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Bu-Chin Yu
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuhiro Chida
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shin-Ichiro Takahashi
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- *Correspondence: Shin-Ichiro Takahashi, Laboratory of Cell Regulation, Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan,
| |
Collapse
|
31
|
Xu WP, Yi M, Li QQ, Zhou WP, Cong WM, Yang Y, Ning BF, Yin C, Huang ZW, Wang J, Qian H, Jiang CF, Chen YX, Xia CY, Wang HY, Zhang X, Xie WF. Perturbation of MicroRNA-370/Lin-28 homolog A/nuclear factor kappa B regulatory circuit contributes to the development of hepatocellular carcinoma. Hepatology 2013; 58:1977-91. [PMID: 23728999 DOI: 10.1002/hep.26541] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/17/2003] [Accepted: 05/16/2013] [Indexed: 01/09/2023]
Abstract
UNLABELLED MicroRNA 370 (miR-370) is located within the DLK1/DIO3 imprinting region on human chromosome 14, which has been identified as a cancer-associated genomic region. However, the role of miR-370 in malignances remains controversial. Here, we report that miR-370 was repressed in human hepatocellular carcinoma (HCC) tissues and hepatoma cell lines. Using gain-of-function and loss-of-function experiments, we demonstrated that miR-370 inhibited the malignant phenotype of HCC cells in vitro. Overexpression of miR-370 inhibited growth and metastasis of HCC cells in vivo. Moreover, the RNA-binding protein, LIN28A, was identified as a direct functional target of miR-370, which, in turn, blocked the biogenesis of miR-370 by binding to its precursor. LIN28A also mediated the suppressive effects of miR-370 on migration and invasion of HCC cells by post-transcriptionally regulating RelA/p65, which is an important effector of the canonical nuclear factor kappa B (NF-κB) pathway. Interleukin-6 (IL-6), a well-known NF-κB downstream inflammatory molecule, reduced miR-370 but increased LIN28A levels in HCC. Furthermore, miR-370 levels were inversely correlated with LIN28A and IL-6 messenger RNA (mRNA) levels, whereas LIN28A mRNA expression was positively correlated with IL-6 expression in human HCC samples. Interestingly, reduction of miR-370 expression was associated with the development of HCC in rats, as well as with aggressive tumor behavior and short survival in HCC patients. CONCLUSIONS These data demonstrate the involvement of a novel regulatory circuit consisting of miR-370, LIN28A, RelA/p65 and IL-6 in HCC progression. Manipulating this feedback loop may have beneficial effect in HCC treatment.
Collapse
Affiliation(s)
- Wen-Ping Xu
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Regulation of microRNAs by epigenetics and their interplay involved in cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2013; 32:96. [PMID: 24261995 PMCID: PMC3874662 DOI: 10.1186/1756-9966-32-96] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 11/14/2013] [Indexed: 12/15/2022]
Abstract
Similar to protein-coding genes, miRNAs are also susceptible to epigenetic modulation. Although numerous miRNAs have been shown to be affected by DNA methylation, the regulatory mechanism of histone modification on miRNA is not adequately understood. EZH2 and HDACs were recently identified as critical histone modifiers of deregulated miRNAs in cancer and can be recruited to a miRNA promoter by transcription factors such as MYC. Because miRNAs can modulate epigenetic architecture and can be regulated by epigenetic alteration, they could reasonably play an important role in mediating the crosstalk between epigenetic regulators. The complicated network between miRNAs and epigenetic machineries underlies the epigenetic–miRNA regulatory pathway, which is important in monitoring gene expression profiles. Regulation of miRNAs by inducing epigenetic changes reveals promising avenues for the design of innovative strategies in the fight against human cancer.
Collapse
|
33
|
MiR-370 sensitizes chronic myeloid leukemia K562 cells to homoharringtonine by targeting Forkhead box M1. J Transl Med 2013; 11:265. [PMID: 24148180 PMCID: PMC4015315 DOI: 10.1186/1479-5876-11-265] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 10/11/2013] [Indexed: 01/05/2023] Open
Abstract
Background Homoharringtonine (HHT) is a kind of cephalotaxus alkaloid used in traditional Chinese medicine. Although HHT has been successfully used as a therapeutic agent for leukemia, the drug resistance and toxicity are major concerns. MicroRNAs (miRNAs) have been identified to modulate cellular sensitivity to anticancer drugs. We examined the synergistic action between miR-370 and HHT in vitro and in vivo. Methods The synergistic action between miR-370 and HHT was examined by flow cytometry. The effect of HHT on miR-370 expression was determined by quantitative RT-PCR (qRT-PCR). The expression of miR-370 and Forkhead box M1 (FoxM1) in 23 patients with newly diagnosed chronic-phase chronic myeloid leukemia (CML-CP) and 10 patients with blast-crisis CML (CML-BP) as well as miR-370–targeted FoxM1 was determined by qRT-PCR and western blot analysis. Results Ectopic expression of miR-370 sensitized the CML K562 cell line to HHT by targeting FoxM1, the major regulator in cell proliferation and apoptosis. miR-370 significantly promoted HHT-mediated cell apoptosis and miR-370 and HHT cooperated in affecting FoxM1 expression. As well, miR-370 was moderately upregulated after HHT treatment in K562 cells. In addition, the expression of miR-370 was significantly reduced in CML patients as compared with healthy controls. Furthermore, the expression of miR-370 was lower in CML-BP than CML-CP patients. Conclusions MiR-370 sensitized K562 cells to HHT by inducing apoptosis in part by downregulation of FoxM1 expression. These findings may provide further information for CML treatment with HHT.
Collapse
|
34
|
Bekris LM, Lutz F, Montine TJ, Yu CE, Tsuang D, Peskind ER, Leverenz JB. MicroRNA in Alzheimer's disease: an exploratory study in brain, cerebrospinal fluid and plasma. Biomarkers 2013; 18:455-66. [PMID: 23822153 DOI: 10.3109/1354750x.2013.814073] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MicroRNA (miRNA) may be potential biomarkers of Alzheimer's disease (AD). The objective of this investigation was to demonstrate that miRNAs in human brain or biofluids are differentially expressed according to disease status, tissue type, neuritic plaque score or Braak stage. Post-mortem brain (PMB) miRNA were profiled using arrays and validated using quantitative RT-PCR (qRT-PCR). Five qRT-PCR-validated miRNAs were measured in an independent sample of PMB, cerebrospinal fluid and plasma from the same subjects. Plasma miR-15a was found to be associated with plaque score in the independent sample. In conclusion, miRNA present in human biofluids may offer utility as biomarkers of AD.
Collapse
Affiliation(s)
- Lynn M Bekris
- Department of Geriatric (GRECC), Research, Education, and Clinical Centers, VA Puget Sound Health Care System, Seattle, WA 98108, USA.
| | | | | | | | | | | | | |
Collapse
|