1
|
Hong J, Luo F, Du X, Xian F, Li X. The immune cells in modulating osteoclast formation and bone metabolism. Int Immunopharmacol 2024; 133:112151. [PMID: 38685175 DOI: 10.1016/j.intimp.2024.112151] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Osteoclasts are pivotal in regulating bone metabolism, with immune cells significantly influencing both physiological and pathological processes by modulating osteoclast functions. This is particularly evident in conditions of inflammatory bone resorption, such as rheumatoid arthritis and periodontitis. This review summarizes and comprehensively analyzes the research progress on the regulation of osteoclast formation by immune cells, aiming to unveil the underlying mechanisms and pathways through which diseases, such as rheumatoid arthritis and periodontitis, impact bone metabolism.
Collapse
Affiliation(s)
- Jiale Hong
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Fang Luo
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Xingyue Du
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Fa Xian
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Xinyi Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China.
| |
Collapse
|
2
|
Yu E, Zhang M, Xu G, Liu X, Yan J. Consensus cluster analysis of apoptosis-related genes in patients with osteoarthritis and their correlation with immune cell infiltration. Front Immunol 2023; 14:1202758. [PMID: 37860011 PMCID: PMC10582959 DOI: 10.3389/fimmu.2023.1202758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 09/15/2023] [Indexed: 10/21/2023] Open
Abstract
Background Osteoarthritis (OA) progression involves multiple factors, including cartilage erosion as the basic pathological mechanism of degeneration, and is closely related to chondrocyte apoptosis. To analyze the correlation between apoptosis and OA development, we selected apoptosis genes from the differentially expressed genes (DEGs) between OA and normal samples from the Gene Expression Omnibus (GEO) database, used lasso regression analysis to identify characteristic genes, and performed consensus cluster analysis to further explore the pathogenesis of this disease. Methods The Gene expression profile datasets of OA samples, GSE12021 and GSE55235, were downloaded from GEO. The datasets were combined and analyzed for DEGs. Apoptosis-related genes (ARGs) were collected from the GeneCards database and intersected with DEGs for apoptosis-related DEGs (ARDEGs). Least absolute shrinkage and selection operator (LASSO) regression analysis was performed to obtain characteristic genes, and a nomogram was constructed based on these genes. A consensus cluster analysis was performed to divide the patients into clusters. The immune characteristics, functional enrichment, and immune infiltration statuses of the clusters were compared. In addition, a protein-protein interaction network of mRNA drugs, mRNA-transcription factors (TFs), and mRNA-miRNAs was constructed. Results A total of 95 DEGs were identified, of which 47 were upregulated and 48 were downregulated, and 31 hub genes were selected as ARDEGs. LASSO regression analysis revealed nine characteristic genes: growth differentiation factor 15 (GDF15), NAMPT, TLR7, CXCL2, KLF2, REV3L, KLF9, THBD, and MTHFD2. Clusters A and B were identified, and neutrophil activation and neutrophil activation involved in the immune response were highly enriched in Cluster B, whereas protein repair and purine salvage signal pathways were enriched in Cluster A. The number of activated natural killer cells in Cluster B was significantly higher than that in Cluster A. GDF15 and KLF9 interacted with 193 and 32 TFs, respectively, and CXCL2 and REV3L interacted with 48 and 82 miRNAs, respectively. Conclusion ARGs could predict the occurrence of OA and may be related to different degrees of OA progression.
Collapse
Affiliation(s)
| | | | | | | | - Jinglong Yan
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
3
|
Zheng Y, Gao A, Bai J, Liao Q, Wu Y, Zhang W, Guan M, Tong L, Geng D, Zhao X, Chu PK, Wang H. A programmed surface on polyetheretherketone for sequentially dictating osteoimmunomodulation and bone regeneration to achieve ameliorative osseointegration under osteoporotic conditions. Bioact Mater 2022; 14:364-376. [PMID: 35386814 PMCID: PMC8964985 DOI: 10.1016/j.bioactmat.2022.01.042] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/16/2022] [Accepted: 01/24/2022] [Indexed: 02/07/2023] Open
Abstract
Polyetheretherketone (PEEK) is a desirable alternative to conventional biomedical metals for orthopedic implants due to the excellent mechanical properties. However, the inherent bioinertness of PEEK contributes to inferior osseointegration of PEEK implants, especially under pathological conditions of osteoporosis. Herein, a programmed surface is designed and fabricated on PEEK to dictate osteoimmunomodulation and bone regeneration sequentially. A degradable hybrid coating consisting of poly(lactide-co-glycolide) and alendronate (ALN) loaded nano-hydroxyapatite is deposited on PEEK and then interleukin-4 (IL-4) is grafted onto the outer surface of the hybrid coating with the aid of N2 plasma immersion ion implantation and subsequent immersion in IL-4 solution. Dominant release of IL-4 together with ALN and Ca2+ during the first few days synergistically mitigates the early acute inflammatory reactions and creates an osteoimmunomodulatory microenvironment that facilitates bone regeneration. Afterwards, slow and sustained delivery of ALN and Ca2+ in the following weeks boosts osteogenesis and suppresses osteoclastogenesis simultaneously, consequently ameliorating bone-implant osseointegration even under osteoporotic conditions. By taking into account the different phases in bone repair, this strategy of constructing advanced bone implants with sequential functions provides customizable and clinically viable therapy to osteoporotic patients. A programmed surface is designed and fabricated on PEEK to dictate osteoimmunomodulation and bone regeneration sequentially. A degradable coating consisting ALN loaded nano-HA is deposited on PEEK, with IL-4 being grafted onto the outmost surface. Dominant release of IL-4 together with ALN and Ca2+ synergistically mitigates the early acute inflammatory reactions. Slow and sustained delivery of ALN and Ca2+ boosts osteogenesis and suppresses osteoclastogenesis simultaneously. Sequential regulation of peri-implant biological responses is achieved to match the dynamic process of bone regeneration.
Collapse
Affiliation(s)
- Yanyan Zheng
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- School of Basic Medical Sciences and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China
| | - Ang Gao
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jiaxiang Bai
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Qing Liao
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yuzheng Wu
- Department of Physics, Department of Materials Science and Engineering, Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Wei Zhang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Min Guan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Liping Tong
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Corresponding author
| | - Dechun Geng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Corresponding author
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Paul K. Chu
- Department of Physics, Department of Materials Science and Engineering, Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Huaiyu Wang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Corresponding author
| |
Collapse
|
4
|
Jin Q, Yang H, Jing Z, Hong-hua W, Ben-jing S, Li-ting W, Li-juan Y, Wei X, Xia K, Juan W, Wei Z. IL4/IL4R signaling promotes the osteolysis in metastatic bone of CRC through regulating the proliferation of osteoclast precursors. Mol Med 2021; 27:152. [PMID: 34863091 PMCID: PMC8642926 DOI: 10.1186/s10020-021-00411-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/13/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Bone metastasis of colorectal cancer (CRC) often indicates a poor prognosis. Osteolysis can be observed in metastatic sites, implying an aberrant activation of osteoclasts. However, how osteoclastogenesis is regulated in metastatic microenvironment caused by colorectal cancer is still unclear. METHODS In this study, mice bone metastatic model of CRC was established through injection of MC-38 or CT-26 cells. BrdU assays showed primary CD115 ( +) osteoclast precursors (OCPs) proliferated at the first 2 weeks. Transcriptomic profiling was performed to identify differentially expressing genes and pathways in OCPs indirectly co-cultured with CRC cells RESULTS: The expression of IL4Rα was found to be significantly upregulated in OCPs stimulated by tumor conditioned medium (CM). Further investigation indicated that IL-4 signaling regulated proliferation of OPCs through interacting with type I IL4 receptor, and neutrophils were the main source of IL-4 in bone marrow. The proliferation of OCPs can be inhibited in IL4 deficiency mice. In addition, ERK pathway was activated by IL4/IL4R signaling. Ravoxertinib, an ERK antagonists, could significantly prevent bone destruction through inhibiting the proliferation of OCPs. CONCLUSION Our study indicates the essential role of IL4/IL4R signaling for the proliferation of OCPs in early metastasis of CRC predominantly through activating ERK pathway, which remarkedly impacts the number of osteoclasts in later stage and leads to osteolytic lesions. Moreover, Ravoxertinib could be a new therapeutical target for bone metastasis of CRC.
Collapse
Affiliation(s)
- Qian Jin
- Department of Orthopedics, General Hospital of Western Theater Command, Rongdu Avenue No. 270, Chengdu, 610000 People’s Republic of China
- College of Medicine, Southwest Jiaotong University, North Section 1 No. 111, Second Ring Road, Chengdu, 610000 People’s Republic of China
| | - He Yang
- Department of Orthopedics, General Hospital of Western Theater Command, Rongdu Avenue No. 270, Chengdu, 610000 People’s Republic of China
| | - Zhao Jing
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038 People’s Republic of China
| | - Wu Hong-hua
- Department of Orthopedics, General Hospital of Western Theater Command, Rongdu Avenue No. 270, Chengdu, 610000 People’s Republic of China
| | - Song Ben-jing
- Department of Orthopedics, General Hospital of Western Theater Command, Rongdu Avenue No. 270, Chengdu, 610000 People’s Republic of China
| | - Wang Li-ting
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038 People’s Republic of China
| | - Ye Li-juan
- Department of Orthopedics, General Hospital of Western Theater Command, Rongdu Avenue No. 270, Chengdu, 610000 People’s Republic of China
| | - Xu Wei
- Department of Orthopedics, General Hospital of Western Theater Command, Rongdu Avenue No. 270, Chengdu, 610000 People’s Republic of China
| | - Kang Xia
- Department of Orthopedics, General Hospital of Western Theater Command, Rongdu Avenue No. 270, Chengdu, 610000 People’s Republic of China
| | - Wu Juan
- Department of Pharmacy, General Hospital of Western Theater Command, Rongdu Avenue No. 270, Chengdu, 610000 People’s Republic of China
| | - Zheng Wei
- Department of Orthopedics, General Hospital of Western Theater Command, Rongdu Avenue No. 270, Chengdu, 610000 People’s Republic of China
- College of Medicine, Southwest Jiaotong University, North Section 1 No. 111, Second Ring Road, Chengdu, 610000 People’s Republic of China
| |
Collapse
|
5
|
Deng Z, Zhang Q, Zhao Z, Li Y, Chen X, Lin Z, Deng Z, Liu J, Duan L, Wang D, Li W. Crosstalk between immune cells and bone cells or chondrocytes. Int Immunopharmacol 2021; 101:108179. [PMID: 34601329 DOI: 10.1016/j.intimp.2021.108179] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/10/2021] [Accepted: 09/18/2021] [Indexed: 01/12/2023]
Abstract
The term "osteoimmunology" was coined to denote the bridge between the immune system and the skeletal system. Osteoimmunology is interdisciplinary, and a full understanding and development of this "bridge" will provide an in-depth understanding of the switch between body health and disease development. B lymphocytes can promote the maturation and differentiation of osteoclasts, and osteoclasts have a negative feedback effect on B lymphocytes. Different subtypes of T lymphocytes regulate osteoclasts in different directions. T lymphocytes have a two-way regulatory effect on osteoblasts, while B lymphocytes have minimal regulatory effects on osteoblasts. In contrast, osteoblasts can promote the differentiation and maturation of T lymphocytes and B lymphocytes. Different immune cells have different effects on chondrocytes; some cooperate with each other, while some antagonize each other. In a healthy adult body, bone resorption and bone formation are in a dynamic balance under the action of multiple mechanisms. In this review, we summarize the interactions and key signaling molecular mechanisms between each type of cell in the immune system and the skeletal system.
Collapse
Affiliation(s)
- Zhiqin Deng
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital/ the First Hospital Affiliated to Shenzhen University, Shenzhen 518000, China
| | - Qian Zhang
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital/ the First Hospital Affiliated to Shenzhen University, Shenzhen 518000, China
| | - Zhe Zhao
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital/ the First Hospital Affiliated to Shenzhen University, Shenzhen 518000, China
| | - Yongshen Li
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital/ the First Hospital Affiliated to Shenzhen University, Shenzhen 518000, China
| | - Xiaoqiang Chen
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital/ the First Hospital Affiliated to Shenzhen University, Shenzhen 518000, China
| | - Zicong Lin
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital/ the First Hospital Affiliated to Shenzhen University, Shenzhen 518000, China
| | - Zhenhan Deng
- Department of Sports Medicine, Shenzhen Second People's Hospital/ the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518000, China
| | - Jianquan Liu
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital/ the First Hospital Affiliated to Shenzhen University, Shenzhen 518000, China
| | - Li Duan
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital/ the First Hospital Affiliated to Shenzhen University, Shenzhen 518000, China
| | - Daping Wang
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital/ the First Hospital Affiliated to Shenzhen University, Shenzhen 518000, China.
| | - Wencui Li
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital/ the First Hospital Affiliated to Shenzhen University, Shenzhen 518000, China.
| |
Collapse
|
6
|
Hu W, Zhang L, Dong Y, Tian Z, Chen Y, Dong S. Tumour dormancy in inflammatory microenvironment: A promising therapeutic strategy for cancer-related bone metastasis. Cell Mol Life Sci 2020; 77:5149-5169. [PMID: 32556373 PMCID: PMC11104789 DOI: 10.1007/s00018-020-03572-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/22/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023]
Abstract
Cancer metastasis is a unique feature of malignant tumours. Even bone can become a common colonization site due to the tendency of solid tumours, including breast cancer (BCa) and prostate cancer (PCa), to metastasize to bone. Currently, a previous concept in tumour metabolism called tumour dormancy may be a promising target for antitumour treatment. When disseminated tumour cells (DTCs) metastasize to the bone microenvironment, they form a flexible regulatory network called the "bone-tumour-inflammation network". In this network, bone turnover as well as metabolism, tumour progression, angiogenesis and inflammatory responses are highly unified and coordinated, and a slight shift in this balance can result in the disruption of the microenvironment, uncontrolled inflammatory responses and excessive tumour growth. The purpose of this review is to highlight the regulatory effect of the "bone-tumour-inflammation network" in tumour dormancy. Osteoblast-secreted factors, bone turnover and macrophages are emphasized and occupy in the main part of the review. In addition, the prospective clinical application of tumour dormancy is also discussed, which shows the direction of future research.
Collapse
Affiliation(s)
- Wenhui Hu
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Lincheng Zhang
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yutong Dong
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zhansong Tian
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yueqi Chen
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Shiwu Dong
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
7
|
Romano M, Uchiyama MK, Cardoso RM, Toma SH, Baptista MS, Araki K. Nitric oxide inhibition of lipopolysaccharide-stimulated RAW 247.6 cells by ibuprofen-conjugated iron oxide nanoparticles. Nanomedicine (Lond) 2020; 15:2475-2492. [DOI: 10.2217/nnm-2020-0214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Aim: To develop a series of superparamagnetic iron oxide nanoparticles (SPIONs) by coconjugating them with ibuprofen (ibu) and glycerol phosphate (glycerol) or ibu and glucose-1-phosphate and to assess capacity of these conjugates to inhibit the release of nitric oxide (NO) in macrophages, even at low concentrations. Materials & methods: The SPION conjugates were characterized and their properties evaluated showing the influence of those ligands on colloidal stability and inhibition of NO-release demonstrated. The cytotoxicity and possible anti-inflammatory activity were evaluated using murine macrophages (RAW 247.6). Results: SPION-glycerol phosphate/ibu conjugates inhibited the NO production induced by lipopolysaccharides, indicating a potential anti-inflammatory activity. Conclusion: SPION conjugated with ibu was shown to inhibit NO-release even at very low concentrations, suggesting possible action against inflammatory diseases.
Collapse
Affiliation(s)
- Mariana Romano
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil, Avenida Professor Lineu Prestes, 748, São Paulo, São Paulo, 05508-000, Brazil
| | - Mayara K Uchiyama
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil, Avenida Professor Lineu Prestes, 748, São Paulo, São Paulo, 05508-000, Brazil
| | - Roberta M Cardoso
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil, Avenida Professor Lineu Prestes, 748, São Paulo, São Paulo, 05508-000, Brazil
| | - Sergio H Toma
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil, Avenida Professor Lineu Prestes, 748, São Paulo, São Paulo, 05508-000, Brazil
| | - Mauricio S Baptista
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil, Avenida Professor Lineu Prestes, 748, São Paulo, São Paulo, 05508-000, Brazil
| | - Koiti Araki
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil, Avenida Professor Lineu Prestes, 748, São Paulo, São Paulo, 05508-000, Brazil
| |
Collapse
|
8
|
Kats A, Gerasimcik N, Näreoja T, Nederberg J, Grenlöv S, Lagnöhed E, Desai S, Andersson G, Yucel-Lindberg T. Aminothiazoles inhibit osteoclastogenesis and PGE 2 production in LPS-stimulated co-cultures of periodontal ligament and RAW 264.7 cells, and RANKL-mediated osteoclastogenesis and bone resorption in PBMCs. J Cell Mol Med 2018; 23:1152-1163. [PMID: 30506812 PMCID: PMC6349150 DOI: 10.1111/jcmm.14015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/17/2018] [Accepted: 10/09/2018] [Indexed: 12/18/2022] Open
Abstract
Inflammatory mediator prostaglandin E2 (PGE2 ) contributes to bone resorption in several inflammatory conditions including periodontitis. The terminal enzyme, microsomal prostaglandin E synthase-1 (mPGES-1) regulating PGE2 synthesis is a promising therapeutic target to reduce inflammatory bone loss. The aim of this study was to investigate effects of mPGES-1 inhibitors, aminothiazoles TH-848 and TH-644, on PGE2 production and osteoclastogenesis in co-cultures of periodontal ligament (PDL) and osteoclast progenitor cells RAW 264.7, stimulated by lipopolysaccharide (LPS), and bone resorption in RANKL-mediated peripheral blood mononuclear cells (PBMCs). PDL and RAW 264.7 cells were cultured separately or co-cultured and treated with LPS alone or in combination with aminothiazoles. Multinucleated cells stained positively for tartrate-resistant acid phosphatase (TRAP) were scored as osteoclast-like cells. Levels of PGE2 , osteoprotegerin (OPG) and interleukin-6, as well as mRNA expression of mPGES-1, OPG and RANKL were analysed in PDL cells. PBMCs were treated with RANKL alone or in combination with aminothiazoles. TRAP-positive multinucleated cells were analysed and bone resorption was measured by the CTX-I assay. Aminothiazoles reduced LPS-stimulated osteoclast-like cell formation both in co-cultures and in RAW 264.7 cells. Additionally, aminothiazoles inhibited PGE2 production in LPS-stimulated cultures, but did not affect LPS-induced mPGES-1, OPG or RANKL mRNA expression in PDL cells. In PBMCs, inhibitors decreased both osteoclast differentiation and bone resorption. In conclusion, aminothiazoles reduced the formation of osteoclast-like cells and decreased the production of PGE2 in co-cultures as well as single-cell cultures. Furthermore, these compounds inhibited RANKL-induced bone resorption and differentiation of PBMCs, suggesting these inhibitors for future treatment of inflammatory bone loss such as periodontitis.
Collapse
Affiliation(s)
- Anna Kats
- Department of Dental Medicine, Division of Periodontology, Karolinska Institutet, Huddinge, Sweden
| | - Natalija Gerasimcik
- Department of Dental Medicine, Division of Periodontology, Karolinska Institutet, Huddinge, Sweden
| | - Tuomas Näreoja
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | - Jonas Nederberg
- Department of Dental Medicine, Division of Periodontology, Karolinska Institutet, Huddinge, Sweden
| | - Simon Grenlöv
- Department of Dental Medicine, Division of Periodontology, Karolinska Institutet, Huddinge, Sweden
| | - Ekaterina Lagnöhed
- Department of Dental Medicine, Division of Periodontology, Karolinska Institutet, Huddinge, Sweden
| | - Suchita Desai
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | - Göran Andersson
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | - Tülay Yucel-Lindberg
- Department of Dental Medicine, Division of Periodontology, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
9
|
Role of Muramyl Dipeptide in Lipopolysaccharide-Mediated Biological Activity and Osteoclast Activity. Anal Cell Pathol (Amst) 2018; 2018:8047610. [PMID: 29666781 PMCID: PMC5832107 DOI: 10.1155/2018/8047610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/10/2018] [Indexed: 11/23/2022] Open
Abstract
Lipopolysaccharide (LPS) is an endotoxin and bacterial cell wall component that is capable of inducing inflammation and immunological activity. Muramyl dipeptide (MDP), the minimal essential structural unit responsible for the immunological activity of peptidoglycans, is another inflammation-inducing molecule that is ubiquitously expressed by bacteria. Several studies have shown that inflammation-related biological activities were synergistically induced by interactions between LPS and MDP. MDP synergistically enhances production of proinflammatory cytokines that are induced by LPS exposure. Injection of MDP induces lethal shock in mice challenged with LPS. LPS also induces osteoclast formation and pathological bone resorption; MDP enhances LPS induction of both processes. Furthermore, MDP enhances the LPS-induced receptor activator of NF-κB ligand (RANKL) expression and toll-like receptor 4 (TLR4) expression both in vivo and in vitro. Additionally, MDP enhances LPS-induced mitogen-activated protein kinase (MAPK) signaling in stromal cells. Taken together, these findings suggest that MDP plays an important role in LPS-induced biological activities. This review discusses the role of MDP in LPS-mediated biological activities, primarily in relation to osteoclastogenesis.
Collapse
|
10
|
Davies OG, Liu Y, Player DJ, Martin NRW, Grover LM, Lewis MP. Defining the Balance between Regeneration and Pathological Ossification in Skeletal Muscle Following Traumatic Injury. Front Physiol 2017; 8:194. [PMID: 28421001 PMCID: PMC5376571 DOI: 10.3389/fphys.2017.00194] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/15/2017] [Indexed: 12/15/2022] Open
Abstract
Heterotopic ossification (HO) is characterized by the formation of bone at atypical sites. This type of ectopic bone formation is most prominent in skeletal muscle, most frequently resulting as a consequence of physical trauma and associated with aberrant tissue regeneration. The condition is debilitating, reducing a patient's range of motion and potentially causing severe pathologies resulting from nerve and vascular compression. Despite efforts to understand the pathological processes governing HO, there remains a lack of consensus regarding the micro-environmental conditions conducive to its formation, and attempting to define the balance between muscle regeneration and pathological ossification remains complex. The development of HO is thought to be related to a complex interplay between factors released both locally and systemically in response to trauma. It develops as skeletal muscle undergoes significant repair and regeneration, and is likely to result from the misdirected differentiation of endogenous or systemically derived progenitors in response to biochemical and/or environmental cues. The process can be sequentially delineated by the presence of inflammation, tissue breakdown, adipogenesis, hypoxia, neo-vasculogenesis, chondrogenesis and ossification. However, exactly how each of these stages contributes to the formation of HO is at present not well understood. Our previous review examined the cellular contribution to HO. Therefore, the principal aim of this review will be to comprehensively outline changes in the local tissue micro-environment following trauma, and identify how these changes can alter the balance between skeletal muscle regeneration and ectopic ossification. An understanding of the mechanisms governing this condition is required for the development and advancement of HO prophylaxis and treatment, and may even hold the key to unlocking novel methods for engineering hard tissues.
Collapse
Affiliation(s)
- Owen G Davies
- School of Sport, Exercise and Health Sciences, Loughborough UniversityLoughborough, UK.,School of Chemical Engineering, University of BirminghamBirmingham, UK
| | - Yang Liu
- Wolfson School of Mechanical and Manufacturing Engineering, Loughborough UniversityLoughborough, UK
| | - Darren J Player
- School of Sport, Exercise and Health Sciences, Loughborough UniversityLoughborough, UK
| | - Neil R W Martin
- School of Sport, Exercise and Health Sciences, Loughborough UniversityLoughborough, UK
| | - Liam M Grover
- School of Chemical Engineering, University of BirminghamBirmingham, UK
| | - Mark P Lewis
- National Centre for Sport and Exercise Medicine, Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, School of Sport, Exercise and Health Sciences, Loughborough UniversityLoughborough, UK
| |
Collapse
|
11
|
Kats A, Norgård M, Wondimu Z, Koro C, Concha Quezada H, Andersson G, Yucel-Lindberg T. Aminothiazoles inhibit RANKL- and LPS-mediated osteoclastogenesis and PGE2 production in RAW 264.7 cells. J Cell Mol Med 2016; 20:1128-38. [PMID: 26987561 PMCID: PMC4882984 DOI: 10.1111/jcmm.12814] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 01/13/2016] [Indexed: 01/09/2023] Open
Abstract
Periodontitis is characterized by chronic inflammation and osteoclast‐mediated bone loss regulated by the receptor activator of nuclear factor‐κB (RANK), RANK ligand (RANKL) and osteoprotegerin (OPG). The aim of this study was to investigate the effect of aminothiazoles targeting prostaglandin E synthase‐1 (mPGES‐1) on RANKL‐ and lipopolysaccharide (LPS)‐mediated osteoclastogenesis and prostaglandin E2 (PGE2) production in vitro using the osteoclast precursor RAW 264.7 cells. RAW 264.7 cells were treated with RANKL or LPS alone or in combination with the aminothiazoles 4‐([4‐(2‐naphthyl)‐1,3‐thiazol‐2‐yl]amino)phenol (TH‐848) or 4‐(3‐fluoro‐4‐methoxyphenyl)‐N‐(4‐phenoxyphenyl)‐1,3‐thiazol‐2‐amine (TH‐644). Aminothiazoles significantly decreased the number of multinucleated tartrate‐resistant acid phosphatase (TRAP)‐positive osteoclast‐like cells in cultures of RANKL‐ and LPS‐stimulated RAW 264.7 cells, as well as reduced the production of PGE2 in culture supernatants. LPS‐treatment induced mPGES‐1 mRNA expression at 16 hrs and the subsequent PGE2 production at 72 hrs. Conversely, RANKL did not affect PGE2 secretion but markedly reduced mPGES‐1 at mRNA level. Furthermore, mRNA expression of TRAP and cathepsin K (CTSK) was reduced by aminothiazoles in RAW 264.7 cells activated by LPS, whereas RANK, OPG or tumour necrosis factor α mRNA expression was not significantly affected. In RANKL‐activated RAW 264.7 cells, TH‐848 and TH‐644 down‐regulated CTSK but not TRAP mRNA expression. Moreover, the inhibitory effect of aminothiazoles on PGE2 production was also confirmed in LPS‐stimulated human peripheral blood mononuclear cell cultures. In conclusion, the aminothiazoles reduced both LPS‐ and RANKL‐mediated osteoclastogenesis and PGE2 production in RAW 264.7 cells, suggesting these compounds as potential inhibitors for treatment of chronic inflammatory bone resorption, such as periodontitis.
Collapse
Affiliation(s)
- Anna Kats
- Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Maria Norgård
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Zenebech Wondimu
- Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Catalin Koro
- Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Hernán Concha Quezada
- Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Göran Andersson
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Tülay Yucel-Lindberg
- Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
12
|
The roles of interferons in osteoclasts and osteoclastogenesis. Joint Bone Spine 2016; 83:276-81. [PMID: 26832190 DOI: 10.1016/j.jbspin.2015.07.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/14/2015] [Indexed: 12/31/2022]
Abstract
Interferons (IFNs) play essential roles in regulating osteoclast differentiation and bone resorption. Over the last decade, we have seen tremendous developments in our understanding of the mechanisms by which interferons regulate osteoclastogenesis. Of the type I interferons, IFN-β inhibits osteoclastogenesis via autoregulatory or exogenous regulatory mechanisms, while IFN-α was recently shown to participate in regulating osteoclast formation. And the only member of type II interferons, IFN-γ, has biphasic effects on osteoclastogenesis. Type III interferons have also been shown to be involved in osteoclast bone resorption, although no direct regulatory mechanism has been demonstrated. In this review, we provide an update account of the current knowledge on these recently revealed novel roles of interferons in the regulation of a variety of signaling pathways in osteoclast differentiation and function. The potential clinical applications are also discussed.
Collapse
|
13
|
Ziaee S, Chu GCY, Huang JM, Sieh S, Chung LWK. Prostate cancer metastasis: roles of recruitment and reprogramming, cell signal network and three-dimensional growth characteristics. Transl Androl Urol 2016; 4:438-54. [PMID: 26816842 PMCID: PMC4708593 DOI: 10.3978/j.issn.2223-4683.2015.04.10] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Prostate cancer (PCa) metastasizes to bone and soft tissues, greatly decreasing quality of life, causing bone pain, skeletal complications, and mortality in PCa patients. While new treatment strategies are being developed, the molecular and cellular basis of PCa metastasis and the “cross-talk” between cancer cells and their microenvironment and crucial cell signaling pathways need to be successfully dissected for intervention. In this review, we introduce a new concept of the mechanism of PCa metastasis, the recruitment and reprogramming of bystander and dormant cells (DCs) by a population of metastasis-initiating cells (MICs). We provide evidence that recruited and reprogrammed DCs gain MICs phenotypes and can subsequently metastasize to bone and soft tissues. We show that MICs can also recruit and reprogram circulating tumor cells (CTCs) and this could contribute to cancer cell evolution and the acquisition of therapeutic resistance. We summarize relevant molecular signaling pathways, including androgen receptors (ARs) and their variants and growth factors (GFs) and cytokines that could contribute to the predilection of PCa for homing to bone and soft tissues. To understand the etiology and the biology of PCa and the effectiveness of therapeutic targeting, we briefly summarize the animal and cell models that have been employed. We also report our experience in the use of three-dimensional (3-D) culture and co-culture models to understand cell signaling networks and the use of these attractive tools to conduct drug screening exercises against already-identified molecular targets. Further research into PCa growth and metastasis will improve our ability to target cancer metastasis more effectively and provide better rationales for personalized oncology.
Collapse
Affiliation(s)
- Shabnam Ziaee
- 1 Department of Medicine, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA ; 2 Australian Prostate Cancer Research Centre, Brisbane, Queensland 4102, Australia ; 3 Department of Surgery, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Gina Chia-Yi Chu
- 1 Department of Medicine, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA ; 2 Australian Prostate Cancer Research Centre, Brisbane, Queensland 4102, Australia ; 3 Department of Surgery, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jen-Ming Huang
- 1 Department of Medicine, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA ; 2 Australian Prostate Cancer Research Centre, Brisbane, Queensland 4102, Australia ; 3 Department of Surgery, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Shirly Sieh
- 1 Department of Medicine, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA ; 2 Australian Prostate Cancer Research Centre, Brisbane, Queensland 4102, Australia ; 3 Department of Surgery, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Leland W K Chung
- 1 Department of Medicine, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA ; 2 Australian Prostate Cancer Research Centre, Brisbane, Queensland 4102, Australia ; 3 Department of Surgery, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
14
|
Choi SH, Kim SJ. Inhibition of inducible nitric oxide synthase and osteoclastic differentiation by Atractylodis Rhizoma Alba extract. Pharmacogn Mag 2014; 10:S494-500. [PMID: 25298665 PMCID: PMC4189263 DOI: 10.4103/0973-1296.139780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/27/2014] [Accepted: 08/30/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Atractylodis Rhizoma Alba (ARA) has been used in Korean folk medicine for constipation, dizziness, and anticancer agent. In the present study, we performed to test whether the methanolic extract of ARA has antioxidant and antiosteoclastogenesis activity in RAW 264.7 macrophage cells. MATERIALS AND METHODS Antioxidant capacities were tested by measuring free radical scavenging activity, nitric oxide (NO) levels, reducing power, and inducible nitric oxide synthase (iNOS) expression in response to lipopolysaccharides (LPS). Antiosteoclastogenesis activity was evaluated by performing tartrate-resistant acid phosphatase assay in RAW 264.7 macrophage cells. RESULTS The extract exerted significant 1,1-diphenyl-2-picrylhydrazyl and NO radical scavenging activity, and it exerted dramatic reducing power. Induction of iNOS and NO by LPS in RAW 264.7 cells was significantly inhibited by the extract, suggesting that the ARA extract inhibits NO production by suppressing iNOS expression. Strikingly, the ARA extracts substantially inhibited the receptor activator of NF-κB ligand-induced osteclastic differentiation of LPS-activated RAW 264.7 cells. The ARA extract contains a significant amount of antioxidant components, including phenolics, flavonoids and anthocyanins. CONCLUSION These results suggest that the methanolic extract of ARA exerts significant antioxidant activities potentially via inhibiting free radicals and iNOS induction, thereby leading to the inhibition of osteoclastogenesis.
Collapse
Affiliation(s)
- Sung-Ho Choi
- Department of Pharmacology and Toxicology, School of Dentistry, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Sung-Jin Kim
- Department of Pharmacology and Toxicology, School of Dentistry, Kyung Hee University, Seoul 130-701, Republic of Korea
| |
Collapse
|