1
|
Ammam I, Pailler-Mattéi C, Ouillon L, Nivet C, Vargiolu R, Neiers F, Canon F, Zahouani H. Exploring the role of the MUC1 mucin in human oral lubrication by tribological in vitro studies. Sci Rep 2024; 14:31019. [PMID: 39730813 DOI: 10.1038/s41598-024-82176-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 12/03/2024] [Indexed: 12/29/2024] Open
Abstract
In the context of the oral cavity, an organic layer known as the mucosal pellicle (MP) adheres to the surface of the oral epithelium, playing a pivotal role in lubricating and safeguarding oral tissues. The formation of the MP is driven by interactions between a transmembrane mucin known as MUC1, located on the oral epithelium, and salivary secreted mucin, namely MUC5B and MUC7. This study aimed to investigate the function of MUC1 and the influence of its structure on MP lubrication properties. We proposed a novel methodology to study oral lubrication based on four different models of oral epithelium on which we conducted in vitro tribological studies. These models expressed varying forms of MUC1, each possessing on of the distinct domain constituting the mucin. Mechanical parameters were used as indicators of lubrication efficiency and, consequently, of the role played by MUC1 in oral lubrication. The results from the tribological tests revealed that the presence of full MUC1 resulted in enhanced lubrication. Furthermore, the structure of MUC1 protein drive the lubrication. In conclusion, the mechanical tests conducted on our epithelium models demonstrated that MUC1 actively participates in epithelium lubrication by facilitating the formation of the MP.
Collapse
Affiliation(s)
- Ianis Ammam
- Ecole Centrale de Lyon, CNRS, ENTPE, LTDS, Ecully, UMR5513, 69130, France.
- Guy de Collongue, Laboratoire de Tribologie et Dynamique des Systèmes, Ecole Centrale de Lyon, Université de Lyon, UMR-CNRS 5513, Ecully, 69134, France.
| | | | - Lucas Ouillon
- Ecole Centrale de Lyon, CNRS, ENTPE, LTDS, Ecully, UMR5513, 69130, France
| | - Clément Nivet
- Centre des Sciences du Goût et de l'Alimentation, UMR1324 INRAE, UMR6265 CNRS Université de Bourgogne, Institut Agro Dijon, Dijon, F-21000, France
| | - Roberto Vargiolu
- Ecole Centrale de Lyon, CNRS, ENTPE, LTDS, Ecully, UMR5513, 69130, France
| | - Fabrice Neiers
- Centre des Sciences du Goût et de l'Alimentation, UMR1324 INRAE, UMR6265 CNRS Université de Bourgogne, Institut Agro Dijon, Dijon, F-21000, France
| | - Francis Canon
- Centre des Sciences du Goût et de l'Alimentation, UMR1324 INRAE, UMR6265 CNRS Université de Bourgogne, Institut Agro Dijon, Dijon, F-21000, France
| | - Hassan Zahouani
- Ecole Centrale de Lyon, CNRS, ENTPE, LTDS, Ecully, UMR5513, 69130, France
| |
Collapse
|
2
|
Capela e Silva F, Lamy E, Castelo PM. Models for Oral Biology Research 2.0. Biomedicines 2024; 12:2804. [PMID: 39767711 PMCID: PMC11673504 DOI: 10.3390/biomedicines12122804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
The oral cavity constitutes a unique and complex system and environment [...].
Collapse
Affiliation(s)
- Fernando Capela e Silva
- Department of Medical and Health Sciences, School of Health and Human Development, Colégio Luís Verney, University of Évora, 7000-671 Évora, Portugal
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, University of Évora, 7006-554 Évora, Portugal;
| | - Elsa Lamy
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, University of Évora, 7006-554 Évora, Portugal;
| | - Paula Midori Castelo
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo (UNIFESP), Diadema 09913-030, Brazil;
| |
Collapse
|
3
|
Gonzalez Agurto M, Olivares N, Canedo-Marroquin G, Espinoza D, Tortora SC. The Intersection of the Oral Microbiome and Salivary Metabolites in Head and Neck Cancer: From Diagnosis to Treatment. Cancers (Basel) 2024; 16:3545. [PMID: 39456639 PMCID: PMC11506592 DOI: 10.3390/cancers16203545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Head and neck cancers (HNCs) are the seventh most common cancer worldwide, accounting for 4-5% of all malignancies. Salivary metabolites, which serve as key metabolic intermediates and cell-signalling molecules, are emerging as potential diagnostic biomarkers for HNC. While current research has largely concentrated on these metabolites as biomarkers, a critical gap remains in understanding their fluctuations before and after treatment, as well as their involvement in oral side effects. Recent studies emphasise the role of the oral microbiome and its metabolic activity in cancer progression and treatment efficacy by bacterial metabolites and virulence factors. Oral bacteria, such as P. gingivalis and F. nucleatum, contribute to a pro-inflammatory environment that promotes tumour growth. Additionally, F. nucleatum enhances its virulence through flagellar assembly and iron transport mechanisms, facilitating tumour invasion and survival. Moreover, alterations in the oral microbiome can influence chemotherapy efficacy and toxicity through the microbiota-host irinotecan axis, highlighting the complex interplay between microbial communities and therapeutic outcomes. Salivary metabolite profiles are influenced by factors such as gender, methods, and patient habits like smoking-a major risk factor for HNC. Radiotherapy (RT), a key treatment for HNC, often causes side effects such as xerostomia, oral mucositis, and swallowing difficulties which impact survivors' quality of life. Intensity-modulated radiotherapy (IMRT) aims to improve treatment outcomes and minimise side effects but can still lead to significant salivary gland dysfunction and associated complications. This review underscores the microbial and host interactions affecting salivary metabolites and their implications for cancer treatment and patient outcomes.
Collapse
Affiliation(s)
| | - Nicolas Olivares
- Faculty of Dentistry, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile;
| | - Gisela Canedo-Marroquin
- Faculty of Dentistry, Universidad de los Andes, Santiago 7620086, Chile;
- Faculty of Dentistry, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile;
- Millennium Institute on Immunology and Immunotherapy (MIII), Santiago 8331150, Chile
| | - Daniela Espinoza
- Faculty of Dentistry, Universidad Mayor, Santiago 8580745, Chile
| | - Sofia C. Tortora
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
4
|
Winter C, Tetyczka C, Pham DT, Kolb D, Leitinger G, Schönfelder S, Kunert O, Gerlza T, Kungl A, Bucar F, Roblegg E. Investigation of Hydrocolloid Plant Polysaccharides as Potential Candidates to Mimic the Functions of MUC5B in Saliva. Pharmaceutics 2024; 16:682. [PMID: 38794344 PMCID: PMC11124828 DOI: 10.3390/pharmaceutics16050682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/26/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
The successful substitution of complex physiological fluids, such as human saliva, remains a major challenge in drug development. Although there are a large number of saliva substitutes on the market, their efficacy is often inadequate due to short residence time in the mouth, unpleasant mouthfeel, or insufficient protection of the teeth. Therefore, systems need to be identified that mimic the functions of saliva, in particular the salivary mucin MUC5B and the unique physiological properties of saliva. To this end, plant extracts known to contain hydrocolloid polysaccharides and to have mucus-forming properties were studied to evaluate their suitability as saliva substitutes. The aqueous plant extracts of Calendula officinalis, Fucus sp. thalli, and lichenan from Lichen islandicus were examined for composition using a range of techniques, including GC-MS, NMR, SEC, assessment of pH, osmolality, buffering capacity, viscoelasticity, viscoelastic interactions with human saliva, hydrocolloid network formation, and in vitro cell adhesion. For this purpose, a physiologically adapted adhesive test was developed using human buccal epithelial cells. The results show that lichenan is the most promising candidate to mimic the properties of MUC5B. By adjusting the pH, osmolality, and buffering capacity with K2HPO4, it was shown that lichenan exhibited high cell adhesion, with a maximum detachment force that was comparable to that of unstimulated whole mouth saliva.
Collapse
Affiliation(s)
- Christina Winter
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, University of Graz, Universitätsplatz 1, 8010 Graz, Austria; (C.W.); (C.T.)
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Carolin Tetyczka
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, University of Graz, Universitätsplatz 1, 8010 Graz, Austria; (C.W.); (C.T.)
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Duy Toan Pham
- Department of Health Sciences, College of Natural Sciences, Can Tho University, Can Tho 900000, Vietnam;
| | - Dagmar Kolb
- Core Facility Ultrastructure Analysis, Center for Medical Research, Medical University of Graz, Neue Stiftingtalstrasse 6/VI, 8010 Graz, Austria;
| | - Gerd Leitinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6/V, 8010 Graz, Austria;
| | - Sandra Schönfelder
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Beethovenstraße 8, 8010 Graz, Austria; (S.S.); (F.B.)
| | - Olaf Kunert
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Schubertstraße 1, 8010 Graz, Austria; (O.K.); (T.G.); (A.K.)
| | - Tanja Gerlza
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Schubertstraße 1, 8010 Graz, Austria; (O.K.); (T.G.); (A.K.)
| | - Andreas Kungl
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Schubertstraße 1, 8010 Graz, Austria; (O.K.); (T.G.); (A.K.)
| | - Franz Bucar
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Beethovenstraße 8, 8010 Graz, Austria; (S.S.); (F.B.)
| | - Eva Roblegg
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, University of Graz, Universitätsplatz 1, 8010 Graz, Austria; (C.W.); (C.T.)
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| |
Collapse
|
5
|
Nivet C, Custovic I, Avoscan L, Bikker FJ, Bonnotte A, Bourillot E, Briand L, Brignot H, Heydel JM, Herrmann N, Lelièvre M, Lesniewska E, Neiers F, Piétrement O, Schwartz M, Belloir C, Canon F. Development of New Models of Oral Mucosa to Investigate the Impact of the Structure of Transmembrane Mucin-1 on the Mucosal Pellicle Formation and Its Physicochemical Properties. Biomedicines 2024; 12:139. [PMID: 38255244 PMCID: PMC10812975 DOI: 10.3390/biomedicines12010139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
The mucosal pellicle (MP) is a biological film protecting the oral mucosa. It is composed of bounded salivary proteins and transmembrane mucin MUC1 expressed by oral epithelial cells. Previous research indicates that MUC1 expression enhances the binding of the main salivary protein forming the MP, MUC5B. This study investigated the influence of MUC1 structure on MP formation. A TR146 cell line, which does not express MUC1 natively, was stably transfected with genes coding for three MUC1 isoforms differing in the structure of the two main extracellular domains: the VNTR domain, exhibiting a variable number of tandem repeats, and the SEA domain, maintaining the two bound subunits of MUC1. Semi-quantification of MUC1 using dot blot chemiluminescence showed comparable expression levels in all transfected cell lines. Semi-quantification of MUC5B by immunostaining after incubation with saliva revealed that MUC1 expression significantly increased MUC5B adsorption. Neither the VNTR domain nor the SEA domain was influenced MUC5B anchoring, suggesting the key role of the MUC1 N-terminal domain. AFM-IR nanospectroscopy revealed discernible shifts indicative of changes in the chemical properties at the cell surface due to the expression of the MUC1 isoform. Furthermore, the observed chemical shifts suggest the involvement of hydrophobic effects in the interaction between MUC1 and salivary proteins.
Collapse
Affiliation(s)
- Clément Nivet
- Center for Taste and Feeding Behaviour (CSGA), UMR1324 INRAE, Institut Agro Dijon, Université de Bourgogne, UMR6265 CNRS, 21000 Dijon, France; (C.N.); (L.B.); (H.B.); (J.-M.H.); (N.H.); (M.L.); (F.N.); (M.S.); (C.B.)
| | - Irma Custovic
- Institut Carnot de Bourgogne (ICB), UMR CNRS 6303, University of Bourgogne, 21000 Dijon, France; (I.C.); (E.B.); (E.L.); (O.P.)
| | - Laure Avoscan
- Agroécologie, UMR1347 INRAE, ERL CNRS 6300, DimaCell Platform, Center of Microscopy INRAE, University of Bourgogne, 21000 Dijon, France; (L.A.); (A.B.)
| | - Floris J. Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, 1081 LA Amsterdam, The Netherlands;
| | - Aline Bonnotte
- Agroécologie, UMR1347 INRAE, ERL CNRS 6300, DimaCell Platform, Center of Microscopy INRAE, University of Bourgogne, 21000 Dijon, France; (L.A.); (A.B.)
| | - Eric Bourillot
- Institut Carnot de Bourgogne (ICB), UMR CNRS 6303, University of Bourgogne, 21000 Dijon, France; (I.C.); (E.B.); (E.L.); (O.P.)
| | - Loïc Briand
- Center for Taste and Feeding Behaviour (CSGA), UMR1324 INRAE, Institut Agro Dijon, Université de Bourgogne, UMR6265 CNRS, 21000 Dijon, France; (C.N.); (L.B.); (H.B.); (J.-M.H.); (N.H.); (M.L.); (F.N.); (M.S.); (C.B.)
| | - Hélène Brignot
- Center for Taste and Feeding Behaviour (CSGA), UMR1324 INRAE, Institut Agro Dijon, Université de Bourgogne, UMR6265 CNRS, 21000 Dijon, France; (C.N.); (L.B.); (H.B.); (J.-M.H.); (N.H.); (M.L.); (F.N.); (M.S.); (C.B.)
| | - Jean-Marie Heydel
- Center for Taste and Feeding Behaviour (CSGA), UMR1324 INRAE, Institut Agro Dijon, Université de Bourgogne, UMR6265 CNRS, 21000 Dijon, France; (C.N.); (L.B.); (H.B.); (J.-M.H.); (N.H.); (M.L.); (F.N.); (M.S.); (C.B.)
| | - Noémie Herrmann
- Center for Taste and Feeding Behaviour (CSGA), UMR1324 INRAE, Institut Agro Dijon, Université de Bourgogne, UMR6265 CNRS, 21000 Dijon, France; (C.N.); (L.B.); (H.B.); (J.-M.H.); (N.H.); (M.L.); (F.N.); (M.S.); (C.B.)
| | - Mélanie Lelièvre
- Center for Taste and Feeding Behaviour (CSGA), UMR1324 INRAE, Institut Agro Dijon, Université de Bourgogne, UMR6265 CNRS, 21000 Dijon, France; (C.N.); (L.B.); (H.B.); (J.-M.H.); (N.H.); (M.L.); (F.N.); (M.S.); (C.B.)
| | - Eric Lesniewska
- Institut Carnot de Bourgogne (ICB), UMR CNRS 6303, University of Bourgogne, 21000 Dijon, France; (I.C.); (E.B.); (E.L.); (O.P.)
| | - Fabrice Neiers
- Center for Taste and Feeding Behaviour (CSGA), UMR1324 INRAE, Institut Agro Dijon, Université de Bourgogne, UMR6265 CNRS, 21000 Dijon, France; (C.N.); (L.B.); (H.B.); (J.-M.H.); (N.H.); (M.L.); (F.N.); (M.S.); (C.B.)
| | - Olivier Piétrement
- Institut Carnot de Bourgogne (ICB), UMR CNRS 6303, University of Bourgogne, 21000 Dijon, France; (I.C.); (E.B.); (E.L.); (O.P.)
| | - Mathieu Schwartz
- Center for Taste and Feeding Behaviour (CSGA), UMR1324 INRAE, Institut Agro Dijon, Université de Bourgogne, UMR6265 CNRS, 21000 Dijon, France; (C.N.); (L.B.); (H.B.); (J.-M.H.); (N.H.); (M.L.); (F.N.); (M.S.); (C.B.)
| | - Christine Belloir
- Center for Taste and Feeding Behaviour (CSGA), UMR1324 INRAE, Institut Agro Dijon, Université de Bourgogne, UMR6265 CNRS, 21000 Dijon, France; (C.N.); (L.B.); (H.B.); (J.-M.H.); (N.H.); (M.L.); (F.N.); (M.S.); (C.B.)
| | - Francis Canon
- Center for Taste and Feeding Behaviour (CSGA), UMR1324 INRAE, Institut Agro Dijon, Université de Bourgogne, UMR6265 CNRS, 21000 Dijon, France; (C.N.); (L.B.); (H.B.); (J.-M.H.); (N.H.); (M.L.); (F.N.); (M.S.); (C.B.)
| |
Collapse
|
6
|
Enax J, Ganss B, Amaechi BT, Schulze zur Wiesche E, Meyer F. The composition of the dental pellicle: an updated literature review. FRONTIERS IN ORAL HEALTH 2023; 4:1260442. [PMID: 37899941 PMCID: PMC10600522 DOI: 10.3389/froh.2023.1260442] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
Background The dental pellicle is a thin layer of up to several hundred nm in thickness, covering the tooth surface. It is known to protect the teeth from acid attacks through its selective permeability and it is involved in the remineralization process of the teeth. It functions also as binding site and source of nutrients for bacteria and conditioning biofilm (foundation) for dental plaque formation. Methods For this updated literature review, the PubMed database was searched for the dental pellicle and its composition. Results The dental pellicle has been analyzed in the past years with various state-of-the art analytic techniques such as high-resolution microscopic techniques (e.g., scanning electron microscopy, atomic force microscopy), spectrophotometry, mass spectrometry, affinity chromatography, enzyme-linked immunosorbent assays (ELISA), and blotting-techniques (e.g., western blot). It consists of several different amino acids, proteins, and proteolytic protein fragments. Some studies also investigated other compounds of the pellicle, mainly fatty acids, and carbohydrates. Conclusions The dental pellicle is composed mainly of different proteins, but also fatty acids, and carbohydrates. Analysis with state-of-the-art analytical techniques have uncovered mainly acidic proline-rich proteins, amylase, cystatin, immunoglobulins, lysozyme, and mucins as main proteins of the dental pellicle. The pellicle has protective properties for the teeth. Further research is necessary to gain more knowledge about the role of the pellicle in the tooth remineralization process.
Collapse
Affiliation(s)
- Joachim Enax
- Research Department, Dr. Kurt Wolff GmbH & Co. KG, Bielefeld, Germany
| | - Bernhard Ganss
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Bennett T. Amaechi
- Department of Comprehensive Dentistry, School of Dentistry, University of Texas Health San Antonio, San Antonio, TX, United States
| | | | - Frederic Meyer
- Research Department, Dr. Kurt Wolff GmbH & Co. KG, Bielefeld, Germany
| |
Collapse
|
7
|
Priya Aarthy A, Sen S, Srinivasan M, Muthukumar S, Madhanraj P, Akbarsha MA, Archunan G. Ectopic pregnancy: search for biomarker in salivary proteome. Sci Rep 2023; 13:16828. [PMID: 37803047 PMCID: PMC10558548 DOI: 10.1038/s41598-023-43791-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023] Open
Abstract
Ectopic pregnancy (EP) is associated with high maternal morbidity and mortality. Ultrasonography is the only dependable diagnostic tool for confirming an ectopic pregnancy. In view of inadequate early detection methods, women suffer from a high-life risk due to the severity of EP. Early detection of EP using pathological/molecular markers will possibly improve clinical diagnosis and patient management. Salivary proteins contain potential biomarkers for diagnosing and detecting various physiological and/or pathological conditions. Therefore, the present investigation was designed to explore the salivary proteome with special reference to EP. Gel-based protein separation was performed on saliva, followed by identification of proteins using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS). Totally, 326 proteins were identified in the salivary samples, among which 101 were found to be specific for ruptured ectopic pregnancy (EPR). Reactome analysis revealed innate immune system, neutrophil degranulation, cell surface interactions at the vascular wall, and FCERI-mediated NF-kB activation as the major pathways to which the salivary proteins identified during EPR are associated. Glutathione-S-transferase omega-1 (GSTO1) is specific for EPR and has been reported as a candidate biomarker in the serum of EPR patients. Therefore, saliva would be a potential source of diagnostic non-invasive protein biomarker(s) for EP. Intensive investigation on the salivary proteins specific to EP can potentially lead to setting up of a panel of candidate biomarkers and developing a non-invasive protein-based diagnostic kit.
Collapse
Affiliation(s)
- Archunan Priya Aarthy
- Department of Obstetrics and Gynecology, Rabindra Nath Tagore Medical College, Udaipur, Rajasthan, India.
- Department of Obstetrics and Gynecology, Saveetha Medical College and Hospital, Deemed University, Chennai, India.
| | - Sangeetha Sen
- Department of Obstetrics and Gynecology, Rabindra Nath Tagore Medical College, Udaipur, Rajasthan, India
| | - Mahalingam Srinivasan
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Subramanian Muthukumar
- Deparment of Biotechnology, School of Chemical & Biotechnology (SCBT), SASTRA Deemed University, Thanjavur, Tamil Nadu, India.
| | - Pakirisamy Madhanraj
- Department of Microbiology, Marudupandiyar College, Thanjavur, Tamil Nadu, India
| | - Mohammad Abdulkader Akbarsha
- Mahatma Gandhi-Doerenkamp Centre for Alternatives, Bharathidasan University, Tiruchchirappalli, India
- Department of Biotechnology & Microbiology, National College (Autonomous), Tiruchchirappalli, India
| | - Govindaraju Archunan
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.
- Marudupandiyar College, Thanjavur, Tamil Nadu, India.
| |
Collapse
|
8
|
Wooster TJ, Loussert-Fonta C, Ash A, Stoudmann R, Hass R, Colijn I. Novel oral microscope gives mechanistic insights into colloidal drivers of friction in oral biofilms. J Colloid Interface Sci 2023; 646:426-437. [PMID: 37207424 DOI: 10.1016/j.jcis.2023.04.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/21/2023] [Accepted: 04/30/2023] [Indexed: 05/21/2023]
Abstract
Texture and mouthfeel are central to the sensory enjoyment of food and beverages. Yet our incomplete understanding of how food boluses are transformed in the mouth limits our texture prediction ability. As well as thin film tribology, the interaction of food colloids with the oral tissue and salivary biofilms plays a key role in texture perception via mechanoreceptors in the papillae. In this study we describe the development of an oral microscope capable of quantitative characterization of the inactions of food colloids with papillae and their concurrent saliva biofilm. We also highlight how the oral microscope revealed key microstructural drivers of several topical phenomena (oral residue formation, coalescence in-mouth, grittiness of protein aggregates and finally microstructural origin of polyphenol astringency) in the domain of texture creation. The coupling of a fluorescent food grade dye with image analysis enabled specific and quantitative determination of the microstructural changes in mouth. Emulsions either underwent no aggregation, small aggregation, or extensive aggregation depending on whether their surface charge facilitated complexation with the saliva biofilm. Quite surprisingly cationic gelatin emulsions that were already aggregated with saliva in mouth underwent coalescence if subsequently exposed to tea polyphenols (EGCG). Large protein aggregates were found to aggregate with the saliva coated papillae, increasing their size tenfold and possibly explaining why there are perceived as gritty. An exciting observation was the oral microstructural changes that occurred upon exposure to tea polyphenols (EGCG). Filiform papillae shrunk, and the saliva biofilm was seen to precipitate/collapse, exposing a very rough tissue surface. These tentative early steps are the first in vivo microstructural insights into the different food oral transformations that are drivers of key texture sensation.
Collapse
Affiliation(s)
- Tim J Wooster
- Nestlé Institute of Food Sciences, Nestlé Research, Vers Chez les Blancs, Lausanne, Switzerland.
| | - Céline Loussert-Fonta
- Nestlé Institute of Food Sciences, Nestlé Research, Vers Chez les Blancs, Lausanne, Switzerland
| | - Anthony Ash
- Nestlé Institute of Food Sciences, Nestlé Research, Vers Chez les Blancs, Lausanne, Switzerland; Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Romain Stoudmann
- Nestlé Institute of Food Sciences, Nestlé Research, Vers Chez les Blancs, Lausanne, Switzerland
| | | | - Ivanna Colijn
- Nestlé Institute of Food Sciences, Nestlé Research, Vers Chez les Blancs, Lausanne, Switzerland; Wageningen University & Research, Wageningen, Gelderland, Netherlands
| |
Collapse
|
9
|
New perspectives for mechanisms, ingredients, and their preparation for promoting the formation of beneficial bacterial biofilm. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-022-01777-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
10
|
Novel antibody assessment method for microbial compositional alteration in the oral cavity. Biochem Biophys Rep 2022; 30:101269. [PMID: 35518198 PMCID: PMC9065711 DOI: 10.1016/j.bbrep.2022.101269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/08/2022] [Accepted: 04/25/2022] [Indexed: 12/02/2022] Open
Abstract
Recently, it has been demonstrated that dysbiosis, an alteration in commensal microflora composition, is intimately involved in the onset of a variety of diseases. It is becoming increasingly evident that the composition of commensal microflora in the oral cavity is closely connected to oral diseases, such as periodontal disease, and systemic diseases, such as inflammatory bowel disease. Next-generation sequencing techniques are used as a method to examine changes in bacterial flora, but additional analytical methods to assess bacterial flora are needed to understand bacterial activity in more detail. In addition, the oral environment is unique because of the role of secretory antibodies contained in saliva in the formation of bacterial flora. The present study aimed to develop a new method for evaluating the compositional change of microbiota using flow cytometry (FCM) with specific antibodies against the bacterial surface antigen, as well as salivary antibodies. Using specific antibodies against Streptococcus mutans, a causative agent of dental caries, and human IgA, bacterial samples from human saliva were analyzed via FCM. The results showed that different profiles could be obtained depending on the oral hygiene status of the subjects. These results suggest that changes in the amount and type of antibodies that bind to oral bacteria may be an indicator for evaluating abnormalities in the oral flora. Therefore, the protocol established in this report could be applied as an evaluation method for alterations in the oral microbiota. We aimed to develop a new method for evaluating dysbiosis using flow cytometry. We used bacterial surface antigen-specific antibodies and salivary antibodies. Different profiles could be obtained depending on oral hygiene status. Changes in antibodies bound to oral bacteria may indicate oral flora abnormalities. Our method can be used to evaluate alterations in the oral microbiota.
Collapse
|
11
|
Protein-induced delubrication: How plant-based and dairy proteins affect mouthfeel. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Lima BP, Davies JR, Wickström C, Johnstone KF, Hall JW, Svensater G, Herzberg MC. Streptococcus gordonii Poised for Glycan Feeding through a MUC5B-Discriminating, Lipoteichoic Acid-Mediated Outside-In Signaling Circuit. J Bacteriol 2022; 204:e0011822. [PMID: 35652671 PMCID: PMC9210975 DOI: 10.1128/jb.00118-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/09/2022] [Indexed: 11/20/2022] Open
Abstract
Many oral bacteria employ cell wall-anchored adhesins to bind to the salivary films coating the teeth and mucosal surfaces. Surface binding prevents clearance and facilitates catabolism of salivary film glycoproteins. We asked whether Streptococcus gordonii adhesin expression changes in response to surface salivary cues using a eukaryote-like, outside-in recognition and signaling circuit. To determine whether the cues were discriminated, S. gordonii was tested during cell adhesion and biofilm formation on a MUC5B-rich or lower-molecular-mass salivary fraction or an uncoated abiotic surface. Cells were recovered and analyzed for differences in gene expression and proteins in cell wall fractions. In salivary-free conditions, planktonic S. gordonii presented three prominent cell wall LPXTG-motif proteins, SGO_1487, SGO_0890, and MbpA (mucin-binding protein A; SGO_0707). During biofilm formation on MUC5B-coated surfaces, MbpA, a MUC5B-binding protein, and key genes in the tagatose and quorum-sensing pathways were strongly promoted. The response to MUC5B required the two-component system (TCS), streptococcal regulator of adhesins sensor and regulator (SraSR, SGO_1180/81), lipoteichoic acid (LTA), and the homologous paired adhesins, SspA and SspB (SspAB). LTA appears to link the outside signal (MUC5B) to intramembrane SraSR. Tagatose pathway gene expression may poise cells to metabolize MUC5B glycans and, with a quorum-sensing gene (luxS), may direct formation of a consortium to facilitate glycan cross-feeding by S. gordonii. We now show that a Gram-positive bacterium discriminates specific surface environmental cues using an outside-in signaling mechanism to apparently optimize colonization of saliva-coated surfaces. IMPORTANCE All organisms throughout the tree of life sense and respond to their surface environments. To discriminate among mucosal surface environmental cues, we report that Streptococcus gordonii recognizes a high-molecular-weight mucin glycoprotein, MUC5B, using the paired adhesins SspAB and lipoteichoic acid; the latter bridges the outside signal to an intramembrane two-component system to transcriptionally regulate a MUC5B-specific adhesin and genes that may facilitate glycan catabolism.
Collapse
Affiliation(s)
- Bruno P. Lima
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Julia R. Davies
- Section for Oral Biology and Pathology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Claes Wickström
- Section for Oral Biology and Pathology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Karen F. Johnstone
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jeffrey W. Hall
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gunnel Svensater
- Section for Oral Biology and Pathology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Mark C. Herzberg
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
13
|
Colijn I, Ash A, Dufauret M, Lepage M, Loussert-Fonta C, Leser ME, Wilde PJ, Wooster TJ. Colloidal dynamics of emulsion droplets in mouth. J Colloid Interface Sci 2022; 620:153-167. [PMID: 35421752 DOI: 10.1016/j.jcis.2022.03.117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 11/20/2022]
Abstract
The interaction of emulsions with the tongue is key to the sensory appeal of food and can potentially be exploited for oral/buccal pharmaceutical delivery. Whilst there is good understanding of the different mucoadhesive forces governing emulsion interaction with the tongue, their relative importance is not well understood. In addition, the physical location of emulsions within the saliva papillae on the tongue is not understood at all. A combination of ex vivo salivary film, and in vivo oral coating experiments were used to determine the importance of different mucoadhesive forces. Mucoadhesion of cationic emulsions was largely driven by electrostatic complexation. SDS-PAGE of the in vivo saliva coating highlighted that mucins were largely responsible for cationic emulsion mucoadhesion. Anionic emulsions were bound via hydrophobic/steric interactions to small salivary proteins typically located away from the mucin anchor points. The physical location and clustering of emulsions relative to the salivary film/papillae was probed via the invention of a fluorescent oral microscope. Cationic emulsions were densely clustered close to the papillae whilst anionic emulsions were suspended in the salivary film above the papillae. Interestingly, non-ionic emulsions were also trapped within the salivary film above the papillae as individual droplets. These findings highlight that whilst electrostatic complexation with saliva is a powerful mucoadhesive force, hydrophobic and steric interactions also act to induce oral retention of emulsions. The differences in physical location and clustering of emulsions within the salivary film hint at the 3D locations of the different salivary proteins driving each mucoadhesive interaction. This novel understanding of emulsion saliva/papillae interactions has potential to aid efficacy of buccal pharmaceutical delivery and the reduction of astringency in plant-based foods.
Collapse
Affiliation(s)
- Ivanna Colijn
- Nestlé Institute of Material Sciences, Nestlé Research, Vers Chez les Blancs, Lausanne, Switzerland; Wageningen University & Research, Wageningen, Gelderland, Netherlands
| | - Anthony Ash
- Nestlé Institute of Material Sciences, Nestlé Research, Vers Chez les Blancs, Lausanne, Switzerland; Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Marie Dufauret
- Nestlé Institute of Material Sciences, Nestlé Research, Vers Chez les Blancs, Lausanne, Switzerland
| | - Melissa Lepage
- Nestlé Institute of Material Sciences, Nestlé Research, Vers Chez les Blancs, Lausanne, Switzerland
| | - Céline Loussert-Fonta
- Nestlé Institute of Material Sciences, Nestlé Research, Vers Chez les Blancs, Lausanne, Switzerland
| | - Martin E Leser
- Nestlé Institute of Material Sciences, Nestlé Research, Vers Chez les Blancs, Lausanne, Switzerland
| | - Peter J Wilde
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Tim J Wooster
- Nestlé Institute of Material Sciences, Nestlé Research, Vers Chez les Blancs, Lausanne, Switzerland.
| |
Collapse
|
14
|
Uchida H, Ovitt CE. Novel impacts of saliva with regard to oral health. J Prosthet Dent 2022; 127:383-391. [PMID: 34140141 PMCID: PMC8669010 DOI: 10.1016/j.prosdent.2021.05.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022]
Abstract
The maintenance of balanced oral homeostasis depends on saliva. A readily available and molecularly rich source of biological fluid, saliva fulfills many functions in the oral cavity, including lubrication, pH buffering, and tooth mineralization. Saliva composition and flow can be modulated by different factors, including circadian rhythm, diet, age, drugs, and disease. Recent events have revealed that saliva plays a central role in the dissemination and detection of the SARS-CoV-2 coronavirus. A working knowledge of saliva function and physiology is essential for dental health professionals.
Collapse
Affiliation(s)
- Hitoshi Uchida
- Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Catherine E. Ovitt
- Department of Biomedical Genetics, Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| |
Collapse
|
15
|
Blakeley M, Sharma PK, Kaper HJ, Bostanci N, Crouzier T. Lectin-Functionalized Polyethylene Glycol for Relief of Mucosal Dryness. Adv Healthc Mater 2022; 11:e2101719. [PMID: 34710279 DOI: 10.1002/adhm.202101719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/21/2021] [Indexed: 11/08/2022]
Abstract
The importance of lubrication between oral surfaces provided by the salivary film is most acutely apparent when it is disrupted, a prevalent consequence of salivary gland hypofunction experienced with aging, a symptom of certain diseases, or a side effect of some medical interventions. Sufferers report difficulty with speech and oral food processing and collectively is detrimental to quality of life. Polyethylene glycol (PEG) is widely employed as a successful biocompatible boundary lubricant in engineering and biomedical applications. It is hypothesized that the immobilization of PEG to biological materials such as oral epithelial cells and tissue can mimic the salivary film and provide durable relief from the symptoms of mucosal dryness. To do so, PEG is functionalized with a sugar binding lectin (wheat germ agglutinin) to enhance epithelial adhesion through lectin-sugar interactions. Retention and lubricity are characterized on an ex vivo oral tissue tribology rig. WGA-PEG coats and retains on mucin films, oral epithelial cells, and porcine tongue tissue, and offers sustained reduction in coefficient of friction (COF). WGA-PEG could be developed into a useful topical treatment for reducing oral friction and the perception of dry mouth.
Collapse
Affiliation(s)
- Matthew Blakeley
- Division of Glycoscience Department of Chemistry School of Engineering Sciences in Chemistry Biotechnology and Health KTH – Royal Institute of Technology AlbaNova University Centre Stockholm 106 91 Sweden
| | - Prashant K. Sharma
- Department of Biomedical Engineering University of Groningen and University Medical Centre Groningen Groningen 9713 AV The Netherlands
| | - Hans J. Kaper
- Department of Biomedical Engineering University of Groningen and University Medical Centre Groningen Groningen 9713 AV The Netherlands
| | - Nagihan Bostanci
- Division of Oral Diseases Department of Dental Medicine Karolinska Institutet Huddinge 141 52 Sweden
| | - Thomas Crouzier
- Division of Glycoscience Department of Chemistry School of Engineering Sciences in Chemistry Biotechnology and Health KTH – Royal Institute of Technology AlbaNova University Centre Stockholm 106 91 Sweden
- AIMES – Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH – Royal Institute of Technology Stockholm 114 28 Sweden
- Department of Neuroscience Karolinska Institutet Stockholm 171 77 Sweden
| |
Collapse
|
16
|
Hertel S, Hannig M, Hannig C, Sterzenbach T. Mucins 5b and 7 and secretory IgA in the oral acquired pellicle of children with caries and caries-free children. Arch Oral Biol 2021; 134:105314. [PMID: 34861462 DOI: 10.1016/j.archoralbio.2021.105314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The objective of this study was to determine whether differences in the abundance of mucins 5b and 7 as well as secretory IgA exist in the oral acquired pellicle between children with active caries and caries-free children. DESIGN Pellicle formation was performed for 10 min in-situ on ceramic slabs in the oral cavity of children (5-7 years of age) with caries (n = 15) and without signs of caries (n = 13). Furthermore, unstimulated saliva was collected. Concentrations of Muc5b, Muc7 and sIgA were measured in desorbed pellicle eluates and in saliva. RESULTS Significantly larger concentrations of Muc5b, Muc7 and sIgA were detected in the pellicle obtained from children with caries compared to caries-free children. However, in the salivary samples concentrations of mucins Muc5b and Muc7 as well as sIgA did not differ significantly between the two groups. CONCLUSIONS All three pellicle components Muc5b, Muc7 as well as sIgA could be identified as potential biomarkers for early childhood caries with high sensitivity and specificity. This could contribute to a better understanding of the different caries susceptibility in children.
Collapse
Affiliation(s)
- Susann Hertel
- Clinic of Operative Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany.
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Faculty of Medicine, Saarland University, Kirrberger Straße, 66421 Homburg, Saar, Germany
| | - Christian Hannig
- Clinic of Operative Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Torsten Sterzenbach
- Clinic of Operative Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| |
Collapse
|
17
|
Liang Z, Zhang P, Zeng XA, Fang Z. The art of flavored wine: Tradition and future. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Shen D, Ono K, Do Q, Ohyama H, Nakamura K, Obata K, Ibaragi S, Watanabe K, Tubbs RS, Iwanaga J. Clinical anatomy of the inferior labial gland: a narrative review. Gland Surg 2021; 10:2284-2292. [PMID: 34422599 DOI: 10.21037/gs-21-143] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 06/03/2021] [Indexed: 12/20/2022]
Abstract
Objective In this article we review the literature on the inferior labial gland from a clinical and anatomical perspective. Background Regardless of its importance in clinical practice, there are no medical literature that comprehensively reviewed the inferior labial gland. Methods A database search using PubMed and Google Scholar was conducted. The following keywords were used in the search: "lower labial salivary gland", "lower labial gland", "inferior labial salivary gland", AND "inferior labial gland". Conclusions The human labial glands are types of minor salivary gland that continuously secrete small amounts of mucous and serous substances to maintain oral health. The inferior labial glands are innervated by the inferior labial branch of the mental nerve, and the inferior labial branch of the facial artery is the main arterial supply to the lower lip. Although they only have an auxiliary role in saliva production compared to the major salivary glands, minor salivary glands provide a certain amount of lubrication in the oral cavity by the continuous outflow of saliva. The inferior labial gland not only promotes moisturization in the oral cavity but also secretes substances with antibacterial effects, which is important for the function of the oral cavity. A recent study showed that the rate of salivary secretion from the inferior labial glands does not change with age, and in some cases the inferior labial glands are used for diagnosing intractable diseases such as Sjogren's syndrome and cystic fibrosis. In addition, since the inferior labial glands themselves can be the site of cyst and/or neoplasia development, we should be careful to distinguish them from other diseases. Elucidation of the anatomy, physiology, and pathology of the inferior labial glands, is important for understanding human health and diseases.
Collapse
Affiliation(s)
- Daniel Shen
- Harvard School of Dental Medicine, Harvard University, Boston, MA, USA
| | - Kisho Ono
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Quang Do
- Harvard School of Dental Medicine, Harvard University, Boston, MA, USA
| | - Hiroe Ohyama
- Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, MA, USA
| | - Ken Nakamura
- Dental and Oral Medical Center, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Kyoichi Obata
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Soichiro Ibaragi
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Koichi Watanabe
- Division of Gross and Clinical Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - R Shane Tubbs
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA, USA.,Department of Neurology, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA, USA.,Department of Anatomical Sciences, St. George's University, St. George's, Grenada.,Department of Structural & Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA.,Department of Neurosurgery and Ochsner Neuroscience Institute, Ochsner Health System, New Orleans, LA, USA.,Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Joe Iwanaga
- Dental and Oral Medical Center, Kurume University School of Medicine, Kurume, Fukuoka, Japan.,Division of Gross and Clinical Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, Fukuoka, Japan.,Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA, USA.,Department of Neurology, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
19
|
Flemming J, Meyer-Probst CT, Speer K, Kölling-Speer I, Hannig C, Hannig M. Preventive Applications of Polyphenols in Dentistry-A Review. Int J Mol Sci 2021; 22:4892. [PMID: 34063086 PMCID: PMC8124254 DOI: 10.3390/ijms22094892] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 01/18/2023] Open
Abstract
Polyphenols are natural substances that have been shown to provide various health benefits. Antioxidant, anti-inflammatory, and anti-carcinogenic effects have been described. At the same time, they inhibit the actions of bacteria, viruses, and fungi. Thus, studies have also examined their effects within the oral cavity. This review provides an overview on the different polyphenols, and their structure and interactions with the tooth surface and the pellicle. In particular, the effects of various tea polyphenols on bioadhesion and erosion have been reviewed. The current research confirms that polyphenols can reduce the growth of cariogenic bacteria. Furthermore, they can decrease the adherence of bacteria to the tooth surface and improve the erosion-protective properties of the acquired enamel pellicle. Tea polyphenols, especially, have the potential to contribute to an oral health-related diet. However, in vitro studies have mainly been conducted. In situ studies and clinical studies need to be extended and supplemented in order to significantly contribute to additive prevention measures in caries prophylaxis.
Collapse
Affiliation(s)
- Jasmin Flemming
- Clinic of Operative Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, D-01307 Dresden, Germany; (J.F.); (C.H.)
| | - Clara Theres Meyer-Probst
- Clinic of Operative Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, D-01307 Dresden, Germany; (J.F.); (C.H.)
| | - Karl Speer
- Special Food Chemistry and Food Production, TU Dresden, Bergstraße 66, D-01069 Dresden, Germany; (K.S.); (I.K.-S.)
| | - Isabelle Kölling-Speer
- Special Food Chemistry and Food Production, TU Dresden, Bergstraße 66, D-01069 Dresden, Germany; (K.S.); (I.K.-S.)
| | - Christian Hannig
- Clinic of Operative Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, D-01307 Dresden, Germany; (J.F.); (C.H.)
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital, Saarland University, Building 73, D-66421 Homburg, Germany;
| |
Collapse
|
20
|
Vlădescu SC, Bozorgi S, Hu S, Baier SK, Myant C, Carpenter G, Reddyhoff T. Effects of beverage carbonation on lubrication mechanisms and mouthfeel. J Colloid Interface Sci 2021; 586:142-151. [PMID: 33162047 DOI: 10.1016/j.jcis.2020.10.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 11/27/2022]
Abstract
The perception of carbonation is an important factor in beverage consumption which must be understood in order to develop healthier products. Herein, we study the effects of carbonated water on oral lubrication mechanisms involved in beverage mouthfeel and hence taste perception. Friction was measured in a compliant PDMS-glass contact simulating the tongue-palate interface (under representative speeds and loads), while fluorescence microscopy was used to visualise both the flow of liquid and oral mucosal pellicle coverage. When carbonated water is entrained into the contact, CO2 cavities form at the inlet, which limit flow and thus reduce the hydrodynamic pressure. Under mixed lubrication conditions, when the fluid film thickness is comparable to the surface roughness, this pressure reduction results in significant increases in friction (>300% greater than under non-carbonated water conditions). Carbonated water is also shown to be more effective than non-carbonated water at debonding the highly lubricious, oral mucosal pellicle, which again results in a significant increase in friction. Both these transient mechanisms of starvation and salivary pellicle removal will modulate the flow of tastants to taste buds and are suggested to be important in the experience of taste and refreshment. For example this may be one reason why flat colas taste sweeter.
Collapse
Affiliation(s)
- Sorin-Cristian Vlădescu
- Tribology Group, Department of Mechanical Engineering, Imperial College London, South Kensington, Exhibition Road, SW7 2AZ London, United Kingdom
| | - Sophie Bozorgi
- Salivary Research Unit, Faculty of Dental, Oral and Craniofacial Sciences, King's College London Dental Institute, Floor 17 Guy's Tower, London SE1 9RT, UK
| | - Songtao Hu
- Tribology Group, Department of Mechanical Engineering, Imperial College London, South Kensington, Exhibition Road, SW7 2AZ London, United Kingdom; State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Stefan K Baier
- PepsiCo Global Functions, Measurement Science, 3 Skyline Drive, Hawthorne, NY 10532, USA; School of Chemical Engineering, The University of Queensland, Brisbane 4072, Queensland, Australia
| | - Connor Myant
- Robotics and Manufacturing Group, Dyson School of Design Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Guy Carpenter
- Salivary Research Unit, Faculty of Dental, Oral and Craniofacial Sciences, King's College London Dental Institute, Floor 17 Guy's Tower, London SE1 9RT, UK
| | - Tom Reddyhoff
- Tribology Group, Department of Mechanical Engineering, Imperial College London, South Kensington, Exhibition Road, SW7 2AZ London, United Kingdom.
| |
Collapse
|
21
|
Investigation of Changes in Saliva in Radiotherapy-Induced Head Neck Cancer Patients. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041629. [PMID: 33572065 PMCID: PMC7914760 DOI: 10.3390/ijerph18041629] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022]
Abstract
The intact function of the salivary glands is of utmost importance for oral health. During radiotherapy in patients with head and neck tumors, the salivary glands can be damaged, causing the composition of saliva to change. This leads to xerostomia, which is a primary contributor to oral mucositis. Medications used for protective or palliative treatment often show poor efficacy as radiation-induced changes in the physico-chemical properties of saliva are not well understood. To improve treatment options, this study aimed to carefully examine unstimulated whole saliva of patients receiving radiation therapy and compare it with healthy unstimulated whole saliva. To this end, the pH, osmolality, electrical conductivity, buffer capacity, the whole protein and mucin concentrations, and the viscoelastic and adhesive properties were investigated. Moreover, hyaluronic acid was examined as a potential candidate for a saliva replacement fluid. The results showed that the pH of radiation-induced saliva shifted from neutral to acidic, the osmolality increased and the viscoelastic properties changed due to a disruption of the mucin network and a change in water secretion from the salivary glands. By adopting an aqueous 0.25% hyaluronic acid formulation regarding the lost properties, similar adhesion characteristics as in healthy, unstimulated saliva could be achieved.
Collapse
|
22
|
In Vivo Colonization with Candidate Oral Probiotics Attenuates Colonization and Virulence of Streptococcus mutans. Appl Environ Microbiol 2021; 87:AEM.02490-20. [PMID: 33277269 PMCID: PMC7851695 DOI: 10.1128/aem.02490-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A collection of 113 Streptococcus strains from supragingival dental plaque of caries-free individuals were recently tested in vitro for direct antagonism of the dental caries pathogen Streptococcus mutans, and for their capacity for arginine catabolism via the arginine deiminase system (ADS). To advance their evaluation as potential probiotics, twelve strains of commensal oral streptococci with various antagonistic and ADS potentials were assessed in a mouse model for oral (i.e., oral mucosal pellicles and saliva) and dental colonization under four diets (healthy or high-sucrose, with or without prebiotic arginine). Colonization by autochthonous bacteria was also monitored. One strain failed to colonize, whereas oral colonization by the other eleven strains varied by 3 log units. Dental colonization was high for five strains regardless of diet, six strains increased colonization with at least one high-sucrose diet, and added dietary arginine decreased dental colonization of two strains. Streptococcus sp. A12 (high in vitro ADS activity and antagonism) and two engineered mutants lacking the ADS (ΔarcADS) or pyruvate oxidase-mediated H2O2 production (ΔspxB) were tested for competition against S. mutans UA159. A12 wild type and ΔarcADS colonized only transiently, whereas ΔspxB persisted, but without altering oral or dental colonization by S. mutans In testing four additional candidates, S. sanguinis BCC23 markedly attenuated S. mutans' oral and dental colonization, enhanced colonization of autochthonous bacteria, and decreased severity of smooth surface caries under highly cariogenic conditions. Results demonstrate the utility of the mouse model to evaluate potential probiotics, revealing little correlation between in vitro antagonism and competitiveness against S. mutans in vivo IMPORTANCE Our results demonstrate in vivo testing of potential oral probiotics can be accomplished and can yield information to facilitate the ultimate design and optimization of novel anti-caries probiotics. We show human oral commensals associated with dental health are an important source of potential probiotics that may be used to colonize patients under dietary conditions of highly varying cariogenicity. Assessment of competitiveness against dental caries pathogen Streptococcus mutans and impact on caries identified strains or genetic elements for further study. Results also uncovered strains that enhanced oral and dental colonization by autochthonous bacteria when challenged with S. mutans, suggesting cooperative interactions for future elucidation. Distinguishing a rare strain that effectively compete with S. mutans under conditions that promote caries further validates our systematic approach to more critically evaluate probiotics for use in humans.
Collapse
|
23
|
Evaluation of the Effect of a Grape Seed Tannin Extract on Wine Ester Release and Perception Using In Vitro and In Vivo Instrumental and Sensory Approaches. Foods 2021; 10:foods10010093. [PMID: 33466484 PMCID: PMC7824827 DOI: 10.3390/foods10010093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/31/2020] [Accepted: 01/02/2021] [Indexed: 12/29/2022] Open
Abstract
This study aimed to systematically evaluate the effect of a commercial grape seed tannin extract (GSE) fully characterized (53% monomers, 47% procyanidins) on wine ester release and perception using a global approach. The behavior of two esters (ethyl hexanoate, ethyl decanoate) was studied in a control wine or in the same wine supplemented with the GSE in preconsumption (in vitro headspace-stir bar sorptive extraction-gas chromatography mass spectrometry (HS-SBSE-GC/MS) and orthonasal perception) and consumption (intraoral-HS-SBSE-GC/MS and dynamic retronasal perception) conditions. For the compound ethyl hexanoate, no significant differences (p > 0.05) among wines were observed in the in vitro analyses while they were observed in the three in vivo experiments (p < 0.05). Thus, the wine supplemented with the GSE showed lower (35%) in vivo release and ortho (36%) and retronasal (16%) perception scores than the control wine. Overall, this suggests that components of the GSE could interact with this compound, directly and/or through complexes with oral components, affecting its release and conditioning its perception. However, perceptual interactions and effects of polyphenols on oral esterases cannot be discarded. On the contrary, the compound ethyl decanoate was not significantly affected by the addition of GSE. In conclusion, the addition of tannin extracts to wines can modulate aroma perception in a compound-dependent manner.
Collapse
|
24
|
Lyu J, Chen S, Nie Y, Xu Y, Tang K. Aroma release during wine consumption: Factors and analytical approaches. Food Chem 2020; 346:128957. [PMID: 33460960 DOI: 10.1016/j.foodchem.2020.128957] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/14/2020] [Accepted: 12/23/2020] [Indexed: 10/22/2022]
Abstract
During wine consumption, aroma compounds are released from the wine matrix and are transported to the olfactory receptor in vivo, leading to retronasal perception which can affect consumer acceptance. During this process, in addition to the influence of the wine matrix compositions, some physiological factors can significantly influence aroma release leading to altered concentrations of the aroma compounds that reach the receptors. Therefore, this review is focused on the impact of multiple factors, including the physiology and wine matrix, on the aroma released during wine tasting. Moreover, to reflect the pattern of volatiles that reach the olfactory receptors during wine consumption, some analytical approaches have been described for in vitro and in vivo conditions.
Collapse
Affiliation(s)
- Jiaheng Lyu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu, PR China; State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu, PR China
| | - Shuang Chen
- Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu, PR China; State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu, PR China
| | - Yao Nie
- Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu, PR China; State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu, PR China
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu, PR China; State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu, PR China.
| | - Ke Tang
- Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu, PR China; State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu, PR China.
| |
Collapse
|
25
|
Oral mucosal pellicle as an immune protection against micro-organisms in patients with recurrent aphthous stomatitis: A hypothesis. Med Hypotheses 2020; 146:110449. [PMID: 33359920 DOI: 10.1016/j.mehy.2020.110449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/29/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022]
Abstract
Recurrent Aphthous Stomatitis (RAS) is the most common ulcerative diseases of oral mucosa affecting an estimate of 20% of the world's population. Majority of the people affected by RAS are under 30 years of age. RAS is located on the lining (non-keratinized) oral mucosa, i.e. buccal mucosa, lateral side of the tongue, soft palate, lip mucosa, or the floor of mouth. An aphthous ulcer develops when lymphocytic cells infiltrate into the epithelium and cause an edema due to transient inflammatory stimuli. Bacteria, viruses and fungi have been suggested to cause aphthous lesions, but findings regarding oral pathogens are conflicting. Prior consensus has been that RAS is a multifactorial condition, with microbes, allergies, nutritional deficiencies, genetic factors, certain illnesses, immunodeficiency, hormonal changes, trauma and stress among others, contributing to the condition. In spite of many suggestions and investigations, the etiology and pathophysiology of RAS remains uncertain. Our hypothesis focuses on mucin proteins that have been shown to play a role in the formation of protective mucosal pellicle, which serves as the first line of defense between oral epithelium and pathogens within the oral cavity. Mucins, including transmembrane mucin 1 (MUC1), and salivary mucins MUC5B and MUC7 form a protein network that is strongly retained to oral epithelium. The role of the mucosal pellicle in pathophysiology of RAS is unknown. Structural variations have been found in the salivary MUC7 terminal end oligosaccharides in RAS patients, rendering the protein unable to agglutinate pathogens. Furthermore, low levels of MUC1 fail to provide a scaffold for assembly of salivary mucins. We introduce a new hypothesis, the alterations in the structure of these glycoproteins could have a profound impact on the oral mucosal barrier function. On the other hand, micro-organisms secreting their mucolytic enzymes destroy the mucosal pellicle causing oral ulcers.
Collapse
|
26
|
Saitou M, Gaylord EA, Xu E, May AJ, Neznanova L, Nathan S, Grawe A, Chang J, Ryan W, Ruhl S, Knox SM, Gokcumen O. Functional Specialization of Human Salivary Glands and Origins of Proteins Intrinsic to Human Saliva. Cell Rep 2020; 33:108402. [PMID: 33207190 PMCID: PMC7703872 DOI: 10.1016/j.celrep.2020.108402] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/31/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022] Open
Abstract
Salivary proteins are essential for maintaining health in the oral cavity and proximal digestive tract, and they serve as potential diagnostic markers for monitoring human health and disease. However, their precise organ origins remain unclear. Through transcriptomic analysis of major adult and fetal salivary glands and integration with the saliva proteome, the blood plasma proteome, and transcriptomes of 28+ organs, we link human saliva proteins to their source, identify salivary-gland-specific genes, and uncover fetal- and adult-specific gene repertoires. Our results also provide insights into the degree of gene retention during gland maturation and suggest that functional diversity among adult gland types is driven by specific dosage combinations of hundreds of transcriptional regulators rather than by a few gland-specific factors. Finally, we demonstrate the heterogeneity of the human acinar cell lineage. Our results pave the way for future investigations into glandular biology and pathology, as well as saliva's use as a diagnostic fluid.
Collapse
Affiliation(s)
- Marie Saitou
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY, U.S.A; Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, U.S.A; Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Viken, Norway
| | - Eliza A Gaylord
- Program in Craniofacial Biology, Department of Cell and Tissue Biology, School of Dentistry, University of California, San Francisco, CA, U.S.A
| | - Erica Xu
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY, U.S.A
| | - Alison J May
- Program in Craniofacial Biology, Department of Cell and Tissue Biology, School of Dentistry, University of California, San Francisco, CA, U.S.A
| | - Lubov Neznanova
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY, U.S.A
| | - Sara Nathan
- Program in Craniofacial Biology, Department of Cell and Tissue Biology, School of Dentistry, University of California, San Francisco, CA, U.S.A
| | - Anissa Grawe
- Program in Craniofacial Biology, Department of Cell and Tissue Biology, School of Dentistry, University of California, San Francisco, CA, U.S.A
| | - Jolie Chang
- Department of Otolaryngology, School of Medicine, University of California, San Francisco, CA, U.S.A
| | - William Ryan
- Department of Otolaryngology, School of Medicine, University of California, San Francisco, CA, U.S.A
| | - Stefan Ruhl
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY, U.S.A.
| | - Sarah M Knox
- Program in Craniofacial Biology, Department of Cell and Tissue Biology, School of Dentistry, University of California, San Francisco, CA, U.S.A.
| | - Omer Gokcumen
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY, U.S.A.
| |
Collapse
|
27
|
Cabiddu G, Maes P, Hyvrier F, Olianas A, Manconi B, Brignot H, Canon F, Cabras T, Morzel M. Proteomic characterization of the mucosal pellicle formed in vitro on a cellular model of oral epithelium. J Proteomics 2020; 222:103797. [PMID: 32360370 DOI: 10.1016/j.jprot.2020.103797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/19/2020] [Accepted: 04/25/2020] [Indexed: 11/19/2022]
Abstract
The oral mucosal pellicle is a thin lubricating layer generated by the binding of saliva proteins on epithelial oral cells. The protein composition of this biological structure has been to date studied by targeted analyses of specific salivary proteins. In order to perform a more exhaustive proteome characterization of pellicles, we used TR146 cells expressing or not the transmembrane mucin MUC1 and generated pellicles by incubation with human saliva and washing to remove unbound proteins. A suitable method was established for the in vitro isolation of the mucosal pellicle by "shaving" it from the cells using trypsin. The extracts, the washing solutions and the saliva used to constitute the pellicles were analyzed by LC MS/MS (data are available via ProteomeXchange with identifier PXD017268). Comparison of pellicle and saliva compositions evidenced the adsorption of proteins not previously reported as pellicle constituents such as proteins of the PLUNC family. Pellicles formed on TR146 and TR146/MUC1 were also analyzed and compared by protein label-free quantification. The two types of samples appeared as distinct clusters in multivariate analyses, but the discriminant proteins (Welch test p < .05, FDR < 0.1) were cellular rather than salivary proteins. SIGNIFICANCE: The oral mucosal pellicle is made of salivary proteins tightly bound to oral epithelial cells. It is essential to oral health, with biological functions depending largely on its protein constituents. Characterizing its proteome is difficult due to the intimate association of this protein layer to cell membranes. In this work, we report a trypsin "shaving" protocol which enabled to sample the pellicle formed on an in vitro cellular model of oral epithelium. Analyzing such samples by high-resolution mass spectrometry provided novel information on the mucosal pellicle composition. This work is therefore a good starting point for further characterization of this biological structure.
Collapse
Affiliation(s)
- Gianluigi Cabiddu
- Department of Life and Environmental Sciences, University of Cagliari, Italy.
| | - Pauline Maes
- CLIPP (Clinical Innovation Proteomic Platform), Pôle de Recherche Université de Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Franck Hyvrier
- CLIPP (Clinical Innovation Proteomic Platform), Pôle de Recherche Université de Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Alessandra Olianas
- Department of Life and Environmental Sciences, University of Cagliari, Italy
| | - Barbara Manconi
- Department of Life and Environmental Sciences, University of Cagliari, Italy
| | - Hélène Brignot
- Centre des Sciences du Goût et de l'Alimentation, (CSGA) AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Francis Canon
- Centre des Sciences du Goût et de l'Alimentation, (CSGA) AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Tiziana Cabras
- Department of Life and Environmental Sciences, University of Cagliari, Italy
| | - Martine Morzel
- Centre des Sciences du Goût et de l'Alimentation, (CSGA) AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche-Comté, F-21000 Dijon, France; Sciences et Technologie du Lait et de l'Oeuf (STLO), Agrocampus Ouest, INRAE, F-35042 Rennes, France
| |
Collapse
|
28
|
Abstract
The oral microbiome is one of the most stable ecosystems in the body and yet the reasons for this are still unclear. As well as being stable, it is also highly diverse which can be ascribed to the variety of niches available in the mouth. Previous studies have focused on the microflora in disease-either caries or periodontitis-and only recently have they considered factors that maintain the normal microflora. This has led to the perception that the microflora proliferate in nutrient-rich periods during oral processing of foods and drinks and starves in between times. In this review, evidence is presented which shows that the normal flora are maintained on a diet of salivary factors including urea, lactate, and salivary protein degradation. These factors are actively secreted by salivary glands which suggests these factors are important in maintaining normal commensals in the mouth. In addition, the immobilization of SIgA in the mucosal pellicle indicates a mechanism to retain certain bacteria that does not rely on the bacterial-centric mechanisms such as adhesins. By examining the salivary metabolome, it is clear that protein degradation is a key nutrient and the availability of free amino acids increases resistance to environmental stresses.
Collapse
Affiliation(s)
- G H Carpenter
- Salivary Research, Centre for Host-microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|
29
|
Perez-Jiménez M, Esteban-Fernández A, Muñoz-González C, Pozo-Bayón MA. Interactions among Odorants, Phenolic Compounds, and Oral Components and Their Effects on Wine Aroma Volatility. Molecules 2020; 25:molecules25071701. [PMID: 32276337 PMCID: PMC7180449 DOI: 10.3390/molecules25071701] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 01/08/2023] Open
Abstract
To determine the impact of oral physiology on the volatility of typical wine aroma compounds, mixtures of a synthetic wine with oral components (centrifuged human saliva (HS), artificial saliva with mucin (AS), and buccal epithelial cells (BC)) were prepared. Each wine type was independently spiked with four relevant wine odorants (guaiacol, β-phenyl ethanol, ethyl hexanoate, and β-ionone). Additionally, the impact of four types of phenolic compounds (gallic acid, catechin, grape seed extract, and a red wine extract) on aroma volatility in the HS, AS, and BC wines was also assessed. Static headspace was measured at equilibrium by solid phase microextraction–GC/MS analysis. Results showed a significant impact of oral components on the volatility of the four tested odorants. Independently of the type of aroma compound, aroma volatility was in general, higher in wines with BC. Moreover, while guaiacol and ethyl hexanoate volatility was significantly lower in wines with HS compared to wines with AS, β-ionone showed the opposite behavior, which might be related to metabolism and retention of mucin, respectively. Phenolic compounds also showed a different effect on aroma volatility depending on the type of compound and wine. Gallic acid had little effect on polar compounds but it enhanced the volatility of the most hydrophobic ones (ethyl hexanoate and β-ionone). In general, flavonoid type polyphenols significantly reduced the volatility of both polar (guaiacol and β-phenyl ethanol) and hydrophobic compounds (β-ionone in HS and BC wines), but through different mechanisms (e.g., π–π interactions and hydrophobic binding for polar and apolar odorants respectively). On the contrary, flavonoids enhanced the volatility of ethyl hexanoate, which might be due to the inhibition exerted on some salivary enzymes (e.g., carboxyl esterase) involved in the metabolism of this odorant molecule.
Collapse
|
30
|
Ployon S, Brulé M, Andriot I, Morzel M, Canon F. Understanding retention and metabolization of aroma compounds using an in vitro model of oral mucosa. Food Chem 2020; 318:126468. [PMID: 32126464 DOI: 10.1016/j.foodchem.2020.126468] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 12/15/2022]
Abstract
The mechanism leading to aroma persistence during eating is not fully described. This study aims at better understanding the role of the oral mucosa in this phenomenon. Release of 14 volatile compounds from different chemical classes was studied after exposure to in vitro models of oral mucosa, at equilibrium by Gas-Chromatography-Flame Ionization Detection (GC-FID) and in dynamic conditions by Proton Transfer Reaction- Mass Spectrometry (PTR-MS). Measurements at equilibrium showed that mucosal hydration reduced the release of only two compounds, pentan-2-one and linalool (p < 0.05), and suggested that cells could metabolize aroma compounds from different chemical families (penta-2,3-dione, trans-2-hexen-1-al, ethyl hexanoate, nonan- and decan-2-one). Dynamic analyses for pentan-2-one and octan-2-one evidenced that the constituents of the mucosal pellicle influenced release kinetics differently depending on molecule hydrophobicity. This work suggests that mucosal cells can metabolize aroma compounds and that non-covalent interactions occur between aroma compounds and oral mucosa depending on aroma chemical structure.
Collapse
Affiliation(s)
- Sarah Ployon
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche-Comté, Dijon F-21000, France
| | - Marine Brulé
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche-Comté, Dijon F-21000, France
| | - Isabelle Andriot
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche-Comté, Dijon F-21000, France; ChemoSens Platform, CSGA, Dijon F-21000, France
| | - Martine Morzel
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche-Comté, Dijon F-21000, France
| | - Francis Canon
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche-Comté, Dijon F-21000, France.
| |
Collapse
|
31
|
Culp DJ, Zhang Z, Evans RL. VIP and muscarinic synergistic mucin secretion by salivary mucous cells is mediated by enhanced PKC activity via VIP-induced release of an intracellular Ca 2+ pool. Pflugers Arch 2020; 472:385-403. [PMID: 31932898 DOI: 10.1007/s00424-020-02348-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/09/2019] [Accepted: 01/06/2020] [Indexed: 12/12/2022]
Abstract
Mucin secretion by salivary mucous glands is mediated predominantly by parasympathetic acetylcholine activation of cholinergic muscarinic receptors via increased intracellular free calcium ([Ca2+]i) and activation of conventional protein kinase C isozymes (cPKC). However, the parasympathetic co-neurotransmitter, vasoactive intestinal peptide (VIP), also initiates secretion, but to a lesser extent. In the present study, cross talk between VIP- and muscarinic-induced mucin secretion was investigated using isolated rat sublingual tubuloacini. VIP-induced secretion is mediated by cAMP-activated protein kinase A (PKA), independently of increased [Ca2+]i. Synergistic secretion between VIP and the muscarinic agonist, carbachol, was demonstrated but only with submaximal carbachol. Carbachol has no effect on cAMP ± VIP. Instead, PKA activated by VIP releases Ca2+ from an intracellular pool maintained by the sarco/endoplasmic reticulum Ca2+-ATPase pump. Calcium release was independent of phospholipase C activity. The resultant sustained [Ca2+]i increase is additive to submaximal, but not maximal carbachol-induced [Ca2+]i. Synergistic mucin secretion was mimicked by VIP plus either phorbol 12-myristate 13-acetate or 0.01 μM thapsigargin, and blocked by the PKC inhibitor, Gö6976. VIP-induced Ca2+ release also promoted store-operated Ca2+ entry. Synergism is therefore driven by VIP-mediated [Ca2+]i augmenting cPKC activity to enhance muscarinic mucin secretion. Additional data suggest ryanodine receptors control VIP/PKA-mediated Ca2+ release from a Ca2+ pool also responsive to maximal carbachol. A working model of muscarinic and VIP control of mucous cell exocrine secretion is presented. Results are discussed in relation to synergistic mechanisms in other secretory cells, and the physiological and therapeutic significance of VIP/muscarinic synergism controlling salivary mucous cell exocrine secretion.
Collapse
Affiliation(s)
- David J Culp
- Center for Oral Biology, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA. .,Department of Oral Biology, UF College of Dentistry, P.O. Box 100424, Gainesville, FL, 32610-3003, USA.
| | - Z Zhang
- Center for Oral Biology, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA
| | - R L Evans
- Center for Oral Biology, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA.,Unilever Research & Development, Port Sunlight Laboratory, Quarry Road East, Bebington, Wirral, CH63 3JW, UK
| |
Collapse
|
32
|
Boroumand M, Olianas A, Manconi B, Serrao S, Iavarone F, Desiderio C, Pieroni L, Faa G, Messana I, Castagnola M, Cabras T. Mapping of Transglutaminase-2 Sites of Human Salivary Small Basic Proline-Rich Proteins by HPLC-High-Resolution ESI-MS/MS. J Proteome Res 2020; 19:300-313. [PMID: 31638822 DOI: 10.1021/acs.jproteome.9b00527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Because of the distinctive features of the oral cavity, the determination of the proteins involved in the formation of the "oral protein pellicle" is demanding. The present study investigated the susceptibility of several human basic proline-rich peptides, named P-H, P-D, P-F, P-J, and II-2, as substrates of transglutaminase-2. The reactivity of the P-C peptide and statherin was also investigated. Peptides purified from human whole saliva were incubated with the enzyme in the presence or in the absence of monodansyl-cadaverine. Mass spectrometry analyses of the reaction products highlighted that P-H and P-D (P32 and A32 variants) were active substrates, II-2 was less reactive, and P-F and P-J showed very low reactivity. P-C and statherin were highly reactive. All of the peptides formed cyclo derivatives, and only specific glutamine residues were involved in the cycle formation and reacted with monodansyl-cadaverine: Q29 of P-H, Q37 of P-D, Q21 of II-2, Q41 of P-C, and Q37 of statherin were the principal reactive residues. One or two secondary glutamine residues of only P-H, P-D P32, P-C, and statherin were hierarchically susceptible to the reaction with monodansyl-cadaverine. MS and MS/MS data were deposited to the ProteomeXchange Consortium ( http://www.ebi.ac.uk/pride ) via the PRIDE partner repository with the data set identifier PXD014658.
Collapse
Affiliation(s)
- Mozhgan Boroumand
- Department of Life and Environmental Sciences , University of Cagliari, Cittadella Univ. Monserrato , Monserrato, Cagliari 09042 , Italy
| | - Alessandra Olianas
- Department of Life and Environmental Sciences , University of Cagliari, Cittadella Univ. Monserrato , Monserrato, Cagliari 09042 , Italy
| | - Barbara Manconi
- Department of Life and Environmental Sciences , University of Cagliari, Cittadella Univ. Monserrato , Monserrato, Cagliari 09042 , Italy
| | - Simone Serrao
- Department of Life and Environmental Sciences , University of Cagliari, Cittadella Univ. Monserrato , Monserrato, Cagliari 09042 , Italy
| | - Federica Iavarone
- Istituto di Biochimica e Biochimica Clinica , Università Cattolica del Sacro Cuore , Roma 00168 , Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS , Roma 00143 , Italy
| | - Claudia Desiderio
- Istituto di Chimica del Riconoscimento Molecolare , Rome 00168 , Italy
| | - Luisa Pieroni
- Laboratorio di Proteomica -Centro Europeo di Ricerca sul Cervello- IRCCS , Fondazione Santa Lucia , Roma 00142 , Italy
| | - Gavino Faa
- Department of Pathology, AOU , University of Cagliari , Cagliari 09100 , Italy
| | - Irene Messana
- Istituto di Chimica del Riconoscimento Molecolare , Rome 00168 , Italy
| | - Massimo Castagnola
- Laboratorio di Proteomica -Centro Europeo di Ricerca sul Cervello- IRCCS , Fondazione Santa Lucia , Roma 00142 , Italy
| | - Tiziana Cabras
- Department of Life and Environmental Sciences , University of Cagliari, Cittadella Univ. Monserrato , Monserrato, Cagliari 09042 , Italy
| |
Collapse
|
33
|
Bonatto Machado de Castilhos M, Luiz Del Bianchi V, Gómez-Alonso S, García-Romero E, Hermosín-Gutiérrez I. Sensory descriptive and comprehensive GC-MS as suitable tools to characterize the effects of alternative winemaking procedures on wine aroma. Part II: BRS Rúbea and BRS Cora. Food Chem 2019; 311:126025. [PMID: 31869649 DOI: 10.1016/j.foodchem.2019.126025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/06/2019] [Accepted: 12/04/2019] [Indexed: 11/24/2022]
Abstract
The present manuscript assessed the volatile and sensory profiles of BRS Rúbea and BRS Cora wines elaborated from traditional, grape pre-drying and submerged cap winemaking. The wines contained a higher concentration of acetates (257 mg L-1 to 547 mg L-1) and ethyl and methyl esters (183 mg L-1 to 456 mg L-1) in comparison with Vitis vinifera wines. PCA was applied (explaining 68.43% of the total variance), and the higher concentration of ethyl decanoate and ethyl octanoate, diethyl succinate, hydroxylinalool, and 2-phenyl ethanol was responsible for describing the BRS Rúbea wines as fruity/foxy. They also presented an intense jam note, probably due to their higher concentration of syringol and guaiacol. BRS Cora wines exhibited a vegetal note, possibly due to their higher concentration of 1-hexanol and cis-3-hexenol. Wines from pre-dried grapes presented higher concentration of furfural, assuming a bitter/burned almond aroma. Alternative winemaking accounted for suitable changes in wine aroma, enhancing wine quality.
Collapse
Affiliation(s)
| | - Vanildo Luiz Del Bianchi
- Food Engineering and Technology Department, São Paulo State University, Cristóvão Colombo Street, 2265 São José do Rio Preto, Brazil
| | - Sergio Gómez-Alonso
- Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, Avda. Camilo José Cela S/N, 13071 Ciudad Real, Spain; Parque Científico y Tecnológico de Albacete, Passeo de la Innovación, 1, 02006 Albacete, Spain
| | - Esteban García-Romero
- Instituto de La Vid y el Vino de Castilla-La Mancha, Carretera de Albacete s/n, 13700 Tomelloso, Spain
| | - Isidro Hermosín-Gutiérrez
- Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, Avda. Camilo José Cela S/N, 13071 Ciudad Real, Spain
| |
Collapse
|
34
|
Soares S, Brandão E, Guerreiro C, Mateus N, de Freitas V, Soares S. Development of a New Cell-Based Oral Model To Study the Interaction of Oral Constituents with Food Polyphenols. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12833-12843. [PMID: 31657214 DOI: 10.1021/acs.jafc.9b05575] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Some polyphenols have unpleasant taste properties such as astringency, which could interfere with consumers' choices. The knowledge on astringency mechanisms points that astringency is a complex phenomenon probably related to more than one physical-chemical mechanism. Thus, this work aims to develop a new and more realistic cell-based model containing human saliva, mucosa pellicle, and an oral cell line (HSC-3) to understand the oral molecular events that could contribute to the overall astringency perception. This model was then used to study the interactions with a food procyanidin fraction (PF) by HPLC. In general, the results revealed higher interaction (synergism) for the model with all the referred oral constituents (mucosa pellicle, salivary proteins, and HSC-3 cell line, HSCMuSp) when compared to the interaction with individual constituents, the PF + cells or PF + saliva. Regarding the procyanidins, a significant interaction was observed for the procyanidin monomer EcG, procyanidin dimers B7 and B2G, and trimer C1.
Collapse
Affiliation(s)
- Sónia Soares
- REQUIMTE, LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences , University of Porto , Rua do Campo Alegre, s/n , 4169-007 Porto , Portugal
| | - Elsa Brandão
- REQUIMTE, LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences , University of Porto , Rua do Campo Alegre, s/n , 4169-007 Porto , Portugal
| | - Carlos Guerreiro
- REQUIMTE, LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences , University of Porto , Rua do Campo Alegre, s/n , 4169-007 Porto , Portugal
| | - Nuno Mateus
- REQUIMTE, LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences , University of Porto , Rua do Campo Alegre, s/n , 4169-007 Porto , Portugal
| | - Victor de Freitas
- REQUIMTE, LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences , University of Porto , Rua do Campo Alegre, s/n , 4169-007 Porto , Portugal
| | - Susana Soares
- REQUIMTE, LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences , University of Porto , Rua do Campo Alegre, s/n , 4169-007 Porto , Portugal
| |
Collapse
|
35
|
Sirviö E, Mikkonen JJW, Koistinen AP, Miinalainen I, Kullaa AM. Localization of transmembrane mucin MUC1 on the apical surface of oral mucosal cells. Ultrastruct Pathol 2019; 43:184-189. [DOI: 10.1080/01913123.2019.1687630] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Ellinoora Sirviö
- Institute of Dentistry, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio Campus, Kuopio, Finland
| | - Jopi J. W. Mikkonen
- Institute of Dentistry, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio Campus, Kuopio, Finland
- SIB Labs, Faculty of Science and Forestry, University of Eastern Finland, Kuopio, Finland
| | - Arto P. Koistinen
- SIB Labs, Faculty of Science and Forestry, University of Eastern Finland, Kuopio, Finland
| | | | - Arja M. Kullaa
- Institute of Dentistry, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio Campus, Kuopio, Finland
- Educational Dental Clinic, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
36
|
Aybeke EN, Ployon S, Brulé M, De Fonseca B, Bourillot E, Morzel M, Lesniewska E, Canon F. Nanoscale Mapping of the Physical Surface Properties of Human Buccal Cells and Changes Induced by Saliva. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12647-12655. [PMID: 31448614 DOI: 10.1021/acs.langmuir.9b01979] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The mucosal pellicle, also called salivary pellicle, is a thin biological layer made of salivary and epithelial constituents, lining oral mucosae. It contributes to their protection against microbiological, chemical, or mechanical insults. Pellicle formation depends on the cells' surface properties, and in turn the pellicle deeply modifies such properties. It has been reported that the expression of the transmembrane mucin MUC1 in oral epithelial cells improves the formation of the mucosal pellicle. Here, we describe an approach combining classical and functionalized tip atomic force microscopy and scanning microwave microscopy to characterize how MUC1 induces changes in buccal cells' morphology, hydrophobicity, and electric properties to elucidate the physicochemical mechanisms involved in the enhancement of the anchoring of salivary proteins. We show that MUC1 expression did not modify drastically the morphology of the epithelial cells' surface. MUC1 expression, however, resulted in the presence of more hydrophobic and more charged areas at the cell surface. The presence of salivary proteins decreased the highest attractive and repulsive forces recorded between the cell surface and a functionalized hydrophobic atomic force microscopy (AFM) tip, suggesting that the most hydrophobic and charged areas participate in the binding of salivary proteins. The cells' dielectric properties were altered by both MUC1 expression and the presence of a mucosal pellicle. We finally show that in the absence of MUC1, the pellicle appeared as a distinct layer poorly interacting with the cells' surface. This integrative AFM/scanning microwave microscopy approach may usefully describe the surface properties of various cell types, with relevance to the bioadhesion or biomimetics fields.
Collapse
Affiliation(s)
- Ece Neslihan Aybeke
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université de Bourgogne Franche-Comté , Dijon F-21000 , France
| | - Sarah Ployon
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université de Bourgogne Franche-Comté , Dijon F-21000 , France
| | - Marine Brulé
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université de Bourgogne Franche-Comté , Dijon F-21000 , France
| | - Brice De Fonseca
- ICB UMR CNRS 6303, Université de Bourgogne Franche-Comté , Dijon F-21078 , France
| | - Eric Bourillot
- ICB UMR CNRS 6303, Université de Bourgogne Franche-Comté , Dijon F-21078 , France
| | - Martine Morzel
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université de Bourgogne Franche-Comté , Dijon F-21000 , France
| | - Eric Lesniewska
- ICB UMR CNRS 6303, Université de Bourgogne Franche-Comté , Dijon F-21078 , France
| | - Francis Canon
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université de Bourgogne Franche-Comté , Dijon F-21000 , France
| |
Collapse
|
37
|
Inui T, Palmer RJ, Shah N, Li W, Cisar JO, Wu CD. Effect of mechanically stimulated saliva on initial human dental biofilm formation. Sci Rep 2019; 9:11805. [PMID: 31413280 PMCID: PMC6694102 DOI: 10.1038/s41598-019-48211-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/26/2019] [Indexed: 02/03/2023] Open
Abstract
This study evaluated the impact of mechanically stimulated saliva on initial bacterial colonization. Interaction between oral bacteria and both unstimulated and stimulated saliva was examined in vitro by laying labeled bacteria over SDS-PAGE-separated salivary proteins. The effects of chewing on in vivo biofilm, microbial composition, and spatial arrangement were examined in two human volunteers using an intraoral stent containing retrievable enamel chips. In vitro experiments showed that bacterial binding to proteins from stimulated saliva was lower than that to proteins from unstimulated saliva. Lack of binding activity was noted with Streptococcus mutans and Lactobacillus casei. Human Oral Microbe Identification Microarray (HOMIM) analyses revealed a consistent chewing-related increase in the binding of Streptococcus anginosus and Streptococcus gordonii. Immunofluorescence microscopy demonstrated the presence of multi-species colonies and cells bearing different serotypes of the coaggregation-mediating streptococcal cell-surface receptor polysaccharides (RPS). Differences in bacterial colonization were noted between the two volunteers, while the type 4 RPS-reactive serotype was absent in one volunteer. Cells reacting with antibody against Rothia or Haemophilus were prominent in the early biofilm. While analysis of the data obtained demonstrated inter-individual variations in both in vitro and in vivo bacterial binding patterns, stimulating saliva with multiple orosensory stimuli may modulate oral bacterial colonization of tooth surfaces.
Collapse
Affiliation(s)
- Taichi Inui
- Mars-Wrigley Confectionery, Chicago, IL, 60642, USA.,National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Robert J Palmer
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nehal Shah
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wei Li
- Department of Pediatric Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - John O Cisar
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Christine D Wu
- Department of Pediatric Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
38
|
Pradal C, Yakubov GE, Williams MAK, McGuckin MA, Stokes JR. Lubrication by biomacromolecules: mechanisms and biomimetic strategies. BIOINSPIRATION & BIOMIMETICS 2019; 14:051001. [PMID: 31212257 DOI: 10.1088/1748-3190/ab2ac6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Biomacromolecules play a key role in protecting human biointerfaces from friction and wear, and thus enable painless motion. Biomacromolecules give rise to remarkable tribological properties that researchers have been eager to emulate. In this review, we examine how molecules such as mucins, lubricin, hyaluronic acid and other components of biotribological interfaces provide a unique set of rheological and surface properties that leads to low friction and wear. We then highlight how researchers have used some of the features of biotribological contacts to create biomimetic systems. While the brush architecture of the glycosylated molecules present at biotribological interfaces has inspired some promising polymer brush systems, it is the recent advance in the understanding of synergistic interaction between biomacromolecules that is showing the most potential in producing surfaces with a high lubricating ability. Research currently suggests that no single biomacromolecule or artificial polymer successfully reproduces the tribological properties of biological contacts. However, by combining molecules, one can enhance their anchoring and lubricating capacity, thus enabling the design of surfaces for use in biomedical applications requiring low friction and wear.
Collapse
Affiliation(s)
- Clementine Pradal
- School of Chemical Engineering, The University of Queensland, St Lucia, Queensland, Australia
| | | | | | | | | |
Collapse
|
39
|
Carpenter G, Bozorgi S, Vladescu S, Forte A, Myant C, Potineni R, Reddyhoff T, Baier S. A study of saliva lubrication using a compliant oral mimic. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.01.049] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
40
|
Boehm MW, Yakubov GE, Stokes JR, Baier SK. The role of saliva in oral processing: Reconsidering the breakdown path paradigm. J Texture Stud 2019; 51:67-77. [DOI: 10.1111/jtxs.12411] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/20/2019] [Accepted: 05/03/2019] [Indexed: 11/29/2022]
Affiliation(s)
| | - Gleb E. Yakubov
- School of Chemical EngineeringThe University of Queensland Brisbane Queensland Australia
| | - Jason R. Stokes
- School of Chemical EngineeringThe University of Queensland Brisbane Queensland Australia
| | - Stefan K. Baier
- PepsiCo. R&D Hawthorne New York
- School of Chemical EngineeringThe University of Queensland Brisbane Queensland Australia
| |
Collapse
|
41
|
Culp DJ, Stewart C, Wallet SM. Oral epithelial membrane-associated mucins and transcriptional changes with Sjögren's syndrome. Oral Dis 2019; 25:1325-1334. [PMID: 30920100 DOI: 10.1111/odi.13098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/12/2019] [Accepted: 03/20/2019] [Indexed: 01/07/2023]
Abstract
OBJECTIVES To determine expression and localization of membrane-associated mucins within human keratinized and non-keratinized oral epithelia, and to explore transcriptional changes associated with primary Sjögren's syndrome. SUBJECTS AND METHODS Mucin transcripts and glycoproteins were determined by RT-PCR and immunohistochemistry, respectively, in oral keratinized (hard palate) and non-keratinized (buccal) epithelia obtained from three cadavers. Mucin transcripts assessed by quantitative PCR were compared between cells harvested by brushing buccal and palatal epithelia of 25 female primary Sjögren's syndrome patients vs 25 healthy age-matched female control subjects. RESULTS In hard palate, MUC4 is absent and MUC1 localized to deeper cell layers. Both mucins are within the apical layers of buccal epithelium. MUC15 is localized throughout all palatal cell layers and in all but the basal layer of buccal epithelia. MUC16, MUC20, and MUC21 glycoproteins are localized within all but the basal cell layer of both tissue types. In buccal cells of primary Sjögren's patients, MUC21 transcripts are down-regulated 3.4-fold and MUC20 2.6-fold. Dysregulation of select epithelial mucins may therefore contribute to xerostomia. CONCLUSIONS Differential expression of multiple mucins and down-regulation in Sjögren's syndrome support further study of oral epithelial mucin physiology and pathophysiology, including their functions in hydration and lubrication of the oral mucosal pellicle.
Collapse
Affiliation(s)
- David J Culp
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida
| | - Carol Stewart
- Department of Oral & Maxillofacial Diagnostic Sciences, College of Dentistry, University of Florida, Gainesville, Florida
| | - Shannon M Wallet
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida
| |
Collapse
|
42
|
Băbţan AM, Ilea A, Boşca BA, Crişan M, Petrescu NB, Collino M, Sainz RM, Gerlach JQ, Câmpian RS. Advanced glycation end products as biomarkers in systemic diseases: premises and perspectives of salivary advanced glycation end products. Biomark Med 2019; 13:479-495. [PMID: 30968701 DOI: 10.2217/bmm-2018-0448] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Advanced glycation end products (AGEs) are glycated proteins associated with high dry temperature food processing, coloring and flavor modification of food products. Previous studies on diet-related disease support the role of the glycation products as biomarkers in local and general proinflammatory response. Exogenous and endogenous AGEs are involved in chronic low-level inflammation, which underlies the onset of metabolic syndrome influenced by food intake, there by demonstrating their implication in diet-related pathologies. Although studies have revealed a strong association between the accumulation of AGEs and the occurrence/worsening of metabolic diseases, their routine use for the diagnosis or monitoring of local and general disease has not yet been reported.
Collapse
Affiliation(s)
- Anida M Băbţan
- Department of Oral Rehabilitation, Oral Health & Dental Office Management, Faculty of Dentistry, ‘Iuliu Haţieganu’ University of Medicine & Pharmacy Cluj-Napoca, Romania, Victor Babe? Street, no 15, 400012, Romania
| | - Aranka Ilea
- Department of Oral Rehabilitation, Oral Health & Dental Office Management, Faculty of Dentistry, ‘Iuliu Haţieganu’ University of Medicine & Pharmacy Cluj-Napoca, Romania, Victor Babe? Street, no 15, 400012, Romania
| | - Bianca A Boşca
- Department of Histology, Faculty of Medicine, ‘Iuliu Haţieganu’ University of Medicine & Pharmacy Cluj-Napoca, Romania, Louis Pasteur Street, no 4, Cluj-Napoca, 400349, Romania
| | - Maria Crişan
- Department of Histology, Faculty of Medicine, ‘Iuliu Haţieganu’ University of Medicine & Pharmacy Cluj-Napoca, Romania, Louis Pasteur Street, no 4, Cluj-Napoca, 400349, Romania
| | - Nausica B Petrescu
- Department of Oral Rehabilitation, Oral Health & Dental Office Management, Faculty of Dentistry, ‘Iuliu Haţieganu’ University of Medicine & Pharmacy Cluj-Napoca, Romania, Victor Babe? Street, no 15, 400012, Romania
| | - Massimo Collino
- Department of Drug Science & Technology, University of Turin, Corso Raffaello 33, 10125 Torino, Italy
| | - Rosa M Sainz
- Department of Morphology & Cell Biology, University of Oviedo, Campus del Cristo. C/Julián Clavería 6. 33006 Oviedo, Spain
| | - Jared Q Gerlach
- Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland Galway, H91 CF50 Galway, Ireland
| | - Radu S Câmpian
- Department of Oral Rehabilitation, Oral Health & Dental Office Management, Faculty of Dentistry, ‘Iuliu Haţieganu’ University of Medicine & Pharmacy Cluj-Napoca, Romania, Victor Babe? Street, no 15, 400012, Romania
| |
Collapse
|
43
|
Mateos J, Estévez O, González-Fernández Á, Anibarro L, Pallarés Á, Reljic R, Gallardo JM, Medina I, Carrera M. High-resolution quantitative proteomics applied to the study of the specific protein signature in the sputum and saliva of active tuberculosis patients and their infected and uninfected contacts. J Proteomics 2019; 195:41-52. [PMID: 30660769 DOI: 10.1016/j.jprot.2019.01.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/05/2018] [Accepted: 01/13/2019] [Indexed: 12/11/2022]
Abstract
Our goal was to establish panels of protein biomarkers that are characteristic of patients with microbiologically confirmed pulmonary tuberculosis (TB) and their contacts, including latent TB-infected (LTBI) and uninfected patients. Since the first pathogen-host contact occurs in the oral and nasal passages the saliva and sputum were chosen as the biological fluids to be studied. Quantitative shotgun proteomics was performed using a LTQ-Orbitrap-Elite platform. For active TB patients, both fluids exhibited a specific accumulation of proteins that were related to complement activation, inflammation and modulation of immune response. In the saliva of TB patients, a decrease of in proteins related to glucose and lipid metabolism was detected. In contrast, the sputum of uninfected contacts presented a specific proteomic signature that was composed of proteins involved in the perception of bitter taste, defense against pathogens and innate immune response, suggesting that those are key events during the initial entry of the pathogen in the host. SIGNIFICANCE: This is the first study to compare the saliva and sputum from active TB patients and their contacts. Our findings strongly suggest that TB patients show not only an activation of processes that are related to complement activation and modulation of inflammation but also an imbalance in carbohydrate and lipid metabolism. In addition, those individuals who do not get infected after direct exposure to the pathogen display a typical proteomic signature in the sputum, which is a reflection of the secretion from the nasal and oral mucosa, the first immunological barriers that M. tuberculosis encounters in the host. Thus, this result indicates the importance of the processes related to the innate immune response in fighting the initial events of the infection.
Collapse
Affiliation(s)
- Jesús Mateos
- Spanish National Research Council (CSIC), Vigo, Pontevedra, Spain.
| | - Olivia Estévez
- Biomedical Research Centre (CINBIO), Galician Singular Center of Research, Galicia Sur Health Research Institute (IIS-GS), University of Vigo, Vigo, Pontevedra, Spain
| | - África González-Fernández
- Biomedical Research Centre (CINBIO), Galician Singular Center of Research, Galicia Sur Health Research Institute (IIS-GS), University of Vigo, Vigo, Pontevedra, Spain
| | - Luis Anibarro
- Biomedical Research Centre (CINBIO), Galician Singular Center of Research, Galicia Sur Health Research Institute (IIS-GS), University of Vigo, Vigo, Pontevedra, Spain; Tuberculosis Unit, Infectious Diseases, Internal Medicine Service, Complexo Hospitalario Universitario de Pontevedra, Galicia Sur Health Research Institute (IIS-GS), Pontevedra, Spain; Mycobacterial Infections Study Group (GEIM) of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Ángeles Pallarés
- Tuberculosis Unit, Infectious Diseases, Internal Medicine Service, Complexo Hospitalario Universitario de Pontevedra, Galicia Sur Health Research Institute (IIS-GS), Pontevedra, Spain
| | | | - José M Gallardo
- Spanish National Research Council (CSIC), Vigo, Pontevedra, Spain
| | - Isabel Medina
- Spanish National Research Council (CSIC), Vigo, Pontevedra, Spain
| | - Mónica Carrera
- Spanish National Research Council (CSIC), Vigo, Pontevedra, Spain.
| |
Collapse
|
44
|
Szkaradkiewicz-Karpińska AK, Ronij A, Goślińska-Kuźniarek O, Przybyłek I, Szkaradkiewicz A. MUC7 Level As A New Saliva Risk Factor For Dental Caries In Adult Patients. Int J Med Sci 2019; 16:241-246. [PMID: 30745804 PMCID: PMC6367524 DOI: 10.7150/ijms.29027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/04/2018] [Indexed: 01/31/2023] Open
Abstract
Purpose: Data currently available indicate the significance of salivary mucins MUC5B and MUC7 in the protection of teeth against caries. Our study aimed to determine the relationship between dental caries in adults and levels of MUC5B and MUC7. Methods: The studies were conducted on 45 adult subjects selected on the basis of dental examination and calculation of the DMFT (Decayed, Missing, and Filled Teeth) index. Among these patients, two research groups were distinguished: group 1 included 19 caries-free subjects (DMFT = 0); and group 2 included 26 patients with severe caries (DMFT > 13.9). Samples of whole unstimulated saliva were collected and centrifuged. MUC5B and MUC7 content in saliva supernatant were estimated using an enzyme-linked immunosorbent sandwich assay (ELISA). Analysis of the obtained data receiver operating characteristic (ROC) curves was employed to define relationships between the contents of the studied mucins and the detected dental caries. Results: In subjects from group 1, the mean level of MUC5B amounted to 0.63 ± 0.35 ng/ml and this was significantly higher than the concentration of mucin in patients of group 2, which amounted to 0.38 ± 0.32 ng/ml (p = 0.023). The mean level of MUC7 amounted to 5.47 ± 1.18 ng/ml and this was significantly higher than the level of the mucin in group 2, which was 1.39 ± 0.86 ng/ml (p< 0.0001). In parallel, a relationship was detected between levels of the examined mucins and manifestation of dental caries. For MUC7, the optimal cut-off value was obtained (i.e. corresponding to 100% sensitivity and specificity), amounting to 2.5 ng/ml for the detection of dental caries risk. Conclusions: Development of dental caries is linked to reduced concentrations of MUC5B and MUC7. The level of MUC7 may represent a significant parameter clinically suitable for evaluation of disease risk.
Collapse
Affiliation(s)
- Anna K Szkaradkiewicz-Karpińska
- Department of Preclinical Conservative Dentistry and Preclinical Endodontics, University of Medical Sciences in Poznan, Poland
| | - Anna Ronij
- Department of Preclinical Conservative Dentistry and Preclinical Endodontics, University of Medical Sciences in Poznan, Poland
| | | | - Izabela Przybyłek
- Department of Medical Microbiology, University of Medical Sciences in Poznan, Poland
| | | |
Collapse
|
45
|
The role of natural salivary defences in maintaining a healthy oral microbiota. J Dent 2019; 80 Suppl 1:S3-S12. [DOI: 10.1016/j.jdent.2018.08.010] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 08/22/2018] [Indexed: 01/19/2023] Open
|
46
|
Neyraud E, Morzel M. Biological films adhering to the oral soft tissues: Structure, composition, and potential impact on taste perception. J Texture Stud 2018; 50:19-26. [PMID: 30226267 DOI: 10.1111/jtxs.12363] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/10/2018] [Accepted: 09/07/2018] [Indexed: 12/22/2022]
Abstract
The role of free-flowing saliva in taste perception is increasingly recognized, but saliva is also present in the mouth as films intimately associated to soft or hard tissues. On mucosal surfaces, particularly on the tongue, the structure and composition of such films (including its microbial constitutive part) may play a particular role in the sense of taste due to their proximity with the taste anatomical structures. This review compiles the current knowledge on the structure of biological films adhering to oral mucosae and on their biochemical and microbiological composition, before presenting possible implications for taste perception. PRACTICAL APPLICATIONS: The understanding of the role of oral biological films on taste perception may provide new avenues of research and development for the industry or academia interested broadly in chemosensation.
Collapse
Affiliation(s)
- Eric Neyraud
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université de Bourgogne Franche-Comté, Dijon, France
| | - Martine Morzel
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université de Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
47
|
Pedersen A, Sørensen CE, Proctor GB, Carpenter GH. Salivary functions in mastication, taste and textural perception, swallowing and initial digestion. Oral Dis 2018; 24:1399-1416. [PMID: 29645367 DOI: 10.1111/odi.12867] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 04/03/2018] [Indexed: 12/18/2022]
Abstract
Saliva exerts multiple functions in relation to the initial digestive processes taking place in the upper parts of the gastrointestinal tract. Ingestion of food and beverages, in turn, is a strong stimulus for secretion of saliva with a differential composition depending on the neuronal stimulation pattern. This review paper provides insight into the mechanisms by which saliva acts in relation to taste, mastication, bolus formation, enzymatic digestion and swallowing. Also, the protective functions of saliva including maintenance of dental and mucosal integrity will be discussed as they indirectly influence the digestive process. The final part of this study focuses on the implications of xerostomia and salivary gland dysfunction on gastrointestinal functions.
Collapse
Affiliation(s)
- Aml Pedersen
- Section 1, Oral Medicine, Oral Pathology & Clinical Oral Physiology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - C E Sørensen
- Section of Oral Biochemistry, Cariology & Endodontics, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - G B Proctor
- Mucosal & Salivary Biology Division, King's College London Dental Institute, Guy's & St Thomas' Hospitals, London, UK
| | - G H Carpenter
- Mucosal & Salivary Biology Division, King's College London Dental Institute, Guy's & St Thomas' Hospitals, London, UK
| |
Collapse
|
48
|
Teubl BJ, Stojkovic B, Docter D, Pritz E, Leitinger G, Poberaj I, Prassl R, Stauber RH, Fröhlich E, Khinast JG, Roblegg E. The effect of saliva on the fate of nanoparticles. Clin Oral Investig 2018; 22:929-940. [PMID: 28691145 PMCID: PMC5820401 DOI: 10.1007/s00784-017-2172-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/26/2017] [Indexed: 11/01/2022]
Abstract
OBJECTIVES The design of nanocarriers for local drug administration to the lining mucosa requires a sound knowledge of how nanoparticles (NPs) interact with saliva. This contact determines whether NPs agglomerate and become immobile due to size- and interaction-filtering effects or adsorb on the cell surface and are internalized by epithelial cells. The aim of this study was to examine the behavior of NPs in saliva considering physicochemical NP properties. MATERIALS AND METHODS The salivary pore-size distribution was determined, and the viscosity of the fluid inside of the pores was studied with optical tweezers. Distinct functionalized NPs (20 and 200 nm) were dispersed in saliva and salivary buffers and characterized, and surface-bound MUC5B and MUC7 were analyzed by 1D electrophoresis and immunoblotting. NP mobility was recorded, and cellular uptake studies were performed with TR146 cells. RESULTS The mode diameter of the salivary mesh pores is 0.7 μm with a peak width of 1.9 μm, and pores are filled with a low-viscosity fluid. The physicochemical properties of the NPs affected the colloidal stability and mobility: compared with non-functionalized particles, which did not agglomerate and showed a cellular uptake rate of 2.8%, functionalized particles were immobilized, which was correlated with agglomeration and increased binding to mucins. CONCLUSION The present study showed that the salivary microstructure facilitates NP adsorption. However, NP size and surface functionalization determine the colloidal stability and cellular interactions. CLINICAL RELEVANCE The sound knowledge of NP interactions with saliva enables the improvement of current treatment strategies for inflammatory oral diseases.
Collapse
Affiliation(s)
- Birgit J Teubl
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, University of Graz, Universitätsplatz 1, 8010, Graz, Austria
- BioTechMed, 8010, Graz, Austria
| | - Biljana Stojkovic
- Faculty of Mathematics and Physics, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Dominic Docter
- Department of Nanobiomedicine, Mainz University Medical Center, 55131, Mainz, Germany
| | - Elisabeth Pritz
- Institute of Cell Biology, Histology and Embryology, Research Unit Electron Microscopic Techniques, Medical University of Graz, 8010, Graz, Austria
| | - Gerd Leitinger
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, University of Graz, Universitätsplatz 1, 8010, Graz, Austria
- Institute of Cell Biology, Histology and Embryology, Research Unit Electron Microscopic Techniques, Medical University of Graz, 8010, Graz, Austria
| | - Igor Poberaj
- Faculty of Mathematics and Physics, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Ruth Prassl
- BioTechMed, 8010, Graz, Austria
- Institute of Biophysics, Medical University of Graz, 8010, Graz, Austria
| | - Roland H Stauber
- Department of Nanobiomedicine, Mainz University Medical Center, 55131, Mainz, Germany
| | - Eleonore Fröhlich
- BioTechMed, 8010, Graz, Austria
- Center for Medical Research, Medical University of Graz, 8010, Graz, Austria
| | - Johannes G Khinast
- BioTechMed, 8010, Graz, Austria
- Institute for Process and Particle Engineering, Graz University of Technology, 8010, Graz, Austria
- Research Center Pharmaceutical Engineering, 8010, Graz, Austria
| | - Eva Roblegg
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, University of Graz, Universitätsplatz 1, 8010, Graz, Austria.
- BioTechMed, 8010, Graz, Austria.
- Research Center Pharmaceutical Engineering, 8010, Graz, Austria.
| |
Collapse
|
49
|
Aroma release in the oral cavity after wine intake is influenced by wine matrix composition. Food Chem 2017; 243:125-133. [PMID: 29146318 DOI: 10.1016/j.foodchem.2017.09.101] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/29/2017] [Accepted: 09/19/2017] [Indexed: 01/15/2023]
Abstract
The aim of this study has been to investigate if wine matrix composition might influence the interaction between odorants and oral mucosa in the oral cavity during a "wine intake-like" situation. Aroma released after exposing the oral cavity of three individuals to different wines (n=12) previously spiked with six target aromas was followed by an -in vivo intra-oral SPME approach. Results showed a significant effect of wine matrix composition on the intra-oral aroma release of certain odorants. Among the wine matrix parameters, phenolic compounds showed the largest impact. This effect was dependent on their chemical structure. Some phenolic acids (e.g. hippuric, caffeic) were associated to an increase in the intra-oral release of certain odorants (e.g. linalool, β-ionone), while flavonoids showed the opposite effect, decreasing the intra-oral release of aliphatic esters (ethyl hexanoate). This work shows for the first time, the impact of wine composition on oral-mucosa interactions under physiological conditions.
Collapse
|
50
|
The mucosal pellicle – An underestimated factor in oral physiology. Arch Oral Biol 2017; 80:144-152. [DOI: 10.1016/j.archoralbio.2017.04.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 03/27/2017] [Accepted: 04/02/2017] [Indexed: 11/20/2022]
|