1
|
Li N, Yang X, Ren Y, Wang Z. Importance of species traits on individual-based seed dispersal networks and dispersal distance for endangered trees in a fragmented forest. FRONTIERS IN PLANT SCIENCE 2022; 13:1010352. [PMID: 36212316 PMCID: PMC9534520 DOI: 10.3389/fpls.2022.1010352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Although mutualistic network analyses have sparked a renewed interest in the patterns and drivers of network structures within communities, few studies have explored structural patterns within populations. In an endangered tree species population, plant individuals share their bird seed dispersers; however, the factors affecting individual interaction patterns are poorly understood. In this study, four individual-based networks were built for the endangered Chinese yew, Taxus chinensis, in a fragmented forest based on bird foraging type (swallowing and pecking networks) and habitat type (networks in a bamboo patch and an evergreen broad-leaved forest patch). Species-level network metrics (species degree and specialization, d') were used to evaluate the effects of species traits (bird and plant traits) on species-level networks and dispersal distance for T. chinensis. It was revealed that the interaction networks between T. chinensis individuals and their bird partners were influenced by foraging type and the habitat of plant distribution. Compared to the other two networks, bird swallowing and bird-fruit networks in the evergreen broad-leaved patch habitat had higher nestedness and connectance but lower modules and specialization. Bird (body weight and wing and bill lengths) and plant traits (height, crop size, and cover) significantly affected species-level network metrics such as degree and specialization. Furthermore, seed dispersal distance was influenced by species traits and the species-level metrics of fruit-bird interaction networks. These results provide new insights into individual-based seed dispersal mutualistic networks of endangered plant species under habitat fragmentation. Moreover, these findings have relevant implications for conserving and managing individual endangered trees in increasingly disturbed ecosystems.
Collapse
Affiliation(s)
- Ning Li
- Institute of Applied Ecology, Nanjing Xiaozhuang University, Nanjing, China
| | - Xifu Yang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yuanhao Ren
- Institute of Applied Ecology, Nanjing Xiaozhuang University, Nanjing, China
| | - Zheng Wang
- College of Biology and Environmental Science, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
6
|
Acevedo-Quintero JF, Zamora-Abrego JG, García D. From structure to function in mutualistic interaction networks: Topologically important frugivores have greater potential as seed dispersers. J Anim Ecol 2020; 89:2181-2191. [PMID: 32495479 DOI: 10.1111/1365-2656.13273] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/18/2020] [Indexed: 11/29/2022]
Abstract
Networks of mutualistic interactions between animals and plants are considered a pivotal part of ecological communities. However, mutualistic networks are rarely studied from the perspective of species-specific roles, and it remains to be established whether those animal species more relevant for network structure also contribute more to the ecological functions derived from interactions. Here, we relate the contribution to seed dispersal of vertebrate species with their topological role in frugivore-plant interaction networks. For one year in two localities with remnant patches of Colombian tropical dry forest, we sampled abundance, morphology, behaviour and fruit consumption from fleshy-fruited plants of various frugivore species. We assessed the network topological role of each frugivore species by integrating their degree of generalization in interactions with plants with their contributions to network nestedness and modularity. We estimated the potential contribution of each frugivore species to community-wide seed dispersal, on the basis of a set of frugivore ecological, morphological and behavioural characteristics important for seed dispersal, together with frugivore abundance and frugivory degree. The various frugivore species showed strong differences in their network structural roles, with generalist species contributing the most to network modularity and nestedness. Frugivores also showed strong variability in terms of potential contribution to seed dispersal, depending on the specific combinations of frugivore abundance, frugivory degree and the different traits and behaviours. For both localities, the seed dispersal potential of a frugivore species responded positively to its contribution to network structure, evidencing that the most important frugivore species in the network topology were also those making the strongest contribution as seed dispersers. Contribution to network structure was correlated with frugivore abundance, diet and behavioural characteristics. This suggests that the species-level link between structure and function is due to the fact that the occurrence of frugivore-plant interactions depends largely on the characteristics of the frugivore involved, which also condition its ultimate role in seed dispersal.
Collapse
Affiliation(s)
- Juan Fernando Acevedo-Quintero
- Departamento de Ciencias Forestales, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Medellín, Colombia
| | - Joan Gastón Zamora-Abrego
- Departamento de Ciencias Forestales, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Medellín, Colombia
| | - Daniel García
- Departmento de Biología de Organismos y Sistemas, Unidad Mixta de Investigación en Biodiversidad (CSIC-Uo-PA), Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
7
|
Beckman NG, Aslan CE, Rogers HS, Kogan O, Bronstein JL, Bullock JM, Hartig F, HilleRisLambers J, Zhou Y, Zurell D, Brodie JF, Bruna EM, Cantrell RS, Decker RR, Efiom E, Fricke EC, Gurski K, Hastings A, Johnson JS, Loiselle BA, Miriti MN, Neubert MG, Pejchar L, Poulsen JR, Pufal G, Razafindratsima OH, Sandor ME, Shea K, Schreiber S, Schupp EW, Snell RS, Strickland C, Zambrano J. Advancing an interdisciplinary framework to study seed dispersal ecology. AOB PLANTS 2020; 12:plz048. [PMID: 32346468 PMCID: PMC7179845 DOI: 10.1093/aobpla/plz048] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 07/26/2019] [Indexed: 05/23/2023]
Abstract
Although dispersal is generally viewed as a crucial determinant for the fitness of any organism, our understanding of its role in the persistence and spread of plant populations remains incomplete. Generalizing and predicting dispersal processes are challenging due to context dependence of seed dispersal, environmental heterogeneity and interdependent processes occurring over multiple spatial and temporal scales. Current population models often use simple phenomenological descriptions of dispersal processes, limiting their ability to examine the role of population persistence and spread, especially under global change. To move seed dispersal ecology forward, we need to evaluate the impact of any single seed dispersal event within the full spatial and temporal context of a plant's life history and environmental variability that ultimately influences a population's ability to persist and spread. In this perspective, we provide guidance on integrating empirical and theoretical approaches that account for the context dependency of seed dispersal to improve our ability to generalize and predict the consequences of dispersal, and its anthropogenic alteration, across systems. We synthesize suitable theoretical frameworks for this work and discuss concepts, approaches and available data from diverse subdisciplines to help operationalize concepts, highlight recent breakthroughs across research areas and discuss ongoing challenges and open questions. We address knowledge gaps in the movement ecology of seeds and the integration of dispersal and demography that could benefit from such a synthesis. With an interdisciplinary perspective, we will be able to better understand how global change will impact seed dispersal processes, and potential cascading effects on plant population persistence, spread and biodiversity.
Collapse
Affiliation(s)
- Noelle G Beckman
- Department of Biology & Ecology Center, Utah State University, Logan, UT, USA
| | - Clare E Aslan
- Landscape Conservation Initiative, Northern Arizona University, Flagstaff, AZ, USA
| | - Haldre S Rogers
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Oleg Kogan
- Physics Department, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Judith L Bronstein
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - James M Bullock
- Centre for Ecology and Hydrology, Benson Lane, Wallingford, UK
| | - Florian Hartig
- Theoretical Ecology, University of Regensburg, Regensburg, Germany
| | | | - Ying Zhou
- Department of Mathematics, Lafayette College, Easton, PA, USA
| | - Damaris Zurell
- Swiss Federal Research Institute WSL, Dept. Land Change Science, Birmensdorf, Switzerland
- Humboldt-University Berlin, Geography Dept., Berlin, Germany
| | - Jedediah F Brodie
- Division of Biological Sciences and Wildlife Biology Program, University of Montana, Missoula, MT, USA
| | - Emilio M Bruna
- Department of Wildlife Ecology & Conservation & Center for Latin American Studies, University of Florida, Gainesville, FL, USA
| | | | - Robin R Decker
- Department of Environmental Science and Policy, University of California, Davis, CA, USA
| | - Edu Efiom
- REDD+ Unit, Cross River State Forestry Commission, Calabar, Nigeria
- Biology Department, Lund University, Lund, Sweden
| | - Evan C Fricke
- National Socio-Environmental Synthesis Center, University of Maryland, Annapolis, MD, USA
| | - Katherine Gurski
- Department of Mathematics, Howard University, Washington, DC, USA
| | - Alan Hastings
- Department of Environmental Science and Policy, University of California, Davis, CA, USA
- Santa Fe Institute, Santa Fe, NM, USA
| | - Jeremy S Johnson
- School of Forestry, Northern Arizona University, Flagstaff, AZ, USA
| | - Bette A Loiselle
- Center for Latin American Studies and Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | - Maria N Miriti
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Michael G Neubert
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Liba Pejchar
- Department of Fish, Wildlife and Conservation Biology, Colorado State University, Fort Collins, CO, USA
| | - John R Poulsen
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Gesine Pufal
- Natur Conservation and Landscape Ecology, University of Freiburg Freiburg, Germany
| | | | - Manette E Sandor
- Landscape Conservation Initiative, Northern Arizona University, Flagstaff, AZ, USA
| | - Katriona Shea
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Sebastian Schreiber
- Department of Evolution and Ecology and Center for Population Biology, University of California, Davis, CA, USA
| | - Eugene W Schupp
- Department of Wildland Resources & Ecology Center, Utah State University, Logan, UT, USA
| | - Rebecca S Snell
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, USA
| | | | - Jenny Zambrano
- Department of Biology, University of Maryland, College Park, MD, USA
| |
Collapse
|
10
|
González-Varo JP, Arroyo JM, Jordano P. The timing of frugivore-mediated seed dispersal effectiveness. Mol Ecol 2018; 28:219-231. [PMID: 30151871 PMCID: PMC6905405 DOI: 10.1111/mec.14850] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/08/2018] [Accepted: 08/15/2018] [Indexed: 12/01/2022]
Abstract
The seed dispersal effectiveness framework allows assessing mutualistic services from frugivorous animals in terms of quantity and quality. Quantity accounts for the number of seeds dispersed and quality for the probability of recruitment of dispersed seeds. Research on this topic has largely focused on the spatial patterns of seed deposition because seed fates often vary between microhabitats due to differences in biotic and abiotic factors. However, the temporal dimension has remained completely overlooked despite these factors-and even local disperser assemblages-can change dramatically during long fruiting periods. Here, we test timing effects on seed dispersal effectiveness, using as study case a keystone shrub species dispersed by frugivorous birds and with a fruiting period of 9 months. We evaluated quantity and quality in different microhabitats of a Mediterranean forest and different periods of the fruiting phenophase. We identified the bird species responsible for seed deposition through DNA barcoding and evaluated the probability of seedling recruitment through a series of field experiments on sequential demographic processes. We found that timing matters: The disperser assemblage was temporally structured, seed viability decreased markedly during the plant's fruiting phenophase, and germination was lower for viable seeds dispersed in the fruiting peak. We show how small contributions to seed deposition by transient migratory species can result in a relevant effectiveness if they disperse seeds in a high-quality period for seedling recruitment. This study expands our understanding of seed dispersal effectiveness, highlighting the importance of timing and infrequent interactions for population and community dynamics.
Collapse
Affiliation(s)
- Juan P González-Varo
- Integrative Ecology Group, Estación Biológica de Doñana, EBD-CSIC, Sevilla, Spain.,Terrestrial Ecology Group, Instituto Mediterráneo de Estudios Avanzados, UIB-CSIC, Esporles, Spain
| | - Juan M Arroyo
- Integrative Ecology Group, Estación Biológica de Doñana, EBD-CSIC, Sevilla, Spain
| | - Pedro Jordano
- Integrative Ecology Group, Estación Biológica de Doñana, EBD-CSIC, Sevilla, Spain
| |
Collapse
|
14
|
Donoso I, Schleuning M, García D, Fründ J. Defaunation effects on plant recruitment depend on size matching and size trade-offs in seed-dispersal networks. Proc Biol Sci 2017; 284:20162664. [PMID: 28566481 PMCID: PMC5454253 DOI: 10.1098/rspb.2016.2664] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 05/02/2017] [Indexed: 11/12/2022] Open
Abstract
Defaunation by humans causes a loss of large animals in many ecosystems globally. Recent work has emphasized the consequences of downsizing in animal communities for ecosystem functioning. However, no study so far has integrated network theory and life-history trade-offs to mechanistically evaluate the functional consequences of defaunation in plant-animal networks. Here, we simulated an avian seed-dispersal network and its derived ecosystem function seedling recruitment to assess the relative importance of different size-related mechanisms. Specifically, we considered size matching (between bird size and seed size) and size trade-offs, which are driven by differences in plant or animal species abundance (negative size-quantity relationship) as well as in recruitment probability and disperser quality (positive size-quality relationship). Defaunation led to impoverished seedling communities in terms of diversity and seed size, but only if models accounted for size matching. In addition, size trade-off in plants, in concert with size matching, provoked rapid decays in seedling abundance in response to defaunation. These results underscore a disproportional importance of large animals for ecosystem functions. Downsizing in ecological networks will have severe consequences for ecosystem functioning, especially in interaction networks that are structured by size matching between plants and animals.
Collapse
Affiliation(s)
- Isabel Donoso
- Departamento de Biología de Organismos y Sistemas and Unidad Mixta de Investigación en Biodiversidad (UMIB, CSIC-Uo-PA), University of Oviedo, Valentín Andrés Álvarez s/n, 33071 Oviedo, Spain
| | - Matthias Schleuning
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325 Frankfurt (Main), Germany
| | - Daniel García
- Departamento de Biología de Organismos y Sistemas and Unidad Mixta de Investigación en Biodiversidad (UMIB, CSIC-Uo-PA), University of Oviedo, Valentín Andrés Álvarez s/n, 33071 Oviedo, Spain
| | - Jochen Fründ
- Biometry and Environmental System Analysis, University of Freiburg, Tennenbacher Strasse 4, 79106 Freiburg, Germany
| |
Collapse
|