1
|
Paniw M, García-Callejas D, Lloret F, Bassar RD, Travis J, Godoy O. Pathways to global-change effects on biodiversity: new opportunities for dynamically forecasting demography and species interactions. Proc Biol Sci 2023; 290:20221494. [PMID: 36809806 PMCID: PMC9943645 DOI: 10.1098/rspb.2022.1494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 01/12/2023] [Indexed: 02/23/2023] Open
Abstract
In structured populations, persistence under environmental change may be particularly threatened when abiotic factors simultaneously negatively affect survival and reproduction of several life cycle stages, as opposed to a single stage. Such effects can then be exacerbated when species interactions generate reciprocal feedbacks between the demographic rates of the different species. Despite the importance of such demographic feedbacks, forecasts that account for them are limited as individual-based data on interacting species are perceived to be essential for such mechanistic forecasting-but are rarely available. Here, we first review the current shortcomings in assessing demographic feedbacks in population and community dynamics. We then present an overview of advances in statistical tools that provide an opportunity to leverage population-level data on abundances of multiple species to infer stage-specific demography. Lastly, we showcase a state-of-the-art Bayesian method to infer and project stage-specific survival and reproduction for several interacting species in a Mediterranean shrub community. This case study shows that climate change threatens populations most strongly by changing the interaction effects of conspecific and heterospecific neighbours on both juvenile and adult survival. Thus, the repurposing of multi-species abundance data for mechanistic forecasting can substantially improve our understanding of emerging threats on biodiversity.
Collapse
Affiliation(s)
- Maria Paniw
- Department of Conservation Biology and Global Change, Estación Biológica de Doñana (EBD-CSIC), Seville, 41001 Spain
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich 8057, Switzerland
| | - David García-Callejas
- Department of Integrative Ecology, Estación Biológica de Doñana (EBD-CSIC), Seville, 41001 Spain
- Instituto Universitario de Investigación Marina (INMAR), Departamento de Biología, Universidad de Cádiz, Campus Río San Pedro, 11510 Puerto Real, Spain
| | - Francisco Lloret
- Center for Ecological Research and Forestry Applications (CREAF), Cerdanyola del Vallès 08193, Spain
- Department Animal Biology, Plant Biology and Ecology, Universitat Autònoma Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Ronald D. Bassar
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Joseph Travis
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Oscar Godoy
- Instituto Universitario de Investigación Marina (INMAR), Departamento de Biología, Universidad de Cádiz, Campus Río San Pedro, 11510 Puerto Real, Spain
| |
Collapse
|
2
|
Blanchard G, Munoz F. Revisiting extinction debt through the lens of multitrophic networks and meta‐ecosystems. OIKOS 2022. [DOI: 10.1111/oik.09435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Grégoire Blanchard
- AMAP, Univ. Montpellier, CIRAD, CNRS, INRAE, IRD Montpellier France
- AMAP, IRD, Herbier de Nouvelle Calédonie Nouméa Nouvelle Calédonie
| | | |
Collapse
|
3
|
Dumoulin CE, Armsworth PR. Environmental stochasticity increases extinction risk to a greater degree in pollination specialists than in generalists. OIKOS 2022. [DOI: 10.1111/oik.09214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Maia KP, Marquitti FMD, Vaughan IP, Memmott J, Raimundo RLG. Interaction generalisation and demographic feedbacks drive the resilience of plant-insect networks to extinctions. J Anim Ecol 2021; 90:2109-2121. [PMID: 34048028 DOI: 10.1111/1365-2656.13547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 05/13/2021] [Indexed: 11/26/2022]
Abstract
Understanding the processes driving ecological resilience, that is the extent to which systems retain their structure while absorbing perturbations, is a central challenge for theoretical and applied ecologists. Plant-insect assemblages are well-suited for the study of ecological resilience as they are species-rich and encompass a variety of ecological interactions that correspond to essential ecosystem functions. Mechanisms affecting community response to perturbations depend on both the natural history and structure of ecological interactions. Natural history attributes of the interspecific interactions, for example whether they are mutualistic or antagonistic, may affect the ecological resilience by controlling the demographic feedbacks driving ecological dynamics at the community level. Interaction generalisation may also affect resilience, by defining opportunities for interaction rewiring, the extent to which species are able to switch interactions in fluctuating environments. These natural history attributes may also interact with network structure to affect ecological resilience. Using adaptive network models, we investigated the resilience of plant-pollinator and plant-herbivore networks to species loss. We specifically investigated how fundamental natural history differences between these systems, namely the demographic consequences of the interaction and their level of generalisation-mediating rewiring opportunities-affect the resilience of dynamic ecological networks to extinctions. We also create a general benchmark for the effect of network structure on resilience simulating extinctions on theoretical networks with controlled structures. When network structure was static, pollination networks were less resilient than herbivory networks; this is related to their high levels of nestedness and the reciprocally positive feedbacks that define mutualisms, which made co-extinction cascades more likely and longer in plant-pollinator assemblages. When considering interaction rewiring, the high generalisation and the structure of pollination networks boosted their resilience to extinctions, which approached those of herbivory networks. Simulation results using theoretical networks suggested that the empirical structure of herbivory networks may protect them from collapse. Elucidating the ecological and evolutionary processes driving interaction rewiring is key to understanding the resilience of plant-insect assemblages. Accounting for rewiring requires ecologists to combine natural history with network models that incorporate feedbacks between species abundances, traits and interactions. This combination will elucidate how perturbations propagate at community level, reshaping biodiversity structure and ecosystem functions.
Collapse
Affiliation(s)
- Kate P Maia
- School of Biological Sciences, University of Bristol, Bristol, UK.,Biosciences Institute, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Ian P Vaughan
- Cardiff School of Biosciences, Cardiff University, Cardiff, UK
| | - Jane Memmott
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Rafael L G Raimundo
- Department of Engineering and Environment and Postgraduate Program in Ecology and Environmental Monitoring (PPGEMA), Centre for Applied Sciences and Education, Federal University of Paraíba, Campus IV, Rio Tinto, Brazil.,IRIS Research Group, Innovation for Resilience, Inclusion and Sustainability, Federal University of Paraíba, Campus IV, Rio Tinto, Brazil
| |
Collapse
|
5
|
Araujo JM, Correa SB, Penha J, Anderson J, Traveset A. Implications of overfishing of frugivorous fishes for cryptic function loss in a Neotropical floodplain. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.13891] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Joisiane Mendes Araujo
- Programa de Pós‐Graduação em Ecologia e Conservação da Biodiversidade Instituto de Biociências Universidade Federal de Mato Grosso Cuiabá Brazil
| | - Sandra Bibiana Correa
- Department of Wildlife, Fisheries and Aquaculture Mississippi State University Starkville MS USA
| | - Jerry Penha
- Centro de Biodiversidade Universidade Federal de Mato Grosso Cuiabá Brazil
| | - Jill Anderson
- Department of Genetics, and Odum School of Ecology University of Georgia Athens GA USA
| | - Anna Traveset
- Mediterranean Institute of Advanced Studies (CSIC‐UIB)Terrestrial Ecology Group Mallorca Balearic Islands Spain
| |
Collapse
|
6
|
Simmons BI, Wauchope HS, Amano T, Dicks LV, Sutherland WJ, Dakos V. Estimating the risk of species interaction loss in mutualistic communities. PLoS Biol 2020; 18:e3000843. [PMID: 32866143 PMCID: PMC7485972 DOI: 10.1371/journal.pbio.3000843] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/11/2020] [Accepted: 07/31/2020] [Indexed: 11/18/2022] Open
Abstract
Interactions between species generate the functions on which ecosystems and humans depend. However, we lack an understanding of the risk that interaction loss poses to ecological communities. Here, we quantify the risk of interaction loss for 4,330 species interactions from 41 empirical pollination and seed dispersal networks across 6 continents. We estimate risk as a function of interaction vulnerability to extinction (likelihood of loss) and contribution to network feasibility, a measure of how much an interaction helps a community tolerate environmental perturbations. Remarkably, we find that more vulnerable interactions have higher contributions to network feasibility. Furthermore, interactions tend to have more similar vulnerability and contribution to feasibility across networks than expected by chance, suggesting that vulnerability and feasibility contribution may be intrinsic properties of interactions, rather than only a function of ecological context. These results may provide a starting point for prioritising interactions for conservation in species interaction networks in the future. A study of 4,330 species interactions from 41 empirical pollination and seed dispersal networks across six continents reveals that species interactions which are most vulnerable to extinction are also the most important for ecological community stability; moreover, vulnerable interactions that are important for stability tend to be important and vulnerable wherever they occur.
Collapse
Affiliation(s)
- Benno I Simmons
- Conservation Science Group, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom
| | - Hannah S Wauchope
- Conservation Science Group, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Tatsuya Amano
- Conservation Science Group, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Centre for the Study of Existential Risk, University of Cambridge, Cambridge, United Kingdom
- School of Biological Sciences, University of Queensland, Brisbane, Australia
| | - Lynn V Dicks
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
- Agroecology Group, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - William J Sutherland
- Conservation Science Group, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Vasilis Dakos
- Institut des Sciences de l'Evolution (ISEM), CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France
| |
Collapse
|
7
|
Biella P, Akter A, Ollerton J, Nielsen A, Klecka J. An empirical attack tolerance test alters the structure and species richness of plant–pollinator networks. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13642] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Paolo Biella
- ZooPlantLab Department of Biotechnology and Biosciences University of Milano‐Bicocca Milan Italy
- Faculty of Science University of South Bohemia České Budějovice Czech Republic
- Institute of Entomology Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
| | - Asma Akter
- Faculty of Science University of South Bohemia České Budějovice Czech Republic
- Institute of Entomology Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
| | - Jeff Ollerton
- Faculty of Arts, Science and Technology University of Northampton Northampton UK
| | - Anders Nielsen
- Norwegian Institute for Bioeconomy Research Ås Norway
- Centre for Ecological and Evolutionary Synthesis (CEES) Department of Biosciences University of Oslo Oslo Norway
| | - Jan Klecka
- Institute of Entomology Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
| |
Collapse
|
8
|
Kelly T, Elle E. Effects of community composition on plant-pollinator interaction networks across a spatial gradient of oak-savanna habitats. Oecologia 2020; 193:211-223. [PMID: 32405931 DOI: 10.1007/s00442-020-04661-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 05/02/2020] [Indexed: 11/29/2022]
Abstract
Distance between habitats may impact the composition and corresponding interactions between trophic levels. Mutualistic networks, such as those of plants and pollinators tend to have a core set of properties that often relate to the resilience of the community, or the ability of the community to retain function and structure after a disturbance. Furthermore, network structure is highly dependent on the number of specialists and generalists; however, it is unclear how different groups of species with various life-history strategies influence network structure. In this study, we evaluated how the composition of plants and pollinators within 16 oak-savanna sites changed across a latitudinal gradient. In addition, we evaluated how the abundance of different groups of plants and pollinators affected network metrics related to resilience. We found that the composition of plants and pollinators varied between ecoregions, while pollinator composition further varied with habitat characteristics. Network metrics displayed no spatial pattern but were related to the abundance of several pollinator groups. Above-ground nesting insects had a positive relationship with nestedness and a negative relationship with modularity, while predatory larvae had a negative relationship with modularity. Thus, above-ground nesting insects and predatory larvae could be expected to increase network resilience. This study emphasizes how spatial scales can influence species compositions, which in turn affects the structure of interactions in the community with implications for resilience.
Collapse
Affiliation(s)
- Tyler Kelly
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, Canada.
| | - Elizabeth Elle
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, Canada
| |
Collapse
|
9
|
Hernández‐Castellano C, Rodrigo A, Gómez JM, Stefanescu C, Calleja JA, Reverté S, Bosch J. A new native plant in the neighborhood: effects on plant–pollinator networks, pollination, and plant reproductive success. Ecology 2020; 101:e03046. [DOI: 10.1002/ecy.3046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/18/2020] [Accepted: 02/24/2020] [Indexed: 11/12/2022]
Affiliation(s)
| | - Anselm Rodrigo
- CREAF E08193 Bellaterra Catalonia Spain
- Universitat Autònoma de Barcelona E08193 Bellaterra Catalonia Spain
| | - José María Gómez
- Departamento de Ecología Funcional y Evolutiva Estación Experimental de Zonas Áridas (EEZA‐CSIC) ES‐04120 Almería Spain
| | - Constantí Stefanescu
- CREAF E08193 Bellaterra Catalonia Spain
- Museu de Ciències Naturals de Granollers E08400 Granollers Catalonia Spain
| | - Juan Antonio Calleja
- CREAF E08193 Bellaterra Catalonia Spain
- Departamento de Biología (Unidad de Botánica) Centro de Investigación en Biodiversidad y Cambio Global (CIBC‐UAM) Universidad Autónoma de Madrid E28049 Madrid Spain
| | | | | |
Collapse
|
10
|
Maia KP, Vaughan IP, Memmott J. Plant species roles in pollination networks: an experimental approach. OIKOS 2019. [DOI: 10.1111/oik.06183] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kate P. Maia
- Life Sciences Building, Univ. of Bristol, 24 Tyndall Avenue Bristol BS81TQ UK
| | | | - Jane Memmott
- Life Sciences Building, Univ. of Bristol, 24 Tyndall Avenue Bristol BS81TQ UK
| |
Collapse
|
11
|
Biella P, Akter A, Ollerton J, Tarrant S, Janeček Š, Jersáková J, Klecka J. Experimental loss of generalist plants reveals alterations in plant-pollinator interactions and a constrained flexibility of foraging. Sci Rep 2019; 9:7376. [PMID: 31089144 PMCID: PMC6517441 DOI: 10.1038/s41598-019-43553-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 04/26/2019] [Indexed: 12/04/2022] Open
Abstract
Species extinctions undermine ecosystem functioning, with the loss of a small subset of functionally important species having a disproportionate impact. However, little is known about the effects of species loss on plant-pollinator interactions. We addressed this issue in a field experiment by removing the plant species with the highest visitation frequency, then measuring the impact of plant removal on flower visitation, pollinator effectiveness and insect foraging in several sites. Our results show that total visitation decreased exponentially after removing 1-4 most visited plants, suggesting that these plants could benefit co-occurring ones by maintaining high flower visitor abundances. Although we found large variation among plant species, the redistribution of the pollinator guild affected mostly the other plants with high visitor richness. Also, the plant traits mediated the effect of removal on flower visitation; while visitation of plants which had smaller inflorescences and more sugar per flower increased after removal, flower visitors did not switch between flower shapes and visitation decreased mostly in plants visited by many morpho-species of flower visitors. Together, these results suggest that the potential adaptive foraging was constrained by flower traits. Moreover, pollinator effectiveness fluctuated but was not directly linked to changes of flower visitation. In conclusion, it seems that the loss of generalist plants alters plant-pollinator interactions by decreasing pollinator abundance with implications for pollination and insect foraging. Therefore, generalist plants have high conservation value because they sustain the complex pattern of plant-pollinator interactions.
Collapse
Affiliation(s)
- Paolo Biella
- University of South Bohemia, Faculty of Science, Department of Zoology, České Budějovice, Czech Republic.
- Czech Academy of Sciences, Biology Centre, Institute of Entomology, České Budějovice, Czech Republic.
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Milan, Italy.
| | - Asma Akter
- University of South Bohemia, Faculty of Science, Department of Zoology, České Budějovice, Czech Republic
- Czech Academy of Sciences, Biology Centre, Institute of Entomology, České Budějovice, Czech Republic
| | - Jeff Ollerton
- Faculty of Arts, Science and Technology, University of Northampton, Northampton, UK
| | - Sam Tarrant
- Faculty of Arts, Science and Technology, University of Northampton, Northampton, UK
| | - Štěpán Janeček
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Praha, CZ-12844, Czech Republic
| | - Jana Jersáková
- University of South Bohemia, Faculty of Science, Department of Ecosystems Biology, České Budějovice, Czech Republic
| | - Jan Klecka
- Czech Academy of Sciences, Biology Centre, Institute of Entomology, České Budějovice, Czech Republic
| |
Collapse
|
12
|
Baker DJ, Garnett ST, O'Connor J, Ehmke G, Clarke RH, Woinarski JCZ, McGeoch MA. Conserving the abundance of nonthreatened species. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2019; 33:319-328. [PMID: 30047186 DOI: 10.1111/cobi.13197] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 05/20/2018] [Accepted: 07/23/2018] [Indexed: 05/28/2023]
Abstract
Human modification of the environment is driving declines in population size and distributional extent of much of the world's biota. These declines extend to many of the most abundant and widespread species, for which proportionally small declines can result in the loss of vast numbers of individuals, biomass, and interactions. These losses could have major localized effects on ecological and cultural processes and services without elevating a species' global extinction risk. Although most conservation effort is directed at species threatened with extinction in the very near term, the value of retaining abundance regardless of global extinction risk is justifiable based on many biodiversity or ecosystem service metrics, including cultural services, at scales from local to global. The challenges of identifying conservation priorities for widespread and abundant species include quantifying the effects of species' abundance on services and understanding how these effects are realized as populations decline. Negative effects of population declines may be disconnected from the threat processes driving declines because of species movements and environment flows (e.g., hydrology). Conservation prioritization for these species shares greater similarity with invasive species risk assessments than extinction risk assessments because of the importance of local context and per capita effects of abundance on other species. Because conservation priorities usually focus on preventing the extinction of threatened species, the rationale and objectives for incorporating declines of nonthreatened species must be clearly articulated, going beyond extinction risk to encompass the range of likely harmful effects (e.g., secondary extinctions, loss of ecosystem services) if declines persist or are not reversed. Research should focus on characterizing the effects of local declines in species that are not threatened globally across a range of ecosystem services and quantifying the spatial distribution of these effects through the distribution of abundance. The case for conserving abundance in nonthreatened species can be made most powerfully when the costs of losing this abundance are better understood.
Collapse
Affiliation(s)
- David J Baker
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Stephen T Garnett
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Casuarina, N.T., 0909, Australia
| | - James O'Connor
- BirdLife Australia, 60 Leicester Street, Carlton, VIC, 3053, Australia
| | - Glenn Ehmke
- BirdLife Australia, 60 Leicester Street, Carlton, VIC, 3053, Australia
| | - Rohan H Clarke
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - John C Z Woinarski
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Casuarina, N.T., 0909, Australia
| | - Melodie A McGeoch
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
13
|
Interaction strength promotes robustness against cascading effects in mutualistic networks. Sci Rep 2019; 9:676. [PMID: 30679559 PMCID: PMC6345762 DOI: 10.1038/s41598-018-35803-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 07/25/2018] [Indexed: 11/08/2022] Open
Abstract
Perturbations, such as fluctuations in abundance, can ripple across species assemblages through ecological interactions. Furthermore, the way in which ecological interactions are organized into a network and the interaction strengths connecting species may be important for cascading effects. Previous work revealed that network structure determines how cascading effects spread across species assemblages. A next step is to understand how interaction strengths influence cascading effects. Here, we assume that perturbations have negative effects, and we evaluate whether interaction strength affects network robustness to cascading effects in mutualistic interactions, and examine the role of network structure in mediating perturbation cascades when interaction strength is incorporated. We combine empirical data on 18 mutualistic networks, two simulations scenarios, and network theory, to investigate how network structure affects perturbation spreading time, a proxy of network robustness to cascading effects. Simulations in which we included interaction strength presented higher mean spreading time, indicating that interaction strength increases network robustness. Richness, modularity, and nestedness had a strong, positive effect, on mean perturbation spreading time regardless of the interaction strengths. We found that network structure and the distribution of interaction strengths affected communities’ robustness to perturbation spreading. Our results contribute to the discussion on the danger that ecosystems face when species, and interactions alike, become extinct.
Collapse
|
14
|
Bendel CR, Kral‐O'Brien KC, Hovick TJ, Limb RF, Harmon JP. Plant–pollinator networks in grassland working landscapes reveal seasonal shifts in network structure and composition. Ecosphere 2019. [DOI: 10.1002/ecs2.2569] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Cayla R. Bendel
- Range Science Program North Dakota State University 1230 Albrecht Boulevard, 201 Morrill Hall Fargo North Dakota 58102USA
| | - Katherine C. Kral‐O'Brien
- Range Science Program North Dakota State University 1230 Albrecht Boulevard, 201 Morrill Hall Fargo North Dakota 58102USA
| | - Torre J. Hovick
- Range Science Program North Dakota State University 1230 Albrecht Boulevard, 201 Morrill Hall Fargo North Dakota 58102USA
| | - Ryan F. Limb
- Range Science Program North Dakota State University 1230 Albrecht Boulevard, 201 Morrill Hall Fargo North Dakota 58102USA
| | - Jason P. Harmon
- Department of Entomology North Dakota State University 1300 Albrecht Boulevard, 202 Hultz Hall Fargo North Dakota 58102 USA
| |
Collapse
|
15
|
Bane MS, Pocock MJO, James R. Effects of model choice, network structure, and interaction strengths on knockout extinction models of ecological robustness. Ecol Evol 2018; 8:10794-10804. [PMID: 30519407 PMCID: PMC6262911 DOI: 10.1002/ece3.4529] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/17/2018] [Accepted: 08/19/2018] [Indexed: 11/10/2022] Open
Abstract
Analysis of ecological networks is a valuable approach to understanding the vulnerability of systems to disturbance. The tolerance of ecological networks to coextinctions, resulting from sequences of primary extinctions (here termed "knockout extinction models", in contrast with other dynamic approaches), is a widely used tool for modeling network "robustness". Currently, there is an emphasis to increase biological realism in these models, but less attention has been given to the effect of model choices and network structure on robustness measures. Here, we present a suite of knockout extinction models for bipartite ecological networks (specifically plant-pollinator networks) that can all be analyzed on the same terms, enabling us to test the effects of extinction rules, interaction weights, and network structure on robustness. We include two simple ecologically plausible models of propagating extinctions, one new and one adapted from existing models. All models can be used with weighted or binary interaction data. We found that the choice of extinction rules impacts robustness; our two propagating models produce opposing effects in all tests on observed plant-pollinator networks. Adding weights to the interactions tends to amplify the opposing effects and increase the variation in robustness. Variation in robustness is a key feature of these extinction models and is driven by the structural heterogeneity of nodes (specifically, the skewness of the plant degree distribution) in the network. Our analysis therefore reveals the mechanisms and fundamental network properties that drive observed trends in robustness.
Collapse
Affiliation(s)
- Miranda S. Bane
- Department of Physics andCentre for Networks and Collective BehaviourUniversity of BathBathUK
| | | | - Richard James
- Department of Physics andCentre for Networks and Collective BehaviourUniversity of BathBathUK
| |
Collapse
|
16
|
Ma A, Bohan DA, Canard E, Derocles SA, Gray C, Lu X, Macfadyen S, Romero GQ, Kratina P. A Replicated Network Approach to ‘Big Data’ in Ecology. ADV ECOL RES 2018. [DOI: 10.1016/bs.aecr.2018.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
17
|
Rumeu B, Devoto M, Traveset A, Olesen JM, Vargas P, Nogales M, Heleno R. Predicting the consequences of disperser extinction: richness matters the most when abundance is low. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12897] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Beatriz Rumeu
- Centre for Functional Ecology Department of Life Sciences Calçada Martim de Freitas University of Coimbra 3000‐456 Coimbra Portugal
| | - Mariano Devoto
- Facultad de Agronomía Universidad de Buenos Aires Av. San Martín 4453 C1417DSE Buenos Aires Argentina
| | - Anna Traveset
- Mediterranean Institute of Advanced Studies (CSIC‐UIB) Terrestrial Ecology Group C/Miquel Marqués 21 07190‐Esporles Mallorca Balearic Islands Spain
| | - Jens M. Olesen
- Department of Bioscience Aarhus University DK‐8000 Aarhus C Denmark
| | - Pablo Vargas
- Royal Botanical Garden Madrid (CSIC‐RJB) Plaza de Murillo, 2 28014 Madrid Spain
| | - Manuel Nogales
- Island Ecology and Evolution Research Group (CSIC‐IPNA) 38206 La Laguna Tenerife Canary Islands Spain
| | - Ruben Heleno
- Centre for Functional Ecology Department of Life Sciences Calçada Martim de Freitas University of Coimbra 3000‐456 Coimbra Portugal
| |
Collapse
|
18
|
Mathers TC, Chen Y, Kaithakottil G, Legeai F, Mugford ST, Baa-Puyoulet P, Bretaudeau A, Clavijo B, Colella S, Collin O, Dalmay T, Derrien T, Feng H, Gabaldón T, Jordan A, Julca I, Kettles GJ, Kowitwanich K, Lavenier D, Lenzi P, Lopez-Gomollon S, Loska D, Mapleson D, Maumus F, Moxon S, Price DRG, Sugio A, van Munster M, Uzest M, Waite D, Jander G, Tagu D, Wilson ACC, van Oosterhout C, Swarbreck D, Hogenhout SA. Rapid transcriptional plasticity of duplicated gene clusters enables a clonally reproducing aphid to colonise diverse plant species. Genome Biol 2017; 18:27. [PMID: 28190401 PMCID: PMC5304397 DOI: 10.1186/s13059-016-1145-3] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 12/22/2016] [Indexed: 12/04/2022] Open
Abstract
Background The prevailing paradigm of host-parasite evolution is that arms races lead to increasing specialisation via genetic adaptation. Insect herbivores are no exception and the majority have evolved to colonise a small number of closely related host species. Remarkably, the green peach aphid, Myzus persicae, colonises plant species across 40 families and single M. persicae clonal lineages can colonise distantly related plants. This remarkable ability makes M. persicae a highly destructive pest of many important crop species. Results To investigate the exceptional phenotypic plasticity of M. persicae, we sequenced the M. persicae genome and assessed how one clonal lineage responds to host plant species of different families. We show that genetically identical individuals are able to colonise distantly related host species through the differential regulation of genes belonging to aphid-expanded gene families. Multigene clusters collectively upregulate in single aphids within two days upon host switch. Furthermore, we demonstrate the functional significance of this rapid transcriptional change using RNA interference (RNAi)-mediated knock-down of genes belonging to the cathepsin B gene family. Knock-down of cathepsin B genes reduced aphid fitness, but only on the host that induced upregulation of these genes. Conclusions Previous research has focused on the role of genetic adaptation of parasites to their hosts. Here we show that the generalist aphid pest M. persicae is able to colonise diverse host plant species in the absence of genetic specialisation. This is achieved through rapid transcriptional plasticity of genes that have duplicated during aphid evolution. Electronic supplementary material The online version of this article (doi:10.1186/s13059-016-1145-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas C Mathers
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK.,The International Aphid Genomics Consortium, Miami, USA
| | - Yazhou Chen
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.,The International Aphid Genomics Consortium, Miami, USA
| | | | - Fabrice Legeai
- The International Aphid Genomics Consortium, Miami, USA.,INRA, UMR 1349 IGEPP (Institute of Genetics Environment and Plant Protection), Domaine de la Motte, 35653, Le Rheu Cedex, France.,IRISA/INRIA, GenOuest Core Facility, Campus de Beaulieu, Rennes, 35042, France
| | - Sam T Mugford
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.,The International Aphid Genomics Consortium, Miami, USA
| | - Patrice Baa-Puyoulet
- The International Aphid Genomics Consortium, Miami, USA.,Univ Lyon, INSA-Lyon, INRA, BF2I, UMR0203, F-69621, Villeurbanne, France
| | - Anthony Bretaudeau
- The International Aphid Genomics Consortium, Miami, USA.,INRA, UMR 1349 IGEPP (Institute of Genetics Environment and Plant Protection), Domaine de la Motte, 35653, Le Rheu Cedex, France.,IRISA/INRIA, GenOuest Core Facility, Campus de Beaulieu, Rennes, 35042, France
| | | | - Stefano Colella
- The International Aphid Genomics Consortium, Miami, USA.,Univ Lyon, INSA-Lyon, INRA, BF2I, UMR0203, F-69621, Villeurbanne, France.,Present Address: INRA, UMR1342 IRD-CIRAD-INRA-SupAgro-Université de Montpellier, Laboratoire des Symbioses Tropicales et Méditéranéennes, Campus International de Baillarguet, TA-A82/J, F-34398, Montpellier cedex 5, France
| | - Olivier Collin
- IRISA/INRIA, GenOuest Core Facility, Campus de Beaulieu, Rennes, 35042, France
| | - Tamas Dalmay
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Thomas Derrien
- CNRS, UMR 6290, Institut de Génétique et Developpement de Rennes, Université de Rennes 1, 2 Avenue du Pr. Léon Bernard, 35000, Rennes, France
| | - Honglin Feng
- The International Aphid Genomics Consortium, Miami, USA.,Department of Biology, University of Miami, Coral Gables, FL, 33146, USA
| | - Toni Gabaldón
- The International Aphid Genomics Consortium, Miami, USA.,Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.,Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - Anna Jordan
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Irene Julca
- The International Aphid Genomics Consortium, Miami, USA.,Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.,Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
| | - Graeme J Kettles
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.,Present address: Rothamsted Research, Harpenden, Hertforshire, ALF5 2JQ, UK
| | - Krissana Kowitwanich
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.,Present address: J. R. Simplot Company, Boise, ID, USA
| | - Dominique Lavenier
- IRISA/INRIA, GenOuest Core Facility, Campus de Beaulieu, Rennes, 35042, France
| | - Paolo Lenzi
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.,Present address: Alson H. Smith Jr. Agriculture and Extension Center, Virginia Tech, Winchester, 22602, VA, USA
| | - Sara Lopez-Gomollon
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.,Present address: Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Damian Loska
- The International Aphid Genomics Consortium, Miami, USA.,Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.,Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
| | - Daniel Mapleson
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Florian Maumus
- The International Aphid Genomics Consortium, Miami, USA.,Unité de Recherche Génomique-Info (URGI), INRA, Université Paris-Saclay, 78026, Versailles, France
| | - Simon Moxon
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Daniel R G Price
- The International Aphid Genomics Consortium, Miami, USA.,Department of Biology, University of Miami, Coral Gables, FL, 33146, USA.,Present address: Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, EH26 0PZ, UK
| | - Akiko Sugio
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.,INRA, UMR 1349 IGEPP (Institute of Genetics Environment and Plant Protection), Domaine de la Motte, 35653, Le Rheu Cedex, France
| | - Manuella van Munster
- The International Aphid Genomics Consortium, Miami, USA.,INRA, UMR BGPI, CIRAD TA-A54K, Campus International de Baillarguet, 34398, Montpellier Cedex 5, France
| | - Marilyne Uzest
- The International Aphid Genomics Consortium, Miami, USA.,INRA, UMR BGPI, CIRAD TA-A54K, Campus International de Baillarguet, 34398, Montpellier Cedex 5, France
| | - Darren Waite
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Georg Jander
- The International Aphid Genomics Consortium, Miami, USA.,Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
| | - Denis Tagu
- The International Aphid Genomics Consortium, Miami, USA.,INRA, UMR 1349 IGEPP (Institute of Genetics Environment and Plant Protection), Domaine de la Motte, 35653, Le Rheu Cedex, France
| | - Alex C C Wilson
- The International Aphid Genomics Consortium, Miami, USA.,Department of Biology, University of Miami, Coral Gables, FL, 33146, USA
| | - Cock van Oosterhout
- The International Aphid Genomics Consortium, Miami, USA.,School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - David Swarbreck
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK. .,The International Aphid Genomics Consortium, Miami, USA. .,School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Saskia A Hogenhout
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK. .,The International Aphid Genomics Consortium, Miami, USA. .,School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
19
|
Kamenova S, Bartley T, Bohan D, Boutain J, Colautti R, Domaizon I, Fontaine C, Lemainque A, Le Viol I, Mollot G, Perga ME, Ravigné V, Massol F. Invasions Toolkit. ADV ECOL RES 2017. [DOI: 10.1016/bs.aecr.2016.10.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Affiliation(s)
- Paulo R. Guimarães
- Ecology, Rua Nanuque no. 354, Apto 74, Vila Leopoldina; Sao Paulo São Paulo 05302-031 Brazil
| | | |
Collapse
|