1
|
Guan G, Tjhang V, Sun S, Polonowita A, Mei L. Halitosis in oral lichen planus patients. J Breath Res 2024; 19:016007. [PMID: 39499961 DOI: 10.1088/1752-7163/ad8ee7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
To investigate the halitosis level in oral lichen planus (OLP) patients and OLP-free participants. This cross-sectional study recruited 70 participants at the New Zealand's National Centre for Dentistry. Halitosis was determined using the objective measurements (parts per billion (ppb) volatile sulphur compounds (VSCs) in the exhaled air) and subjective measurement (self-reported halitosis questionnaire). The VSCs values of OLP participants (mean ± SD: 144.64 ± 23.85 ppb) were significantly greater than that in the OLP-free participants (105.52 ± 22.31ppb) (mean difference: 39.12 ppb;p< 0.05; 95% CI: 27.95, 50.29). The VSCs value of hyperplastic (mean difference: 34.11; 95% CI: 20.07, 48.15;p< 0.05) and erosive/ulcerative (mean difference: 57.47; 95% CI: 34.19, 80.76;p< 0.05) OLP participants were statistically greater than that of OLP-free participants. No statistical significance was found between hyperplastic and erosive/ulcerative OLP (p> 0.05). 'Type (OLP-free/OLP)' has a significant effect on the dependent variable VSCs. 78.6% of OLP and 90.5% of OLP-free brushed their teeth at least twice daily, with a statistically significant observation (Mean square: 1.61; F: 13.13;p< 0.05). The levels of VSCs were greater in participants with hyperplastic and erosive/ulcerative OLP than that in the OLP-free participants.
Collapse
Affiliation(s)
- Guangzhao Guan
- Department of Oral Diagnostic and Surgical Sciences, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Vicky Tjhang
- Department of Oral Diagnostic and Surgical Sciences, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Sally Sun
- Department of Oral Diagnostic and Surgical Sciences, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Ajith Polonowita
- Department of Oral Diagnostic and Surgical Sciences, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Li Mei
- Department of Oral Sciences, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin 9016, New Zealand
| |
Collapse
|
2
|
Pignatelli P, Mrakic-Sposta S, Bondi D, D’Antonio DL, Piattelli A, Santangelo C, Verratti V, Curia MC. The Effect of Acute High-Altitude Exposure on Oral Pathogenic Bacteria and Salivary Oxi-Inflammatory Markers. J Clin Med 2024; 13:6266. [PMID: 39458216 PMCID: PMC11508378 DOI: 10.3390/jcm13206266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/11/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Background: The environment can alter the homeostasis of humans and human microbiota. Oral health is influenced by high altitude through symptoms of periodontitis, barodontalgia, dental barotrauma, and a decrease in salivary flow. Microbiota and inflammatory state are connected in the oral cavity. This study aimed to explore the effect of acute high-altitude exposure on the salivary microbiome and inflammatory indicators. Methods: Fifteen healthy expeditioners were subjected to oral examination, recording the plaque index (PII), gingival index (GI), the simplified oral hygiene index (OHI-S), and the number of teeth; unstimulated saliva samples were collected at an altitude of 1191 m (T1) and 4556 m (T2). TNF-α, sICAM1, ROS, and the oral bacterial species Porphyromonas gingivalis (Pg) and Fusobacterium nucleatum (Fn) were quantified. Results: At T2, slCAM, TNF, and ROS increased by 85.5% (IQR 74%), 84% (IQR 409.25%), and 53.5% (IQR 68%), respectively, while Pg decreased by 92.43% (IQR 102.5%). The decrease in Pg was greater in the presence of low OHI-S. The increase in slCAM1 correlated with the reduction in Fn. Individuals with high GI and OHI-S had a limited increase in TNF-α at T2. Conclusion: Short-term exposures can affect the concentration of pathogenic periodontal bacteria and promote local inflammation.
Collapse
Affiliation(s)
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology, National Research Council (IFC-CNR), 20162 Milan, Italy;
| | - Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio” Chieti—Pescara, 66100 Chieti, Italy; (D.B.); (C.S.)
| | - Domenica Lucia D’Antonio
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti—Pescara, 66100 Chieti, Italy;
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy;
| | - Carmen Santangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio” Chieti—Pescara, 66100 Chieti, Italy; (D.B.); (C.S.)
| | - Vittore Verratti
- Department of Psychology, University “G. d’Annunzio” Chieti—Pescara, 66100 Chieti, Italy;
| | - Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti—Pescara, 66100 Chieti, Italy;
| |
Collapse
|
3
|
Zhu P, Shao R, Xu P, Zhao R, Zhao C, Fei J, He Y. Streptococcus salivarius ameliorates the destructive effect on the epithelial barrier by inhibiting the growth of Prevotella melaninogenica via metabolic acid production. Mol Oral Microbiol 2024; 39:407-416. [PMID: 38686511 DOI: 10.1111/omi.12464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/26/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Oral lichen planus (OLP) is one of the most common oral mucosal diseases, exhibiting a higher prevalence in women than men, but its pathogenesis is still unclear. Current research suggests that microbial dysbiosis may play an important role in the pathogenesis of OLP. Our previous research has found that the increase of Prevotella melaninogenica and decrease of Streptococcus salivarius have been identified as a potential pathogenic factor in OLP. Consequently, the objective of this study is to examine whether S. salivarius can counteract the detrimental effects of P. melaninogenica on the integrity of the epithelial barrier function. MATERIALS AND METHODS Epithelial barrier disruption was induced by P. melaninogenica in human keratinocytes (HaCaT cells). HaCaT cells were pretreated with S. salivarius(MOI = 20) or cell-free supernatant for 3 h, followed by treatment with P. melaninogenica (MOI = 5) for 3 h. The epithelial barrier integrity of HaCaT cells was detected by FD4 permeability. The mRNA level of tight junction protein was detected by quantitative real-time polymerase chain reaction (PCR). Immunofluorescence and Western Blot were used to detect the protein expression of zonula occludin-1 (ZO-1). The serial dilution-spotting assay was applied to monitor the viability of P. melaninogenica at the end of 8 and 24 h incubation. RESULTS Challenge by P. melaninogenica decreased the levels of tight junction proteins, including occludin, ZO-1, and claudin in HaCaT cells. S. salivarius or its cell-free supernatant inhibited the down-regulation of ZO-1 mRNA and protein expression levels induced by P. melaninogenica and thus improved the epithelial barrier function. The inhibitory effect of the cell-free supernatant of S. salivarius on the growth of P. melaninogenica is associated with metabolic acid production rather than with bacteriocins and hydrogen peroxide. CONCLUSIONS These results suggest that live S. salivarius or its cell-free supernatant significantly ameliorated the disruption of epithelial tight junctions induced by P. melaninogenica, likely through the inhibition of P. melaninogenica growth mediated by metabolic acid production.
Collapse
Affiliation(s)
- Pingyi Zhu
- Department of Oral Medicine, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Stomatological Hospital and Dental School of Tongji University, Shanghai, China
| | - Ruru Shao
- Department of Oral Medicine, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Stomatological Hospital and Dental School of Tongji University, Shanghai, China
| | - Pan Xu
- Department of Oral Medicine, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Stomatological Hospital and Dental School of Tongji University, Shanghai, China
| | - Ruowen Zhao
- Department of Oral Medicine, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Stomatological Hospital and Dental School of Tongji University, Shanghai, China
| | - Chen Zhao
- Department of Oral Medicine, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Stomatological Hospital and Dental School of Tongji University, Shanghai, China
| | - Jian Fei
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Yuan He
- Department of Oral Medicine, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Stomatological Hospital and Dental School of Tongji University, Shanghai, China
| |
Collapse
|
4
|
Shao R, Wang Z, Yang C, Pan L, Chen X, Du G. Tinidazole mouth rinse for the treatment of oral lichen planus: an observational pilot study. BMC Oral Health 2024; 24:1145. [PMID: 39334232 PMCID: PMC11438045 DOI: 10.1186/s12903-024-04881-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Given the limited treatment options available for oral lichen planus (OLP), a study was undertaken to obtain preliminary information on the therapeutic efficacy of tinidazole mouth rinse in patients with OLP. METHODS A prospective, open-label pilot study was conducted to assess the efficacy of thrice-daily tinidazole mouth rinse for one week in OLP patients (n = 27). Reticulation/erythema/ulceration (REU) scores and visual analog scale (VAS) scores were used to measure lesions at baseline and after one week of treatment. Mucosal samples were collected, and the abundance of Fusobacterium nucleatum was quantified using RT-PCR. Statistical analysis using t-test, Wilcoxon signed rank test and Pearson correlation test. RESULTS After treatment, VAS scores significantly decreased in both reticular (P = 0.03) and erosive OLP patients (P = 0.003). However, REU scores significantly decreased only in erosive OLP patients (P = 0.002). The relative abundance of Fusobacterium nucleatum on the damaged mucosa surface significantly decreased in all OLP patients (P = 0.01). In erosive OLP patients, the triamcinolone group showed a significantly greater improvement in VAS scores compared to the tinidazole group (P = 0.01). However, there was no statistically significant correlation between the relative abundance of Fusobacterium nucleatum and REU scores in OLP patients (r = 0.0754, P = 0.61). CONCLUSION Tinidazole mouth rinse showed potential in reducing disease severity in OLP patients and was well-tolerated, suggesting its viability as a local therapeutic option. However, randomized controlled studies are warranted to confirm these preliminary findings.
Collapse
Affiliation(s)
- Ruru Shao
- Department of Oral Mucosal Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Zhenyuan Wang
- Department of Stomatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Chenglong Yang
- Department of Stomatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Lei Pan
- Department of 2nd Dental Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, China
- College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Xu Chen
- Department of Laboratory Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Guanhuan Du
- Department of Oral Mucosal Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China.
| |
Collapse
|
5
|
Zhou X, Cai X, Tang Q, Zhang J, Bai J, Jing F, Gao L, Zhang H, Li T. Differences in the landscape of colonized microorganisms in different oral potentially malignant disorders and squamous cell carcinoma: a multi-group comparative study. BMC Microbiol 2024; 24:318. [PMID: 39223464 PMCID: PMC11367885 DOI: 10.1186/s12866-024-03458-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The role of microbes in diseases, especially cancer, has garnered significant attention. However, research on the oral microbiota in oral potentially malignant disorders (OPMDs) remains limited. Our study investigates microbial communities in OPMDs. MATERIALS AND METHODS Oral biopsies from19 oral leukoplakia (OLK) patients, 19 proliferative verrucous leukoplakia (PVL) patients, 19 oral lichen planus (OLP) patients, and 19 oral lichenoid lesions (OLL) patients were obtained. 15 SCC specimens were also collected from PVL patients. Healthy individuals served as controls, and DNA was extracted from their paraffin-embedded tissues. 2bRAD-M sequencing generated taxonomic profiles. Alpha and beta diversity analyses, along with Linear Discriminant Analysis effect size analysis, were conducted. RESULTS Our results showed the microbial richness and diversity were significantly different among groups, with PVL-SCC resembling controls, while OLK exhibited the highest richness. Each disease group displayed unique microbial compositions, with distinct dominant bacterial species. Noteworthy alterations during PVL-SCC progression included a decline in Fusobacterium periodonticum and an elevation in Prevotella oris. CONCLUSIONS Different disease groups exhibited distinct dominant bacterial species and microbial compositions. These findings offer promise in elucidating the underlying mechanisms of this disease.
Collapse
Affiliation(s)
- Xuan Zhou
- Department of Oral Pathology, National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Peking University School and Hospital of Stomatology, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, 100081, China
| | - Xinjia Cai
- Department of Oral Pathology, National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Peking University School and Hospital of Stomatology, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, 100081, China
| | - Qian Tang
- Hunan Key Laboratory of Oral Health Research & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, 410008, Hunan, China
| | - Jianyun Zhang
- Department of Oral Pathology, National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Peking University School and Hospital of Stomatology, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, 100081, China
| | - Jiaying Bai
- Department of Oral Pathology, National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Peking University School and Hospital of Stomatology, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, 100081, China
| | - Fengyang Jing
- Department of Oral Pathology, National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Peking University School and Hospital of Stomatology, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, 100081, China
| | - Li Gao
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| | - Heyu Zhang
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, 100081, China.
- Central Laboratory, Peking University School and Hospital of Stomatology, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China.
| | - Tiejun Li
- Department of Oral Pathology, National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Peking University School and Hospital of Stomatology, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China.
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, 100081, China.
| |
Collapse
|
6
|
Di Stasio D, Guida A, Romano A, Petruzzi M, Marrone A, Fiori F, Lucchese A. Hepatitis C Virus (HCV) Infection: Pathogenesis, Oral Manifestations, and the Role of Direct-Acting Antiviral Therapy: A Narrative Review. J Clin Med 2024; 13:4012. [PMID: 39064052 PMCID: PMC11278420 DOI: 10.3390/jcm13144012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Hepatitis C virus (HCV) infection is a global health concern with significant systemic implications, including a range of oral manifestations. This review aims to provide a comprehensive overview of the oral and dental pathologies related to HCV, the etiopathogenetic mechanisms linking such conditions to HCV and the impact of direct-acting antiviral (DAA) therapy. Common oral manifestations of HCV include oral lichen planus (OLP), periodontal disease, and xerostomia. The pathogenesis of these conditions involves both direct viral effects on oral tissues and indirect effects related to the immune response to HCV. Our literature analysis, using PubMed, Scopus, Web of Science, and Google Scholar, suggests that both the HCV infection and the immune response to HCV contribute to the increased prevalence of these oral diseases. The introduction of DAA therapy represents a significant advancement in HCV treatment, but its effects on oral manifestations, particularly OLP, are still under evaluation. Although a possible mechanism linking HCV to OSCC is yet to be determined, existing evidence encourages further investigation in this sense. Our findings highlight the need for established protocols for managing the oral health of patients with HCV, aiming to improve outcomes and quality of life.
Collapse
Affiliation(s)
- Dario Di Stasio
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy (A.M.); (A.L.)
| | - Agostino Guida
- U.O.C. Odontostomatologia, A.O.R.N. “A. Cardarelli”, 95123 Naples, Italy
| | - Antonio Romano
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy (A.M.); (A.L.)
| | - Massimo Petruzzi
- Section of Dentistry, Interdisciplinary Department of Medicine (DIM), University “Aldo Moro” of Bari, Clinica Odontoiatrica del Policlinico di Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Aldo Marrone
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy (A.M.); (A.L.)
| | - Fausto Fiori
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy (A.M.); (A.L.)
| | - Alberta Lucchese
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy (A.M.); (A.L.)
| |
Collapse
|
7
|
Ren X, Li D, Zhou M, Hua H, Li C. Potential role of salivary lactic acid bacteria in pathogenesis of oral lichen planus. BMC Microbiol 2024; 24:197. [PMID: 38849732 PMCID: PMC11157935 DOI: 10.1186/s12866-024-03350-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/26/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Emerging evidence emphasized the role of oral microbiome in oral lichen planus (OLP). To date, no dominant pathogenic bacteria have been identified consistently. It is noteworthy that a decreased abundance of Streptococcus, a member of lactic acid bacteria (LAB) in OLP patients has been commonly reported, indicating its possible effect on OLP. This study aims to investigate the composition of LAB genera in OLP patients by high-throughput sequencing, and to explore the possible relationship between them. METHODS We collected saliva samples from patients with OLP (n = 21) and healthy controls (n = 22) and performed 16 S rRNA gene high-throughput sequencing. In addition, the abundance of LAB genera was comprehensively analyzed and compared between OLP and HC group. To verify the expression of Lactococcus lactis, real time PCR was conducted in buccal mucosa swab from another 14 patients with OLP and 10 HC. Furthermore, the correlation was conducted between clinical severity of OLP and LAB. RESULTS OLP and HC groups showed similar community richness and diversity. The members of LAB, Lactococcus and Lactococcus lactis significantly decreased in saliva of OLP cases and negatively associated with OLP severity. In addition, Lactococcus and Lactococcus lactis showed negative relationship with Fusobacterium and Aggregatibacter, which were considered as potential pathogens of OLP. Similarly, compared with healthy controls, the amount of Lactococcus lactis in mucosa lesion of OLP patients was significantly decreased. CONCLUSIONS A lower amount of Lactococcus at genus level, Lactococcus lactis at species level was observed in OLP cases and associated with disease severity. Further studies to verify the relationship between LAB and OLP, as well as to explore the precise mechanism is needed.
Collapse
Affiliation(s)
- Xiaomeng Ren
- Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, PR China
| | - Dan Li
- Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, PR China
- Department of Stomatology, Xiongan Xuanwu Hospital, Baoding, Hebei, PR China
| | - Mimi Zhou
- Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, PR China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, The Affiliated Hospital of Stomatology, School of Stomatology, Department of Oral Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Hong Hua
- Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, PR China
| | - Chunlei Li
- Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, PR China.
| |
Collapse
|
8
|
Liu S, Wang S, Zhang N, Li P. The oral microbiome and oral and upper gastrointestinal diseases. J Oral Microbiol 2024; 16:2355823. [PMID: 38835339 PMCID: PMC11149586 DOI: 10.1080/20002297.2024.2355823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/10/2024] [Indexed: 06/06/2024] Open
Abstract
Background Microbiomes are essential components of the human body, and their populations are substantial. Under normal circumstances, microbiomes coexist harmoniously with the human body, but disturbances in this equilibrium can lead to various diseases. The oral microbiome is involved in the occurrence and development of many oral and gastrointestinal diseases. This review focuses on the relationship between oral microbiomes and oral and upper gastrointestinal diseases, and therapeutic strategies aiming to provide valuable insights for clinical prevention and treatment. Methods To identify relevant studies, we conducted searches in PubMed, Google Scholar, and Web of Science using keywords such as "oral microbiome," "oral flora, " "gastrointestinal disease, " without any date restrictions. Subsequently, the retrieved publications were subject to a narrative review. Results In this review, we found that oral microbiomes are closely related to oral and gastrointestinal diseases such as periodontitis, dental caries, reflux esophagitis, gastritis, and upper gastrointestinal tumors (mainly the malignant ones). Oral samples like saliva and buccal mucosa are not only easy to collect, but also display superior sample stability compared to gastrointestinal tissues. Consequently, analysis of the oral microbiome could potentially serve as an efficient preliminary screening method for high-risk groups before undergoing endoscopic examination. Besides, treatments based on the oral microbiomes could aid early diagnosis and treatment of these diseases. Conclusions Oral microbiomes are essential to oral and gastrointestinal diseases. Therapies centered on the oral microbiomes could facilitate the early detection and management of these conditions.
Collapse
Affiliation(s)
- Sifan Liu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University; State Key Laboratory for Digestive Health; National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Shidong Wang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Nan Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University; State Key Laboratory for Digestive Health; National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Peng Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University; State Key Laboratory for Digestive Health; National Clinical Research Center for Digestive Diseases, Beijing, China
| |
Collapse
|
9
|
Lavoro A, Cultrera G, Gattuso G, Lombardo C, Falzone L, Saverio C, Libra M, Salmeri M. Role of Oral Microbiota Dysbiosis in the Development and Progression of Oral Lichen Planus. J Pers Med 2024; 14:386. [PMID: 38673013 PMCID: PMC11050998 DOI: 10.3390/jpm14040386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Oral lichen planus (OLP) is a chronic inflammatory autoimmune disease of the oral cavity with malignant potential affecting 1.01% of the worldwide population. The clinical patterns of this oral disorder, characterized by relapses and remissions of the lesions, appear on buccal, lingual, gingival, and labial mucosa causing a significant reduction in the quality of life. Currently, there are no specific treatments for this disease, and the available therapies with topical and systemic corticosteroids only reduce symptoms. Although the etiopathogenesis of this pathological condition has not been completely understood yet, several exogenous and endogenous risk factors have been proposed over the years. The present review article summarized the underlying mechanisms of action involved in the onset of OLP and the most well-known triggering factors. According to the current data, oral microbiota dysbiosis could represent a potential diagnostic biomarker for OLP. However, further studies should be undertaken to validate their use in clinical practice, as well as to provide a better understanding of mechanisms of action and develop novel effective intervention strategies against OLP.
Collapse
Affiliation(s)
- Alessandro Lavoro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (A.L.); (G.C.); (G.G.); (C.L.); (C.S.); (M.L.); (M.S.)
| | - Giovanni Cultrera
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (A.L.); (G.C.); (G.G.); (C.L.); (C.S.); (M.L.); (M.S.)
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (A.L.); (G.C.); (G.G.); (C.L.); (C.S.); (M.L.); (M.S.)
| | - Cinzia Lombardo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (A.L.); (G.C.); (G.G.); (C.L.); (C.S.); (M.L.); (M.S.)
| | - Luca Falzone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (A.L.); (G.C.); (G.G.); (C.L.); (C.S.); (M.L.); (M.S.)
| | - Candido Saverio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (A.L.); (G.C.); (G.G.); (C.L.); (C.S.); (M.L.); (M.S.)
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (A.L.); (G.C.); (G.G.); (C.L.); (C.S.); (M.L.); (M.S.)
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy
| | - Mario Salmeri
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (A.L.); (G.C.); (G.G.); (C.L.); (C.S.); (M.L.); (M.S.)
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy
| |
Collapse
|
10
|
İlhan B, Vural C, Gürhan C, Vural C, Veral A, Wilder-Smith P, Özdemir G, Güneri P. Real-Time PCR Detection of Candida Species in Biopsy Samples from Non-Smokers with Oral Dysplasia and Oral Squamous Cell Cancer: A Retrospective Archive Study. Cancers (Basel) 2023; 15:5251. [PMID: 37958424 PMCID: PMC10649242 DOI: 10.3390/cancers15215251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
The impact of Candida sp. in the development of oral cancer remains uncertain and requires sensitive analytical approaches for clarification. Given the invasive capabilities of these microorganisms in penetrating and invading host tissues through hyphal invasion, this study sought to detect the presence of five Candida sp. in oral biopsy tissue samples from non-smoker patients. Samples were obtained from patients at varying stages of oral carcinogenesis, including dysplasia, carcinoma in situ, OSCC, and histologically benign lesions, and analyzed using Real-Time PCR. Oral tissue samples from 80 patients (46 males and 34 females) were included. Significantly higher C. albicans presence was detected in the mild/moderate dysplasia group compared to the healthy (p = 0.001), carcinoma in situ (p = 0.031) and OSCC groups (p = 0.000). Similarly, C. tropicalis carriage was higher in tissues with mild/moderate dysplasia compared to healthy (p = 0.004) and carcinoma in situ (p = 0.019). Our results showed a significant increase in the presence of C. albicans and C. tropicalis within the mild/moderate dysplasia group compared to other cohorts. Coexistence of these two microorganisms was observed, suggesting a potential transition from a commensal state to an opportunistic pathogen, which could be particularly linked to the onset of oral neoplasia.
Collapse
Affiliation(s)
- Betül İlhan
- Department of Oral & Maxillofacial Radiology, Faculty of Dentistry, Ege University, 35040 İzmir, Türkiye; (B.İ.); (P.G.)
| | - Caner Vural
- Molecular Biology Section, Department of Biology, Faculty of Science, Pamukkale University, 20160 Denizli, Türkiye;
| | - Ceyda Gürhan
- Department of Oral & Maxillofacial Radiology, Faculty of Dentistry, Muğla Sıtkı Koçman University, 48000 Muğla, Türkiye;
| | - Cansu Vural
- Basic and Industrial Microbiology Section, Department of Biology, Ege University, 35040 İzmir, Türkiye; (C.V.); (G.Ö.)
| | - Ali Veral
- Department of Medical Pathology, Faculty of Medicine, Ege University, 35040 İzmir, Türkiye;
| | - Petra Wilder-Smith
- Beckman Laser Institute, University of California Irvine, Irvine, CA 92697, USA
| | - Güven Özdemir
- Basic and Industrial Microbiology Section, Department of Biology, Ege University, 35040 İzmir, Türkiye; (C.V.); (G.Ö.)
| | - Pelin Güneri
- Department of Oral & Maxillofacial Radiology, Faculty of Dentistry, Ege University, 35040 İzmir, Türkiye; (B.İ.); (P.G.)
| |
Collapse
|
11
|
Pei S, Feng L, Zhang Y, Liu J, Li J, Zheng Q, Liu X, Luo B, Ruan Y, Li H, Hu W, Niu J, Tian T. Effects of long-term metal exposure on the structure and co-occurrence patterns of the oral microbiota of residents around a mining area. Front Microbiol 2023; 14:1264619. [PMID: 37928665 PMCID: PMC10620801 DOI: 10.3389/fmicb.2023.1264619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Objectives The aim of our study was to investigate the impact of long-term exposure to heavy metals on the microbiome of the buccal mucosa, to unveil the link between environmental contamination and the oral microbial ecosystem, and to comprehend its potential health implications. Methods Subjects were divided into two groups: the exposure group and the control group. We collected samples of buccal mucosa, soil, and blood, and conducted microbial diversity analysis on both groups of oral samples using 16S rRNA gene sequencing. The concentrations of heavy metals in blood and soil samples were also determined. Additionally, microbial networks were constructed for the purpose of topological analysis. Results Due to long-term exposure to heavy metals, the relative abundance of Rhodococcus, Delftia, Fusobacterium, and Peptostreptococcus increased, while the abundance of Streptococcus, Gemella, Prevotella, Granulicatella, and Porphyromonas decreased. The concentrations of heavy metals in the blood (Pb, Cd, Hg, and Mo) were associated with the growth of Rhodococcus, Delftia, Porphyromonas, and Gemella. In addition, the relative abundances of some pathogenic bacteria, such as Streptococcus anginosus, S. gordonii, and S. mutans, were found to be enriched in the exposure group. Compared to the exposure group network, the control group network had a greater number of nodes, modules, interactive species, and keystone taxa. Module hubs and connectors in the control group converted into peripherals in the exposure group, indicating that keystone taxa changed. Metals in the blood (Pb, Cd, Hg, and Mo) were drivers of the microbial network of the buccal mucosa, which can have adverse effects on the network, thus providing conditions for the occurrence of certain diseases. Conclusion Long-term exposure to multiple metals perturbs normal bacterial communities in the buccal mucosa of residents in contaminated areas. This exposure reduces the complexity and stability of the microbial network and increases the risk of developing various diseases.
Collapse
Affiliation(s)
- Shuwei Pei
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Lu Feng
- School of Stomatology, Lanzhou University, Lanzhou, Gansu, China
| | - Yonghua Zhang
- Child Health Department, Lanzhou Maternal and Child Health Care Hospital, Lanzhou, Gansu, China
| | - Jiangyun Liu
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Jia Li
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Qiwen Zheng
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Xingrong Liu
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Bin Luo
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Ye Ruan
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Huan Li
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Weigang Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Jingping Niu
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Tian Tian
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
12
|
García-Pola M, Rodríguez-Fonseca L, Suárez-Fernández C, Sanjuán-Pardavila R, Seoane-Romero J, Rodríguez-López S. Bidirectional Association between Lichen Planus and Hepatitis C-An Update Systematic Review and Meta-Analysis. J Clin Med 2023; 12:5777. [PMID: 37762719 PMCID: PMC10531646 DOI: 10.3390/jcm12185777] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Lichen planus (LP) is a chronic, inflammatory mucocutaneous disorder associated with systemic diseases such as hepatitis C (HCV). The objective of this study is to evaluate the association between LP and HCV bidirectionally through a systematic review and meta-analysis. A comprehensive search of studies published was performed in the databases of PubMed, Embase, and Web of Science. Out of 18,491 articles, 192 studies were included. The global prevalence of HCV positive (HCV+) in LP patients registered from 143 studies was 9.42% [95% confidence interval (CI), 7.27-11.58%], and from these, 84 studies showed HCV+ 4-fold more frequent in LP than a control group (OR, 4.48; 95% CI, 3.48-5.77). The global prevalence of LP in patients HCV+ recorded from 49 studies was 7.05% (95% CI, 4.85-9.26%), and from these, 15 registered a 3-fold more LP in HCV (OR, 3.65; 95% CI, 2.14-6.24). HCV+ in LP patients showed great geographic variability (OR, 2.7 to 8.57), and the predominantly cutaneous location was higher (OR, 5.95) than the oral location (OR, 3.49). LP in HCV+ patients was more frequent in the Eastern Mediterranean (OR, 5.51; 95% CI, 1.40-15.57). There is a higher prevalence of HCV+ in LP and vice versa than in the control group, especially in certain geographical areas that should be taken into consideration when doing screening in countries with an upper prevalence of HCV among the general population.
Collapse
Affiliation(s)
- María García-Pola
- Department of Surgery and Medical-Surgical Specialties, Faculty of Medicine and Health Sciences, University of Oviedo, 33004 Oviedo, Spain; (L.R.-F.); (C.S.-F.); (R.S.-P.); (S.R.-L.)
| | - Lucia Rodríguez-Fonseca
- Department of Surgery and Medical-Surgical Specialties, Faculty of Medicine and Health Sciences, University of Oviedo, 33004 Oviedo, Spain; (L.R.-F.); (C.S.-F.); (R.S.-P.); (S.R.-L.)
| | - Carlota Suárez-Fernández
- Department of Surgery and Medical-Surgical Specialties, Faculty of Medicine and Health Sciences, University of Oviedo, 33004 Oviedo, Spain; (L.R.-F.); (C.S.-F.); (R.S.-P.); (S.R.-L.)
| | - Raquel Sanjuán-Pardavila
- Department of Surgery and Medical-Surgical Specialties, Faculty of Medicine and Health Sciences, University of Oviedo, 33004 Oviedo, Spain; (L.R.-F.); (C.S.-F.); (R.S.-P.); (S.R.-L.)
| | - Juan Seoane-Romero
- Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, University of Santiago de Compostela, 15780 Santiago de Compostela, Spain;
| | - Samuel Rodríguez-López
- Department of Surgery and Medical-Surgical Specialties, Faculty of Medicine and Health Sciences, University of Oviedo, 33004 Oviedo, Spain; (L.R.-F.); (C.S.-F.); (R.S.-P.); (S.R.-L.)
| |
Collapse
|
13
|
Roy T, Boateng ST, Uddin MB, Banang-Mbeumi S, Yadav RK, Bock CR, Folahan JT, Siwe-Noundou X, Walker AL, King JA, Buerger C, Huang S, Chamcheu JC. The PI3K-Akt-mTOR and Associated Signaling Pathways as Molecular Drivers of Immune-Mediated Inflammatory Skin Diseases: Update on Therapeutic Strategy Using Natural and Synthetic Compounds. Cells 2023; 12:1671. [PMID: 37371141 PMCID: PMC10297376 DOI: 10.3390/cells12121671] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The dysregulated phosphatidylinositol-3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) signaling pathway has been implicated in various immune-mediated inflammatory and hyperproliferative dermatoses such as acne, atopic dermatitis, alopecia, psoriasis, wounds, and vitiligo, and is associated with poor treatment outcomes. Improved comprehension of the consequences of the dysregulated PI3K/Akt/mTOR pathway in patients with inflammatory dermatoses has resulted in the development of novel therapeutic approaches. Nonetheless, more studies are necessary to validate the regulatory role of this pathway and to create more effective preventive and treatment methods for a wide range of inflammatory skin diseases. Several studies have revealed that certain natural products and synthetic compounds can obstruct the expression/activity of PI3K/Akt/mTOR, underscoring their potential in managing common and persistent skin inflammatory disorders. This review summarizes recent advances in understanding the role of the activated PI3K/Akt/mTOR pathway and associated components in immune-mediated inflammatory dermatoses and discusses the potential of bioactive natural products, synthetic scaffolds, and biologic agents in their prevention and treatment. However, further research is necessary to validate the regulatory role of this pathway and develop more effective therapies for inflammatory skin disorders.
Collapse
Affiliation(s)
- Tithi Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Samuel T. Boateng
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Mohammad B. Uddin
- Department of Toxicology and Cancer Biology, Center for Research on Environmental Diseases, College of Medicine, University of Kentucky, Lexington, KY 40536, USA;
| | - Sergette Banang-Mbeumi
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
- Division for Research and Innovation, POHOFI Inc., Madison, WI 53744, USA
- School of Nursing and Allied Health Sciences, Louisiana Delta Community College, Monroe, LA 71203, USA
| | - Rajesh K. Yadav
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Chelsea R. Bock
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Joy T. Folahan
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Xavier Siwe-Noundou
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, P.O. Box 218, Pretoria 0208, South Africa;
| | - Anthony L. Walker
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Judy A. King
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA;
- College of Medicine, Belmont University, 900 Belmont Boulevard, Nashville, TN 37212, USA
| | - Claudia Buerger
- Department of Dermatology, Venerology and Allergology, Clinic of the Goethe University, 60590 Frankfurt am Main, Germany;
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA;
- Department of Hematology and Oncology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Jean Christopher Chamcheu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA;
| |
Collapse
|
14
|
Viguier M, Pérals C, Poirier B, Battistella M, Aubin F, Bachelez H, Prétet JL, Gheit T, Tommasino M, Touzé A, Gougeon ML, Fazilleau N. Human papilloma virus-16-specific CD8+ T-cell expansions characterize different clinical forms of lichen planus and not lichen sclerosus et atrophicus. Exp Dermatol 2023; 32:859-868. [PMID: 36922453 DOI: 10.1111/exd.14788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 03/18/2023]
Abstract
Lichen planus (LP) is a cutaneomucosal chronic inflammatory disease characterized by a CD8+ cytotoxic T-lymphocytes (CTL) infiltrate. In erosive oral LP, we found HPV16-specific activated CTL in lesions, supporting a pathogenic contribution of HPV16. Here, we investigated whether a similar scenario occurs in other clinical forms of LP and in lichen sclerosus et atrophicus (LSA), another chronic disease also affecting the mucosa and/or the skin. Blood CTL from LP and LSA patients expressed significant higher levels of granzyme B, perforin and CD107a proteins than healthy donors. Expansions of TCRVß3+ CTL, with presence of TCR clonotypes identical to those previously detected in erosive oral LP, were found both in blood and mucosal/skin lesions of LP, and not of LSA patients. These expansions were enriched with HPV16-specific CD8+ T-cells as shown by their recognition of the E711-20 immunodominant epitope. In LSA patients, the peripheral repertoire of CTL was oligoclonal for TCRVß6+ CTL. Finally, although patients with LP and LSA have developed antibodies against HPV16 capsid L1, antibodies against HPV16 E6 were only observed in patients with LP. Overall, our data collectively suggest an involvement of HPV16-specific CTL in different clinical forms of LP, not only in erosive oral LP, while a different scenario operates in LSA.
Collapse
Affiliation(s)
- Manuelle Viguier
- Department of dermatology, Hôpital Robert-Debré, University of Reims Champagne-Ardenne (URCA), EA7509 IRMAIC, Reims, France
| | - Corine Pérals
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), CNRS U5051, INSERM U1291, University Toulouse III, Toulouse, France
| | | | - Maxime Battistella
- Sorbonne Paris Cité, Service d'Anatomo-Pathologie, Hôpital Saint-Louis, Paris, France
| | - François Aubin
- Service de Dermatologie, Centre Hospitalo-Universitaire (CHU) de Besançon, Université de Franche Comté, Besançon, France
| | - Hervé Bachelez
- Laboratory of Genetics of Skin Diseases, Imagine Institute for Human Genetic Diseases, INSERM U1163, Université de Paris, Paris, France
- Department of Dermatology, APHP Hôpital Saint-Louis, Paris, France
| | - Jean-Luc Prétet
- Centre National de Référence Papillomavirus, Laboratoire de Biologie Cellulaire et Moléculaire, CHU de Besançon, Université Bourgogne Franche Comté, Besançon, France
| | | | - Massimo Tommasino
- IARC, Lyon, France
- IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | | | | | - Nicolas Fazilleau
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), CNRS U5051, INSERM U1291, University Toulouse III, Toulouse, France
| |
Collapse
|
15
|
Čēma I, Kakar J, Dzudzilo M, Murovska M. Immunological Aspects of EBV and Oral Mucosa Interactions in Oral Lichen Planus. APPLIED SCIENCES 2023; 13:6735. [DOI: 10.3390/app13116735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Oral lichen planus (OLP) is considered a T cell-mediated chronic inflammatory process activated by an unknown antigen, making basal keratinocytes vulnerable to a cytotoxic cell mediated immune response. The aim of this review is to summarize information on the role and pathways of Epstein–Barr virus (EBV) and immune cells in inducing OLP as an autoimmune lesion. The pathogenesis of OLP is analyzed from immunological aspects of interactions between EBV and oral mucosa. The results of the available studies allow us to assume that EBV can act both as an exogenous and an endogenous antigen in the pathogenesis of OLP. We emphasized the role of antigen-presenting cells (APC), such as dendritic cells (Langerhans cells, LC), in detecting and capturing antigens and modulating the adaptive immune response. Although EBV shows tropism for B cells and epithelial cells, under certain conditions it can infect monocytes, LCs, NK, and T lymphocytes. It means that under some circumstances of the chronic inflammatory process, EBV particles can react as endogenous agents. During the development of the autoimmune process, a decisive role is played by the loss of immune tolerance. Factors like the activity of cytokines, chemokines, and autoantibodies secreted by EBV-positive plasma cells, autoantigens formed due to virus protein mimicry of human proteins, new self-peptides released from damaged tissues, self-reactive B and T cells, dysregulation of LC function, the anti-apoptotic effect of EBV early lytic antigens, and an imbalance between inflammatory and anti-inflammatory immune cells facilitate the development of an autoimmune process.
Collapse
Affiliation(s)
- Ingrīda Čēma
- Department of Maxillo-Facial Surgery and Oral Medicine, Rīga Stradiņš University, 16 Dzirciema Str., LV-1007 Rīga, Latvia
| | - Jagriti Kakar
- Department of Maxillo-Facial Surgery and Oral Medicine, Rīga Stradiņš University, 16 Dzirciema Str., LV-1007 Rīga, Latvia
- Doctoral Study Department, Rīga Stradiņš University, 16 Dzirciema Str., LV-1007 Rīga, Latvia
| | - Madara Dzudzilo
- Department of Maxillo-Facial Surgery and Oral Medicine, Rīga Stradiņš University, 16 Dzirciema Str., LV-1007 Rīga, Latvia
| | - Modra Murovska
- Institute of Microbiology and Virology, Rīga Stradiņš University, 5 Rātsupītes Str., LV-1067 Rīga, Latvia
| |
Collapse
|
16
|
Sriram S, Hasan S, Alqarni A, Alam T, Kaleem SM, Aziz S, Durrani HK, Ajmal M, Dawasaz AA, Saeed S. Efficacy of Platelet-Rich Plasma Therapy in Oral Lichen Planus: A Systematic Review. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59040746. [PMID: 37109704 PMCID: PMC10146996 DOI: 10.3390/medicina59040746] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023]
Abstract
Background and Objectives: Oral lichen planus (OLP) is an autoimmune, mucocutaneous, oral potentially malignant disorder (OPMD), which characteristically manifests with chronic, recalcitrant lesions, with frequent flare-ups and remissions. The precise etiopathogenesis of OLP is still debatable, although it is believed to be a T-cell-mediated disorder of an unidentified antigen. Despite the availability of various treatments, no cure for OLP exists due to its recalcitrant nature and idiopathic etiology. Platelet-rich plasma (PRP) has antioxidant, anti-inflammatory, and immunomodulatory properties, in addition to its regulatory action on keratinocyte differentiation and proliferation. These salient properties substantiate the possible role of PRP in the treatment of OLP. Our systematic review focuses on assessing the therapeutic potential of PRP as a treatment modality in OLP. Materials and Methods: We conducted a detailed literature search for studies assessing PRP as a therapeutic regimen in OLP, using the Google Scholar and PubMed/MEDLINE search engines. The search was limited to studies published from January 2000 to January 2023 and included a combination of Medical Subject Heading (MeSH) terms. ROBVIS analysis was carried out for the assessment of publication bias. Descriptive statistics were performed using Microsoft Excel. Results: This systematic review included five articles that met the inclusion criteria. Most of the included studies demonstrated that PRP treatment considerably ameliorated both objective and subjective symptoms in OLP subjects, with comparable efficacy to the standard corticosteroid treatment. Further, PRP therapy offers the added benefit of minimal adverse effects and recurrences. Conclusion: This systematic review suggests that PRP has significant therapeutic potential for treating OLP. However, further research with larger sample sizes is imperative to corroborate these findings.
Collapse
Affiliation(s)
- Shyamkumar Sriram
- Department of Social and Public Health, Ohio University, Athens, OH 45701, USA
| | - Shamimul Hasan
- Department of Oral Medicine and Radiology, Faculty of Dentistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Abdullah Alqarni
- Department of Diagnostic Dental Sciences and Oral Biology, College of Dentistry, King Khalid University, Abha 62529, Saudi Arabia
| | - Tanveer Alam
- Department of Diagnostic Dental Sciences and Oral Biology, College of Dentistry, King Khalid University, Abha 62529, Saudi Arabia
| | - Sultan Mohammed Kaleem
- Department of Diagnostic Dental Sciences and Oral Biology, College of Dentistry, King Khalid University, Abha 62529, Saudi Arabia
| | - Shahid Aziz
- Department of Medicine, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia
| | - Humayoun Khan Durrani
- Department of Medicine, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia
| | - Muhammed Ajmal
- Department of Diagnostic Dental Sciences and Oral Biology, College of Dentistry, King Khalid University, Abha 62529, Saudi Arabia
| | - Ali Azhar Dawasaz
- Department of Diagnostic Dental Sciences and Oral Biology, College of Dentistry, King Khalid University, Abha 62529, Saudi Arabia
| | - Shazina Saeed
- Amity Institute of Public Health & Hospital Administration, Amity University, Noida 201303, India
| |
Collapse
|
17
|
Gamal-AbdelNaser A, Mohammed WS, ElHefnawi M, AbdAllah M, Elsharkawy A, Zahran FM. The oral microbiome of treated and untreated chronic HCV infection: A preliminary study. Oral Dis 2023; 29:843-852. [PMID: 34396636 DOI: 10.1111/odi.14007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/16/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Chronic hepatitis C virus (HCV) infection is a debilitating disease that is lately treated using direct-acting antivirals (DAAs). Changes in the oral microbiome were detected in other liver diseases; however, oral microbiome was never investigated in patients having chronic HCV infection, whether pre- or post-treatment. MATERIALS AND METHODS This case-control preliminary study enrolled three equal groups: Group (I): untreated HCV patients; group (II): HCV patients who achieved viral clearance after DAA administration; and group (III): healthy controls. For each participant, a buccal swab was harvested and its 16S rRNA was sequenced. RESULTS The oral microbiome of chronic HCV patients had a significantly distinct bacterial community compared to healthy controls, characterized by high diversity and abundance of certain pathogenic species. These changes resemble that of oral lichen planus patients. After treatment by DAAs, the oral microbiome shifted to a community with partial similarity to both the diseased and the healthy ones. CONCLUSIONS Chronic HCV is associated with dysbiotic oral microbiome having abundant pathogenic bacteria. With HCV clearance by DAAs, the oral microbiome shifts to approach the healthy composition.
Collapse
Affiliation(s)
- Ayat Gamal-AbdelNaser
- Department of Oral Medicine and Periodontology, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Waleed S Mohammed
- Department of Biotechnology, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Mahmoud ElHefnawi
- Biomedical Informatics and Chemoinformatics Group, Informatics & Systems Department, National Research Centre, Giza, Egypt
| | - Mohamed AbdAllah
- Medical Research Division, National Research Centre, Giza, Egypt
| | - Aisha Elsharkawy
- Endemic Medicine and Hepatogastroentrology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Fat'heya M Zahran
- Department of Oral Medicine and Periodontology, Faculty of Dentistry, Cairo University, Cairo, Egypt
| |
Collapse
|
18
|
Xiao X, Liu S, Deng H, Song Y, Zhang L, Song Z. Advances in the oral microbiota and rapid detection of oral infectious diseases. Front Microbiol 2023; 14:1121737. [PMID: 36814562 PMCID: PMC9939651 DOI: 10.3389/fmicb.2023.1121737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/13/2023] [Indexed: 02/09/2023] Open
Abstract
Several studies have shown that the dysregulation of the oral microbiota plays a crucial role in human health conditions, such as dental caries, periodontal disease, oral cancer, other oral infectious diseases, cardiovascular diseases, diabetes, bacteremia, and low birth weight. The use of traditional detection methods in conjunction with rapidly advancing molecular techniques in the diagnosis of harmful oral microorganisms has expanded our understanding of the diversity, location, and function of the microbiota associated with health and disease. This review aimed to highlight the latest knowledge in this field, including microbial colonization; the most modern detection methods; and interactions in disease progression. The next decade may achieve the rapid diagnosis and precise treatment of harmful oral microorganisms.
Collapse
Affiliation(s)
- Xuan Xiao
- Department of Oral Mucosa, Shanghai Stomatological Hospital, Fudan University, Shanghai, China,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Shangfeng Liu
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Hua Deng
- Translational Medicine Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Yuhan Song
- Department of Oral Mucosa, Shanghai Stomatological Hospital, Fudan University, Shanghai, China,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Liang Zhang
- Translational Medicine Center, Guangdong Women and Children Hospital, Guangzhou, China,Liang Zhang,
| | - Zhifeng Song
- Department of Oral Mucosa, Shanghai Stomatological Hospital, Fudan University, Shanghai, China,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China,*Correspondence: Zhifeng Song,
| |
Collapse
|
19
|
Saeed S, Choudhury P, Ahmad SA, Alam T, Panigrahi R, Aziz S, Kaleem SM, Priyadarshini SR, Sahoo PK, Hasan S. Vitamin D in the Treatment of Oral Lichen Planus: A Systematic Review. Biomedicines 2022; 10:biomedicines10112964. [PMID: 36428531 PMCID: PMC9687323 DOI: 10.3390/biomedicines10112964] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/03/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022] Open
Abstract
Oral lichen planus (OLP) is a chronic mucocutaneous condition that affects up to 2% of the general population, and typically presents with long-standing, non-responsive lesions, with episodes of exacerbation and remissions. The etiopathogenesis of OLP is still unclear, although, it has been postulated that it is most likely a T-cell-mediated condition of an unknown antigen. The treatment remains a challenge with no defined treatment strategy. Vitamin D has anti-inflammatory and immunomodulatory properties, along with its regulatory effect on keratinocyte proliferation and differentiation; thus, suggesting its possible role in the treatment of OLP. This systematic review aims to evaluate the therapeutic role of vitamin D in OLP treatment. We searched PubMed/MEDLINE, and Google scholar search engines for studies evaluating vitamin D as a treatment modality in OLP from January 2000 to August 2022. Articles were searched with the combination of Medical Subject Heading (MeSH) terms. A web platform for visualizing risk-of-bias assessment was used in this review, and descriptive statistics were calculated. Out of the seventeen retrieved studies, five articles meeting the inclusion criteria were considered in this systematic review. All the included studies demonstrated significant amelioration in the OLP symptoms in patients who were given vitamin D supplements as an adjuvant to the conventional steroid therapy and or placebo. This systematic review signifies the role of vitamin D as adjuvant therapy for OLP. However, more studies with larger sample size are required to validate these results.
Collapse
Affiliation(s)
- Shazina Saeed
- Amity Institute of Public Health, Amity University, Noida 201303, India
| | | | - Syed Ansar Ahmad
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Tanveer Alam
- Department of DDS, College of Dentistry, King Khalid University, Abha 61413, Saudi Arabia
| | - Rajat Panigrahi
- Department of Oral Medicine and Radiology, Institute of Dental Sciences, Siksha ‘O’ Anusandhan University, Bhubaneswar 751003, India
| | - Shahid Aziz
- Department of Medicine, College of Medicine, King Khalid University, Abha 61413, Saudi Arabia
| | - Sultan Mohammed Kaleem
- Department of DDS, College of Dentistry, King Khalid University, Abha 61413, Saudi Arabia
| | - Smita R. Priyadarshini
- Department of Oral Medicine and Radiology, Institute of Dental Sciences, Siksha ‘O’ Anusandhan University, Bhubaneswar 751003, India
| | - Pradyumna Ku Sahoo
- Department of Prosthodontics, Institute of Dental Sciences, Siksha ‘O’ Anusandhan University, Bhubaneswar 751003, India
| | - Shamimul Hasan
- Department of Oral Medicine and Radiology, Faculty of Dentistry, Jamia Millia Islamia, New Delhi 110025, India
- Correspondence: ; Tel.: +91-99-5329-0676
| |
Collapse
|
20
|
Liu Y, Qv W, Ma Y, Zhang Y, Ding C, Chu M, Chen F. The interplay between oral microbes and immune responses. Front Microbiol 2022. [DOI: 10.3389/fmicb.2022.1009018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oral microbes play a critical role in maintaining oral homeostasis. Microbial dysbiosis promotes disease pathogenesis through several mechanisms. Recent studies have revealed that microbial imbalance and sustained inflammation are involved in disease progression. The adverse interaction triggered by a host immune response to microorganisms can lead to oral and systemic diseases. Here, we reviewed how oral microbes communicate with hosts during the development of local and distant inflammation. Elucidation of these processes may reveal future directions in this field and the potential targets of novel biological therapies for oral and systemic diseases.
Collapse
|
21
|
Wang X, Xiong K, Huang F, Huang J, Liu Q, Duan N, Ruan H, Jiang H, Zhu Y, Lin L, Song Y, Zhao M, Zheng L, Ye P, Qian Y, Hu Q, Yan F, Wang W. A metagenome-wide association study of the gut microbiota in recurrent aphthous ulcer and regulation by thalidomide. Front Immunol 2022; 13:1018567. [PMID: 36341405 PMCID: PMC9626999 DOI: 10.3389/fimmu.2022.1018567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/30/2022] [Indexed: 12/04/2022] Open
Abstract
Recurrent aphthous ulcer (RAU), one of the most common diseases in humans, has an unknown etiology and is difficult to treat. Thalidomide is an important immunomodulatory and antitumor drug and its effects on the gut microbiota still remain unclear. We conducted a metagenomic sequencing study of fecal samples from a cohort of individuals with RAU, performed biochemical assays of cytokines, immunoglobulins and antimicrobial peptides in serum and saliva, and investigated the regulation effects of thalidomide administration and withdrawal. Meanwhile we constructed the corresponding prediction models. Our metagenome-wide association results indicated that gut dysbacteriosis, microbial dysfunction and immune imbalance occurred in RAU patients. Thalidomide regulated gut dysbacteriosis in a species-specific manner and had different sustainable effects on various probiotics and pathogens. A previously unknown association between gut microbiota alterations and RAU was found, and the specific roles of thalidomide in modulating the gut microbiota and immunity were determined, suggesting that RAU may be affected by targeting gut dysbacteriosis and modifying immune imbalance. In-depth insights into sophisticated networks consisting of the gut microbiota and host cells may lead to the development of emerging treatments, including prebiotics, probiotics, synbiotics, and postbiotics.
Collapse
Affiliation(s)
- Xiang Wang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Kexu Xiong
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fan Huang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jinqun Huang
- Beijing Genomics Institute (BGI)-genomics, BGI-Shenzhen, Shenzhen, China
| | - Qin Liu
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ning Duan
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Huanhuan Ruan
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Hongliu Jiang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yanan Zhu
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lin Lin
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yuefeng Song
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Maomao Zhao
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lichun Zheng
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Pei Ye
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yajie Qian
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qingang Hu
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wenmei Wang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
22
|
Evaluation of the Distribution of Candida Species in Patients with Dysplastic and Nondysplastic Oral Lichen Planus Lesions. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8100352. [PMID: 35692588 PMCID: PMC9177324 DOI: 10.1155/2022/8100352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/05/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022]
Abstract
Objectives. This study is aimed at identifying and determining the distribution of isolated Candida species in patients with dysplastic and nondysplastic oral lichen planus (OLP) lesions in comparison with those of healthy controls. Material and Methods. This study includes patients with OLP, aged (more than 18 years old), who have had informed consent. Samples of the oral, tongue, and buccal mucus by rubbing with a sterile swab and sterilely next to the lamp flame. Demographic information was obtained using patient records to determine the species of Candida in both groups, and two tests of fertile tube production by Candida albicans and dye production in the dye medium were used. A biopsy from OLP lesions has been taken from each patient after swab sampling and was sent to the pathology department for further histopathological analysis. In the end
value, less than 0/05 was considered significant. Result. In this study, 40 lichen planus patients were compared with 32 control patients. The female/male ratio in OLP and healthy groups was 22/18 and 17/15, respectively. Among the OLP patients, 23 cases (56%) were dysplastic, and the other 17 (44%) patients were nondysplastic. The mean (±standard deviation (SD)) age of patients was 48.83 (±9.34) years, and the mean age of the control group was 40.21 (±10.32). There were no significant differences based on age (
). The highest frequency was related to tongue in both groups (22 (55%)) and buccal mucosa was the least common. There was a significant relationship between the location of the lesion and OLP (
). 18 (45%) were erosive, and 22 (55%) were nonerosive. However, no significant difference was observed between erosive and nonerosive types in the OLP group (
). Regarding the type of Candida, all cases in the patient’s group were related to Candida albicans [40 (100%)], and the correlation was not found in this regard (
). About colony count, the mean for the case and control groups was 26.68 and 23.25, respectively. Also, no significant relationship was found between colony count and groups in this study (
). There was no significant difference between gender and dysplastic or nondysplastic (
). Conclusion. According to the statistical studies performed in this study, the presence of Candida in patients with dysplastic and nondysplastic lichen planus is not significantly different, and this rate is not higher than healthy individuals and in cases where the results are positive. The predominant species of Candida is the Candida albicans. In this study, the highest frequency was related to tongue in both groups. There was only a significant relationship between the location of the lesion and OLP.
Collapse
|
23
|
Jung W, Jang S. Oral Microbiome Research on Oral Lichen Planus: Current Findings and Perspectives. BIOLOGY 2022; 11:biology11050723. [PMID: 35625451 PMCID: PMC9138428 DOI: 10.3390/biology11050723] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 12/12/2022]
Abstract
Simple Summary Oral lichen planus is a disease of the oral mucosa, which frequently affects women aged 40 years or older. Though the T cell-mediated immune response is involved in the development of oral lichen planus, attempts to identify a microorganism that causes the disease have been unsuccessful. Recent studies on the development of oral lichen planus are focusing on the role of the oral microbiome, which includes oral microbiota and their products, and the host environment. The role of the human microbiome in various diseases has been identified and regulating the microbiome is becoming important in personalized medicine. In this review, we summarized current findings on the role of the oral microbiome in the development of oral lichen planus. The homeostasis of the oral microbiome is disrupted in patients, and functional analysis of oral microbiota and oral mucosa implies that pathways involved in defense against bacterial infection and in the inflammatory response are activated in the oral lichen planus-associated oral microbiome. Though the lack of studies to date makes it difficult to conclude, further studies on the oral microbiome associated with the disease will enable a holistic understanding of the role of the oral microbiome in the development of oral lichen planus and developing a personalized therapy for the disease. Abstract Oral lichen planus (OLP) is a chronic inflammatory disease of the oral mucosa with an unknown etiology. The role of oral microbes in the development of OLP has gained researchers’ interest. In this review, we summarized the findings of studies focused on the relationship between OLP and oral microbiome, which includes the composition of oral microbiota, molecules produced by oral microbiota or the host, and the oral environment of the host. According to the studies, the oral microbial community in OLP patients undergoes dysbiosis, and the microbial dysbiosis in OLP patients is more prominent in the buccal mucosa than in the saliva. However, no same microorganisms have been suggested to be associated with OLP in multiple investigations, implying that the functional aspects of the oral microbiota are more important in OLP development than the composition of the oral microbiota. According to studies on host factors that make up the oral environment, signal pathways involved in cellular processes, such as keratinization, inflammation, and T cell responses are triggered in OLP. Studies on the functional aspects of the oral microbiota, as well as interactions between the host and the oral microbiota, are still lacking, and more research is required.
Collapse
Affiliation(s)
- Won Jung
- Department of Oral Medicine, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju-si 54907, Korea;
- Research Institute of Clinical Medicine, Jeonbuk National University, Jeonju-si 54907, Korea
- Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju-si 54907, Korea
| | - Sungil Jang
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju-si 54907, Korea
- Correspondence: ; Tel.: +82-63-270-4027
| |
Collapse
|
24
|
El-Howati A, Thornhill MH, Colley HE, Murdoch C. Immune mechanisms in oral lichen planus. Oral Dis 2022; 29:1400-1415. [PMID: 35092132 DOI: 10.1111/odi.14142] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 11/28/2022]
Abstract
Oral lichen planus (OLP) is a T-cell-mediated inflammatory disease of the oral mucosa that has been extensively researched over many years but as yet the mechanisms of pathogenesis are still not fully understood. Whilst the specific etiologic factors driving OLP remain ambiguous, evidence points to the development of a chronic, dysregulated immune response to OLP-mediating antigens presented by innate immune cells and oral keratinocytes leading to increased cytokine, chemokine and adhesion molecule expression. These molecules recruit T-cells and mast cells to the diseased site and orchestrate a complex interplay between cells that culminates in keratinocyte cell death, mucosal basement membrane destruction and long-term chronicity of the disease. The main lymphocytes involved are thought to be CD8+ cytotoxic and CD4+ Th1 polarised T-cells although recent evidence indicates the involvement of other Th subsets such as Th9, Th17 and Tregs, suggesting that a more complex immune cell relationship exists during the disease process. This review provides an overview of the immune mechanisms at play in OLP pathogenesis with particular emphasis on the role of the different Th subsets and how these recent discoveries may guide research toward identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Asma El-Howati
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom.,Department of Oral Medicine, Faculty of Dentistry, University of Benghazi, Benghazi, Libya
| | - Martin H Thornhill
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| | - Helen E Colley
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| | - Craig Murdoch
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
25
|
He H, Wang Y, Fan Y, Li C, Han J. Hypha essential genes in Candida albicans pathogenesis of oral lichen planus: an in-vitro study. BMC Oral Health 2021; 21:614. [PMID: 34852796 PMCID: PMC8638143 DOI: 10.1186/s12903-021-01975-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 11/11/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Hypha essential genes (HEGs) of Candida Albicans have been emerging into scholar's attention, little known about their functions in oral lichen planus (OLP) with an uncovered etiology. This research aimed to observe necessary genes in biphasic C. albicans from OLP and study their relevance in pathogenesis, so as to evaluate possible roles of morphologic switching in etiology of OLP. METHODS Samples were collected from OLP lesions of patients, mycelia were cultured and total RNA was extracted then subjected to reverse transcription-PCR and real-time PCR. RESULTS HWP1 and HGC1 were significantly expressed in hyphae phase and weakly detected in yeast phase, while there was no significant difference of EFG1, ALS3, and ECE1 between in yeast and mycelia. CONCLUSION HGC1 and HWP1 were confirmed to be hypha essential genes, with HGC1 for hypha morphogenesis and HWP1 for adhesion invasion in pathogenesis of C. albicans in OLP. ALS3, ECE1 and EFG1 played minor roles in hyphae maintenance and adhesion for hyphae. These might be deemed as hints for the etiology of OLP and indicate HGC1 and HWP1 to be a priority of potential drug target.
Collapse
Affiliation(s)
- Hong He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China.
| | - Ying Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Yan Fan
- Hangzhou Stomatology Hospital, Pinghai Road, Hangzhou, 310000, China.
| | - Congcong Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China.
| | - Jianxin Han
- Department of Food Science and Nutrition, School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310006, China
| |
Collapse
|
26
|
Crosstalk between the oral microbiota, mucosal immunity, and the epithelial barrier regulates oral mucosal disease pathogenesis. Mucosal Immunol 2021; 14:1247-1258. [PMID: 34040155 DOI: 10.1038/s41385-021-00413-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/26/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
Oral mucosal disease (OMD), which is also called soft tissue oral disease, is described as a series of disorders or conditions affecting the mucosa and soft tissue in the oral cavity. Its etiology is unclear, but emerging evidence has implicated the influence of the composition of the oral mucosa and saliva-resident microbiota. In turn, this dysbiosis effects the immune response balance and epithelial barrier function, followed by the occurrence and progression of OMD. In addition, oral microbial dysbiosis is diverse in different types of diseases and different disease progressions, suggesting that key causal pathogens may exist in various oral pathologies. This narrative literature review primarily discusses the most recent findings focusing on how microbial dysbiosis communicates with mucosal adaptive immune cells and the epithelial barrier in the context of five representative OMDs, including oral candidiasis (OC), oral lichen planus (OLP), recurrent aphthous ulcer (RAU), oral leukoplakia (OLK), and oral squamous cell carcinoma (OSCC), to provide new insight into the pathogenetic mechanisms of OMDs.
Collapse
|
27
|
Vo PTD, Choi SS, Park HR, Lee A, Jeong SH, Choi Y. Gene signatures associated with barrier dysfunction and infection in oral lichen planus identified by analysis of transcriptomic data. PLoS One 2021; 16:e0257356. [PMID: 34506598 PMCID: PMC8432868 DOI: 10.1371/journal.pone.0257356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/27/2021] [Indexed: 11/23/2022] Open
Abstract
Oral lichen planus (OLP) is one of the most prevalent oral mucosal diseases, but there is no cure for OLP yet. The aim of this study was to gain insights into the role of barrier dysfunction and infection in OLP pathogenesis through analysis of transcriptome datasets available in public databases. Two transcriptome datasets were downloaded from the Gene Expression Omnibus database and analyzed as whole and as partial sets after removing outliers. Differentially expressed genes (DEGs) upregulated in the dataset of OLP versus healthy epithelium were significantly enriched in epidermal development, keratinocyte differentiation, keratinization, responses to bacterial infection, and innate immune response. In contrast, the upregulated DEGs in the dataset of the mucosa predominantly reflected chemotaxis of immune cells and inflammatory/immune responses. Forty-three DEGs overlapping in the two datasets were identified after removing outliers from each dataset. The overlapping DEGs included genes associated with hyperkeratosis (upregulated LCE3E and TMEM45A), wound healing (upregulated KRT17, IL36G, TNC, and TGFBI), barrier defects (downregulated FRAS1 and BCL11A), and response to infection (upregulated IL36G, ADAP2, DFNA5, RFTN1, LITAF, and TMEM173). Immunohistochemical examination of IL-36γ, a protein encoded by one of the DEGs IL36G, in control (n = 7) and OLP (n = 25) tissues confirmed the increased expression of IL-36γ in OLP. Collectively, we identified gene signatures associated with hyperkeratosis, wound healing, barrier defects, and response to infection in OLP. IL-36γ, a cytokine involved in both wound repair and antimicrobial defense, may be a possible therapeutic target in OLP.
Collapse
Affiliation(s)
- Phuc Thi-Duy Vo
- Department of Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Sun Shim Choi
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Hae Ryoun Park
- Department of Oral Pathology, Pusan National University School of Dentistry, Yangsan, Gyeongnam, Republic of Korea
| | - Ahreum Lee
- Department of Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Sung-Hee Jeong
- Department of Oral Medicine, Dental and Life Science Institute, Dental Research Institute, Pusan National University School of Dentistry, Yangsan, Gyeongnam, Republic of Korea
| | - Youngnim Choi
- Department of Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
28
|
The Effect of Mouthrinse with 0.05% Dexamethasone Solution on the Oral Bacterial Community of Oral Lichen Planus Patients: Prospective Pilot Study. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11146286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Few studies have already been performed to assess oral bacteria during steroid therapy for oral lichen planus (OLP). Thus, the aim of our study was to analyze the effect of dexamethasone mouthrinse treatment on the oral bacteria of OLP patients. This prospective study was conducted on patients who were diagnosed with OLP and treated with 0.05% dexamethasone mouthrinse twice per day for 4 weeks. Using unstimulated saliva of the patients before and after treatment, the qualitative and quantitative changes in oral bacteria were analyzed using quantitative real-time polymerase chain reaction (qPCR). The qPCR results were analyzed using Wilcoxon signed-rank test to the quantitative changes with dexamethasone mouthrinse. The statistical significance was considered at a level of 0.05. In total, 20 patients were enrolled in this study, wherein all were noted to show improved symptoms of OLP. Fifteen patients (75%) had a qualitative change in the oral microbial species and an improved relative periodontitis risk score (from 26.1 ± 10.7 to 20.9 ± 9.2; p = 0.008). However, quantitative changes in all species were determined to be not statistically different before and after the treatment. Most OLP patients had a changed microbial community composition after 0.05% dexamethasone mouthrinse for 4 weeks. In particular, the composition of the periodontopathic bacteria was improved after the treatment.
Collapse
|
29
|
Comparative Analyses of the Subgingival Microbiome in Chronic Periodontitis Patients with and without Gingival Erosive Oral Lichen Planus Based on 16S rRNA Gene Sequencing. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9995225. [PMID: 34258290 PMCID: PMC8257348 DOI: 10.1155/2021/9995225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/28/2021] [Accepted: 06/17/2021] [Indexed: 12/16/2022]
Abstract
The aim of the study was to compare the microbiota composition and bacterial diversity of subgingival plaque in chronic periodontitis patients with and without gingival erosive oral lichen planus. The subgingival plaque samples of 20 chronic periodontitis patients with gingival erosive oral lichen planus (CP-OLP group) and 19 chronic periodontitis patients without gingival erosive oral lichen planus (CP group) were analyzed by 16S rRNA gene high-throughput sequencing. Compared with the CP group, the richness and diversity of subgingival plaque microflora in the CP-OLP group decreased significantly. There were some differences between the two groups in the composition of microflora on the levels of phylum and genus. Distributions of Prevotella and Leptotrichia in the CP-OLP group were significantly lower than those in the CP group. The dominant genera in CP-OLP group were Pseudomonas and Granulicatella. These results indicated that gingival erosive oral lichen planus may influence the structure and proportion of subgingival plaque microflora.
Collapse
|
30
|
Study on the Role of Salivary Flora and NF-κB Inflammatory Signal Pathway in Oral Lichen Planus. Inflammation 2021; 43:994-1008. [PMID: 32016629 DOI: 10.1007/s10753-020-01185-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oral lichen planus (OLP) is an inflammatory disease. It is believed that infection and immune dysfunction play a key role in its pathogenesis, but the specific mechanism of action remains unclear. The 16s rRNA high-throughput sequencing technique was used to analyze the microbial flora structure in the saliva of OLP patients and healthy controls. The relative abundance of Derxia, Haemophilus, and Pseudomonas in the saliva of the OLP group was lower than that of the healthy control group, but there was no significant difference in the overall structure of the microbial population. In addition, we measured the protein expression levels of toll-like receptor 4 (TLR4) and nuclear factor-kappab p65 (NF-κB p65) in the tissues of OLP patients, and found that there was a significant increase and positive correlation between them (r = 0.907, P = 0.034). The expression levels of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) in the OLP group were consistent with those of NF-κB p65. Therefore, we believe that changes in the composition ratio of microbialflora break the original balance state of flora, promote the occurrence of immune inflammatory reaction, and then lead to the generation or aggravation of OLP disease. This discovery provides new ideas for further research on OLP initiation and immune regulation mechanism.
Collapse
|
31
|
Zheng SW, Xu P, Cai LT, Tan ZW, Guo YT, Zhu RX, He Y. The presence of Prevotella melaninogenica within tissue and preliminary study on its role in the pathogenesis of oral lichen planus. Oral Dis 2021; 28:1580-1590. [PMID: 33780104 DOI: 10.1111/odi.13862] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/03/2021] [Accepted: 03/22/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Oral lichen planus (OLP) is a chronic inflammatory disease that occurs in the oral mucosa with characteristic white striations lesions, recurrent erosions, and pains. The etiology and pathogenesis of OLP are still unclear. MATERIALS AND METHODS We analyzed the bacterial community structure of buccal mucosa in patients with OLP and normal controls by high-throughput sequencing. Fluorescence in situ hybridization (FISH) was used to detect Prevotella melaninogenica (P. melaninogenica) in 13 OLP samples and 10 controls. The amounts of P. melaninogenica in OLP buccal mucosa and the expression of inflammatory cytokines in co-culture of mouse-derived macrophages with P. melaninogenica were detected by RT-qPCR. RESULTS The P. melaninogenica was more abundant in OLP than in healthy controls, and the differences were significant at the level of the phylum, family, genus, and species (p < .05). FISH showed that P. melaninogenica can invade the epithelium and even the lamina propria of OLP, while no invasion was found in the normal mucosa. Prevotella melaninogenica can adhere to and invade macrophages and then activate the transcription of IL-1β, IL-6, and TNF-α in NF-κB signaling pathway. CONCLUSION Prevotella melaninogenica may be involved in the pathogenic process of OLP, and its specific mechanism deserves further study.
Collapse
Affiliation(s)
- Sai-Wei Zheng
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School of Stomatology, Tongji University, Shanghai, China
| | - Pan Xu
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School of Stomatology, Tongji University, Shanghai, China
| | - Li-Ting Cai
- Department of Bioinformatics, School of life Sciences and technology, Tongji University, Shanghai, China
| | - Zheng-Wu Tan
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School of Stomatology, Tongji University, Shanghai, China
| | - Yi-Ting Guo
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School of Stomatology, Tongji University, Shanghai, China
| | - Rui-Xin Zhu
- Department of Bioinformatics, School of life Sciences and technology, Tongji University, Shanghai, China
| | - Yuan He
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School of Stomatology, Tongji University, Shanghai, China
| |
Collapse
|
32
|
Min H, Baek K, Lee A, Seok YJ, Choi Y. Genomic characterization of four Escherichia coli strains isolated from oral lichen planus biopsies. J Oral Microbiol 2021; 13:1905958. [PMID: 33828821 PMCID: PMC8009128 DOI: 10.1080/20002297.2021.1905958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Oral lichen planus (OLP) is a chronic T cell-mediated inflammatory disease that affects the mucus membrane of the oral cavity. We previously proposed a potential role of intracellular bacteria detected within OLP lesions in the pathogenesis of OLP and isolated four Escherichia coli strains from OLP tissues that were phylogenetically close to K-12 MG1655 strain. We sequenced the genomes of the four OLP-isolated E. coli strains and generated 6.71 Gbp of Illumina MiSeq data (166–195x coverage per strain). The size of the assembled draft genomes was 4.69 Mbp, with a GC content of 50.7%, in which 4360 to 4367 protein-coding sequences per strain were annotated. We also identified 368 virulence factors and 53 antibiotic resistance genes. Comparative genomics revealed that the OLP-isolated strains shared more pangenome orthologous groups with pathogenic strains than did the K-12 MG1655 strain, a derivative of K-12 strain isolated from human feces. Although the OLP-isolated strains did not have the major virulence factors (VFs) of the pathogenic strains, a number of VFs involved in adherence/invasion, colonization, or systemic infection were identified. The genomic characteristics of E. coli first isolated from the oral cavity would benefit future investigations on the pathogenic potential of these bacteria.
Collapse
Affiliation(s)
- Huitae Min
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Republic of Korea
| | - Keumjin Baek
- Department of Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Ahreum Lee
- Department of Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Yeong-Jae Seok
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Republic of Korea
| | - Youngnim Choi
- Department of Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
33
|
Villa TG, Sánchez-Pérez Á, Sieiro C. Oral lichen planus: a microbiologist point of view. Int Microbiol 2021; 24:275-289. [PMID: 33751292 PMCID: PMC7943413 DOI: 10.1007/s10123-021-00168-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023]
Abstract
Oral lichen planus (OLP) is a chronic disease of uncertain etiology, although it is generally considered as an immune-mediated disease that affects the mucous membranes and even the skin and nails. Over the years, this disease was attributed to a variety of causes, including different types of microorganisms. This review analyzes the present state of the art of the disease, from a microbiological point of view, while considering whether or not the possibility of a microbial origin for the disease can be supported. From the evidence presented here, OLP should be considered an immunological disease, as it was initially proposed, as opposed to an illness of microbiological origin. The different microorganisms so far described as putative disease-causing agents do not fulfill Koch’s postulates; they are, actually, not the cause, but a result of the disease that provides the right circumstances for microbial colonization. This means that, at this stage, and unless new data becomes available, no microorganism can be envisaged as the causative agent of lichen planus.
Collapse
Affiliation(s)
- Tomás G. Villa
- Department of Microbiology, Faculty of Pharmacy, University of Santiago de Compostela, 15706 Santiago de Compostela, EU Spain
| | - Ángeles Sánchez-Pérez
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camperdown, NSW 2006 Australia
| | - Carmen Sieiro
- Department of Functional Biology and Health Sciences, Microbiology Area, Faculty of Biology, University of Vigo, 36310 Vigo, Pontevedra, EU Spain
| |
Collapse
|
34
|
Mucoadhesive Poloxamer-Based Hydrogels for the Release of HP-β-CD-Complexed Dexamethasone in the Treatment of Buccal Diseases. Pharmaceutics 2021; 13:pharmaceutics13010117. [PMID: 33477667 PMCID: PMC7831945 DOI: 10.3390/pharmaceutics13010117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 11/17/2022] Open
Abstract
Oral lichen planus (OLP) is an ongoing and chronic inflammatory disease affecting the mucous membrane of the oral cavity. Currently, the treatment of choice consists in the direct application into the buccal cavity of semisolid formulations containing a corticosteroid molecule to decrease inflammatory signs and symptoms. However, this administration route has shown various disadvantages limiting its clinical use and efficacy. Indeed, the frequency of application and the incorrect use of the preparation may lead to a poor efficacy and limit the treatment compliance. Furthermore, the saliva clearance and the mechanical stress present in the buccal cavity also involve a decrease in the mucosal exposure to the drug. In this context, the design of a new pharmaceutical formulation, containing a steroidal anti-inflammatory, mucoadhesive, sprayable and exhibiting a sustained and controlled release seems to be suitable to overcome the main limitations of the existing pharmaceutical dosage forms. The present work reports the formulation, optimization and evaluation of the mucoadhesive and release properties of a poloxamer 407 thermosensitive hydrogel containing a poorly water-soluble corticosteroid, dexamethasone acetate (DMA), threaded into hydroxypropyl-beta-cyclodextrin (HP-β-CD) molecules. Firstly, physicochemical properties were assessed to ensure suitable complexation of DMA into HP-β-CD cavities. Then, rheological properties, in the presence and absence of various mucoadhesive agents, were determined and optimized. The hydration ratio (0.218-0.191), the poloxamer 407 (15-17 wt%) percentage and liquid-cyclodextrin state were optimized as a function of the gelation transition temperature, viscoelastic behavior and dynamic flow viscosity. Deformation and resistance properties were evaluated in the presence of various mucoadhesive compounds, being the sodium alginate and xanthan gum the most suitable to improve adhesion and mucoadhesion properties. Xanthan gum was shown as the best agent prolonging the hydrogel retention time up to 45 min. Furthermore, xanthan gum has been found as a relevant polymer matrix controlling drug release by diffusion and swelling processes in order to achieve therapeutic concentration for prolonged periods of time.
Collapse
|
35
|
|
36
|
Genomic Analysis of Oral Lichen Planus and Related Oral Microbiome Pathogens. Pathogens 2020; 9:pathogens9110952. [PMID: 33207582 PMCID: PMC7697643 DOI: 10.3390/pathogens9110952] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022] Open
Abstract
Oral lichen planus (OLP) is a common chronic inflammatory disease affecting the oral mucosa. The pathogenesis of OLP is incompletely understood but is thought to be related to the immune system. As the oral cavity is a major reservoir and transmission gateway for bacteria, viruses, and fungi, the microbial composition of the oral cavity could play a role in the pathogenesis of OLP. However, limited by analytic technology and knowledge of the microbial community in the oral cavity, it is not yet clear which pathogens are associated with OLP. Next generation sequencing (NGS) is a powerful tool to identify pathogens for many infectious diseases. In this study, we compared the host cell gene expression profiles and the microbial profiles between OLP patients and matched healthy individuals. We identified the activation of the hepatocyte nuclear factor alpha (HNF4A) network in OLP patients and potential pathogens, including Corynebacterium matruchotii, Fusobacterium periodonticum, Streptococcus intermedius, Streptococcus oralis, and Prevotella denticola. Prevotella denticola is capable of activating the HNF4A gene network. Our findings shed light on the previously elusive association of OLP with various diseases like hepatitis, and indicate that OLP is a T-helper type 17 (Th17) mediated mucosal inflammatory process. The identified molecular pathways and microbes could be used to inform future investigations into OLP pathogenesis and to develop novel therapeutics for OLP treatment.
Collapse
|
37
|
Wang X, Zhao Z, Tang N, Zhao Y, Xu J, Li L, Qian L, Zhang J, Fan Y. Microbial Community Analysis of Saliva and Biopsies in Patients With Oral Lichen Planus. Front Microbiol 2020; 11:629. [PMID: 32435231 PMCID: PMC7219021 DOI: 10.3389/fmicb.2020.00629] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 03/20/2020] [Indexed: 12/25/2022] Open
Abstract
The specific etiology and pathogenesis of oral lichen planus (OLP) remain elusive, and microbial dysbiosis may play an important role in OLP. We evaluated the saliva and tissue bacterial community of patients with OLP and identified the colonization of bacteria in OLP tissues. The saliva (n = 60) and tissue (n = 24) samples from OLP patients and the healthy controls were characterized by 16S rDNA gene sequencing and the bacterial signals in OLP tissues were detected by fluorescence in situ hybridization (FISH) targeting the bacterial 16S rDNA gene. Results indicate that the OLP tissue microbiome was different from the microbiota of OLP saliva. Compared with the healthy controls, Capnocytophaga and Gemella were higher in OLP saliva, while Escherichia–Shigella and Megasphaera were higher in OLP tissues, whereas seven taxa, including Carnobacteriaceae, Flavobacteriaceae, and Megasphaera, were enriched in both saliva and tissues of OLP patients. Furthermore, FISH found that the average optical density (AOD) of bacteria in the lamina propria of OLP tissues was higher than that of the healthy controls, and the AOD of bacteria in OLP epithelium and lamina propria was positively correlated. These data provide a different perspective for future investigation on the OLP microbiome.
Collapse
Affiliation(s)
- Xuewei Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Zhibai Zhao
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Nan Tang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yuping Zhao
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Juanyong Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Liuyang Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Ling Qian
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Junfeng Zhang
- Medical School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuan Fan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
38
|
Yu FY, Wang QQ, Li M, Cheng YH, Cheng YSL, Zhou Y, Yang X, Zhang F, Ge X, Zhao B, Ren XY. Dysbiosis of saliva microbiome in patients with oral lichen planus. BMC Microbiol 2020; 20:75. [PMID: 32245419 PMCID: PMC7118920 DOI: 10.1186/s12866-020-01733-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/21/2020] [Indexed: 12/19/2022] Open
Abstract
Background Oral microbiota is not only important for maintaining oral health but also plays a role in various oral diseases. However, studies regarding microbiome changes in oral lichen planus (OLP) are very limited. To the best of our knowledge, there has been only two studies investigating salivary microbiome changes in OLP. Therefore, the purpose of this study was to identify the characteristic microbial profile in the saliva of OLP patients, with or without erosive lesions, and compare that with recurrent aphthous ulcer (RAU), a common oral immunological disorder that also shows multiple erosive/ulcerative lesions. Whole saliva samples were collected from 20 patients with OLP (erosive E, n = 10 and non-erosive NE, n = 10), 10 patients with RAU (U) and 10 healthy controls (C). DNA was extracted from the saliva samples, and the 16S rDNA gene V4 hypervariable region was analyzed using Illumina sequencing. Results We obtained 4949 operational taxonomic units (OTUs) from the V4 region in all saliva samples. Community composition analysis showed a clear decreased relative abundance of genera Streptococcus and Sphingomonas in saliva from RAU patients when compared to the other three groups. Relative abundance of Lautropia and Gemella were higher in E group, whereas relative abundance of Haemophilus and Neisseria were higher in NE group when compared to C group. Abiotrophia and Oribacterium were higher in OLP (combining E and NE groups), while Eikenella and Aggregatibacter were lower when compared to C group. There was statistically significance in α-diversity between E and RAU groups(p < 0.05). Significant differences in β-diversity were detected in bacteria between E and C; NE and C; as well as E and NE groups. The LDA effect size algorithm identified the g_Haemophilus might be the potential biomarker in NE group. Conclusions We found that salivary microbiome in erosive OLP was significantly different from that found in RAU; and these changes may be related to the underlying disease process rather than presence of ulcerative/erosive lesions clinically. In addition, our findings in bacterial relative abundance in OLP were significantly different from the previously reported findings, which points to the need for further research in salivary microbiome of OLP.
Collapse
Affiliation(s)
- Fei Yan Yu
- Department of Oral Medicine, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
| | - Qian Qian Wang
- Department of Periodontology, Shanxi Medical University School and Hospital of Stomatology, No. 63, New South Road, Yingze District, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Miao Li
- Department of Periodontology, Shanxi Medical University School and Hospital of Stomatology, No. 63, New South Road, Yingze District, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Ya-Hsin Cheng
- Department of Physiology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Yi-Shing Lisa Cheng
- Department of Diagnostic Sciences, Texas A & M University College of Dentistry, Dallas, TX, USA
| | - Yu Zhou
- Department of Oral Medicine, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
| | - Xi Yang
- Department of Periodontology, Shanxi Medical University School and Hospital of Stomatology, No. 63, New South Road, Yingze District, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Fang Zhang
- Department of Oral Medicine, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
| | - Xuejun Ge
- Department of Periodontology, Shanxi Medical University School and Hospital of Stomatology, No. 63, New South Road, Yingze District, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Bin Zhao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
| | - Xiu Yun Ren
- Department of Periodontology, Shanxi Medical University School and Hospital of Stomatology, No. 63, New South Road, Yingze District, Taiyuan, Shanxi, 030001, People's Republic of China.
| |
Collapse
|
39
|
Characterization of intratissue bacterial communities and isolation of Escherichia coli from oral lichen planus lesions. Sci Rep 2020; 10:3495. [PMID: 32103089 PMCID: PMC7044275 DOI: 10.1038/s41598-020-60449-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/12/2020] [Indexed: 12/20/2022] Open
Abstract
Oral lichen planus (OLP) is a chronic T cell-mediated inflammatory disease of unknown etiology. We previously proposed that the intracellular bacteria detected in OLP lesions are important triggering factors for T cell infiltration. This study aimed to identify OLP-associated bacterial species through the characterization of intratissue bacterial communities of OLP lesions. Seven pairs of bacterial communities collected from the mucosal surface and biopsied tissues of OLP lesions were analyzed by high-throughput sequencing of the 16S rRNA gene. The intratissue bacterial communities were characterized by decreased alpha diversity but increased beta diversity compared with those on the mucosal surface. While the relative abundance of most taxa was decreased within the tissues, that of Escherichia coli was significantly increased. Four E. coli strains were isolated from additional OLP biopsies and verified as K12 strains by whole-genome sequencing. The distribution of E. coli in sections of control (n = 12) and OLP (n = 22) tissues was examined by in situ hybridization. E. coli was detected in most OLP tissues, suggesting its potential role in the pathogenesis of OLP. The oral E. coli strains isolated from OLP tissues will be useful to investigate their role as triggering factors for T cell infiltration.
Collapse
|
40
|
Salivary mycobiome dysbiosis and its potential impact on bacteriome shifts and host immunity in oral lichen planus. Int J Oral Sci 2019; 11:13. [PMID: 31263096 PMCID: PMC6802619 DOI: 10.1038/s41368-019-0045-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 12/19/2018] [Accepted: 01/16/2019] [Indexed: 02/07/2023] Open
Abstract
The biodiversity of the mycobiome, an important component of the oral microbial community, and the roles of fungal–bacterial and fungal–immune system interactions in the pathogenesis of oral lichen planus (OLP) remain largely uncharacterized. In this study, we sequenced the salivary mycobiome and bacteriome associated with OLP. First, we described the dysbiosis of the microbiome in OLP patients, which exhibits lower levels of fungi and higher levels of bacteria. Significantly higher abundances of the fungi Candida and Aspergillus in patients with reticular OLP and of Alternaria and Sclerotiniaceae_unidentified in patients with erosive OLP were observed compared to the healthy controls. Aspergillus was identified as an “OLP-associated” fungus because of its detection at a higher frequency than in the healthy controls. Second, the co-occurrence patterns of the salivary mycobiome–bacteriome demonstrated negative associations between specific fungal and bacterial taxa identified in the healthy controls, which diminished in the reticular OLP group and even became positive in the erosive OLP group. Moreover, the oral cavities of OLP patients were colonized by dysbiotic oral flora with lower ecological network complexity and decreased fungal–Firmicutes and increased fungal–Bacteroidetes sub-networks. Third, several keystone fungal genera (Bovista, Erysiphe, Psathyrella, etc.) demonstrated significant correlations with clinical scores and IL-17 levels. Thus, we established that fungal dysbiosis is associated with the aggravation of OLP. Fungal dysbiosis could alter the salivary bacteriome or may reflect a direct effect of host immunity, which participates in OLP pathogenesis. Imbalance in the oral fungal community could lead to the development of oral lichen planus (OLP), a chronic inflammatory disease that affects the mucous membranes in the mouth. The exact cause of OLP is uncertain, which is a major obstacle to therapeutic development. Using salivary samples, a team headed by Xuedong Zhou at Sichuan University in China investigated the composition and diversity of the fungal community in OLP patients and healthy individuals. The authors found that the oral fungal community was less diverse and that there were higher levels of bacteria in OLP patients. The team concluded that fungal community imbalance could affect the bacterial community in the saliva and the host immunity in the mucous membrane, thereby constituting a direct or indirect cause of the development of OLP.
Collapse
|
41
|
Pavan Kumar T, Priyadharshini R, Sujatha S, Rakesh N, Shwetha V. Association of OLP and thyroid disorder: Case report and review of literature. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2019; 120:588-590. [PMID: 30677565 DOI: 10.1016/j.jormas.2019.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 11/15/2022]
Abstract
Oral lichen planus is a chronic T cell mediated inflammatory condition with multifactorial etiology. Being autoimmune mediated condition, it has been associated with other autoimmune disorders. This case report discusses the possible presentation of oral lichen planus in hypothyroid patients as a marker of severity of the thyroid deficient status and the possible pathogenetic link between both the conditions.
Collapse
Affiliation(s)
- T Pavan Kumar
- Department of Oral Medicine, Radiology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, India.
| | - R Priyadharshini
- Department of Oral Medicine, Radiology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, India.
| | - S Sujatha
- Department of Oral Medicine, Radiology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, India.
| | - N Rakesh
- Department of Oral Medicine, Radiology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, India.
| | - V Shwetha
- Department of Oral Medicine, Radiology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, India
| |
Collapse
|
42
|
Qian H, Jiao L, Fan Z, Wang L, Liu B, Miao G. Analysis of Immunologic Function Changes in Lichen Planus After Clinical Treatment. Med Sci Monit 2018; 24:8716-8721. [PMID: 30504759 PMCID: PMC6287452 DOI: 10.12659/msm.910931] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/01/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Lichen planus (LP) is a common chronic superficial skin lesion that causes chronic or sub-acute inflammatory disorders. LP can affect the oral cavity, skin, mucous membrane, and other body parts, and features include repeat attacks and long duration, leading to lower quality of life. This study aimed to analyze the changes of immunologic function before and after treatment of LP. MATERIAL AND METHODS Thirty cutaneous LP patients were selected. Peripheral blood was collected in the morning before and after treatment. Peripheral blood mononuclear cells (PBMCs) were isolated by density gradient method. Flow cytometry was used to detect T cell subpopulation CD4⁺ T cells and CD8⁺ T to calculate CD4⁺ T/CD8⁺ T ratio. Enzyme-linked immunosorbent assay (ELISA) was adopted to detect the helper T-cell (Th) factor IL-2, IFN-γ, IL-4, IL-6, IL-17, and IL-22 levels. RESULTS Compared with before treatment, the expressions of CD4⁺ T cells and CD8⁺ T cells were decreased, while the proportion of CD4⁺ T/CD8⁺ T were significantly elevated after treatment. IL-2 and IFN-γ secretion were markedly increased, whereas IL-4, IL-6, IL-17, and IL-22 were significantly reduced after treatment (P<0.05). CONCLUSIONS LP treatment reduces the distribution of CD4⁺ T cells and CD8⁺ T cells, and promotes the changes of Th1, Th2, and Th17 cytokines secretion.
Collapse
|
43
|
Henry A, Biddlestone J, McCaul J. 'Nasal flossing': A case report of nasopharyngeal stenosis due to severe erosive lichen planus and a novel therapeutic intervention. Int J Surg Case Rep 2018; 54:99-102. [PMID: 30611058 PMCID: PMC6317303 DOI: 10.1016/j.ijscr.2018.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 10/17/2018] [Accepted: 11/05/2018] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION We describe a case of severe erosive oral lichen planus that led to nasopharyngeal stenosis. This is a rare clinical presentation that was ultimately, successfully treated by surgery combined with post-operative 'nasal flossing': a novel therapeutic intervention. PRESENTATION OF CASE A 76-year-old male suffering from a rare case of severe oral lichen planus that was resistant to conservative measures is described. Initial surgery was complicated by recurrence of nasopharyngeal stenosis. Definitive surgery required revision of nasopharyngeal stenosis release combined with a course of post- operative 'nasal flossing'. The technique for 'nasal flossing' is described and demonstrated in photographs. The patient remained asymptomatic at 3 years using this combined approach, with restoration of olfaction, taste perception and voice quality, significantly enhancing quality of life. DISCUSSION Erosive oral lichen planus is a rare but important presentation in oral medicine. We found 'nasal flossing' to be a successful treatment to maintain nasopharyngeal patency following surgical repair of this uncommon condition. We are not aware that this combined approach has previously been described in the published literature. CONCLUSIONS Severe erosive oral lichen planus can lead to nasopharyngeal stenosis. Nasopharyngeal stenosis in these patients may be refractive to conventional surgical approaches. 'Nasal flossing' is demonstrated to be both practical and acceptable as a surgical adjunct in these difficult to treat cases of recurrent nasopharyngeal stenosis. This report has relevance for all those practicing oral and maxillofacial surgery, ear nose and throat surgery and oral medicine.
Collapse
Affiliation(s)
| | - John Biddlestone
- University of Glasgow, Speciality Registrar, Scottish Deanery, United Kingdom.
| | - James McCaul
- NHS GGC, Professor of Maxillofacial Surgery, University of Bradford, United Kingdom
| |
Collapse
|
44
|
Wang J, Yang L, Wang L, Yang Y, Wang Y. Forkhead box p3 controls progression of oral lichen planus by regulating microRNA-146a. J Cell Biochem 2018; 119:8862-8871. [PMID: 30125971 DOI: 10.1002/jcb.27139] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/18/2018] [Indexed: 12/11/2022]
Abstract
Oral lichen planus (OLP) is a severe T cell-mediated disorder of the mucosa, which causes chronic inflammation. Forkhead box P3 (Foxp3) regulates the immune response and plays an important role in immunological diseases. The current study aimed to determine the role of Foxp3 and microRNA (miR)-146a in OLP. Western blot analysis and a quantitative real-time polymerase chain reaction assay showed that the expression of Foxp3 and miR-146a was upregulated in OLP tissues and in lipopolysaccharide (LPS)-incubated HaCaT cells, compared with controls. Foxp3 inhibition significantly decreased miR-146a expression, ameliorated LPS stimulation by decreased cell proliferation, and apoptosis in LPS-incubated HaCaT cells as compared with the LPS group. Cotransfection of Foxp3 small interfering RNA and miR-146a mimics elevated cell proliferation and apoptosis compared with the Foxp3 small interfering RNA group. In addition, miR-146a overexpression upregulated, whereas miR-146a inhibition downregulated, the proliferation and apoptosis of LPS-incubated HaCaT cells. The target gene of miR--146a, tumor necrosis factor receptor-associated factor 6 (TRAF6), was predicted by bioinformatics software and identified by the luciferase reporter assay. Furthermore, Foxp3/miR-146a elevated T regulatory cells and regulated TRAF6 expression in CD4+ T cells that were isolated from peripheral blood of patients with OLP. In conclusion, our study suggests that Foxp3 and miR-146a regulate the progression of OLP by negatively regulating TRAF6, which may provide a promising therapeutic target for OLP treatment.
Collapse
Affiliation(s)
- Jing Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lijie Yang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Luyao Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yanjie Yang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yannan Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
45
|
Raybaud H, Olivieri C, Lupi-Pegurier L, Pagnotta S, Marsault R, Cardot-Leccia N, Doglio A. Epstein-Barr Virus–Infected Plasma Cells Infiltrate Erosive Oral Lichen Planus. J Dent Res 2018; 97:1494-1500. [DOI: 10.1177/0022034518788282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus (EBV), in addition to its transforming properties, contributes to the pathogenesis of several inflammatory diseases. Here, we investigated its involvement in oral lichen planus (OLP), a common autoimmune-like disease of unknown etiopathogenesis that can display a malignant potential. EBV-infected cells (EBV+ cells) were sought in a large series of clinically representative OLPs ( n = 99) through in situ hybridization to detect small noncoding EBV-encoded RNAs. Overall, our results demonstrated that EBV was commonly found in OLP (74%), with significantly higher frequency (83%) in the erosive form than in the reticular/keratinized type mild form (58%). Strikingly, many erosive OLPs were massively infiltrated by large numbers of EBV+ cells, which could represent a large part of the inflammatory infiltrate. Moreover, the number of EBV+ cells in each OLP section significantly correlated with local inflammatory parameters (OLP activity, infiltrate depth, infiltrate density), suggesting a direct relationship between EBV infection and inflammatory status. Finally, we characterized the nature of the infiltrated EBV+ cells by performing detailed immunohistochemistry profiles ( n = 21). Surprisingly, nearly all EBV+ cells detected in OLP lesions were CD138+ plasma cells (PCs) and more rarely CD20+ B cells. The presence of EBV+ PCs in erosive OLP was associated with profound changes in cytokine expression profile; notably, the expression of key inflammatory factors, such as IL1-β and IL8, were specifically increased in OLP heavily infiltrated with EBV+ PCs. Moreover, electron microscopy–based experiments showed that EBV+ PCs actively produced EBV viral particles, suggesting possible amplification of EBV infection within the lesion. Our study thus brings conclusive evidence showing that OLP is commonly infiltrated with EBV+ PCs, adding a further puzzling element to OLP pathogenesis, given that PCs are now considered to be major regulatory immune cells involved in several autoimmune diseases (ClinicalTrials.gov NCT02276573).
Collapse
Affiliation(s)
- H. Raybaud
- Université Côte d’Azur, EA 7354 MICORALIS, UFR Odontologie, Nice, France
- Centre Hospitalier Universitaire de Nice, Pôle Odontologie, Nice, France
| | - C.V. Olivieri
- Université Côte d’Azur, EA 7354 MICORALIS, UFR Odontologie, Nice, France
| | - L. Lupi-Pegurier
- Université Côte d’Azur, EA 7354 MICORALIS, UFR Odontologie, Nice, France
- Centre Hospitalier Universitaire de Nice, Pôle Odontologie, Nice, France
| | - S. Pagnotta
- Université Côte d’Azur, Centre Commun de Microscopie Appliquée, Nice, France
| | - R. Marsault
- Université Côte d’Azur, EA 7354 MICORALIS, UFR Odontologie, Nice, France
| | - N. Cardot-Leccia
- Centre Hospitalier Universitaire de Nice, Department of Pathology, Pasteur Hospital, Nice, France
| | - A. Doglio
- Université Côte d’Azur, EA 7354 MICORALIS, UFR Odontologie, Nice, France
- Centre Hospitalier Universitaire de Nice, Unité de Thérapie Cellulaire et Génique, Nice, France
| |
Collapse
|