1
|
Moratti M, Schifino G, Baccelli F, Ferrari S, Magrini E, Bassi M, Guerrieri A, Zompatori M, Lanari M, Conti F. Granulomatous lymphocytic interstitial lung disease in common variable immune deficiency: an in-depth clinical, immunological, functional and radiological exploration with a focus on its management, challenged by chronic CMV infection. Front Immunol 2025; 16:1589052. [PMID: 40443662 PMCID: PMC12119541 DOI: 10.3389/fimmu.2025.1589052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 04/16/2025] [Indexed: 06/02/2025] Open
Abstract
Background Common variable immune deficiency (CVID) is the most prevalent inborn error of immunity (IEI), marked by diverse clinical-immunological phenotypes and significant immune-dysregulation, including granulomatous lymphocytic interstitial lung disease (GLILD). GLILD is a severe manifestation of CVID, contributing to reduced life expectancy and a challenging diagnosis due to its insidious and non-specific clinical course. Current management strategies for GLILD rely on expert opinion due to a lack of randomized controlled trials (RCTs). Objectives This study aims to provide a comprehensive immunophenotypical characterization of CVID patients with and without GLILD, investigate predictive biomarkers for GLILD development, and explore therapeutic strategies, particularly during concomitant SARS-CoV-2 and chronic cytomegalovirus (CMV) infections. Sources Primary data were collected from a cohort of 25 patients with CVID who underwent high-resolution computed tomography (HRCT), immunophenotyping, and serum immunoglobulin analysis at diagnosis and after immunoglobulin replacement therapy. Existing literature on CVID and GLILD biomarkers, immunological profiles, and therapeutic interventions informed comparative analyses. Content Patients with GLILD exhibited distinct immunophenotypical features, including reduced regulatory T-cells, CD8+ naïve, central memory T-cells, and B-cell subsets (memory and switched memory), alongside increased CD21low B-cells and naïve B-cells, indicative of chronic inflammation-driven immune activation. IgA and IgG4 concentrations were significantly lower in patients with GLILD at diagnosis. Immunosuppressive therapy, predominantly mycophenolate mofetil (MMF), demonstrated favorable clinical and functional outcomes, though radiological progression persisted in some cases. CMV infection in patients with GLILD on immunosuppressants resulted in favorable outcomes, underscoring the importance of personalized treatment strategies. Implications This study highlights novel immunological markers and clinical-radiological patterns as potential predictors for GLILD, advocating for their integration into diagnostic and monitoring frameworks to reduce reliance on invasive histopathology. Future research should focus on validating biomarkers and conducting RCTs to establish evidence-based guidelines for GLILD management.
Collapse
Affiliation(s)
- Mattia Moratti
- Specialty School of Paediatrics, University of Bologna, Bologna, Italy
- Department of Biomedicine and Prevention, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Gioacchino Schifino
- Unità Operativa di Pneumologia - Clinica delle Malattie dell’apparato respiratorio - Arcispedale Sant’Anna – Azienda Ospedaliero Universitaria di Ferrara, Ferrara, Italy
| | - Francesco Baccelli
- Pediatric Hematology and Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Simona Ferrari
- Genetic Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Elisabetta Magrini
- Laboratory of Immuno-Haematology-Laboratorio Unico Metropolitano, Azienda Unità Sanitaria Locale (USL), Bologna, Italy
| | - Mirna Bassi
- Laboratory of Immuno-Haematology-Laboratorio Unico Metropolitano, Azienda Unità Sanitaria Locale (USL), Bologna, Italy
| | - Aldo Guerrieri
- Respiratory and Critical Care Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| | | | - Marcello Lanari
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Pediatric Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesca Conti
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Pediatric Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
2
|
Hajjar J, Rehman A, Hamdi A, Fuss I. Navigating the Complexities of Common Variable Immunodeficiency Enteropathy: From Established Therapies to Emerging Interventions. Immunol Allergy Clin North Am 2025; 45:267-285. [PMID: 40287172 DOI: 10.1016/j.iac.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Common Variable Immunodeficiency (CVID) is a prevalent primary immunodeficiency in adults, marked by low immunoglobulin levels and recurrent infections. This review examines the gastrointestinal complications of CVID, including both infectious and non-infectious manifestations. It highlights therapeutic strategies, from antimicrobials to novel biologics, and the role of immune modulation. The review also explores the impact of gut microbiota dysbiosis on CVID pathogenesis and emphasizes the need for personalized treatment approaches and routine cancer screening due to the elevated risk of gastrointestinal malignancy in CVID patients.
Collapse
Affiliation(s)
- Joud Hajjar
- The William T Shearer Center for Human Immunobiology at Texas Children's Hospital, Houston, TX, USA; Department of Pediatrics, Section of Immunology, Allergy and Retrovirology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | - Ahmed Rehman
- Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Ahmed Hamdi
- Department of Medicine, Section of Infectious Disease, Baylor College of Medicine, One Baylor Plaza, Building Tower West McNair Campus (MCHA) A10.143 MS: BCM901, Houston, TX 77030, USA
| | - Ivan Fuss
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, 31 Center Dr Ste 7A03, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
van Stigt AC, Gualtiero G, Cinetto F, Dalm VA, IJspeert H, Muscianisi F. The biological basis for current treatment strategies for granulomatous disease in common variable immunodeficiency. Curr Opin Allergy Clin Immunol 2024; 24:479-487. [PMID: 39431514 PMCID: PMC11537477 DOI: 10.1097/aci.0000000000001032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
PURPOSE OF REVIEW The pathogenesis of granulomatous disease in common variable immunodeficiency (CVID) is still largely unknown, which hampers effective treatment. This review describes the current knowledge on the pathogenesis of granuloma formation in CVID and the biological basis of the current treatment options. RECENT FINDINGS Histological analysis shows that T and B cells are abundantly present in the granulomas that are less well organized and are frequently associated with lymphoid hyperplasia. Increased presence of activation markers such as soluble IL-2 receptor (sIL-2R) and IFN-ɣ, suggest increased Th1-cell activity. Moreover, B-cell abnormalities are prominent in CVID, with elevated IgM, BAFF, and CD21low B cells correlating with granulomatous disease progression. Innate immune alterations, as M2 macrophages and neutrophil dysregulation, indicate chronic inflammation. Therapeutic regimens include glucocorticoids, DMARDs, and biologicals like rituximab. SUMMARY Our review links the biological context of CVID with granulomatous disease or GLILD to currently prescribed therapies and potential targeted treatments.
Collapse
Affiliation(s)
- Astrid C. van Stigt
- Laboratory Medical Immunology, Department of Immunology
- Division of Allergy & Clinical Immunology, Department of Internal Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Giulia Gualtiero
- Hematology and Clinical Immunology Unit, Department of Medicine (DIMED)
- Veneto Institute of Molecular Medicine (VIMM)
| | - Francesco Cinetto
- Rare Diseases Referral Center, Internal Medicine 1, Department of Medicine (DIMED), AULSS2 Marca Trevigiana, Ca’ Foncello Hospital, University of Padova, Padova, Italy
| | - Virgil A.S.H. Dalm
- Laboratory Medical Immunology, Department of Immunology
- Division of Allergy & Clinical Immunology, Department of Internal Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Francesco Muscianisi
- Rare Diseases Referral Center, Internal Medicine 1, Department of Medicine (DIMED), AULSS2 Marca Trevigiana, Ca’ Foncello Hospital, University of Padova, Padova, Italy
| |
Collapse
|
4
|
Buso H, Discardi C, Bez P, Muscianisi F, Ceccato J, Milito C, Firinu D, Landini N, Jones MG, Felice C, Rattazzi M, Scarpa R, Cinetto F. Sarcoidosis versus Granulomatous and Lymphocytic Interstitial Lung Disease in Common Variable Immunodeficiency: A Comparative Review. Biomedicines 2024; 12:1503. [PMID: 39062076 PMCID: PMC11275071 DOI: 10.3390/biomedicines12071503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Sarcoidosis and Granulomatous and Lymphocytic Interstitial Lung Diseases (GLILD) are two rare entities primarily characterised by the development of Interstitial Lung Disease (ILD) in the context of systemic immune dysregulation. These two conditions partially share the immunological background and pathologic findings, with granuloma as the main common feature. In this narrative review, we performed a careful comparison between sarcoidosis and GLILD, with an overview of their main similarities and differences, starting from a clinical perspective and ending with a deeper look at the immunopathogenesis and possible target therapies. Sarcoidosis occurs in immunocompetent individuals, whereas GLILD occurs in patients affected by common variable immunodeficiency (CVID). Moreover, peculiar extrapulmonary manifestations and radiological and histological features may help distinguish the two diseases. Despite that, common pathogenetic pathways have been suggested and both these disorders can cause progressive impairment of lung function and variable systemic granulomatous and non-granulomatous complications, leading to significant morbidity, reduced quality of life, and survival. Due to the rarity of these conditions and the extreme clinical variability, there are still many open questions concerning their pathogenesis, natural history, and optimal management. However, if studied in parallel, these two entities might benefit from each other, leading to a better understanding of their pathogenesis and to more tailored treatment approaches.
Collapse
Affiliation(s)
- Helena Buso
- Rare Diseases Referral Center, Internal Medicine 1, Department of Medicine (DIMED), AULSS2 Marca Trevigiana, Ca’ Foncello Hospital, University of Padova, 35124 Padova, Italy (C.F.); (M.R.); (R.S.); (F.C.)
| | - Claudia Discardi
- Rare Diseases Referral Center, Internal Medicine 1, Department of Medicine (DIMED), AULSS2 Marca Trevigiana, Ca’ Foncello Hospital, University of Padova, 35124 Padova, Italy (C.F.); (M.R.); (R.S.); (F.C.)
| | - Patrick Bez
- Rare Diseases Referral Center, Internal Medicine 1, Department of Medicine (DIMED), AULSS2 Marca Trevigiana, Ca’ Foncello Hospital, University of Padova, 35124 Padova, Italy (C.F.); (M.R.); (R.S.); (F.C.)
| | - Francesco Muscianisi
- Rare Diseases Referral Center, Internal Medicine 1, Department of Medicine (DIMED), AULSS2 Marca Trevigiana, Ca’ Foncello Hospital, University of Padova, 35124 Padova, Italy (C.F.); (M.R.); (R.S.); (F.C.)
| | - Jessica Ceccato
- Haematology and Clinical Immunology Unit, Department of Medicine (DIMED), University of Padova, 35124 Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), 35131 Padova, Italy
| | - Cinzia Milito
- Department of Molecular Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Davide Firinu
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| | - Nicholas Landini
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I Hospital, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Mark G. Jones
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 YD, UK;
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Carla Felice
- Rare Diseases Referral Center, Internal Medicine 1, Department of Medicine (DIMED), AULSS2 Marca Trevigiana, Ca’ Foncello Hospital, University of Padova, 35124 Padova, Italy (C.F.); (M.R.); (R.S.); (F.C.)
| | - Marcello Rattazzi
- Rare Diseases Referral Center, Internal Medicine 1, Department of Medicine (DIMED), AULSS2 Marca Trevigiana, Ca’ Foncello Hospital, University of Padova, 35124 Padova, Italy (C.F.); (M.R.); (R.S.); (F.C.)
| | - Riccardo Scarpa
- Rare Diseases Referral Center, Internal Medicine 1, Department of Medicine (DIMED), AULSS2 Marca Trevigiana, Ca’ Foncello Hospital, University of Padova, 35124 Padova, Italy (C.F.); (M.R.); (R.S.); (F.C.)
| | - Francesco Cinetto
- Rare Diseases Referral Center, Internal Medicine 1, Department of Medicine (DIMED), AULSS2 Marca Trevigiana, Ca’ Foncello Hospital, University of Padova, 35124 Padova, Italy (C.F.); (M.R.); (R.S.); (F.C.)
| |
Collapse
|
5
|
Rossini L, Ricci S, Montin D, Azzari C, Gambineri E, Tellini M, Conti F, Pession A, Saettini F, Naviglio S, Valencic E, Magnolato A, Baselli L, Azzolini S, Consolini R, Leonardi L, D'Alba I, Carraro E, Romano R, Melis D, Stagi S, Cirillo E, Giardino G, Biffi A, Pignata C, Putti MC, Marzollo A. Immunological Aspects of Kabuki Syndrome: A Retrospective Multicenter Study of the Italian Primary Immunodeficiency Network (IPINet). J Clin Immunol 2024; 44:105. [PMID: 38676773 DOI: 10.1007/s10875-024-01676-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/23/2024] [Indexed: 04/29/2024]
Abstract
Kabuki Syndrome (KS) is a multisystemic genetic disorder. A portion of patients has immunological manifestations characterized by increased susceptibility to infections and autoimmunity. Aiming to describe the clinical and laboratory immunological aspects of KS, we conducted a retrospective multicenter observational study on patients with KS treated in centers affiliated to the Italian Primary Immunodeficiency Network.Thirty-nine patients were enrolled, with a median age at evaluation of 10 years (range: 3 m-21y). All individuals had organ malformations of variable severity. Congenital heart defect (CHD) was present in 19/39 patients (49%) and required surgical correction in 9/39 (23%), with associated thymectomy in 7/39 (18%). Autoimmune cytopenia occurred in 6/39 patients (15%) and was significantly correlated with thymectomy (p < 0.002), but not CHD. Individuals with cytopenia treated with mycophenolate as long-term immunomodulatory treatment (n = 4) showed complete response. Increased susceptibility to infections was observed in 22/32 patients (69%). IgG, IgA, and IgM were low in 13/29 (45%), 13/30 (43%) and 4/29 (14%) patients, respectively. Immunoglobulin substitution was required in three patients. Lymphocyte subsets were normal in all patients except for reduced naïve T-cells in 3/15 patients (20%) and reduced memory switched B-cells in 3/17 patients (18%). Elevated CD3 + TCRαβ + CD4-CD8-T-cells were present in 5/17 individuals (23%) and were correlated with hematological and overall autoimmunity (p < 0.05).In conclusion, immunological manifestations of KS in our cohort include susceptibility to infections, antibody deficiency, and autoimmunity. Autoimmune cytopenia is correlated with thymectomy and elevated CD3 + TCRαβ + CD4-CD8-T-cells, and benefits from treatment with mycophenolate.
Collapse
Affiliation(s)
- Linda Rossini
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Via Giustiniani 3, Padua, 35128, Italy
- Maternal and Child Health Department, Padua University, Via Giustiniani, 3, Padua, 35128, Italy
| | - Silvia Ricci
- Immunology, Pediatric Unit, IRCCS Meyer Children's Hospital, viale G.Pieraccini 24, Florence, 50139, Italy
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Davide Montin
- Immunology and Rheumatology Unit, Regina Margherita Children Hospital, Turin, Italy
| | - Chiara Azzari
- Immunology, Pediatric Unit, IRCCS Meyer Children's Hospital, viale G.Pieraccini 24, Florence, 50139, Italy
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Eleonora Gambineri
- Centre of Excellence, Department of Pediatric Hematology-Oncology, IRCCS Meyer Children's Hospital, Florence, Italy
- Department of "NEUROFARBA", Section of Child's Health, University of Florence, Florence, Italy
| | - Marco Tellini
- Centre of Excellence, Department of Pediatric Hematology-Oncology, IRCCS Meyer Children's Hospital, Florence, Italy
| | - Francesca Conti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, 40138, Italy
- Dept. of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Andrea Pession
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, 40138, Italy
- Dept. of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Francesco Saettini
- Tettamanti Research Center, University of Milano-Bicocca, University of Milano Bicocca, Monza, Italy
| | - Samuele Naviglio
- Institute for Maternal and Child Health IRCCS "Burlo Garofolo", Trieste, Italy
| | - Erica Valencic
- Institute for Maternal and Child Health IRCCS "Burlo Garofolo", Trieste, Italy
| | - Andrea Magnolato
- Institute for Maternal and Child Health IRCCS "Burlo Garofolo", Trieste, Italy
| | - Lucia Baselli
- Department of Pediatrics, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Rita Consolini
- Section of Clinical and Laboratory Immunology, Division of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Lucia Leonardi
- Maternal, Infantile and Urological Sciences Department, Sapienza University of Rome, Rome, Italy
| | - Irene D'Alba
- Paediatric Haematology-Oncology, Maternal Infant Hospital "G. Salesi", Ancona, Italy
| | - Elisa Carraro
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Via Giustiniani 3, Padua, 35128, Italy
| | - Roberta Romano
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | - Daniela Melis
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via Salvador Allende Baronissi, Campania, 84081, Italy
| | - Stefano Stagi
- Department of Health Sciences, University of Florence, Florence, Italy
- Auxoendocrinology Division, Meyer Children's Hospital, IRCCS, viale G.Pieraccini 24, Florence, 50139, Italy
| | - Emilia Cirillo
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | - Giuliana Giardino
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | - Alessandra Biffi
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Via Giustiniani 3, Padua, 35128, Italy
- Maternal and Child Health Department, Padua University, Via Giustiniani, 3, Padua, 35128, Italy
| | - Claudio Pignata
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | - Maria Caterina Putti
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Via Giustiniani 3, Padua, 35128, Italy
| | - Antonio Marzollo
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Via Giustiniani 3, Padua, 35128, Italy.
| |
Collapse
|
6
|
Szaflarska A, Lenart M, Rutkowska-Zapała M, Siedlar M. Clinical and experimental treatment of primary humoral immunodeficiencies. Clin Exp Immunol 2024; 216:120-131. [PMID: 38306460 PMCID: PMC11036112 DOI: 10.1093/cei/uxae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/13/2023] [Accepted: 01/31/2024] [Indexed: 02/04/2024] Open
Abstract
Selective IgA deficiency (sIgAD), common variable immunodeficiency (CVID), and transient hypogammaglobulinemia of infancy (THI) are the most frequent forms of primary antibody deficiencies. Difficulties in initial diagnosis, especially in the early childhood, the familiar occurrence of these diseases, as well as the possibility of progression to each other suggest common cellular and molecular patomechanism and a similar genetic background. In this review, we discuss both similarities and differences of these three humoral immunodeficiencies, focusing on current and novel therapeutic approaches. We summarize immunoglobulin substitution, antibiotic prophylaxis, treatment of autoimmune diseases, and other common complications, i.e. cytopenias, gastrointestinal complications, and granulomatous disease. We discuss novel therapeutic approaches such as allogenic stem cell transplantation and therapies targeting-specific proteins, dependent on the patient's genetic defect. The diversity of possible therapeutics models results from a great heterogeneity of the disease variants, implying the need of personalized medicine approach as a future of primary humoral immunodeficiencies treatment.
Collapse
Affiliation(s)
- Anna Szaflarska
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka 265, Cracow, Poland
- Deparment of Clinical Immunology, University Children’s Hospital, Wielicka 265, Cracow, Poland
| | - Marzena Lenart
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka 265, Cracow, Poland
- Deparment of Clinical Immunology, University Children’s Hospital, Wielicka 265, Cracow, Poland
| | - Magdalena Rutkowska-Zapała
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka 265, Cracow, Poland
- Deparment of Clinical Immunology, University Children’s Hospital, Wielicka 265, Cracow, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka 265, Cracow, Poland
- Deparment of Clinical Immunology, University Children’s Hospital, Wielicka 265, Cracow, Poland
| |
Collapse
|
7
|
Kennedy-Batalla R, Acevedo D, Luo Y, Esteve-Solé A, Vlagea A, Correa-Rocha R, Seoane-Reula ME, Alsina L. Treg in inborn errors of immunity: gaps, knowns and future perspectives. Front Immunol 2024; 14:1278759. [PMID: 38259469 PMCID: PMC10800401 DOI: 10.3389/fimmu.2023.1278759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
Regulatory T cells (Treg) are essential for immune balance, preventing overreactive responses and autoimmunity. Although traditionally characterized as CD4+CD25+CD127lowFoxP3hi, recent research has revealed diverse Treg subsets such as Tr1, Tr1-like, and CD8 Treg. Treg dysfunction leads to severe autoimmune diseases and immune-mediated inflammatory disorders. Inborn errors of immunity (IEI) are a group of disorders that affect correct functioning of the immune system. IEI include Tregopathies caused by genetic mutations affecting Treg development or function. In addition, Treg dysfunction is also observed in other IEIs, whose underlying mechanisms are largely unknown, thus requiring further research. This review provides a comprehensive overview and discussion of Treg in IEI focused on: A) advances and controversies in the evaluation of Treg extended subphenotypes and function; B) current knowledge and gaps in Treg disturbances in Tregopathies and other IEI including Treg subpopulation changes, genotype-phenotype correlation, Treg changes with disease activity, and available therapies, and C) the potential of Treg cell-based therapies for IEI with immune dysregulation. The aim is to improve both the diagnostic and the therapeutic approaches to IEI when there is involvement of Treg. We performed a non-systematic targeted literature review with a knowledgeable selection of current, high-quality original and review articles on Treg and IEI available since 2003 (with 58% of the articles within the last 6 years) in the PubMed database.
Collapse
Affiliation(s)
- Rebeca Kennedy-Batalla
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IISGM), Madrid, Spain
| | - Daniel Acevedo
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Yiyi Luo
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Ana Esteve-Solé
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Alexandru Vlagea
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Immunology Department, Biomedic Diagnostic Center (CDB), Hospital Clínic of Barcelona, Clinical Immunology Unit Hospital Sant Joan de Déu-Hospital Clínic de Barcelona, Barcelona, Spain
| | - Rafael Correa-Rocha
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IISGM), Madrid, Spain
| | - Ma Elena Seoane-Reula
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IISGM), Madrid, Spain
- Pediatric Immuno-Allergy Unit, Allergy Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Primary Immunodeficiencies Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Laia Alsina
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Department of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Remiker A, Bolling K, Verbsky J. Common Variable Immunodeficiency. Med Clin North Am 2024; 108:107-121. [PMID: 37951645 DOI: 10.1016/j.mcna.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Common variable immunodeficiency (CVID) is the most common primary immune deficiency characterized by impaired production of specific immunoglobulin. The clinical manifestations are heterogeneous including acquisition of recurrent bacterial infections after a period of wellness, lymphoproliferation, autoimmunity, pulmonary disease, liver disease, enteropathy, granulomas, and an increased risk of malignancy. The etiology of CVID is largely unknown, with a considerable number of patients having an underlying genetic defect causing immune dysregulation. The antibody deficiency found in CVID is treated with lifelong immunoglobulin therapy, which is preventative of the majority of infections when given regularly.
Collapse
Affiliation(s)
- Allison Remiker
- Division of Hematology/Oncology/Blood and Marrow Transplantation, Department of Pediatrics, Medical College of Wisconsin, and Children's Wisconsin, Milwaukee, WI, USA.
| | - Kristina Bolling
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Medical College of Wisconsin, and Children's Wisconsin, Milwaukee, WI, USA
| | - James Verbsky
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Medical College of Wisconsin, and Children's Wisconsin, Milwaukee, WI, USA; Division of Rheumatology, Department of Pediatrics, Medical College of Wisconsin, and Children's Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
9
|
Sullivan NP, Maniam N, Maglione PJ. Interstitial lung diseases in inborn errors of immunity. Curr Opin Allergy Clin Immunol 2023; 23:500-506. [PMID: 37823528 DOI: 10.1097/aci.0000000000000951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
PURPOSE OF REVIEW Our goal is to review current understanding of interstitial lung disease (ILD) affecting patients with inborn errors of immunity (IEI). This includes understanding how IEI might predispose to and promote development or progression of ILD as well as how our growing understanding of IEI can help shape treatment of ILD in these patients. Additionally, by examining current knowledge of ILD in IEI, we hope to identify key knowledge gaps that can become focus of future investigative efforts. RECENT FINDINGS Recent identification of novel IEI associated with ILD and the latest reports examining treatment of ILD in IEI are included. Of noted interest, are recent clinical studies of immunomodulatory therapy for ILD in common variable immunodeficiency. SUMMARY ILD is a frequent complication found in many IEI. This article provides a guide to identifying manifestations of ILD in IEI. We review a broad spectrum of IEI that develop ILD, including antibody deficiency and immune dysregulation disorders that promote autoimmunity and autoinflammation. This work integrates clinical information with molecular mechanisms of disease and diagnostic assessments to provide an expedient overview of a clinically relevant and expanding topic.
Collapse
Affiliation(s)
| | - Nivethietha Maniam
- Section of Pulmonary, Allergy, Sleep and Critical Care Medicine, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Paul J Maglione
- Section of Pulmonary, Allergy, Sleep and Critical Care Medicine, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Luo Y, Acevedo D, Vlagea A, Codina A, García-García A, Deyà-Martínez A, Martí-Castellote C, Esteve-Solé A, Alsina L. Changes in Treg and Breg cells in a healthy pediatric population. Front Immunol 2023; 14:1283981. [PMID: 38077340 PMCID: PMC10704817 DOI: 10.3389/fimmu.2023.1283981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/31/2023] [Indexed: 12/18/2023] Open
Abstract
The interpretation of clinical diagnostic results in suspected inborn errors of immunity, including Tregopathies, is hampered by the lack of age-stratified reference values for regulatory T cells (Treg) in the pediatric population and a consensus on which Treg immunophenotype to use. Regulatory B cells (Breg) are an important component of the regulatory system that have been poorly studied in the pediatric population. We analyzed (1) the correlation between the three immunophenotypic definitions of Treg (CD4+CD25hiCD127low, CD4+CD25hiCD127lowFoxP3+, CD4+CD25hiFoxP3+), and with CD4+CD25hi and (2) the changes in Treg and Breg frequencies and their maturation status with age. We performed peripheral blood immunophenotyping of Treg and Breg (CD19+CD24hiCD38hi) by flow cytometry in 55 healthy pediatric controls. We observed that Treg numbers varied depending on the definition used, and the frequency ranged between 3.3-9.7% for CD4+CD25hiCD127low, 0.07-1.6% for CD4+CD25hiCD127lowFoxP3+, and 0.24-2.83% for CD4+CD25hiFoxP3+. The correlation between the three definitions of Treg was positive for most age ranges, especially between the two intracellular panels and with CD4+CD25hi vs CD4+CD25hiCD127low. Treg and Breg frequencies tended to decline after 7 and 3 years onwards, respectively. Treg's maturation status increased with age, with a decline of naïve Treg and an increase in memory/effector Treg from age 7 onwards. Memory Breg increased progressively from age 3 onwards. In conclusion, the number of Treg frequencies spans a wide range depending on the immunophenotypic definition used despite a good level of correlation exists between them. The decline in numbers and maturation process with age occurs earlier in Breg than in Treg.
Collapse
Affiliation(s)
- Yiyi Luo
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Daniel Acevedo
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Alexandru Vlagea
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Biomedic Diagnostic Center (CDB), Hospital Clínic of Barcelona, Clinical Immunology Unit Hospital Sant Joan de Déu-Hospital Clínic de Barcelona, Barcelona, Spain
| | - Anna Codina
- Biobanco Pediátrico para la Investigación Hospital Sant Joan de Déu, Barcelona, Spain
| | - Ana García-García
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Angela Deyà-Martínez
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Celia Martí-Castellote
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Ana Esteve-Solé
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Laia Alsina
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Department of Surgery and Medical Specializations, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
Mongkonsritragoon W, Srivastava R, Seth D, Navalpakam A, Poowuttikul P. Non-infectious Pulmonary Complications in Children with Primary Immunodeficiency. Clin Med Insights Pediatr 2023; 17:11795565231196431. [PMID: 37692068 PMCID: PMC10492501 DOI: 10.1177/11795565231196431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/03/2023] [Indexed: 09/12/2023] Open
Abstract
Primary immune deficiency (PID) is a large group of diseases characterized by defective immune function, leading to recurrent infections, and immune dysregulation. Clinical presentations, severity, and complications differ for each disease, based on the components of the immune system that are impacted. When patients with PID present with respiratory symptoms, infections should be initially suspected, investigated, and promptly managed. However, non-infectious complications of PID also frequently occur and can lead to significant morbidity and mortality. They can involve both the upper and lower respiratory systems, resulting in various presentations that mimic infectious diseases. Thus, clinicians should be able to detect these conditions and make an appropriate referral to an immunologist and a pulmonologist for further management. In this article, we use case-based scenarios to review the differential diagnosis, investigation, and multidisciplinary treatment of non-infectious pulmonary complications in patients with primary immune deficiencies.
Collapse
Affiliation(s)
- Wimwipa Mongkonsritragoon
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Children’s Hospital of Michigan, Detroit, MI, USA
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Central Michigan University College of Medicine, Mt. Pleasant, MI, USA
| | - Ruma Srivastava
- Division of Pulmonary Medicine, Department of Pediatrics, Children’s Hospital of Michigan, Detroit, MI, USA
- Division of Pulmonary Medicine, Department of Pediatrics, Central Michigan University College of Medicine, Mt. Pleasant, MI, USA
| | - Divya Seth
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Children’s Hospital of Michigan, Detroit, MI, USA
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Central Michigan University College of Medicine, Mt. Pleasant, MI, USA
| | - Aishwarya Navalpakam
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Children’s Hospital of Michigan, Detroit, MI, USA
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Central Michigan University College of Medicine, Mt. Pleasant, MI, USA
| | - Pavadee Poowuttikul
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Children’s Hospital of Michigan, Detroit, MI, USA
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Central Michigan University College of Medicine, Mt. Pleasant, MI, USA
| |
Collapse
|
12
|
Leonardi L, Testa A, Feleppa M, Paparella R, Conti F, Marzollo A, Spalice A, Giona F, Gnazzo M, Andreoli GM, Costantino F, Tarani L. Immune dysregulation in Kabuki syndrome: a case report of Evans syndrome and hypogammaglobulinemia. Front Pediatr 2023; 11:1087002. [PMID: 37360370 PMCID: PMC10288106 DOI: 10.3389/fped.2023.1087002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Kabuki syndrome (KS) is a rare multisystemic disease due to mutations in the KMT2D or KDM6A genes, which act as epigenetic modulators of different processes, including immune response. The syndrome is characterized by anomalies in multiple organ systems, and it is associated with autoimmune and inflammatory disorders, and an underlying immunological phenotype characterized by immunodeficiency and immune dysregulation. Up to 17% of KS patients present with immune thrombocytopenia characterized by a severe, chronic or relapsing course, and often associated to other hematological autoimmune diseases including autoimmune hemolytic anemia, eventually resulting in Evans syndrome (ES). A 23-year-old woman, clinically diagnosed with KS and presenting from the age of 3 years with ES was referred to the Rare Diseases Centre of our Pediatric Department for corticosteroid-induced hyperglycemia. Several ES relapses and recurrent respiratory infections in the previous years were reported. Severe hypogammaglobulinemia, splenomegaly and signs of chronic lung inflammation were diagnosed only at the time of our observation. Supportive treatment with amoxicillin-clavulanate prophylaxis and recombinant human hyaluronidase-facilitated subcutaneous immunoglobulin replacement were immediately started. In KS patients, the failure of B-cell development and the lack of autoreactive immune cells suppression can lead to immunodeficiency and autoimmunity that may be undiagnosed for a long time. Our patient's case is paradigmatic since she presented with preventable morbidity and severe lung disease years after disease onset. This case emphasizes the importance of suspecting immune dysregulation in KS. Pathogenesis and immunological complications of KS are discussed. Moreover, the need to perform immunologic evaluations is highlighted both at the time of KS diagnosis and during disease follow-up, in order to allow proper treatment while intercepting avoidable morbidity in these patients.
Collapse
Affiliation(s)
- Lucia Leonardi
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Alessia Testa
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Mariavittoria Feleppa
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Roberto Paparella
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesca Conti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Antonio Marzollo
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy
| | - Alberto Spalice
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Fiorina Giona
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Maria Gnazzo
- Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Gian Marco Andreoli
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesco Costantino
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
13
|
Bintalib HM, van de Ven A, Jacob J, Davidsen JR, Fevang B, Hanitsch LG, Malphettes M, van Montfrans J, Maglione PJ, Milito C, Routes J, Warnatz K, Hurst JR. Diagnostic testing for interstitial lung disease in common variable immunodeficiency: a systematic review. Front Immunol 2023; 14:1190235. [PMID: 37223103 PMCID: PMC10200864 DOI: 10.3389/fimmu.2023.1190235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/17/2023] [Indexed: 05/25/2023] Open
Abstract
Introduction Common variable immunodeficiency related interstitial lung disease (CVID-ILD, also referred to as GLILD) is generally considered a manifestation of systemic immune dysregulation occurring in up to 20% of people with CVID. There is a lack of evidence-based guidelines for the diagnosis and management of CVID-ILD. Aim To systematically review use of diagnostic tests for assessing patients with CVID for possible ILD, and to evaluate their utility and risks. Methods EMBASE, MEDLINE, PubMed and Cochrane databases were searched. Papers reporting information on the diagnosis of ILD in patients with CVID were included. Results 58 studies were included. Radiology was the investigation modality most commonly used. HRCT was the most reported test, as abnormal radiology often first raised suspicion of CVID-ILD. Lung biopsy was used in 42 (72%) of studies, and surgical lung biopsy had more conclusive results compared to trans-bronchial biopsy (TBB). Analysis of broncho-alveolar lavage was reported in 24 (41%) studies, primarily to exclude infection. Pulmonary function tests, most commonly gas transfer, were widely used. However, results varied from normal to severely impaired, typically with a restrictive pattern and reduced gas transfer. Conclusion Consensus diagnostic criteria are urgently required to support accurate assessment and monitoring in CVID-ILD. ESID and the ERS e-GLILDnet CRC have initiated a diagnostic and management guideline through international collaboration. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42022276337.
Collapse
Affiliation(s)
- Heba M. Bintalib
- University College London (UCL) Respiratory, University College London, London, United Kingdom
- Department of Respiratory Care, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Centre, Jeddah, Saudi Arabia
| | - Annick van de Ven
- Departments of Internal Medicine & Allergology, Rheumatology & Clinical Immunology, University Medical Center Groningen, Groningen, Netherlands
| | - Joseph Jacob
- University College London (UCL) Respiratory, University College London, London, United Kingdom
- Satsuma Lab, Centre for Medical Image Computing, University College London (UCL), London, United Kingdom
| | - Jesper Rømhild Davidsen
- South Danish Center for Interstitial Lung Diseases (SCILS), Department of Respiratory Medicine, Odense University Hospital, Odense, Denmark
- Odense Respiratory Research Unit (ODIN), Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Børre Fevang
- Centre for Rare Disorders, Division of Paediatric and Adolescent Health, Oslo University Hospital, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital, Oslo, Norway
| | - Leif G. Hanitsch
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Augustenburger Platz 1 and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, Berlin, Germany
| | - Marion Malphettes
- Department of Clinic Immunopathology, Hôpital Saint-Louis, Paris, France
| | - Joris van Montfrans
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Childrens Hospital, University Medical Center Utrecht (UMC), Utrecht, Netherlands
| | - Paul J. Maglione
- Section of Pulmonary, Allergy, Sleep, and Critical Care Medicine, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, United States
| | - Cinzia Milito
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - John Routes
- Division of Allergy, Asthma and Immunology, Department of Pediatrics, Medicine, Microbiology and Immunology, Medical College Wisconsin, Milwaukee, WI, United States
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - John R. Hurst
- University College London (UCL) Respiratory, University College London, London, United Kingdom
| |
Collapse
|
14
|
Fevang B. Treatment of inflammatory complications in common variable immunodeficiency (CVID): current concepts and future perspectives. Expert Rev Clin Immunol 2023; 19:627-638. [PMID: 36996348 DOI: 10.1080/1744666x.2023.2198208] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
INTRODUCTION Patients with Common variable immunodeficiency (CVID) have a high frequency of inflammatory complications like autoimmune cytopenias, interstitial lung disease and enteropathy. These patients have poor prognosis and effective, timely and safe treatment of inflammatory complications in CVID are essential, but guidelines and consensus on therapy are often lacking. AREAS COVERED This review will focus on current medical treatment of inflammatory complications in CVID and point out some future perspectives based on literature indexed in PubMed. There are a number of good observational studies and case reports on treatment of specific complications but randomized controlled trials are scarce. EXPERT OPINION In clinical practice, the most urgent issues that need to be addressed are the preferred treatment of GLILD, enteropathy and liver disease. Treating the underlying immune dysregulation and immune exhaustion in CVID is an alternative approach that potentially could alleviate these and other organ-specific inflammatory complications. Therapies of potential interest and wider use in CVID include mTOR-inhibitors like sirolimus, JAK-inhibitors like tofacitinib, the monoclonal IL-12/23 antibody ustekinumab, the anti-BAFF antibody belimumab and abatacept. For all inflammatory complications, there is a need for prospective therapeutic trials, preferably randomized controlled trials, and multi-center collaborations with larger cohorts of patients will be essential.
Collapse
Affiliation(s)
- Børre Fevang
- Centre for Rare Disorders, Oslo University Hospital, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Oslo, Norway
- Research Institute for Internal Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
15
|
Margarit-Soler A, Deyà-Martínez À, Canizales JT, Vlagea A, García-García A, Marsal J, Del Castillo MT, Planas S, Simó S, Esteve-Sole A, Grande MSL, Badell I, Tarrats MR, Fernández-Avilés F, Alsina L. Case report: Challenges in immune reconstitution following hematopoietic stem cell transplantation for CTLA-4 insufficiency-like primary immune regulatory disorders. Front Immunol 2022; 13:1070068. [PMID: 36636328 PMCID: PMC9831655 DOI: 10.3389/fimmu.2022.1070068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/28/2022] [Indexed: 12/28/2022] Open
Abstract
Cytotoxic T-lymphocyte antigen-4 (CTLA-4) haploinsufficiency is a T-cell hyperactivation disorder that can manifest with both immunodeficiency and immune dysregulation. Approximately one-third of patients may present mild symptoms and remain stable under supportive care. The remaining patients may develop severe multiorgan autoimmunity requiring lifelong immunosuppressive treatment. Hematopoietic stem cell transplantation (HSCT) is potentially curable for patients with treatment-resistant immune dysregulation. Nevertheless, little experience is reported regarding the management of complications post-HSCT. We present case 1 (CTLA-4 haploinsufficiency) and case 2 (CTLA-4 insufficiency-like phenotype) manifesting with severe autoimmunity including cytopenia and involvement of the central nervous system (CNS), lung, and gut and variable impairment of humoral responses. Both patients underwent HSCT for which the main complications were persistent mixed chimerism, infections, and immune-mediated complications [graft-versus-host disease (GVHD) and nodular lung disease]. Detailed management and outcomes of therapeutic interventions post-HSCT are discussed. Concretely, post-HSCT abatacept and human leukocyte antigen (HLA)-matched sibling donor lymphocyte infusions may be used to increase T-cell donor chimerism with the aim of correcting the immune phenotype of CTLA-4 haploinsufficiency.
Collapse
Affiliation(s)
- Adriana Margarit-Soler
- Bone Marrow Transplant Unit, Oncology Service, Hospital Sant Joan de Déu, Barcelona, Spain,*Correspondence: Adriana Margarit-Soler, ; Laia Alsina,
| | - Àngela Deyà-Martínez
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain,Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain,Clinical Immunology Program Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
| | - Juan Torres Canizales
- Clinical Immunology Unit, Department of Immunology, Biomedical Diagnostic Center, Hospital Clínic of Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alexandru Vlagea
- Clinical Immunology Unit, Department of Immunology, Biomedical Diagnostic Center, Hospital Clínic of Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ana García-García
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain,Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain,Clinical Immunology Program Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
| | - Júlia Marsal
- Bone Marrow Transplant Unit, Oncology Service, Hospital Sant Joan de Déu, Barcelona, Spain
| | | | - Sílvia Planas
- Department of Pathology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Sílvia Simó
- Infectious Diseases Unit, Department of Pediatrics, Hospital Sant Joan de Déu, Barcelona, Spain,Center for Biomedical Network Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Ana Esteve-Sole
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain,Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain,Clinical Immunology Program Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
| | - María Suárez-Lledó Grande
- Hematopoietic Transplantation Unit, Hematology Department, Clinical Institute of Hematology and Oncology (ICMHO), Hospital Clínic de Barcelona, Barcelona, Spain,Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic, Barcelona, Spain,Department of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Isabel Badell
- Bone Marrow Transplant Unit, Oncology Service, Hospital Sant Joan de Déu, Barcelona, Spain,Pediatric Haematology and Stem Cell Transplantation Unit, Pediatric Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Montserrat Rovira Tarrats
- Bone Marrow Transplant Unit, Oncology Service, Hospital Sant Joan de Déu, Barcelona, Spain,Hematopoietic Transplantation Unit, Hematology Department, Clinical Institute of Hematology and Oncology (ICMHO), Hospital Clínic de Barcelona, Barcelona, Spain,Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic, Barcelona, Spain
| | - Francesc Fernández-Avilés
- Hematopoietic Transplantation Unit, Hematology Department, Clinical Institute of Hematology and Oncology (ICMHO), Hospital Clínic de Barcelona, Barcelona, Spain,Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic, Barcelona, Spain
| | - Laia Alsina
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain,Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain,Clinical Immunology Program Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain,Department of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain,*Correspondence: Adriana Margarit-Soler, ; Laia Alsina,
| |
Collapse
|
16
|
Fraz MSA, Michelsen AE, Moe N, Aaløkken TM, Macpherson ME, Nordøy I, Aukrust P, Taraldsrud E, Holm AM, Ueland T, Jørgensen SF, Fevang B. Raised Serum Markers of T Cell Activation and Exhaustion in Granulomatous-Lymphocytic Interstitial Lung Disease in Common Variable Immunodeficiency. J Clin Immunol 2022; 42:1553-1563. [PMID: 35789314 PMCID: PMC9255534 DOI: 10.1007/s10875-022-01318-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/23/2022] [Indexed: 11/05/2022]
Abstract
Purpose
About 20–30% of patients with common variable immunodeficiency (CVID) develop granulomatous-lymphocytic interstitial lung disease (GLILD) as one of several non-infectious complications to their immunodeficiency. The purpose of this study was to identify biomarkers that could distinguish GLILD from other non-infectious complications in CVID. Methods We analyzed serum biomarkers related to inflammation, pulmonary epithelium injury, fibrogenesis, and extracellular matrix (ECM) remodeling, and compared three subgroups of CVID: GLILD patients (n = 16), patients with other non-infectious complications (n = 37), and patients with infections only (n = 20). Results We found that GLILD patients had higher levels of sCD25, sTIM-3, IFN-γ, and TNF, reflecting T cell activation and exhaustion, compared to both CVID patients with other inflammatory complications and CVID with infections only. GLILD patients also had higher levels of SP-D and CC16, proteins related to pulmonary epithelium injury, as well as the ECM remodeling marker MMP-7, than patients with other non-infectious complications. Conclusion GLILD patients have elevated serum markers of T cell activation and exhaustion, pulmonary epithelium injury, and ECM remodeling, pointing to potentially important pathways in GLILD pathogenesis, novel targets for therapy, and promising biomarkers for clinical evaluation of these patients. Supplementary Information The online version contains supplementary material available at 10.1007/s10875-022-01318-1.
Collapse
Affiliation(s)
- Mai Sasaki Aanensen Fraz
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway. .,Centre for Rare Diseases, Oslo University Hospital, Oslo, Norway.
| | - Annika Elisabet Michelsen
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Natasha Moe
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Trond Mogens Aaløkken
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Radiology and Nuclear Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Magnhild Eide Macpherson
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Department of Infectious Diseases, Oslo University Hospital Ullevål, Oslo, Norway
| | - Ingvild Nordøy
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Pål Aukrust
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Faculty of Health Sciences, K.G. Jebsen TREC, University of Tromsø, Tromsø, Norway
| | - Eli Taraldsrud
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Are Martin Holm
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Pulmonary Medicine, Oslo University Hospital, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Faculty of Health Sciences, K.G. Jebsen TREC, University of Tromsø, Tromsø, Norway
| | - Silje Fjellgård Jørgensen
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Børre Fevang
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Centre for Rare Diseases, Oslo University Hospital, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| |
Collapse
|
17
|
Szczawinska-Poplonyk A, Jonczyk-Potoczna K, Mikos M, Ossowska L, Langfort R. Granulomatous Lymphocytic Interstitial Lung Disease in a Spectrum of Pediatric Primary Immunodeficiencies. Pediatr Dev Pathol 2021; 24:504-512. [PMID: 34176349 DOI: 10.1177/10935266211022528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Granulomatous lymphocytic interstitial lung disease (GLILD) has been increasingly recognized in children affected with primary immunodeficiencies (PIDs). In this study, we aimed to better characterize the spectrum of pediatric PIDs coexisting with GLILD including clinical and immunological predictors, thoracic imaging findings, and histopathologic features. METHODS We respectively reviewed records of six representative cases of children, three of them affected with common variable immunodeficiency (CVID) and three with syndromic immunodeficiencies, in whom a diagnosis of GLILD was established based on clinical, radiological, and histopathologic findings. Clinical and immunological predictors for GLILD were also analyzed in the patients studied. RESULTS All the children with GLILD had a history of autoimmune phenomena, organ-specific immunopathology, and immune dysregulation. Defective B-cell maturation and deficiency of memory B cells were found in all the children with GLILD. The radiological and histopathological features consistent with the diagnosis of GLILD, granulomatous disease, and lymphoid hyperplasia, were accompanied by chronic airway disease with bronchiectasis in children with CVID and syndromic PIDs. CONCLUSIONS Our study shows that both CVID and syndromic PIDs may be complicated with GLILD. Further studies are required to understand the predictive value of coexisting autoimmunity and immune dysregulation in the recognition of GLILD in children with PIDs.
Collapse
Affiliation(s)
- Aleksandra Szczawinska-Poplonyk
- Department of Pediatric Pneumonology, Allergology and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Marcin Mikos
- Department of Pediatric Pneumonology, Allergology and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Lidia Ossowska
- Department of Pediatric Pneumonology, Allergology and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Renata Langfort
- Department of Pathology, Institute for Tuberculosis and Lung Diseases, Warsaw, Poland
| |
Collapse
|
18
|
Egg D, Rump IC, Mitsuiki N, Rojas-Restrepo J, Maccari ME, Schwab C, Gabrysch A, Warnatz K, Goldacker S, Patiño V, Wolff D, Okada S, Hayakawa S, Shikama Y, Kanda K, Imai K, Sotomatsu M, Kuwashima M, Kamiya T, Morio T, Matsumoto K, Mori T, Yoshimoto Y, Dybedal I, Kanariou M, Kucuk ZY, Chapdelaine H, Petruzelkova L, Lorenz HM, Sullivan KE, Heimall J, Moutschen M, Litzman J, Recher M, Albert MH, Hauck F, Seneviratne S, Pachlopnik Schmid J, Kolios A, Unglik G, Klemann C, Snapper S, Giulino-Roth L, Svaton M, Platt CD, Hambleton S, Neth O, Gosse G, Reinsch S, Holzinger D, Kim YJ, Bakhtiar S, Atschekzei F, Schmidt R, Sogkas G, Chandrakasan S, Rae W, Derfalvi B, Marquart HV, Ozen A, Kiykim A, Karakoc-Aydiner E, Králíčková P, de Bree G, Kiritsi D, Seidel MG, Kobbe R, Dantzer J, Alsina L, Armangue T, Lougaris V, Agyeman P, Nyström S, Buchbinder D, Arkwright PD, Grimbacher B. Therapeutic options for CTLA-4 insufficiency. J Allergy Clin Immunol 2021; 149:736-746. [PMID: 34111452 DOI: 10.1016/j.jaci.2021.04.039] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/23/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Heterozygous germline mutations in cytotoxic T lymphocyte-associated antigen-4 (CTLA4) impair the immunomodulatory function of regulatory T cells. Affected individuals are prone to life-threatening autoimmune and lymphoproliferative complications. A number of therapeutic options are currently being used with variable effectiveness. OBJECTIVE Our aim was to characterize the responsiveness of patients with CTLA-4 insufficiency to specific therapies and provide recommendations for the diagnostic workup and therapy at an organ-specific level. METHODS Clinical features, laboratory findings, and response to treatment were reviewed retrospectively in an international cohort of 173 carriers of CTLA4 mutation. Patients were followed between 2014 and 2020 for a total of 2624 months from diagnosis. Clinical manifestations were grouped on the basis of organ-specific involvement. Medication use and response were recorded and evaluated. RESULTS Among the 173 CTLA4 mutation carriers, 123 (71%) had been treated for immune complications. Abatacept, rituximab, sirolimus, and corticosteroids ameliorated disease severity, especially in cases of cytopenias and lymphocytic organ infiltration of the gut, lungs, and central nervous system. Immunoglobulin replacement was effective in prevention of infection. Only 4 of 16 patients (25%) with cytopenia who underwent splenectomy had a sustained clinical response. Cure was achieved with stem cell transplantation in 13 of 18 patients (72%). As a result of the aforementioned methods, organ-specific treatment pathways were developed. CONCLUSION Systemic immunosuppressants and abatacept may provide partial control but require ongoing administration. Allogeneic hematopoietic stem cell transplantation offers a possible cure for patients with CTLA-4 insufficiency.
Collapse
Affiliation(s)
- David Egg
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany
| | - Ina Caroline Rump
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany
| | - Noriko Mitsuiki
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany
| | - Jessica Rojas-Restrepo
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany
| | - Maria-Elena Maccari
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany; Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany
| | - Charlotte Schwab
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany
| | - Annemarie Gabrysch
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany
| | - Klaus Warnatz
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany; Department of Rheumatology and Clinical Immunology, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany
| | - Sigune Goldacker
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany; Department of Rheumatology and Clinical Immunology, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany
| | | | - Daniel Wolff
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Seiichi Hayakawa
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yoshiaki Shikama
- Division of Infection, Immunology and Infection, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Kenji Kanda
- Department of Pediatrics, Hikone Municipal Hospital, Shiga, Japan
| | - Kohsuke Imai
- Department of Community Pediatrics, Perinatal and Maternal Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Manabu Sotomatsu
- Department of Hematology/Oncology, Gunma Children's Medical Center, Shibukawa, Japan
| | - Makoto Kuwashima
- Department of Pediatrics, Kiryu Kosei General Hospital, Kiryū, Japan
| | - Takahiro Kamiya
- Department of Lifetime Clinical Immunology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuaki Matsumoto
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeshi Mori
- Department of Hematology and Oncology, Hyogo Prefectural Kobe Children's Hospital, Kobe, Japan
| | - Yuri Yoshimoto
- Department of Pediatrics, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - Ingunn Dybedal
- Department of Hematology, Oslo University Hospital, Oslo, Norway
| | - Maria Kanariou
- Department of Immunology and Histocompatibility, Center for Primary Immunodeficiencies-Paediatric Immunology, Aghia Sophia Children's Hospital, Athens, Greece
| | - Zeynep Yesim Kucuk
- Division of Bone Marrow Transplantation and Immune Deficiency, Children's Hospital Medical Center, Cincinnati, Ohio
| | - Hugo Chapdelaine
- Division of Clinical Immunology, Montreal Clinical Research Institute, Montreal, Quebec, Canada
| | - Lenka Petruzelkova
- Department of Paediatrics, Motol University Hospital, Second Medical Faculty in Prague, Charles University, Prague, Czech Republic
| | - Hanns-Martin Lorenz
- Division of Rheumatology, Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Kathleen E Sullivan
- The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania
| | - Jennifer Heimall
- The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania
| | - Michel Moutschen
- Department of Infectious Diseases and General Internal Medicine, University Hospital of Liège
| | - Jiri Litzman
- Department of Clinical Immunology and Allergology, Medical Faculty, Masaryk University, Brno, Czech Republic; Department of Clinical Immunology and Allergology, St. Anne's University Hospital, Brno, Czech Republic
| | - Mike Recher
- Immunodeficiency Clinic, Medical Outpatient Unit and Immunodeficiency Lab, Department Biomedicine, University Hospital, Basel, Switzerland
| | - Michael H Albert
- Department of Pediatrics, Dr von Hauner Children's Hospital, University Hospital, Ludwig Maximilians Universität München, Munich, Germany
| | - Fabian Hauck
- Department of Pediatrics, Dr von Hauner Children's Hospital, University Hospital, Ludwig Maximilians Universität München, Munich, Germany
| | - Suranjith Seneviratne
- Institute of Immunology and Transplantation, Royal Free Hospital, University College London, London, United Kingdom
| | - Jana Pachlopnik Schmid
- Division of Immunology, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Antonios Kolios
- Department of Immunology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Gary Unglik
- Department of Clinical Immunology and Allergy, Royal Melbourne Hospital, Melbourne, Australia
| | - Christian Klemann
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany; Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany
| | - Scott Snapper
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Lisa Giulino-Roth
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Weill Cornell Medicine, New York, NY
| | - Michael Svaton
- Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Craig D Platt
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Sophie Hambleton
- Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, and Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom
| | - Olaf Neth
- Pediatric Infectious Diseases, Rheumatology and Immunology Unit, Hospital Virgen del Rocío/Instituto de Biomedicina de Sevilla, Sevilla, RECLIP, Spain
| | - Geraldine Gosse
- Montreal Clinical Research Institute, Université de Montréal, Montreal, Quebec, Canada
| | - Steffen Reinsch
- Jena University Hospital, Pediatric Gastroenterology, Jena, Germany
| | - Dirk Holzinger
- Department of Pediatric Hematology-Oncology, University of Duisburg-Essen, Essen, Germany
| | - Yae-Jean Kim
- Division of Infectious Diseases and Immunodeficiency, Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Shahrzad Bakhtiar
- Division of Stem Cell Transplantation and Immunology, Department of Children and Adolescents, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Faranaz Atschekzei
- Department for Clinical Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Reinhold Schmidt
- Department for Clinical Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Georgios Sogkas
- Department for Clinical Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Shanmuganathan Chandrakasan
- Division of Bone Marrow Transplant, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Ga
| | - William Rae
- Department of Immunology, University Hospital Southampton NHSFT, Southampton, United Kingdom; Southampton National Institute for Health Research Clinical Research Facility, University Hospital Southampton NHSFT, Southampton, United Kingdom
| | - Beata Derfalvi
- Division of Immunology, IWK Health Centre and Dalhousie University, Department of Pediatrics, Halifax, Nova Scotia, Canada
| | - Hanne Vibeke Marquart
- Department of Clinical Immunology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ahmet Ozen
- Marmara University School of Medicine, Division of Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Ayca Kiykim
- Marmara University School of Medicine, Division of Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Elif Karakoc-Aydiner
- Marmara University School of Medicine, Division of Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Pavlína Králíčková
- Institute of Clinical Immunology and Allergy, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Godelieve de Bree
- Department of Internal Medicine, Division of Infectious Diseases, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Dimitra Kiritsi
- Department of Dermatology, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany
| | - Markus G Seidel
- Research Unit for Pediatric Hematology and Immunology, Division of Pediatric Hemato-Oncology, Department of Pediatric and Adolescent Medicine, Medical University Graz, Graz, Austria
| | - Robin Kobbe
- Division of Infectious Diseases, First Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jennifer Dantzer
- Division of Pediatric Allergy and Immunology, and Rheumatology, Department of Pediatrics, John Hopkins University School of Medicine, Baltimore, Md
| | - Laia Alsina
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu and Institut de Recerca Sant Joan de Déu, Barcelona; Clinical Immunology Unit Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Thais Armangue
- Neuroimmunology Program, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Vassilios Lougaris
- Pediatric Neuroimmunology Unit, Neurology Department, Sant Joan de Déu Children's Hospital, University of Barcelona, Barcelona, Spain
| | - Philipp Agyeman
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia, ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Sofia Nyström
- Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - David Buchbinder
- Department of Clinical Immunology and Transfusion Medicine, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Peter D Arkwright
- Division of Pediatric Hematology, Children's Hospital of Orange County, Orange, Calif
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany; Department of Rheumatology and Clinical Immunology, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany; Institute of Immunology and Transplantation, Royal Free Hospital, University College London, London, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Royal Manchester Children's Hospital, Manchester, United Kingdom; German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany; Centre for Integrative Biological Signaling Studies, Albert Ludwig University of Freiburg, Freiburg, Germany; RESIST-Cluster of Excellence 2155 to Hannover Medical School, Satellite Center Freiburg, Freiburg, Germany.
| |
Collapse
|
19
|
Lamers OAC, Smits BM, Leavis HL, de Bree GJ, Cunningham-Rundles C, Dalm VASH, Ho HE, Hurst JR, IJspeert H, Prevaes SMPJ, Robinson A, van Stigt AC, Terheggen-Lagro S, van de Ven AAJM, Warnatz K, van de Wijgert JHHM, van Montfrans J. Treatment Strategies for GLILD in Common Variable Immunodeficiency: A Systematic Review. Front Immunol 2021; 12:606099. [PMID: 33936030 PMCID: PMC8086379 DOI: 10.3389/fimmu.2021.606099] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/24/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction Besides recurrent infections, a proportion of patients with Common Variable Immunodeficiency Disorders (CVID) may suffer from immune dysregulation such as granulomatous-lymphocytic interstitial lung disease (GLILD). The optimal treatment of this complication is currently unknown. Experienced-based expert opinions have been produced, but a systematic review of published treatment studies is lacking. Goals To summarize and synthesize the published literature on the efficacy of treatments for GLILD in CVID. Methods We performed a systematic review using the PRISMA guidelines. Papers describing treatment and outcomes in CVID patients with radiographic and/or histologic evidence of GLILD were included. Treatment regimens and outcomes of treatment were summarized. Results 6124 papers were identified and 42, reporting information about 233 patients in total, were included for review. These papers described case series or small, uncontrolled studies of monotherapy with glucocorticoids or other immunosuppressants, rituximab monotherapy or rituximab plus azathioprine, abatacept, or hematopoietic stem cell transplantation (HSCT). Treatment response rates varied widely. Cross-study comparisons were complicated because different treatment regimens, follow-up periods, and outcome measures were used. There was a trend towards more frequent GLILD relapses in patients treated with corticosteroid monotherapy when compared to rituximab-containing treatment regimens based on qualitative endpoints. HSCT is a promising alternative to pharmacological treatment of GLILD, because it has the potential to not only contain symptoms, but also to resolve the underlying pathology. However, mortality, especially among immunocompromised patients, is high. Conclusions We could not draw definitive conclusions regarding optimal pharmacological treatment for GLILD in CVID from the current literature since quantitative, well-controlled evidence was lacking. While HSCT might be considered a treatment option for GLILD in CVID, the risks related to the procedure are high. Our findings highlight the need for further research with uniform, objective and quantifiable endpoints. This should include international registries with standardized data collection including regular pulmonary function tests (with carbon monoxide-diffusion), uniform high-resolution chest CT radiographic scoring, and uniform treatment regimens, to facilitate comparison of treatment outcomes and ultimately randomized clinical trials.
Collapse
Affiliation(s)
- Olivia A. C. Lamers
- Department of Pediatric Immunology and Rheumatology, Wilhelmina Children’s Hospital, Utrecht, Netherlands
| | - Bas M. Smits
- Department of Pediatric Immunology and Rheumatology, Wilhelmina Children’s Hospital, Utrecht, Netherlands
- Department of Immunology and Rheumatology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Helen Louisa Leavis
- Department of Immunology and Rheumatology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Godelieve J. de Bree
- Department of Internal Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Charlotte Cunningham-Rundles
- Department of Medicine, Division of Clinical Immunology and Department of Pediatrics, Mount Sinai Hospital, New York, NY, United States
| | - Virgil A. S. H. Dalm
- Department of Internal Medicine, Division of Clinical Immunology and Department of Immunology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Hsi-en Ho
- Department of Medicine, Division of Clinical Immunology and Department of Pediatrics, Mount Sinai Hospital, New York, NY, United States
| | - John R. Hurst
- UCL Respiratory, University College London, London, United Kingdom
| | - Hanna IJspeert
- Department of Internal Medicine, Division of Clinical Immunology and Department of Immunology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | - Alex Robinson
- UCL Respiratory, University College London, London, United Kingdom
| | - Astrid C. van Stigt
- Department of Internal Medicine, Division of Clinical Immunology and Department of Immunology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Suzanne Terheggen-Lagro
- Department of Pediatric Pulmonology, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Annick A. J. M. van de Ven
- Departments of Rheumatology and Clinical Immunology, Internal Medicine and Allergology, University Medical Center Groningen, Groningen, Netherlands
| | - Klaus Warnatz
- Department of Immunology, Universitätsklinikum Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Division of Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Janneke H. H. M. van de Wijgert
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Joris van Montfrans
- Department of Pediatric Immunology and Rheumatology, Wilhelmina Children’s Hospital, Utrecht, Netherlands
| |
Collapse
|
20
|
Boniel S, Szymańska K, Śmigiel R, Szczałuba K. Kabuki Syndrome-Clinical Review with Molecular Aspects. Genes (Basel) 2021; 12:468. [PMID: 33805950 PMCID: PMC8064399 DOI: 10.3390/genes12040468] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Kabuki syndrome (KS) is a rare developmental disorder principally comprised of developmental delay, hypotonia and a clearly defined dysmorphism: elongation of the structures surrounding the eyes, a shortened and depressed nose, thinning of the upper lip and thickening of the lower lip, large and prominent ears, hypertrichosis and scoliosis. Other characteristics include poor physical growth, cardiac, gastrointestinal and renal anomalies as well as variable behavioral issues, including autistic features. De novo or inherited pathogenic/likely pathogenic variants in the KMT2D gene are the most common cause of KS and account for up to 75% of patients. Variants in KDM6A cause up to 5% of cases (X-linked dominant inheritance), while the etiology of about 20% of cases remains unknown. Current KS diagnostic criteria include hypotonia during infancy, developmental delay and/or intellectual disability, typical dysmorphism and confirmed pathogenic/likely pathogenic variant in KMT2D or KDM6A. Care for KS patients includes the control of physical and psychomotor development during childhood, rehabilitation and multi-specialist care. This paper reviews the current clinical knowledge, provides molecular and scientific links and sheds light on the treatment of Kabuki syndrome individuals.
Collapse
Affiliation(s)
- Snir Boniel
- Department of Medical Genetics, Medical University, Pawinskiego 3c, 02-106 Warsaw, Poland;
| | - Krystyna Szymańska
- Mossakowski Medical Research Center, Department of Experimental and Clinical Neuropathology, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Robert Śmigiel
- Department of Paediatrics, Division of Propaedeutic of Paediatrics and Rare Disorders, Medical University, 51-618 Wroclaw, Poland;
| | - Krzysztof Szczałuba
- Department of Medical Genetics, Medical University, Pawinskiego 3c, 02-106 Warsaw, Poland;
| |
Collapse
|
21
|
Lee TK, Gereige JD, Maglione PJ. State-of-the-art diagnostic evaluation of common variable immunodeficiency. Ann Allergy Asthma Immunol 2021; 127:19-27. [PMID: 33716149 DOI: 10.1016/j.anai.2021.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/01/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To summarize the current understanding of diagnostic and postdiagnostic evaluation of common variable immunodeficiency (CVID). DATA SOURCES PubMed Central database. STUDY SELECTIONS Original research articles and review articles from 2015 to 2020 including seminal articles that shaped the diagnostic and postdiagnostic evaluation of CVID were incorporated. This work focuses on initial diagnosis of CVID, genetic evaluations, and postdiagnostic assessment of respiratory, gastrointestinal, and hepatobiliary diseases including spleen and lymph node enlargement. RESULTS CVID presents not only with frequent infections but also with noninfectious complications such as autoimmunity, gastrointestinal disease, chronic lung disease, granulomas, liver disease, lymphoid hyperplasia, splenomegaly, or malignancy. The risk of morbidity and mortality is higher in patients with CVID and noninfectious complications. Detailed diagnostic approaches, which may incorporate genetic testing, can aid characterization of individual CVID cases and shape treatment in some instances. Moreover, continued evaluation after CVID diagnosis is key to optimal management of this complex disorder. These postdiagnostic evaluations include pulmonary function testing, radiologic studies, and laboratory evaluations that may be conducted at frequencies determined by disease activity. CONCLUSION Although the diagnosis can be achieved similarly in all patients with CVID, those with noninfectious complications have distinct concerns during clinical evaluation. State-of-the-art workup of CVID with noninfectious complications typically includes genetic analysis, which may shape precision therapy, and thoughtful application of postdiagnostic tests that monitor the presence and progression of disease in the myriad of tissues that may be affected. Even with recent advancements, knowledge gaps in diagnosis, prognosis, and treatment of CVID persist, and continued research efforts are needed.
Collapse
Affiliation(s)
- Theodore K Lee
- Section of Pulmonary, Allergy, Sleep & Critical Care Medicine, Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts
| | - Jessica D Gereige
- Section of Pulmonary, Allergy, Sleep & Critical Care Medicine, Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts
| | - Paul J Maglione
- Section of Pulmonary, Allergy, Sleep & Critical Care Medicine, Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts.
| |
Collapse
|
22
|
Lee AY, Huynh N, Lin MW. Granulomatous skin lesions of common variable immunodeficiency treated with sirolimus. Australas J Dermatol 2021; 62:434-435. [PMID: 33660846 DOI: 10.1111/ajd.13574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 12/01/2022]
Affiliation(s)
- Adrian Ys Lee
- Department of Immunopathology, NSW Pathology and Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Nghi Huynh
- Inner Sydney Dermatology, Rhodes, NSW, Australia
| | - Ming-Wei Lin
- Department of Immunopathology, NSW Pathology and Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
23
|
Abstract
There is a wide differential diagnosis of early onset respiratory distress especially in term babies, and interstitial lung disease (chILD) is a rare but important consideration in this context. chILD manifesting immediately after birth is usually related to mutations in surfactant protein genes, or conditions related to the Congenital Acinar Dysplasia -Alveolar capillary dysplasia - Congenital Alveolar Dysplasia (CAD-ACD) spectrum. There is currently no specific treatment for these conditions, and management is supportive. Prognosis is very poor in most of these babies if onset is early, with relentless respiratory deterioration unless transplanted. Ideally, the diagnosis is made on genetic analysis, but this may be time-consuming and complex in CAD-ACD spectrum, so lung biopsy may be needed to avoid prolonged and futile treatment being instituted. Milder forms with prolonged survival have been reported. Early onset, less severe chILD is usually related to neuroendocrine cell hyperplasia of infancy (NEHI), pulmonary interstitial glycogenosis (PIG) and less severe disorders of surfactant proteins. PIG and NEHI are not specific entities, but are pulmonary dysmaturity syndromes, and there may be a number of underlying genetic and other cause. If the child is stable and thriving, many will not be subject to lung biopsy, and slow improvement and weaning of supplemental oxygen can be anticipated. Where possible, a precise genetic diagnosis should be made in early onset cHILD allow for genetic counselling. chILD survivors and their families have complex respiratory and other needs, and co-ordinated, multi-disciplinary support in the community is essential.
Collapse
Affiliation(s)
- Andrew Bush
- Imperial College, UK; Royal Brompton and Harefield NHS Foundation Trust, UK.
| | | | - Jo Gregory
- Royal Brompton and Harefield NHS Foundation Trust, UK
| | - Andrew Gordon Nicholson
- Royal Brompton and Harefield NHS Foundation Trust, UK; National Heart and Lung Institute, Imperial College, UK
| | - Thomas Semple
- Imperial College, UK; Royal Brompton and Harefield NHS Foundation Trust, UK
| | - Rishi Pabary
- Imperial College, UK; Royal Brompton and Harefield NHS Foundation Trust, UK
| |
Collapse
|
24
|
Effective sirolimus treatment of 2 COPA syndrome patients. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 9:999-1001.e1. [PMID: 33099043 DOI: 10.1016/j.jaip.2020.10.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 11/20/2022]
|
25
|
Verbsky JW, Hintermeyer MK, Simpson PM, Feng M, Barbeau J, Rao N, Cool CD, Sosa-Lozano LA, Baruah D, Hammelev E, Busalacchi A, Rymaszewski A, Woodliff J, Chen S, Bausch-Jurken M, Routes JM. Rituximab and antimetabolite treatment of granulomatous and lymphocytic interstitial lung disease in common variable immunodeficiency. J Allergy Clin Immunol 2020; 147:704-712.e17. [PMID: 32745555 DOI: 10.1016/j.jaci.2020.07.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/08/2020] [Accepted: 07/16/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Granulomatous and lymphocytic interstitial lung disease (GLILD) is a life-threatening complication in patients with common variable immunodeficiency (CVID), but the optimal treatment is unknown. OBJECTIVE Our aim was to determine whether rituximab with azathioprine or mycophenolate mofetil improves the high-resolution computed tomography (HRCT) chest scans and/or pulmonary function test results in patients with CVID and GLILD. METHODS A retrospective chart review of clinical and laboratory data on 39 patients with CVID and GLILD who completed immunosuppressive therapy was performed. Chest HRCT scans, performed before therapy and after the conclusion of therapy, were blinded, randomized, and scored independently by 2 radiologists. Differences between pretreatment and posttreatment HRCT scan scores, pulmonary function test results, and lymphocyte subsets were analyzed. Whole exome sequencing was performed on all patients. RESULTS Immunosuppressive therapy improved patients' HRCT scan scores (P < .0001), forced vital capacity (P = .0017), FEV1 (P = .037), and total lung capacity (P = .013) but not their lung carbon monoxide diffusion capacity (P = .12). Nine patients relapsed and 6 completed retreatment, with 5 of 6 of these patients (83%) having improved HRCT scan scores (P = .063). Relapse was associated with an increased number of B cells (P = .016) and activated CD4 T cells (P = .016). Four patients (10%) had pneumonia while undergoing active treatment, and 2 patients (5%) died after completion of therapy. Eight patients (21%) had a damaging mutation in a gene known to predispose (TNFRSF13B [n = 3]) or cause a CVID-like primary immunodeficiency (CTLA4 [n = 2], KMT2D [n = 2], or BIRC4 [n = 1]). Immunosuppression improved the HRCT scan scores in patients with (P = .0078) and without (P < .0001) a damaging mutation. CONCLUSIONS Immunosuppressive therapy improved the radiographic abnormalities and pulmonary function of patients with GLILD. A majority of patients had sustained remissions.
Collapse
Affiliation(s)
- James W Verbsky
- Division of Pediatric Rheumatology, Medical College Wisconsin, Milwaukee, Wis; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wis
| | - Mary K Hintermeyer
- Asthma, Allergy and Clinical Immunology, Children's Wisconsin, Milwaukee, Wis
| | - Pippa M Simpson
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wis; Department of Quantitative Health Sciences, Medical College Wisconsin, Milwaukee, Wis
| | - Mingen Feng
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wis; Department of Quantitative Health Sciences, Medical College Wisconsin, Milwaukee, Wis
| | - Jody Barbeau
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wis; Department of Quantitative Health Sciences, Medical College Wisconsin, Milwaukee, Wis
| | - Nagarjun Rao
- Department of Pathology, Aurora Clinical Laboratories/Great Lakes Pathologists, Aurora West Allis Medical Center, West Allis, Wis
| | - Carlyne D Cool
- Department of Pathology and Division of Pulmonary and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colo; National Jewish Health, Denver, Colo
| | - Luis A Sosa-Lozano
- Division of Diagnostic Radiology, Medical College of Wisconsin, Milwaukee, Wis
| | - Dhiraj Baruah
- Division of Thoracic Radiology, Medical University of South Carolina, Charleston, SC
| | - Erin Hammelev
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wis; Division of Asthma, Allergy and Clinical Immunology, Medical College of Wisconsin, Milwaukee, Wis
| | - Alyssa Busalacchi
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wis; Division of Asthma, Allergy and Clinical Immunology, Medical College of Wisconsin, Milwaukee, Wis
| | - Amy Rymaszewski
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wis; Division of Asthma, Allergy and Clinical Immunology, Medical College of Wisconsin, Milwaukee, Wis
| | - Jeff Woodliff
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wis; Division of Asthma, Allergy and Clinical Immunology, Medical College of Wisconsin, Milwaukee, Wis
| | - Shaoying Chen
- Division of Pediatric Rheumatology, Medical College Wisconsin, Milwaukee, Wis; Division of Asthma, Allergy and Clinical Immunology, Medical College of Wisconsin, Milwaukee, Wis
| | - Mary Bausch-Jurken
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wis; Division of Asthma, Allergy and Clinical Immunology, Medical College of Wisconsin, Milwaukee, Wis
| | - John M Routes
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wis; Division of Asthma, Allergy and Clinical Immunology, Medical College of Wisconsin, Milwaukee, Wis.
| |
Collapse
|
26
|
Maglione PJ. Chronic Lung Disease in Primary Antibody Deficiency: Diagnosis and Management. Immunol Allergy Clin North Am 2020; 40:437-459. [PMID: 32654691 DOI: 10.1016/j.iac.2020.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Chronic lung disease is a complication of primary antibody deficiency (PAD) associated with significant morbidity and mortality. Manifestations of lung disease in PAD are numerous. Thoughtful application of diagnostic approaches is imperative to accurately identify the form of disease. Much of the treatment used is adapted from immunocompetent populations. Recent genomic and translational medicine advances have led to specific treatments. As chronic lung disease has continued to affect patients with PAD, we hope that continued advancements in our understanding of pulmonary pathology will ultimately lead to effective methods that alleviate impact on quality of life and survival.
Collapse
Affiliation(s)
- Paul J Maglione
- Pulmonary Center, Boston University School of Medicine, 72 East Concord Street, R304, Boston, MA 02118, USA.
| |
Collapse
|
27
|
Hurst JR, Warnatz K. Interstitial lung disease in primary immunodeficiency: towards a brighter future. Eur Respir J 2020; 55:2000089. [PMID: 32245772 DOI: 10.1183/13993003.00089-2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 01/27/2020] [Indexed: 12/25/2022]
Affiliation(s)
- John R Hurst
- UCL Respiratory, University College London, London, UK
| | - Klaus Warnatz
- Dept of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
28
|
Cinetto F, Scarpa R, Pulvirenti F, Quinti I, Agostini C, Milito C. Appropriate lung management in patients with primary antibody deficiencies. Expert Rev Respir Med 2019; 13:823-838. [PMID: 31361157 DOI: 10.1080/17476348.2019.1641085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Introduction: Human primary immunodeficiency diseases (PIDs) include a broad spectrum of more than 350 disorders, involving different branches of the immune system and classified as 'rare diseases.' Predominantly antibody deficiencies (PADs) represent more than half of the PIDs diagnosed in Europe and are often diagnosed in the adulthood. Areas covered: Although PAD could first present with autoimmune or neoplastic features, respiratory infections are frequent and respiratory disease represents a relevant cause of morbidity and mortality. Pulmonary complications may be classified as infection-related (acute and chronic), immune-mediated, and neoplastic. Expert opinion: At present, no consensus guidelines are available on how to monitor and manage lung complications in PAD patients. In this review, we will discuss the available diagnostic, prognostic and therapeutic instruments and we will suggest an appropriate and evidence-based approach to lung diseases in primary antibody deficiencies. We will also highlight the possible role of promising new tools and strategies in the management of pulmonary complications. However, future studies are needed to reduce of diagnostic delay of PAD and to better understand lung diseases mechanisms, with the final aim to ameliorate therapeutic options that will have a strong impact on Quality of Life and long-term prognosis of PAD patients.
Collapse
Affiliation(s)
- Francesco Cinetto
- Department of Medicine - DIMED, University of Padova , Padova , Italy.,Internal Medicine I, Ca' Foncello Hospital , Treviso , Italy
| | - Riccardo Scarpa
- Department of Medicine - DIMED, University of Padova , Padova , Italy.,Internal Medicine I, Ca' Foncello Hospital , Treviso , Italy
| | - Federica Pulvirenti
- Department of Molecular Medicine, "Sapienza" University of Roma , Roma , Italy
| | - Isabella Quinti
- Department of Molecular Medicine, "Sapienza" University of Roma , Roma , Italy
| | - Carlo Agostini
- Department of Medicine - DIMED, University of Padova , Padova , Italy.,Internal Medicine I, Ca' Foncello Hospital , Treviso , Italy
| | - Cinzia Milito
- Department of Molecular Medicine, "Sapienza" University of Roma , Roma , Italy
| |
Collapse
|
29
|
Cereser L, De Carli R, Girometti R, De Pellegrin A, Reccardini F, Frossi B, De Carli M. Efficacy of rituximab as a single-agent therapy for the treatment of granulomatous and lymphocytic interstitial lung disease in patients with common variable immunodeficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2019; 7:1055-1057.e2. [DOI: 10.1016/j.jaip.2018.10.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 10/02/2018] [Accepted: 10/22/2018] [Indexed: 10/27/2022]
|