1
|
van der Kaaij A, Bunte MJM, Nijhof L, Mokhtari S, Overmars H, Schots A, Wilbers RHP, Nibbering P. Identification of β-galactosidases along the secretory pathway of Nicotiana benthamiana that collectively hamper engineering of galactose-extended glycans on recombinant glycoproteins. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 40333706 DOI: 10.1111/pbi.70126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/15/2025] [Accepted: 04/24/2025] [Indexed: 05/09/2025]
Abstract
Glycosylation is an important aspect for many biopharmaceuticals, including vaccines against parasitic helminths. Plants, especially Nicotiana benthamiana, have proven to be excellent production hosts for biopharmaceuticals with tailor-made glycosylation. If desired, galactosylation can be introduced on biopharmaceuticals through co-expression of the appropriate glycosyltransferase. However, achieving homogenous glycoforms with terminal galactose residues remains difficult as native N. benthamiana β-galactosidases (NbBGALs) truncate these glycans. Recently, the first NbBGAL has been identified, but a knockout line was insufficient to achieve near complete galactosylation, suggesting that other enzymes could have similar activity. In this study, we selected 10 NbBGALs for further investigation into subcellular localization, in vitro and in vivo activity against β1,4-linked galactose on N-glycans and β1,3-linked galactose on O-glycans. We show that NbBGAL3B is localized in the apoplast and has similar specificity for β1,4-linked galactose on N-glycans as the previously identified NbBGAL1. In contrast, none of the selected NbBGALs cleaved β1,3-linked galactose from O-glycans besides BGAL1. In addition, we provide a novel strategy to achieve near complete galactosylation on galactosidase-prone glycoproteins by using the protective capacity of the Lewis X motif and subsequent removal of the antennary fucose residues. Taken together, our results provide a broad view of the ability of NbBGALs to cleave galactoses and have identified NbBGAL3B as the second major contributor of undesired β-galactosidase activity while engineering N-glycans. This work lays the foundation for generating knockout lines that are devoid of undesired NbBGALs and therefore do not hamper the production of recombinant glycoproteins with galactose-extended glycans.
Collapse
Affiliation(s)
- Alex van der Kaaij
- Laboratory of Nematology, Plant Sciences Department, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Myrna J M Bunte
- Laboratory of Nematology, Plant Sciences Department, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Lisa Nijhof
- Laboratory of Nematology, Plant Sciences Department, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Sanaz Mokhtari
- Laboratory of Nematology, Plant Sciences Department, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Hein Overmars
- Laboratory of Nematology, Plant Sciences Department, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Arjen Schots
- Laboratory of Nematology, Plant Sciences Department, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Ruud H P Wilbers
- Laboratory of Nematology, Plant Sciences Department, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Pieter Nibbering
- Laboratory of Nematology, Plant Sciences Department, Wageningen University and Research Centre, Wageningen, The Netherlands
| |
Collapse
|
2
|
Zhu Y, Chen X, Zheng H, Ma Q, Chen K, Li H. Anti-Inflammatory Effects of Helminth-Derived Products: Potential Applications and Challenges in Diabetes Mellitus Management. J Inflamm Res 2024; 17:11789-11812. [PMID: 39749005 PMCID: PMC11694023 DOI: 10.2147/jir.s493374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/15/2024] [Indexed: 01/04/2025] Open
Abstract
The global rise in diabetes mellitus (DM), particularly type 2 diabetes (T2D), has become a major public health challenge. According to the "hygiene hypothesis", helminth infections may offer therapeutic benefits for DM. These infections are known to modulate immune responses, reduce inflammation, and improve insulin sensitivity. However, they also carry risks, such as malnutrition, anemia, and intestinal obstruction. Importantly, helminth excretory/secretory products, which include small molecules and proteins, have shown therapeutic potential in treating various inflammatory diseases with minimal side effects. This review explores the anti-inflammatory properties of helminth derivatives and their potential to alleviate chronic inflammation in both type 1 diabetes and T2D, highlighting their promise as future drug candidates. Additionally, it discusses the possible applications of these derivatives in DM management and the challenges involved in translating these findings into clinical practice.
Collapse
Affiliation(s)
- Yunhuan Zhu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, People’s Republic of China
| | - Xintong Chen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, People’s Republic of China
| | - Hezheng Zheng
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, People’s Republic of China
| | - Qiman Ma
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, People’s Republic of China
| | - Keda Chen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, People’s Republic of China
| | - Hongyu Li
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, People’s Republic of China
- Ocean College, Beibu Gulf University, Qinzhou, Guangxi, People’s Republic of China
| |
Collapse
|
3
|
Scapin G, Cagdas E, Grav LM, Lewis NE, Goletz S, Hafkenscheid L. Implications of glycosylation for the development of selected cytokines and their derivatives for medical use. Biotechnol Adv 2024; 77:108467. [PMID: 39447666 DOI: 10.1016/j.biotechadv.2024.108467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/13/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Cytokines are important regulators of immune responses, making them attractive targets for autoimmune diseases and cancer therapeutics. Yet, the significance of cytokine glycosylation remains underestimated. Many cytokines carry N- and O-glycans and some even undergo C-mannosylation. Recombinant cytokines produced in heterologous host cells may lack glycans or exhibit a different glycosylation pattern such as varying levels of galactosylation, sialylation, fucosylation or xylose addition compared to their human counterparts, potentially impacting critical immune interactions. We focused on cytokines that are currently utilized or designed in advanced therapeutic formats, including immunocytokines, fusokines, engager cytokines, and genetically engineered 'supercytokines.' Despite the innovative designs of these cytokine derivatives, their glycosylation patterns have not been extensively studied. By examining the glycosylation of the human native cytokines, G-CSF and GM-CSF, interferons β and γ, TNF-α and interleukins-2, -3 -4, -6, -7, -9, -12, -13, -15, -17A, -21, and - 22, we aim to assess its potential impact on their therapeutic derivatives. Understanding the glycosylation of the native cytokines could provide critical insights into the safety, efficacy, and functionality of these next-generation cytokine therapies, affecting factors such as stability, bioactivity, antigenicity, and half-life. This knowledge can guide the choice of optimal expression hosts for production and advance the development of effective cytokine-based therapeutics and synthetic immunology drugs.
Collapse
Affiliation(s)
- Giulia Scapin
- Department of Biotechnology and Biomedicine, Mammalian Cell Line Engineering, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark
| | - Ece Cagdas
- Department of Biotechnology and Biomedicine, Mammalian Cell Line Engineering, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark
| | - Lise Marie Grav
- Department of Biotechnology and Biomedicine, Mammalian Cell Line Engineering, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Steffen Goletz
- Department of Biotechnology and Biomedicine, Biotherapeutic Glycoengineering and Immunology, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark.
| | - Lise Hafkenscheid
- Department of Biotechnology and Biomedicine, Biotherapeutic Glycoengineering and Immunology, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark.
| |
Collapse
|
4
|
Zwanenburg L, Borloo J, Decorte B, Bunte MJM, Mokhtari S, Serna S, Reichardt NC, Seys LJM, van Diepen A, Schots A, Wilbers RHP, Hokke CH, Claerebout E, Geldhof P. Plant-based production of a protective vaccine antigen against the bovine parasitic nematode Ostertagia ostertagi. Sci Rep 2023; 13:20488. [PMID: 37993516 PMCID: PMC10665551 DOI: 10.1038/s41598-023-47480-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023] Open
Abstract
The development of effective recombinant vaccines against parasitic nematodes has been challenging and so far mostly unsuccessful. This has also been the case for Ostertagia ostertagi, an economically important abomasal nematode in cattle, applying recombinant versions of the protective native activation-associated secreted proteins (ASP). To gain insight in key elements required to trigger a protective immune response, the protein structure and N-glycosylation of the native ASP and a non-protective Pichia pastoris recombinant ASP were compared. Both antigens had a highly comparable protein structure, but different N-glycan composition. After mimicking the native ASP N-glycosylation via the expression in Nicotiana benthamiana plants, immunisation of calves with these plant-produced recombinants resulted in a significant reduction of 39% in parasite egg output, comparable to the protective efficacy of the native antigen. This study provides a valuable workflow for the development of recombinant vaccines against other parasitic nematodes.
Collapse
Affiliation(s)
- Laurens Zwanenburg
- Laboratory of Parasitology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Jimmy Borloo
- Laboratory of Parasitology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Bregt Decorte
- Laboratory of Parasitology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Myrna J M Bunte
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Sanaz Mokhtari
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Sonia Serna
- Glycotechnology Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014, Donostia San Sebastián, Spain
- CIBER-BBN, Paseo Miramón 194, 20014, San Sebastian, Spain
| | - Niels-C Reichardt
- Glycotechnology Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014, Donostia San Sebastián, Spain
- CIBER-BBN, Paseo Miramón 194, 20014, San Sebastian, Spain
| | - Leen J M Seys
- Laboratory of Parasitology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Angela van Diepen
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Arjen Schots
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Ruud H P Wilbers
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Cornelis H Hokke
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Edwin Claerebout
- Laboratory of Parasitology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Peter Geldhof
- Laboratory of Parasitology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium.
| |
Collapse
|
5
|
van der Kaaij A, van Noort K, Nibbering P, Wilbers RHP, Schots A. Glyco-Engineering Plants to Produce Helminth Glycoproteins as Prospective Biopharmaceuticals: Recent Advances, Challenges and Future Prospects. FRONTIERS IN PLANT SCIENCE 2022; 13:882835. [PMID: 35574113 PMCID: PMC9100689 DOI: 10.3389/fpls.2022.882835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
Glycoproteins are the dominant category among approved biopharmaceuticals, indicating their importance as therapeutic proteins. Glycoproteins are decorated with carbohydrate structures (or glycans) in a process called glycosylation. Glycosylation is a post-translational modification that is present in all kingdoms of life, albeit with differences in core modifications, terminal glycan structures, and incorporation of different sugar residues. Glycans play pivotal roles in many biological processes and can impact the efficacy of therapeutic glycoproteins. The majority of biopharmaceuticals are based on human glycoproteins, but non-human glycoproteins, originating from for instance parasitic worms (helminths), form an untapped pool of potential therapeutics for immune-related diseases and vaccine candidates. The production of sufficient quantities of correctly glycosylated putative therapeutic helminth proteins is often challenging and requires extensive engineering of the glycosylation pathway. Therefore, a flexible glycoprotein production system is required that allows straightforward introduction of heterologous glycosylation machinery composed of glycosyltransferases and glycosidases to obtain desired glycan structures. The glycome of plants creates an ideal starting point for N- and O-glyco-engineering of helminth glycans. Plants are also tolerant toward the introduction of heterologous glycosylation enzymes as well as the obtained glycans. Thus, a potent production platform emerges that enables the production of recombinant helminth proteins with unusual glycans. In this review, we discuss recent advances in plant glyco-engineering of potentially therapeutic helminth glycoproteins, challenges and their future prospects.
Collapse
|
6
|
Mitani Y, Yasuno R, Kihira K, Chung K, Mitsuda N, Kanie S, Tomioka A, Kaji H, Ohmiya Y. Host-Dependent Producibility of Recombinant Cypridina noctiluca Luciferase With Glycosylation Defects. Front Bioeng Biotechnol 2022; 10:774786. [PMID: 35198542 PMCID: PMC8859458 DOI: 10.3389/fbioe.2022.774786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Cypridina noctiluca luciferase (CLuc) is a secreted luminescent protein that reacts with its substrate (Cypridina luciferin) to emit light. CLuc is known to be a thermostable protein and has been used for various research applications, including in vivo imaging and high-throughput reporter assays. Previously, we produced a large amount of recombinant CLuc for crystallographic analysis. However, this recombinant protein did not crystallize, probably due to heterogeneous N-glycan modifications. In this study, we produced recombinant CLuc without glycan modifications by introducing mutations at the N-glycan modification residues using mammalian Expi293F cells, silkworms, and tobacco Bright Yellow-2 cells. Interestingly, recombinant CLuc production depended heavily on the expression hosts. Among these selected hosts, we found that Expi293F cells efficiently produced the recombinant mutant CLuc without significant effects on its luciferase activity. We confirmed the lack of N-glycan modifications for this mutant protein by mass spectrometry analysis but found slight O-glycan modifications that we estimated were about 2% of the ion chromatogram peak area for the detected peptide fragments. Moreover, by using CLuc deletion mutants during the investigation of O-glycan modifications, we identified amino acid residues important to the luciferase activity of CLuc. Our results provide invaluable information related to CLuc function and pave the way for its crystallographic analysis.
Collapse
Affiliation(s)
- Yasuo Mitani
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
- *Correspondence: Yasuo Mitani,
| | - Rie Yasuno
- Cellular and Molecular Biotechnology Research Institute, AIST, Tsukuba, Japan
| | | | - KwiMi Chung
- Bioproduction Research Institute, AIST, Tsukuba, Japan
| | | | - Shusei Kanie
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
| | - Azusa Tomioka
- Cellular and Molecular Biotechnology Research Institute, AIST, Tsukuba, Japan
| | - Hiroyuki Kaji
- Cellular and Molecular Biotechnology Research Institute, AIST, Tsukuba, Japan
| | - Yoshihiro Ohmiya
- Biomedical Research Institute, AIST, Ikeda, Japan
- Osaka Institute of Technology (OIT), Osaka, Japan
| |
Collapse
|
7
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
8
|
Elkins LL, Dolan MC. Plant production and functional characterization of catfish interleukin-22 as a natural immune stimulant for aquaculture fish. J Biotechnol 2021; 325:233-240. [PMID: 33069777 DOI: 10.1016/j.jbiotec.2020.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/17/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022]
Abstract
As the world population increases and wild caught fisheries decline, aquaculture offers a sustainable solution addressing this global challenge. However, disease management remains difficult. With limited options, there is a need for innovative solutions. The cytokine interleukin-22 (IL-22) has emerged as a possible therapeutic target for fish and has been correlated with protection under pathogen challenge. Plant-based production systems have the potential to effectively manufacture and bring unique efficacy-enhancing features to the aquaculture industry; namely, the advantages of low cost for this commodity market, ready scalability, and reduced environmental impact. Catfish IL-22 produced at significant yield and purity highlights the use of plants as a promising production platform for therapeutic proteins with utility to the aquaculture industry. Purified cfIL-22 shows similar in vitro bioactivity to its mammalian homolog that include increased proliferation of catfish cells highlighting the tissue preservation capabilities associated with this protein. Recombinant cfIL-22 also upregulated expression of genes encoding a tissue repair protein, fibronectin, an antimicrobial peptide, Natural killer lysin-1, and a common innate immune protein, interferon. These findings support plant-made recombinant catfish interleukin-22 as a potential therapeutic for the aquaculture industry and further analysis of this protein for promoting animal health.
Collapse
Affiliation(s)
- Lana L Elkins
- Molecular Biosciences Program, Jonesboro, Arkansas, 72401, United States; Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, 72401, United States
| | - Maureen C Dolan
- Molecular Biosciences Program, Jonesboro, Arkansas, 72401, United States; Arkansas Biosciences Institute, Jonesboro, Arkansas, 72401, United States; Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, 72401, United States.
| |
Collapse
|
9
|
Alvisi N, van Noort K, Dwiani S, Geschiere N, Sukarta O, Varossieau K, Nguyen DL, Strasser R, Hokke CH, Schots A, Wilbers RHP. β-Hexosaminidases Along the Secretory Pathway of Nicotiana benthamiana Have Distinct Specificities Toward Engineered Helminth N-Glycans on Recombinant Glycoproteins. FRONTIERS IN PLANT SCIENCE 2021; 12:638454. [PMID: 33815445 PMCID: PMC8010188 DOI: 10.3389/fpls.2021.638454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/23/2021] [Indexed: 05/14/2023]
Abstract
Secretions of parasitic worms (helminths) contain a wide collection of immunomodulatory glycoproteins with the potential to treat inflammatory disorders, like autoimmune diseases. Yet, the identification of single molecules that can be developed into novel biopharmaceuticals is hampered by the limited availability of native parasite-derived proteins. Recently, pioneering work has shown that helminth glycoproteins can be produced transiently in Nicotiana benthamiana plants while simultaneously mimicking their native helminth N-glycan composition by co-expression of desired glycosyltransferases. However, efficient "helminthization" of N-glycans in plants by glyco-engineering seems to be hampered by the undesired truncation of complex N-glycans by β-N-acetyl-hexosaminidases, in particular when aiming for the synthesis of N-glycans with antennary GalNAcβ1-4GlcNAc (LacdiNAc or LDN). In this study, we cloned novel β-hexosaminidase open reading frames from N. benthamiana and characterized the biochemical activity of these enzymes. We identified HEXO2 and HEXO3 as enzymes responsible for the cleavage of antennary GalNAc residues of N-glycans on the model helminth glycoprotein kappa-5. Furthermore, we reveal that each member of the HEXO family has a distinct specificity for N-glycan substrates, where HEXO2 has strict β-galactosaminidase activity, whereas HEXO3 cleaves both GlcNAc and GalNAc. The identification of HEXO2 and HEXO3 as major targets for LDN cleavage will enable a targeted genome editing approach to reduce undesired processing of these N-glycans. Effective knockout of these enzymes could allow the production of therapeutically relevant glycoproteins with tailor-made helminth N-glycans in plants.
Collapse
Affiliation(s)
- Nicolò Alvisi
- Laboratory of Nematology, Plant Sciences Group, Wageningen University and Research, Wageningen, Netherlands
| | - Kim van Noort
- Laboratory of Nematology, Plant Sciences Group, Wageningen University and Research, Wageningen, Netherlands
| | - Sarlita Dwiani
- Laboratory of Nematology, Plant Sciences Group, Wageningen University and Research, Wageningen, Netherlands
| | - Nathan Geschiere
- Laboratory of Nematology, Plant Sciences Group, Wageningen University and Research, Wageningen, Netherlands
| | - Octavina Sukarta
- Laboratory of Nematology, Plant Sciences Group, Wageningen University and Research, Wageningen, Netherlands
| | - Koen Varossieau
- Laboratory of Nematology, Plant Sciences Group, Wageningen University and Research, Wageningen, Netherlands
| | - Dieu-Linh Nguyen
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Cornelis H. Hokke
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Arjen Schots
- Laboratory of Nematology, Plant Sciences Group, Wageningen University and Research, Wageningen, Netherlands
| | - Ruud H. P. Wilbers
- Laboratory of Nematology, Plant Sciences Group, Wageningen University and Research, Wageningen, Netherlands
- *Correspondence: Ruud H. P. Wilbers,
| |
Collapse
|
10
|
van Noort K, Nguyen DL, Kriechbaumer V, Hawes C, Hokke CH, Schots A, Wilbers RHP. Functional characterization of Schistosoma mansoni fucosyltransferases in Nicotiana benthamiana plants. Sci Rep 2020; 10:18528. [PMID: 33116178 PMCID: PMC7595089 DOI: 10.1038/s41598-020-74485-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
Helminth parasites secrete a wide variety of immunomodulatory proteins and lipids to dampen host immune responses. Many of these immunomodulatory compounds are modified with complex sugar structures (or glycans), which play an important role at the host-parasite interface. As an example, the human blood fluke Schistosoma mansoni produces highly fucosylated glycan structures on glycoproteins and glycolipids. Up to 20 different S. mansoni fucosyltransferase (SmFucT) genes can be found in genome databases, but thus far only one enzyme has been functionally characterized. To unravel the synthesis of highly fucosylated N-glycans by S. mansoni, we examined the ability of ten selected SmFucTs to modify N-glycans upon transient expression in Nicotiana benthamiana plants. All enzymes were localized in the plant Golgi apparatus, which allowed us to identify the SmFucTs involved in core fucosylation and the synthesis of complex antennary glycan motifs. This knowledge provides a starting point for investigations into the role of specific fucosylated glycan motifs of schistosomes in parasite-host interactions. The functionally characterized SmFucTs can also be applied to synthesize complex N-glycan structures on recombinant proteins to study their contribution to immunomodulation. Furthermore, this plant expression system will fuel the development of helminth glycoproteins for pharmaceutical applications or novel anti-helminth vaccines.
Collapse
Affiliation(s)
- Kim van Noort
- Laboratory of Nematology, Plant Sciences Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Dieu-Linh Nguyen
- Department of Parasitology, Leiden University Medical Center, Albinusdreef, 2333 ZA, Leiden, The Netherlands
| | - Verena Kriechbaumer
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Chris Hawes
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Cornelis H Hokke
- Department of Parasitology, Leiden University Medical Center, Albinusdreef, 2333 ZA, Leiden, The Netherlands
| | - Arjen Schots
- Laboratory of Nematology, Plant Sciences Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Ruud H P Wilbers
- Laboratory of Nematology, Plant Sciences Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
11
|
Laukens B, Jacobs PP, Geysens K, Martins J, De Wachter C, Ameloot P, Morelle W, Haustraete J, Renauld JC, Samyn B, Contreras R, Devos S, Callewaert N. Off-target glycans encountered along the synthetic biology route toward humanized N-glycans in Pichia pastoris. Biotechnol Bioeng 2020; 117:2479-2488. [PMID: 32374435 DOI: 10.1002/bit.27375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/06/2020] [Accepted: 05/05/2020] [Indexed: 11/06/2022]
Abstract
The glycosylation pathways of several eukaryotic protein expression hosts are being engineered to enable the production of therapeutic glycoproteins with humanized application-customized glycan structures. In several expression hosts, this has been quite successful, but one caveat is that the new N-glycan structures inadvertently might be substrates for one or more of the multitude of endogenous glycosyltransferases in such heterologous background. This then results in the formation of novel, undesired glycan structures, which often remain insufficiently characterized. When expressing mouse interleukin-22 in a Pichia pastoris (syn. Komagataella phaffii) GlycoSwitchM5 strain, which had been optimized to produce Man5 GlcNAc2 N-glycans, glycan profiling revealed two major species: Man5 GlcNAc2 and an unexpected, partially α-mannosidase-resistant structure. A detailed structural analysis using exoglycosidase sequencing, mass spectrometry, linkage analysis, and nuclear magnetic resonance revealed that this novel glycan was Man5 GlcNAc2 modified with a Glcα-1,2-Manβ-1,2-Manβ-1,3-Glcα-1,3-R tetrasaccharide. Expression of a Golgi-targeted GlcNAc transferase-I strongly inhibited the formation of this novel modification, resulting in more homogeneous modification with the targeted GlcNAcMan5 GlcNAc2 structure. Our findings reinforce accumulating evidence that robustly customizing the N-glycosylation pathway in P. pastoris to produce particular human-type structures is still an incompletely solved synthetic biology challenge, which will require further innovation to enable safe glycoprotein pharmaceutical production.
Collapse
Affiliation(s)
- Bram Laukens
- VIB-UGent Center for Medical Biotechnology, Technologiepark, Zwijnaarde, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Pieter P Jacobs
- VIB-UGent Center for Medical Biotechnology, Technologiepark, Zwijnaarde, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Katelijne Geysens
- NMR and Structural Analysis Unit, Department of Organic Chemistry and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Jose Martins
- NMR and Structural Analysis Unit, Department of Organic Chemistry and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Charlot De Wachter
- VIB-UGent Center for Medical Biotechnology, Technologiepark, Zwijnaarde, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Paul Ameloot
- VIB-UGent Center for Medical Biotechnology, Technologiepark, Zwijnaarde, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Willy Morelle
- Glycobiologie Structurale et Fonctionnelle, Université des Sciences et Technologies de Lille 1, Villeneuve d'Ascq, France
| | | | - Jean-Christophe Renauld
- Ludwig Institute for Cancer Research and Experimental Medicine Unit, Université Catholique de Louvain, Brussels, Belgium
| | - Bart Samyn
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Roland Contreras
- Department for Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Simon Devos
- VIB-UGent Center for Medical Biotechnology, Technologiepark, Zwijnaarde, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Nico Callewaert
- VIB-UGent Center for Medical Biotechnology, Technologiepark, Zwijnaarde, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
12
|
Wilbers RHP, van Raaij DR, Westerhof LB, Bakker J, Smant G, Schots A. Re-evaluation of IL-10 signaling reveals novel insights on the contribution of the intracellular domain of the IL-10R2 chain. PLoS One 2017; 12:e0186317. [PMID: 29016674 PMCID: PMC5634637 DOI: 10.1371/journal.pone.0186317] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/28/2017] [Indexed: 01/25/2023] Open
Abstract
Interleukin-10 (IL-10) is an anti-inflammatory cytokine that plays a key role in maintaining immune homeostasis. IL-10-mediated responses are triggered upon binding to a heterodimeric receptor complex consisting of IL-10 receptor (IL-10R)1 and IL-10R2. Engagement of the IL-10R complex activates the intracellular kinases Jak1 and Tyk2, but the exact roles of IL-10R2 and IL-10R2-associated signaling via Tyk2 remain unclear. To elucidate the contribution of IL-10R2 and its signaling to IL-10 activity, we re-evaluated IL-10-mediated responses on bone marrow-derived dendritic cells, macrophages and mast cells. By using bone marrow from IL-10R-/- mice it was revealed that IL-10-mediated responses depend on both IL-10R1 and IL-10R2 in all three cell types. On the contrary, bone marrow-derived cells from Tyk2-/- mice showed similar responses to IL-10 as wild-type cells, indicating that signaling via this IL-10R2-associated kinase only plays a limited role. Tyk2 was shown to control the amplitude of STAT3 activation and the up-regulation of downstream SOCS3 expression. SOCS3 up-regulation was found to be cell-type dependent and correlated with the lack of early suppression of LPS-induced TNF-α in dendritic cells. Further investigation of the IL-10R complex revealed that both the extracellular and intracellular domains of IL-10R2 influence the conformation of IL-10R1 and that both domains were required for transducing IL-10 signals. This observation highlights a novel role for the intracellular domain of IL-10R2 in the molecular mechanisms of IL-10R activation.
Collapse
Affiliation(s)
- Ruud H. P. Wilbers
- Wageningen University and Research, Plant Sciences Group, Laboratory of Nematology, Wageningen, The Netherlands
| | - Debbie R. van Raaij
- Wageningen University and Research, Plant Sciences Group, Laboratory of Nematology, Wageningen, The Netherlands
| | - Lotte B. Westerhof
- Wageningen University and Research, Plant Sciences Group, Laboratory of Nematology, Wageningen, The Netherlands
| | - Jaap Bakker
- Wageningen University and Research, Plant Sciences Group, Laboratory of Nematology, Wageningen, The Netherlands
| | - Geert Smant
- Wageningen University and Research, Plant Sciences Group, Laboratory of Nematology, Wageningen, The Netherlands
| | - Arjen Schots
- Wageningen University and Research, Plant Sciences Group, Laboratory of Nematology, Wageningen, The Netherlands
| |
Collapse
|
13
|
Kytidou K, Beenakker TJM, Westerhof LB, Hokke CH, Moolenaar GF, Goosen N, Mirzaian M, Ferraz MJ, de Geus M, Kallemeijn WW, Overkleeft HS, Boot RG, Schots A, Bosch D, Aerts JMFG. Human Alpha Galactosidases Transiently Produced in Nicotiana benthamiana Leaves: New Insights in Substrate Specificities with Relevance for Fabry Disease. FRONTIERS IN PLANT SCIENCE 2017; 8:1026. [PMID: 28680430 PMCID: PMC5478728 DOI: 10.3389/fpls.2017.01026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/29/2017] [Indexed: 05/25/2023]
Abstract
Deficiency of α-galactosidase A (α-GAL) causes Fabry disease (FD), an X-linked storage disease of the glycosphingolipid globtriaosylcerammide (Gb3) in lysosomes of various cells and elevated plasma globotriaosylsphingosine (Lyso-Gb3) toxic for podocytes and nociceptive neurons. Enzyme replacement therapy is used to treat the disease, but clinical efficacy is limited in many male FD patients due to development of neutralizing antibodies (Ab). Therapeutic use of modified lysosomal α-N-acetyl-galactosaminidase (α-NAGAL) with increased α-galactosidase activity (α-NAGALEL) has therefore been suggested. We transiently produced in Nicotiana benthamiana leaves functional α-GAL, α-NAGAL, and α-NAGALEL enzymes for research purposes. All enzymes could be visualized with activity-based probes covalently binding in their catalytic pocket. Characterization of purified proteins indicated that α-NAGALEL is improved in activity toward artificial 4MU-α-galactopyranoside. Recombinant α-NAGALEL and α-NAGAL are not neutralized by Ab-positive FD serum tested and are more stable in human plasma than α-GAL. Both enzymes hydrolyze the lipid substrates Gb3 and Lyso-Gb3 accumulating in Fabry patients. The addition to FD sera of α-NAGALEL, and to a lesser extent that of α-NAGAL, results in a reduction of the toxic Lyso-Gb3. In conclusion, our study suggests that modified α-NAGALEL might reduce excessive Lyso-Gb3 in FD serum. This neo-enzyme can be produced in Nicotiana benthamiana and might be further developed for the treatment of FD aiming at reduction of circulating Lyso-Gb3.
Collapse
Affiliation(s)
- Kassiani Kytidou
- Department of Medical Biochemistry, Leiden Institute of ChemistryLeiden, Netherlands
| | | | - Lotte B. Westerhof
- Wageningen University and Research, Plant Sciences GroupWageningen, Netherlands
| | - Cornelis H. Hokke
- Department of Parasitology, Centre of Infectious Diseases, Leiden University Medical CenterLeiden, Netherlands
| | - Geri F. Moolenaar
- Cloning and Protein Purification Facility of Leiden Institute of ChemistryLeiden, Netherlands
| | - Nora Goosen
- Cloning and Protein Purification Facility of Leiden Institute of ChemistryLeiden, Netherlands
| | - Mina Mirzaian
- Department of Medical Biochemistry, Leiden Institute of ChemistryLeiden, Netherlands
| | - Maria J. Ferraz
- Department of Medical Biochemistry, Leiden Institute of ChemistryLeiden, Netherlands
| | - Mark de Geus
- Department of Medical Biochemistry, Leiden Institute of ChemistryLeiden, Netherlands
| | - Wouter W. Kallemeijn
- Department of Medical Biochemistry, Leiden Institute of ChemistryLeiden, Netherlands
| | - Herman S. Overkleeft
- Department of Bio-organic Synthesis, Leiden Institute of ChemistryLeiden, Netherlands
| | - Rolf G. Boot
- Department of Medical Biochemistry, Leiden Institute of ChemistryLeiden, Netherlands
| | - Arjen Schots
- Wageningen University and Research, Plant Sciences GroupWageningen, Netherlands
| | - Dirk Bosch
- Wageningen University and Research, Plant Sciences GroupWageningen, Netherlands
| | | |
Collapse
|
14
|
Wilbers RHP, Westerhof LB, van Noort K, Obieglo K, Driessen NN, Everts B, Gringhuis SI, Schramm G, Goverse A, Smant G, Bakker J, Smits HH, Yazdanbakhsh M, Schots A, Hokke CH. Production and glyco-engineering of immunomodulatory helminth glycoproteins in plants. Sci Rep 2017; 7:45910. [PMID: 28393916 PMCID: PMC5385521 DOI: 10.1038/srep45910] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/03/2017] [Indexed: 01/15/2023] Open
Abstract
Helminth parasites control host-immune responses by secreting immunomodulatory glycoproteins. Clinical trials and mouse model studies have demonstrated the potential of helminth-derived glycoproteins for the treatment of immune-related diseases, like allergies and autoimmune diseases. Studies are however hampered by the limited availability of native parasite-derived proteins. Moreover, recombinant protein production systems have thus far been unable to reconstitute helminth-like glycosylation essential for the functionality of some helminth glycoproteins. Here we exploited the flexibility of the N-glycosylation machinery of plants to reconstruct the helminth glycoproteins omega-1 and kappa-5, two major constituents of immunomodulatory Schistosoma mansoni soluble egg antigens. Fine-tuning transient co-expression of specific glycosyltransferases in Nicotiana benthamiana enabled the synthesis of Lewis X (LeX) and LDN/LDN-F glycan motifs as found on natural omega-1 and kappa-5, respectively. In vitro and in vivo evaluation of the introduction of native LeX motifs on plant-produced omega-1 confirmed that LeX on omega-1 contributes to the glycoprotein's Th2-inducing properties. These data indicate that mimicking the complex carbohydrate structures of helminths in plants is a promising strategy to allow targeted evaluation of therapeutic glycoproteins for the treatment of inflammatory disorders. In addition, our results offer perspectives for the development of effective anti-helminthic vaccines by reconstructing native parasite glycoprotein antigens.
Collapse
Affiliation(s)
- Ruud H. P. Wilbers
- Laboratory of Nematology, Plant Sciences Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Lotte B. Westerhof
- Laboratory of Nematology, Plant Sciences Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Kim van Noort
- Laboratory of Nematology, Plant Sciences Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Katja Obieglo
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Nicole N. Driessen
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Bart Everts
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Sonja I. Gringhuis
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Gabriele Schramm
- Research Center Borstel, Priority Area Asthma and Allergy, Experimental Pneumology, Parkallee 22, D-23845, Borstel, Germany
| | - Aska Goverse
- Laboratory of Nematology, Plant Sciences Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Geert Smant
- Laboratory of Nematology, Plant Sciences Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jaap Bakker
- Laboratory of Nematology, Plant Sciences Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Hermelijn H. Smits
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Arjen Schots
- Laboratory of Nematology, Plant Sciences Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Cornelis H. Hokke
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
15
|
Shin Y, Castilho A, Dicker M, Sádio F, Vavra U, Grünwald‐Gruber C, Kwon T, Altmann F, Steinkellner H, Strasser R. Reduced paucimannosidic N-glycan formation by suppression of a specific β-hexosaminidase from Nicotiana benthamiana. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:197-206. [PMID: 27421111 PMCID: PMC5259580 DOI: 10.1111/pbi.12602] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/05/2016] [Accepted: 07/11/2016] [Indexed: 05/19/2023]
Abstract
Plants are attractive hosts for the production of recombinant glycoproteins for therapeutic use. Recent advances in glyco-engineering facilitate the elimination of nonmammalian-type glycosylation and introduction of missing pathways for customized N-glycan formation. However, some therapeutically relevant recombinant glycoproteins exhibit unwanted truncated (paucimannosidic) N-glycans that lack GlcNAc residues at the nonreducing terminal end. These paucimannosidic N-glycans increase product heterogeneity and may affect the biological function of the recombinant drugs. Here, we identified two enzymes, β-hexosaminidases (HEXOs) that account for the formation of paucimannosidic N-glycans in Nicotiana benthamiana, a widely used expression host for recombinant proteins. Subcellular localization studies showed that HEXO1 is a vacuolar protein and HEXO3 is mainly located at the plasma membrane in N. benthamiana leaf epidermal cells. Both enzymes are functional and can complement the corresponding HEXO-deficient Arabidopsis thaliana mutants. In planta expression of HEXO3 demonstrated that core α1,3-fucose enhances the trimming of GlcNAc residues from the Fc domain of human IgG. Finally, using RNA interference, we show that suppression of HEXO3 expression can be applied to increase the amounts of complex N-glycans on plant-produced human α1-antitrypsin.
Collapse
Affiliation(s)
- Yun‐Ji Shin
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Alexandra Castilho
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Martina Dicker
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Flavio Sádio
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Ulrike Vavra
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | | | | | - Friedrich Altmann
- Department of ChemistryUniversity of Natural Resources and Life SciencesViennaAustria
| | - Herta Steinkellner
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Richard Strasser
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| |
Collapse
|