1
|
Han X, Li J, Li G, Zhang Z, Lian T, Zhang B, Luo T, Lv R, Cai X, Lin X, Xu C, Wu Y, Gong L, Wendel JF, Liu B. Rapid formation of stable autotetraploid rice from genome-doubled F1 hybrids of japonica-indica subspecies. NATURE PLANTS 2025; 11:743-760. [PMID: 40164786 PMCID: PMC12015120 DOI: 10.1038/s41477-025-01966-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 03/03/2025] [Indexed: 04/02/2025]
Abstract
Theory predicts that in the absence of selection, a newly formed segmental allopolyploid will become 'autopolyploidized' if homoeologous exchanges (HEs) occur freely. Moreover, because selection against meiotic abnormalities is expected to be strong in the initial generations, we anticipate HEs to be uncommon in evolved segmental allopolyploids. Here we analysed the whole-genome composition of 202 phenotypically homogeneous and stable rice tetraploid recombinant inbred lines (TRILs) derived from Oryza sativa subsp. japonica subsp. indica hybridization/whole-genome doubling. We measured functional traits related to growth, development and reproductive fitness, and analysed meiotic chromosomal behaviour of the TRILs. We uncover factors that constrain the genomic composition of the TRILs, including asymmetric parental contribution and exclusive uniparental segment retention. Intriguingly, some TRILs that have high fertility and abiotic stress resilience co-occur with largely stabilized meiosis. Our findings comprise evidence supporting the evolutionary possibility of HE-catalysed 'allo-to-auto' polyploidy transitions in nature, with implications for creating new polyploid crops.
Collapse
Affiliation(s)
- Xu Han
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Jiahao Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Guo Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Taotao Lian
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Bingqi Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Ting Luo
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Ruili Lv
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Xiaojing Cai
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Xiuyun Lin
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Chunming Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Ying Wu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China.
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China.
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA.
| | - Jonathan F Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA.
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China.
| |
Collapse
|
2
|
Wang H, Li X, Meng B, Chang W, Zhang M, Miao L, Wei S, Yang H, Li S, Fan Y, Qian M, Chen Y, Khan SU, Wei L, Qu C, Li J, Song J, Lu K. Deciphering the Arf (ADP-ribosylation factor) gene family in Brassica napus L.: Genome-wide insights into duplication, expression, and rapeseed yield enhancement. Int J Biol Macromol 2024; 282:137257. [PMID: 39505192 DOI: 10.1016/j.ijbiomac.2024.137257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/25/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
The Arf gene family is essential for crop growth and development by regulating vesicle transport. However, few studies exist on the role of Arfs in the growth and yield formation of Brassica napus. Here we provide an exhaustive account of the phylogeny and expression of the 66 Arfs in rapeseed. We found that the expansion of Arf gene family is mainly through whole genome duplication, and some genes are loss during the expansion process. Expression analysis revealed that the Arfs in group X, with the exception of BnaC02.ARFA1B, BnaC06.ARFA1A.2, and BnaA07.ARFA1A.2, exhibited high expression levels across various tissues of B. napus at different developmental stages. These results indicate that the Arfss in group X were important in influencing rapeseed growth and development. We have found that Arfs in B. napus may have a more complex regulatory mechanism due to homologous recombination and gene sub-functionalization. Haplotype analysis indicated that Arfs regulate B. napus yield formation. We found high expression of BnaC07.ARFA1A in all tissues, and its overexpression significantly increased rapeseed silique number and yield. The comprehensive analysis will further characterize the functions of Arfs in B. napus and enhance regulatory networks for yield formation in B. napus.
Collapse
Affiliation(s)
- Hui Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, PR China.
| | - Xiaodong Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, PR China.
| | - Boyu Meng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, PR China.
| | - Wei Chang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, PR China.
| | - Minghao Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, PR China.
| | - Likai Miao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, PR China.
| | - Siyu Wei
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, PR China.
| | - Haikun Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, PR China.
| | - Shengting Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, PR China.
| | - Yonghai Fan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, PR China.
| | - Mingchao Qian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, PR China.
| | - Yuling Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, PR China.
| | - Shahid Ullah Khan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, PR China; Dubai Medical College for Girls (DMCG), United Arab Emirates.
| | - Lijuan Wei
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, PR China; Engineering Research Center of Grain and Oil Crops in Southwest Mountain, Ministry of Education, Chongqing 400715, PR China; Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, PR China.
| | - Cunmin Qu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, PR China; Engineering Research Center of Grain and Oil Crops in Southwest Mountain, Ministry of Education, Chongqing 400715, PR China; Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, PR China.
| | - Jiana Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, PR China; Engineering Research Center of Grain and Oil Crops in Southwest Mountain, Ministry of Education, Chongqing 400715, PR China; Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, PR China.
| | - Jiaming Song
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, PR China; Engineering Research Center of Grain and Oil Crops in Southwest Mountain, Ministry of Education, Chongqing 400715, PR China; Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, PR China.
| | - Kun Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, PR China; Engineering Research Center of Grain and Oil Crops in Southwest Mountain, Ministry of Education, Chongqing 400715, PR China; Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, PR China.
| |
Collapse
|
3
|
Heuberger M, Bernasconi Z, Said M, Jung E, Herren G, Widrig V, Šimková H, Keller B, Sánchez-Martín J, Wicker T. Analysis of a global wheat panel reveals a highly diverse introgression landscape and provides evidence for inter-homoeologue chromosomal recombination. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:236. [PMID: 39340575 PMCID: PMC11438656 DOI: 10.1007/s00122-024-04721-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/19/2024] [Indexed: 09/30/2024]
Abstract
KEY MESSAGE This study highlights the agronomic potential of rare introgressions, as demonstrated by a major QTL for powdery mildew resistance on chromosome 7D. It further shows evidence for inter-homoeologue recombination in wheat. Agriculturally important genes are often introgressed into crops from closely related donor species or landraces. The gene pool of hexaploid bread wheat (Triticum aestivum) is known to contain numerous such "alien" introgressions. Recently established high-quality reference genome sequences allow prediction of the size, frequency and identity of introgressed chromosome regions. Here, we characterise chromosomal introgressions in bread wheat using exome capture data from the WHEALBI collection. We identified 24,981 putative introgression segments of at least 2 Mb across 434 wheat accessions. Detailed study of the most frequent introgressions identified T. timopheevii or its close relatives as a frequent donor species. Importantly, 118 introgressions of at least 10 Mb were exclusive to single wheat accessions, revealing that large populations need to be studied to assess the total diversity of the wheat pangenome. In one case, a 14 Mb introgression in chromosome 7D, exclusive to cultivar Pamukale, was shown by QTL mapping to harbour a recessive powdery mildew resistance gene. We identified multiple events where distal chromosomal segments of one subgenome were duplicated in the genome and replaced the homoeologous segment in another subgenome. We propose that these examples are the results of inter-homoeologue recombination. Our study produced an extensive catalogue of the wheat introgression landscape, providing a resource for wheat breeding. Of note, the finding that the wheat gene pool contains numerous rare, but potentially important introgressions and chromosomal rearrangements has implications for future breeding.
Collapse
Affiliation(s)
- Matthias Heuberger
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Zoe Bernasconi
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Mahmoud Said
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
- Agricultural Research Centre, Field Crops Research Institute, Giza, Egypt
| | - Esther Jung
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Gerhard Herren
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Victoria Widrig
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- Department of Microbiology and Genetics, Spanish-Portuguese Agricultural Research Centre (CIALE), University of Salamanca, Salamanca, Spain
| | - Hana Šimková
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Beat Keller
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.
| | - Javier Sánchez-Martín
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.
- Department of Microbiology and Genetics, Spanish-Portuguese Agricultural Research Centre (CIALE), University of Salamanca, Salamanca, Spain.
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
4
|
Wang T, van Dijk ADJ, Zhao R, Bonnema G, Wang X. Contribution of homoeologous exchange to domestication of polyploid Brassica. Genome Biol 2024; 25:231. [PMID: 39192349 DOI: 10.1186/s13059-024-03370-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 08/10/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Polyploidy is widely recognized as a significant evolutionary force in the plant kingdom, contributing to the diversification of plants. One of the notable features of allopolyploidy is the occurrence of homoeologous exchange (HE) events between the subgenomes, causing changes in genomic composition, gene expression, and phenotypic variations. However, the role of HE in plant adaptation and domestication remains unclear. RESULTS Here we analyze the whole-genome resequencing data from Brassica napus accessions representing the different morphotypes and ecotypes, to investigate the role of HE in domestication. Our findings demonstrate frequent occurrence of HEs in Brassica napus, with substantial HE patterns shared across populations, indicating their potential role in promoting crop domestication. HE events are asymmetric, with the A genome more frequently replacing C genome segments. These events show a preference for specific genomic regions and vary among populations. We also identify candidate genes in HE regions specific to certain populations, which likely contribute to flowering-time diversification across diverse morphotypes and ecotypes. In addition, we assemble a new genome of a swede accession, confirming the HE signals on the genome and their potential involvement in root tuber development. By analyzing HE in another allopolyploid species, Brassica juncea, we characterize a potential broader role of HE in allopolyploid crop domestication. CONCLUSIONS Our results provide novel insights into the domestication of polyploid Brassica species and highlight homoeologous exchange as a crucial mechanism for generating variations that are selected for crop improvement in polyploid species.
Collapse
Affiliation(s)
- Tianpeng Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
- Bioinformatics Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Aalt D J van Dijk
- Bioinformatics Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Ranze Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guusje Bonnema
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands.
| | - Xiaowu Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
5
|
Sun C, Wu J, Zhou X, Fu S, Liu H, Xue Z, Wang X, Peng Q, Gao J, Chen F, Zhang W, Hu M, Fu T, Wang Y, Yi B, Zhang J. Homoeologous exchanges contribute to branch angle variations in rapeseed: Insights from transcriptome, QTL-seq and gene functional analysis. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1636-1648. [PMID: 38308663 PMCID: PMC11123428 DOI: 10.1111/pbi.14292] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/10/2023] [Accepted: 01/08/2024] [Indexed: 02/05/2024]
Abstract
Branch angle (BA) is a critical morphological trait that significantly influences planting density, light interception and ultimately yield in plants. Despite its importance, the regulatory mechanism governing BA in rapeseed remains poorly understood. In this study, we generated 109 transcriptome data sets for 37 rapeseed accessions with divergent BA phenotypes. Relative to adaxial branch segments, abaxial segments accumulated higher levels of auxin and exhibited lower expression of six TCP1 homologues and one GA20ox3. A co-expression network analysis identified two modules highly correlated with BA. The modules contained homologues to known BA control genes, such as FUL, YUCCA6, TCP1 and SGR3. Notably, a homoeologous exchange (HE), occurring at the telomeres of A09, was prevalent in large BA accessions, while an A02-C02 HE was common in small BA accessions. In their corresponding regions, these HEs explained the formation of hub gene hotspots in the two modules. QTL-seq analysis confirmed that the presence of a large A07-C06 HE (~8.1 Mb) was also associated with a small BA phenotype, and BnaA07.WRKY40.b within it was predicted as candidate gene. Overexpressing BnaA07.WRKY40.b in rapeseed increased BA by up to 20°, while RNAi- and CRISPR-mediated mutants (BnaA07.WRKY40.b and BnaC06.WRKY40.b) exhibited decreased BA by up to 11.4°. BnaA07.WRKY40.b was exclusively localized to the nucleus and exhibited strong expression correlations with many genes related to gravitropism and plant architecture. Taken together, our study highlights the influence of HEs on rapeseed plant architecture and confirms the role of WRKY40 homologues as novel regulators of BA.
Collapse
Affiliation(s)
- Chengming Sun
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs/Key Laboratory of Jiangsu Province for Agrobiology/Institute of Industrial CropsJiangsu Academy of Agricultural SciencesNanjingChina
| | - Jian Wu
- Key Laboratory of Plant Functional Genomics of the Ministry of EducationYangzhou UniversityYangzhouChina
| | - Xiaoying Zhou
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs/Key Laboratory of Jiangsu Province for Agrobiology/Institute of Industrial CropsJiangsu Academy of Agricultural SciencesNanjingChina
| | - Sanxiong Fu
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs/Key Laboratory of Jiangsu Province for Agrobiology/Institute of Industrial CropsJiangsu Academy of Agricultural SciencesNanjingChina
| | - Huimin Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of EducationYangzhou UniversityYangzhouChina
| | - Zhifei Xue
- National Key Laboratory of Crop Genetic Improvement/National Center of Rapeseed Improvement/Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Xiaodong Wang
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs/Key Laboratory of Jiangsu Province for Agrobiology/Institute of Industrial CropsJiangsu Academy of Agricultural SciencesNanjingChina
| | - Qi Peng
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs/Key Laboratory of Jiangsu Province for Agrobiology/Institute of Industrial CropsJiangsu Academy of Agricultural SciencesNanjingChina
| | - Jianqin Gao
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs/Key Laboratory of Jiangsu Province for Agrobiology/Institute of Industrial CropsJiangsu Academy of Agricultural SciencesNanjingChina
| | - Feng Chen
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs/Key Laboratory of Jiangsu Province for Agrobiology/Institute of Industrial CropsJiangsu Academy of Agricultural SciencesNanjingChina
| | - Wei Zhang
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs/Key Laboratory of Jiangsu Province for Agrobiology/Institute of Industrial CropsJiangsu Academy of Agricultural SciencesNanjingChina
| | - Maolong Hu
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs/Key Laboratory of Jiangsu Province for Agrobiology/Institute of Industrial CropsJiangsu Academy of Agricultural SciencesNanjingChina
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement/National Center of Rapeseed Improvement/Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Youping Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of EducationYangzhou UniversityYangzhouChina
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement/National Center of Rapeseed Improvement/Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Jiefu Zhang
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs/Key Laboratory of Jiangsu Province for Agrobiology/Institute of Industrial CropsJiangsu Academy of Agricultural SciencesNanjingChina
| |
Collapse
|
6
|
Masters LE, Tomaszewska P, Schwarzacher T, Hackel J, Zuntini AR, Heslop-Harrison P, Vorontsova MS. Phylogenomic analysis reveals five independently evolved African forage grass clades in the genus Urochloa. ANNALS OF BOTANY 2024; 133:725-742. [PMID: 38365451 PMCID: PMC11082517 DOI: 10.1093/aob/mcae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/21/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND AND AIMS The grass genus Urochloa (Brachiaria) sensu lato includes forage crops that are important for beef and dairy industries in tropical and sub-tropical Africa, South America and Oceania/Australia. Economically important species include U. brizantha, U. decumbens, U. humidicola, U. mutica, U. arrecta, U. trichopus, U. mosambicensis and Megathyrsus maximus, all native to the African continent. Perennial growth habits, large, fast growing palatable leaves, intra- and interspecific morphological variability, apomictic reproductive systems and frequent polyploidy are widely shared within the genus. The combination of these traits probably favoured the selection for forage domestication and weediness, but trait emergence across Urochloa cannot be modelled, as a robust phylogenetic assessment of the genus has not been conducted. We aim to produce a phylogeny for Urochloa that includes all important forage species, and identify their closest wild relatives (crop wild relatives). Finally, we will use our phylogeny and available trait data to infer the ancestral states of important forage traits across Urochloa s.l. and model the evolution of forage syndromes across the genus. METHODS Using a target enrichment sequencing approach (Angiosperm 353), we inferred a species-level phylogeny for Urochloa s.l., encompassing 54 species (~40 % of the genus) and outgroups. Phylogenies were inferred using a multispecies coalescent model and maximum likelihood method. We determined the phylogenetic placement of agriculturally important species and identified their closest wild relatives, or crop wild relatives, based on well-supported monophyly. Further, we mapped key traits associated with Urochloa forage crops to the species tree and estimated ancestral states for forage traits along branch lengths for continuous traits and at ancestral nodes in discrete traits. KEY RESULTS Agricultural species belong to five independent clades, including U. brizantha and U. decumbens lying in a previously defined species complex. Crop wild relatives were identified for these clades supporting previous sub-generic groupings in Urochloa based on morphology. Using ancestral trait estimation models, we find that five morphological traits that correlate with forage potential (perennial growth habits, culm height, leaf size, a winged rachis and large seeds) independently evolved in forage clades. CONCLUSIONS Urochloa s.l. is a highly diverse genus that contains numerous species with agricultural potential, including crop wild relatives that are currently underexploited. All forage species and their crop wild relatives naturally occur on the African continent and their conservation across their native distributions is essential. Genomic and phenotypic diversity in forage clade species and their wild relatives need to be better assessed both to develop conservation strategies and to exploit the diversity in the genus for improved sustainability in Urochloa cultivar production.
Collapse
Affiliation(s)
- Lizo E Masters
- Department of Genetics and Genome Biology, Institute for Environmental Futures, University of Leicester, Leicester LE17RH, UK
- Accelerated Taxonomy/Trait Diversity and Function, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
| | - Paulina Tomaszewska
- Department of Genetics and Genome Biology, Institute for Environmental Futures, University of Leicester, Leicester LE17RH, UK
- Department of Genetics and Cell Physiology, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Trude Schwarzacher
- Department of Genetics and Genome Biology, Institute for Environmental Futures, University of Leicester, Leicester LE17RH, UK
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Jan Hackel
- Accelerated Taxonomy/Trait Diversity and Function, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
- Department of Biology, University of Marburg, Karl-von-Frisch-Straße 8, 35043 Marburg, Germany
| | - Alexandre R Zuntini
- Accelerated Taxonomy/Trait Diversity and Function, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
| | - Pat Heslop-Harrison
- Department of Genetics and Genome Biology, Institute for Environmental Futures, University of Leicester, Leicester LE17RH, UK
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Maria S Vorontsova
- Accelerated Taxonomy/Trait Diversity and Function, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
| |
Collapse
|
7
|
Havlickova L, He Z, Berger M, Wang L, Sandmann G, Chew YP, Yoshikawa GV, Lu G, Hu Q, Banga SS, Beaudoin F, Bancroft I. Genomics of predictive radiation mutagenesis in oilseed rape: modifying seed oil composition. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:738-750. [PMID: 37921406 PMCID: PMC10893948 DOI: 10.1111/pbi.14220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
Rapeseed is a crop of global importance but there is a need to broaden the genetic diversity available to address breeding objectives. Radiation mutagenesis, supported by genomics, has the potential to supersede genome editing for both gene knockout and copy number increase, but detailed knowledge of the molecular outcomes of radiation treatment is lacking. To address this, we produced a genome re-sequenced panel of 1133 M2 generation rapeseed plants and analysed large-scale deletions, single nucleotide variants and small insertion-deletion variants affecting gene open reading frames. We show that high radiation doses (2000 Gy) are tolerated, gamma radiation and fast neutron radiation have similar impacts and that segments deleted from the genomes of some plants are inherited as additional copies by their siblings, enabling gene dosage decrease. Of relevance for species with larger genomes, we showed that these large-scale impacts can also be detected using transcriptome re-sequencing. To test the utility of the approach for predictive alteration of oil fatty acid composition, we produced lines with both decreased and increased copy numbers of Bna.FAE1 and confirmed the anticipated impacts on erucic acid content. We detected and tested a 21-base deletion expected to abolish function of Bna.FAD2.A5, for which we confirmed the predicted reduction in seed oil polyunsaturated fatty acid content. Our improved understanding of the molecular effects of radiation mutagenesis will underpin genomics-led approaches to more efficient introduction of novel genetic variation into the breeding of this crop and provides an exemplar for the predictive improvement of other crops.
Collapse
Affiliation(s)
| | - Zhesi He
- Department of BiologyUniversity of YorkYorkUK
| | | | - Lihong Wang
- Department of BiologyUniversity of YorkYorkUK
| | | | | | - Guilherme V. Yoshikawa
- Department of BiologyUniversity of YorkYorkUK
- Present address:
School of Agriculture, Food and Wine, Waite Research InstituteUniversity of AdelaideGlen OsmondSAAustralia
| | - Guangyuan Lu
- Department of Rapeseed Genetics and Breeding, Oil Crops Research InstituteCAASWuhanChina
- College of Biology and Food EngineeringGuangdong University of Petrochemical TechnologyMaomingChina
| | - Qiong Hu
- Department of Rapeseed Genetics and Breeding, Oil Crops Research InstituteCAASWuhanChina
| | - Surinder S. Banga
- Department of Plant Breeding and GeneticsPunjab Agricultural UniversityLudhianaIndia
| | | | | |
Collapse
|
8
|
Weber SE, Chawla HS, Ehrig L, Hickey LT, Frisch M, Snowdon RJ. Accurate prediction of quantitative traits with failed SNP calls in canola and maize. FRONTIERS IN PLANT SCIENCE 2023; 14:1221750. [PMID: 37936929 PMCID: PMC10627008 DOI: 10.3389/fpls.2023.1221750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/05/2023] [Indexed: 11/09/2023]
Abstract
In modern plant breeding, genomic selection is becoming the gold standard to select superior genotypes in large breeding populations that are only partially phenotyped. Many breeding programs commonly rely on single-nucleotide polymorphism (SNP) markers to capture genome-wide data for selection candidates. For this purpose, SNP arrays with moderate to high marker density represent a robust and cost-effective tool to generate reproducible, easy-to-handle, high-throughput genotype data from large-scale breeding populations. However, SNP arrays are prone to technical errors that lead to failed allele calls. To overcome this problem, failed calls are often imputed, based on the assumption that failed SNP calls are purely technical. However, this ignores the biological causes for failed calls-for example: deletions-and there is increasing evidence that gene presence-absence and other kinds of genome structural variants can play a role in phenotypic expression. Because deletions are frequently not in linkage disequilibrium with their flanking SNPs, permutation of missing SNP calls can potentially obscure valuable marker-trait associations. In this study, we analyze published datasets for canola and maize using four parametric and two machine learning models and demonstrate that failed allele calls in genomic prediction are highly predictive for important agronomic traits. We present two statistical pipelines, based on population structure and linkage disequilibrium, that enable the filtering of failed SNP calls that are likely caused by biological reasons. For the population and trait examined, prediction accuracy based on these filtered failed allele calls was competitive to standard SNP-based prediction, underlying the potential value of missing data in genomic prediction approaches. The combination of SNPs with all failed allele calls or the filtered allele calls did not outperform predictions with only SNP-based prediction due to redundancy in genomic relationship estimates.
Collapse
Affiliation(s)
- Sven E. Weber
- Department of Plant Breeding, Justus Liebig University, Giessen, Germany
| | | | - Lennard Ehrig
- Department of Plant Breeding, Justus Liebig University, Giessen, Germany
| | - Lee T. Hickey
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Matthias Frisch
- Department of Biometry and Population Genetics, Justus Liebig University, Giessen, Germany
| | - Rod J. Snowdon
- Department of Plant Breeding, Justus Liebig University, Giessen, Germany
| |
Collapse
|
9
|
Wang T, van Dijk ADJ, Bucher J, Liang J, Wu J, Bonnema G, Wang X. Interploidy Introgression Shaped Adaptation during the Origin and Domestication History of Brassica napus. Mol Biol Evol 2023; 40:msad199. [PMID: 37707440 PMCID: PMC10504873 DOI: 10.1093/molbev/msad199] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/15/2023] Open
Abstract
Polyploidy is recurrent across the tree of life and known as an evolutionary driving force in plant diversification and crop domestication. How polyploid plants adapt to various habitats has been a fundamental question that remained largely unanswered. Brassica napus is a major crop cultivated worldwide, resulting from allopolyploidy between unknown accessions of diploid B. rapa and B. oleracea. Here, we used whole-genome resequencing data of accessions representing the majority of morphotypes and ecotypes from the species B. rapa, B. oleracea, and B. napus to investigate the role of polyploidy during domestication. To do so, we first reconstructed the phylogenetic history of B. napus, which supported the hypothesis that the emergence of B. napus derived from the hybridization of European turnip of B. rapa and wild B. oleracea. These analyses also showed that morphotypes of swede and Siberian kale (used as vegetable and fodder) were domesticated before rapeseed (oil crop). We next observed that frequent interploidy introgressions from sympatric diploids were prominent throughout the domestication history of B. napus. Introgressed genomic regions were shown to increase the overall genetic diversity and tend to be localized in regions of high recombination. We detected numerous candidate adaptive introgressed regions and found evidence that some of the genes in these regions contributed to phenotypic diversification and adaptation of different morphotypes. Overall, our results shed light on the origin and domestication of B. napus and demonstrate interploidy introgression as an important mechanism that fuels rapid diversification in polyploid species.
Collapse
Affiliation(s)
- Tianpeng Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
- Bioinformatics Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Aalt D J van Dijk
- Bioinformatics Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Johan Bucher
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| | - Jianli Liang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jian Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guusje Bonnema
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| | - Xiaowu Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
10
|
Bird KA, Pires JC, VanBuren R, Xiong Z, Edger PP. Dosage-sensitivity shapes how genes transcriptionally respond to allopolyploidy and homoeologous exchange in resynthesized Brassica napus. Genetics 2023; 225:iyad114. [PMID: 37338008 PMCID: PMC10471226 DOI: 10.1093/genetics/iyad114] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/10/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023] Open
Abstract
The gene balance hypothesis proposes that selection acts on the dosage (i.e. copy number) of genes within dosage-sensitive portions of networks, pathways, and protein complexes to maintain balanced stoichiometry of interacting proteins, because perturbations to stoichiometric balance can result in reduced fitness. This selection has been called dosage balance selection. Dosage balance selection is also hypothesized to constrain expression responses to dosage changes, making dosage-sensitive genes (those encoding members of interacting proteins) experience more similar expression changes. In allopolyploids, where whole-genome duplication involves hybridization of diverged lineages, organisms often experience homoeologous exchanges that recombine, duplicate, and delete homoeologous regions of the genome and alter the expression of homoeologous gene pairs. Although the gene balance hypothesis makes predictions about the expression response to homoeologous exchanges, they have not been empirically tested. We used genomic and transcriptomic data from 6 resynthesized, isogenic Brassica napus lines over 10 generations to identify homoeologous exchanges, analyzed expression responses, and tested for patterns of genomic imbalance. Groups of dosage-sensitive genes had less variable expression responses to homoeologous exchanges than dosage-insensitive genes, a sign that their relative dosage is constrained. This difference was absent for homoeologous pairs whose expression was biased toward the B. napus A subgenome. Finally, the expression response to homoeologous exchanges was more variable than the response to whole-genome duplication, suggesting homoeologous exchanges create genomic imbalance. These findings expand our knowledge of the impact of dosage balance selection on genome evolution and potentially connect patterns in polyploid genomes over time, from homoeolog expression bias to duplicate gene retention.
Collapse
Affiliation(s)
- Kevin A Bird
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI 48824, USA
| | - J Chris Pires
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Robert VanBuren
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Zhiyong Xiong
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Inner Mongolia University, Hohhot, Inner Mongolia 010070, China
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
11
|
Barratt LJ, He Z, Fellgett A, Wang L, Mason SM, Bancroft I, Harper AL. Co-expression network analysis of diverse wheat landraces reveals markers of early thermotolerance and a candidate master regulator of thermotolerance genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:614-626. [PMID: 37077043 PMCID: PMC10953029 DOI: 10.1111/tpj.16248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
Triticum aestivum L. (bread wheat) is a crop relied upon by billions of people around the world, as a major source of both income and calories. Rising global temperatures, however, pose a genuine threat to the livelihood of these people, as wheat growth and yields are extremely vulnerable to damage by heat stress. Here we present the YoGI wheat landrace panel, comprising 342 accessions that show remarkable phenotypic and genetic diversity thanks to their adaptation to different climates. We quantified the abundance of 110 790 transcripts from the panel and used these data to conduct weighted co-expression network analysis and to identify hub genes in modules associated with abiotic stress tolerance. We found that the expression of three hub genes, all heat-shock proteins (HSPs), were significantly correlated with early thermotolerance in a validation panel of landraces. These hub genes belong to the same module, with one (TraesCS4D01G207500.1) being a candidate master-regulator potentially controlling the expression of the other two hub genes, as well as a suite of other HSPs and heat-stress transcription factors (HSFs). In this work, therefore, we identify three validated hub genes, the expression of which can serve as markers of thermotolerance during early development, and suggest that TraesCS4D01G207500.1 is a potential master regulator of HSP and HSF expression - presenting the YoGI landrace panel as an invaluable tool for breeders wishing to determine and introduce novel alleles into modern varieties, for the production of climate-resilient crops.
Collapse
Affiliation(s)
- Liam J. Barratt
- Department of Biology, Centre for Novel Agricultural Products (CNAP)University of YorkWentworth WayYO10 5DDUK
| | - Zhesi He
- Department of Biology, Centre for Novel Agricultural Products (CNAP)University of YorkWentworth WayYO10 5DDUK
| | - Alison Fellgett
- Department of Biology, Centre for Novel Agricultural Products (CNAP)University of YorkWentworth WayYO10 5DDUK
| | - Lihong Wang
- Department of Biology, Centre for Novel Agricultural Products (CNAP)University of YorkWentworth WayYO10 5DDUK
| | - Simon McQueen Mason
- Department of Biology, Centre for Novel Agricultural Products (CNAP)University of YorkWentworth WayYO10 5DDUK
| | - Ian Bancroft
- Department of Biology, Centre for Novel Agricultural Products (CNAP)University of YorkWentworth WayYO10 5DDUK
| | - Andrea L. Harper
- Department of Biology, Centre for Novel Agricultural Products (CNAP)University of YorkWentworth WayYO10 5DDUK
| |
Collapse
|
12
|
Devos KM, Qi P, Bahri BA, Gimode DM, Jenike K, Manthi SJ, Lule D, Lux T, Martinez-Bello L, Pendergast TH, Plott C, Saha D, Sidhu GS, Sreedasyam A, Wang X, Wang H, Wright H, Zhao J, Deshpande S, de Villiers S, Dida MM, Grimwood J, Jenkins J, Lovell J, Mayer KFX, Mneney EE, Ojulong HF, Schatz MC, Schmutz J, Song B, Tesfaye K, Odeny DA. Genome analyses reveal population structure and a purple stigma color gene candidate in finger millet. Nat Commun 2023; 14:3694. [PMID: 37344528 DOI: 10.1038/s41467-023-38915-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/19/2023] [Indexed: 06/23/2023] Open
Abstract
Finger millet is a key food security crop widely grown in eastern Africa, India and Nepal. Long considered a 'poor man's crop', finger millet has regained attention over the past decade for its climate resilience and the nutritional qualities of its grain. To bring finger millet breeding into the 21st century, here we present the assembly and annotation of a chromosome-scale reference genome. We show that this ~1.3 million years old allotetraploid has a high level of homoeologous gene retention and lacks subgenome dominance. Population structure is mainly driven by the differential presence of large wild segments in the pericentromeric regions of several chromosomes. Trait mapping, followed by variant analysis of gene candidates, reveals that loss of purple coloration of anthers and stigma is associated with loss-of-function mutations in the finger millet orthologs of the maize R1/B1 and Arabidopsis GL3/EGL3 anthocyanin regulatory genes. Proanthocyanidin production in seed is not affected by these gene knockouts.
Collapse
Affiliation(s)
- Katrien M Devos
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, 30602, USA.
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA.
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA.
| | - Peng Qi
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, 30602, USA
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Bochra A Bahri
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, 30602, USA
- Department of Plant Pathology, University of Georgia, Griffin, GA, 30223, USA
| | - Davis M Gimode
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, 30602, USA
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) - Eastern and Southern Africa, P.O. Box 39063-00623, Nairobi, Kenya
| | - Katharine Jenike
- Departments of Computer Science, Biology and Genetic Medicine, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Samuel J Manthi
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) - Eastern and Southern Africa, P.O. Box 39063-00623, Nairobi, Kenya
- Department of Horticulture, University of Georgia, Athens, GA, 30602, USA
| | - Dagnachew Lule
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA
- Oromia Agricultural Research Institute, P.O. Box 81265, Addis Ababa, Ethiopia
- Ethiopian Agricultural Transformation Agency, Addis Ababa, Bole, Ethiopia
| | - Thomas Lux
- Plant Genome and Systems Biology, German Research Center for Environmental Health, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Liliam Martinez-Bello
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, 30602, USA
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
- UR Ventures, University of Rochester, Rochester, NY, 14627, USA
| | - Thomas H Pendergast
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, 30602, USA
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Chris Plott
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Dipnarayan Saha
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA
- ICAR-Central Research Institute for Jute and Allied Fibers, Kolkata, West Bengal, 700120, India
| | - Gurjot S Sidhu
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, 30602, USA
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Avinash Sreedasyam
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Xuewen Wang
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Hao Wang
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Hallie Wright
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, 30602, USA
| | - Jianxin Zhao
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, 30602, USA
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Santosh Deshpande
- ICRISAT, Patancheru, 502 324, T.S., India
- Hytech Seed India Pvt. Ltd., Ravalkol Village, Medcahl-Malkajgiri Dist-, 501 401, Hubballi, T.S, India
| | - Santie de Villiers
- Department of Biochemistry and Biotechnology, Pwani University, Kilifi, 80108, Kenya
- Pwani University Biosciences Research Center (PUBReC), Kilifi, 80108, Kenya
| | - Mathews M Dida
- Department of Crop and Soil Science, Maseno University, P.O. 333, Maseno, Kenya
| | - Jane Grimwood
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Jerry Jenkins
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - John Lovell
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Klaus F X Mayer
- Plant Genome and Systems Biology, German Research Center for Environmental Health, Helmholtz Zentrum München, 85764, Neuherberg, Germany
- School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany
| | - Emmarold E Mneney
- Mikocheni Agricultural Research Institute, P.O. Box 6226, Dar Es Salaam, Tanzania
- Biotechnology Society of Tanzania, P.O. Box 10257, Dar es Salaam, Tanzania
| | - Henry F Ojulong
- ICRISAT, Matopos Research Station, P.O. Box 776, Bulawayo, Zimbabwe
| | - Michael C Schatz
- Departments of Computer Science, Biology and Genetic Medicine, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Jeremy Schmutz
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Bo Song
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Kassahun Tesfaye
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
- Bio and Emerging Technology Institute, Addis Ababa, Ethiopia
| | - Damaris A Odeny
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) - Eastern and Southern Africa, P.O. Box 39063-00623, Nairobi, Kenya
| |
Collapse
|
13
|
Deb SK, Edger PP, Pires JC, McKain MR. Patterns, mechanisms, and consequences of homoeologous exchange in allopolyploid angiosperms: a genomic and epigenomic perspective. THE NEW PHYTOLOGIST 2023; 238:2284-2304. [PMID: 37010081 DOI: 10.1111/nph.18927] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 03/16/2023] [Indexed: 05/19/2023]
Abstract
Allopolyploids result from hybridization between different evolutionary lineages coupled with genome doubling. Homoeologous chromosomes (chromosomes with common shared ancestry) may undergo recombination immediately after allopolyploid formation and continue over successive generations. The outcome of this meiotic pairing behavior is dynamic and complex. Homoeologous exchanges (HEs) may lead to the formation of unbalanced gametes, reduced fertility, and selective disadvantage. By contrast, HEs could act as sources of novel evolutionary substrates, shifting the relative dosage of parental gene copies, generating novel phenotypic diversity, and helping the establishment of neo-allopolyploids. However, HE patterns vary among lineages, across generations, and even within individual genomes and chromosomes. The causes and consequences of this variation are not fully understood, though interest in this evolutionary phenomenon has increased in the last decade. Recent technological advances show promise in uncovering the mechanistic basis of HEs. Here, we describe recent observations of the common patterns among allopolyploid angiosperm lineages, underlying genomic and epigenomic features, and consequences of HEs. We identify critical research gaps and discuss future directions with far-reaching implications in understanding allopolyploid evolution and applying them to the development of important phenotypic traits of polyploid crops.
Collapse
Affiliation(s)
- Sontosh K Deb
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
- Department of Forestry and Environmental Science, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI, 48823, USA
- Genetics and Genome Sciences Program, Michigan State University, East Lansing, MI, 48823, USA
| | - J Chris Pires
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Michael R McKain
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
| |
Collapse
|
14
|
Orantes-Bonilla M, Wang H, Lee HT, Golicz AA, Hu D, Li W, Zou J, Snowdon RJ. Transgressive and parental dominant gene expression and cytosine methylation during seed development in Brassica napus hybrids. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:113. [PMID: 37071201 PMCID: PMC10113308 DOI: 10.1007/s00122-023-04345-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/12/2023] [Indexed: 05/13/2023]
Abstract
KEY MESSAGE Transcriptomic and epigenomic profiling of gene expression and small RNAs during seed and seedling development reveals expression and methylation dominance levels with implications on early stage heterosis in oilseed rape. The enhanced performance of hybrids through heterosis remains a key aspect in plant breeding; however, the underlying mechanisms are still not fully elucidated. To investigate the potential role of transcriptomic and epigenomic patterns in early expression of hybrid vigor, we investigated gene expression, small RNA abundance and genome-wide methylation in hybrids from two distant Brassica napus ecotypes during seed and seedling developmental stages using next-generation sequencing. A total of 31117, 344, 36229 and 7399 differentially expressed genes, microRNAs, small interfering RNAs and differentially methylated regions were identified, respectively. Approximately 70% of the differentially expressed or methylated features displayed parental dominance levels where the hybrid followed the same patterns as the parents. Via gene ontology enrichment and microRNA-target association analyses during seed development, we found copies of reproductive, developmental and meiotic genes with transgressive and paternal dominance patterns. Interestingly, maternal dominance was more prominent in hypermethylated and downregulated features during seed formation, contrasting to the general maternal gamete demethylation reported during gametogenesis in angiosperms. Associations between methylation and gene expression allowed identification of putative epialleles with diverse pivotal biological functions during seed formation. Furthermore, most differentially methylated regions, differentially expressed siRNAs and transposable elements were in regions that flanked genes without differential expression. This suggests that differential expression and methylation of epigenomic features may help maintain expression of pivotal genes in a hybrid context. Differential expression and methylation patterns during seed formation in an F1 hybrid provide novel insights into genes and mechanisms with potential roles in early heterosis.
Collapse
Affiliation(s)
- Mauricio Orantes-Bonilla
- Department of Plant Breeding, Land Use and Nutrition, IFZ Research Centre for Biosystems, Justus Liebig University, Giessen, Germany
| | - Hao Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Huey Tyng Lee
- Department of Plant Breeding, Land Use and Nutrition, IFZ Research Centre for Biosystems, Justus Liebig University, Giessen, Germany
| | - Agnieszka A Golicz
- Department of Plant Breeding, Land Use and Nutrition, IFZ Research Centre for Biosystems, Justus Liebig University, Giessen, Germany
| | - Dandan Hu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Wenwen Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Rod J Snowdon
- Department of Plant Breeding, Land Use and Nutrition, IFZ Research Centre for Biosystems, Justus Liebig University, Giessen, Germany.
| |
Collapse
|
15
|
Li G, Wu Y, Bai Y, Zhao N, Jiang Y, Li N, Lin X, Liu B, Xu C. Patterns of Chromosomal Variation, Homoeologous Exchange, and Their Relationship with Genomic Features in Early Generations of a Synthetic Rice Segmental Allotetraploid. Int J Mol Sci 2023; 24:ijms24076065. [PMID: 37047036 PMCID: PMC10094486 DOI: 10.3390/ijms24076065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Polyploidization is a driving force in plant evolution. Chromosomal variation often occurs at early generations following polyploid formation due to meiotic pairing irregularity that may compromise segregation fidelity and cause homoeologous exchange (HE). The trends of chromosomal variation and especially factors affecting HE remain to be fully deciphered. Here, by whole-genome resequencing, we performed nuanced analyses of patterns of chromosomal number variation and explored genomic features that affect HE in two early generations of a synthetic rice segmental allotetraploid. We found a wide occurrence of whole-chromosome aneuploidy and, to a lesser extent, also large segment gains/losses in both generations (S2 and S4) of the tetraploids. However, while the number of chromosome gains was similar between S2 and S4, that of losses in S4 was lower than in S2. HEs were abundant across all chromosomes in both generations and showed variable correlations with different genomic features at chromosomal and/or local scales. Contents of genes and transposable elements (TEs) were positively and negatively correlated with HE frequencies, respectively. By dissecting TEs into different classes, retrotransposons were found to be negatively correlated with HE frequency to a stronger extent than DNA transposons, whereas miniature terminal inverted elements (MITEs) showed a strong positive correlation. Local HE frequencies in the tetraploids and homologous recombination (HR) rates in diploids within 1 Mb sliding windows were significantly correlated with each other and showed similar overall distribution profiles. Nonetheless, non-concordant trends between HE and HR rates were found at distal regions in some chromosomes. At local scale, both shared and polymorphic retrotransposons between parents were negatively correlated with HE frequency; in contrast, both shared and polymorphic MITEs showed positive correlations with HE frequency. Our results shed new light on the patterns of chromosomal number variation and reveal genomic features influencing HE frequency in early generations following plant polyploidization.
Collapse
Affiliation(s)
- Guo Li
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Ying Wu
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Yan Bai
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Na Zhao
- Department of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Yuhui Jiang
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Xiuyun Lin
- Jilin Academy of Agriculture, Changchun 130033, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Chunming Xu
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| |
Collapse
|
16
|
Dissecting the Meiotic Recombination Patterns in a Brassica napus Double Haploid Population Using 60K SNP Array. Int J Mol Sci 2023; 24:ijms24054469. [PMID: 36901901 PMCID: PMC10003086 DOI: 10.3390/ijms24054469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/14/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
Meiotic recombination not only maintains the stability of the chromosome structure but also creates genetic variations for adapting to changeable environments. A better understanding of the mechanism of crossover (CO) patterns at the population level is useful for crop improvement. However, there are limited cost-effective and universal methods to detect the recombination frequency at the population level in Brassica napus. Here, the Brassica 60K Illumina Infinium SNP array (Brassica 60K array) was used to systematically study the recombination landscape in a double haploid (DH) population of B. napus. It was found that COs were unevenly distributed across the whole genome, and a higher frequency of COs existed at the distal ends of each chromosome. A considerable number of genes (more than 30%) in the CO hot regions were associated with plant defense and regulation. In most tissues, the average gene expression level in the hot regions (CO frequency of greater than 2 cM/Mb) was significantly higher than that in the regions with a CO frequency of less than 1 cM/Mb. In addition, a bin map was constructed with 1995 recombination bins. For seed oil content, Bin 1131 to 1134, Bin 1308 to 1311, Bin 1864 to 1869, and Bin 2184 to 2230 were identified on chromosomes A08, A09, C03, and C06, respectively, which could explain 8.5%, 17.3%, 8.6%, and 3.9% of the phenotypic variation. These results could not only deepen our understanding of meiotic recombination in B. napus at the population level, and provide useful information for rapeseed breeding in the future, but also provided a reference for studying CO frequency in other species.
Collapse
|
17
|
Wang B, Lv R, Zhang Z, Yang C, Xun H, Liu B, Gong L. Homoeologous exchange enables rapid evolution of tolerance to salinity and hyper-osmotic stresses in a synthetic allotetraploid wheat. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7488-7502. [PMID: 36055762 DOI: 10.1093/jxb/erac355] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
The link between polyploidy and enhanced adaptation to environmental stresses could be a result of polyploidy itself harbouring higher tolerance to adverse conditions, or polyploidy possessing higher evolvability than diploids under stress conditions. Natural polyploids are inherently unsuitable to disentangle these two possibilities. Using selfed progenies of a synthetic allotetraploid wheat AT3 (AADD) along with its diploid parents, Triticum urartu TMU38 (AA) and Aegilops tauschii TQ27 (DD), we addressed the foregoing issue under abiotic salinity and hyper-osmotic (drought-like) stress. Under short duration of both stresses, euploid plants of AT3 showed intermediate tolerance of diploid parents; under life-long duration of both stresses, tolerant individuals to either stress emerged from selfed progenies of AT3, but not from comparable-sized diploid parent populations. Tolerance to both stresses were conditioned by the same two homoeologous exchanges (HEs; 2DS/2AS and 3DL/3AL), and at least one HE needed to be at the homozygous state. Transcriptomic analyses revealed that hyper-up-regulation of within-HE stress responsive genes of the A sub-genome origin is likely responsible for the dual-stress tolerant phenotypes. Our results suggest that HE-mediated inter-sub-genome rearrangements can be an important mechanism leading to adaptive evolution in allopolyploids as well as a promising target for genetic manipulation in crop improvement.
Collapse
Affiliation(s)
- Bin Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Ruili Lv
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Chunwu Yang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Hongwei Xun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| |
Collapse
|
18
|
Orantes-Bonilla M, Makhoul M, Lee H, Chawla HS, Vollrath P, Langstroff A, Sedlazeck FJ, Zou J, Snowdon RJ. Frequent spontaneous structural rearrangements promote rapid genome diversification in a Brassica napus F1 generation. FRONTIERS IN PLANT SCIENCE 2022; 13:1057953. [PMID: 36466276 PMCID: PMC9716091 DOI: 10.3389/fpls.2022.1057953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/31/2022] [Indexed: 05/26/2023]
Abstract
In a cross between two homozygous Brassica napus plants of synthetic and natural origin, we demonstrate that novel structural genome variants from the synthetic parent cause immediate genome diversification among F1 offspring. Long read sequencing in twelve F1 sister plants revealed five large-scale structural rearrangements where both parents carried different homozygous alleles but the heterozygous F1 genomes were not identical heterozygotes as expected. Such spontaneous rearrangements were part of homoeologous exchanges or segmental deletions and were identified in different, individual F1 plants. The variants caused deletions, gene copy-number variations, diverging methylation patterns and other structural changes in large numbers of genes and may have been causal for unexpected phenotypic variation between individual F1 sister plants, for example strong divergence of plant height and leaf area. This example supports the hypothesis that spontaneous de novo structural rearrangements after de novo polyploidization can rapidly overcome intense allopolyploidization bottlenecks to re-expand crops genetic diversity for ecogeographical expansion and human selection. The findings imply that natural genome restructuring in allopolyploid plants from interspecific hybridization, a common approach in plant breeding, can have a considerably more drastic impact on genetic diversity in agricultural ecosystems than extremely precise, biotechnological genome modifications.
Collapse
Affiliation(s)
- Mauricio Orantes-Bonilla
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Manar Makhoul
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - HueyTyng Lee
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Harmeet Singh Chawla
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Paul Vollrath
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Anna Langstroff
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Fritz J. Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, United States
| | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Rod J. Snowdon
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| |
Collapse
|
19
|
Yim WC, Swain ML, Ma D, An H, Bird KA, Curdie DD, Wang S, Ham HD, Luzuriaga-Neira A, Kirkwood JS, Hur M, Solomon JKQ, Harper JF, Kosma DK, Alvarez-Ponce D, Cushman JC, Edger PP, Mason AS, Pires JC, Tang H, Zhang X. The final piece of the Triangle of U: Evolution of the tetraploid Brassica carinata genome. THE PLANT CELL 2022; 34:4143-4172. [PMID: 35961044 PMCID: PMC9614464 DOI: 10.1093/plcell/koac249] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 06/24/2022] [Indexed: 05/05/2023]
Abstract
Ethiopian mustard (Brassica carinata) is an ancient crop with remarkable stress resilience and a desirable seed fatty acid profile for biofuel uses. Brassica carinata is one of six Brassica species that share three major genomes from three diploid species (AA, BB, and CC) that spontaneously hybridized in a pairwise manner to form three allotetraploid species (AABB, AACC, and BBCC). Of the genomes of these species, that of B. carinata is the least understood. Here, we report a chromosome scale 1.31-Gbp genome assembly with 156.9-fold sequencing coverage for B. carinata, completing the reference genomes comprising the classic Triangle of U, a classical theory of the evolutionary relationships among these six species. Our assembly provides insights into the hybridization event that led to the current B. carinata genome and the genomic features that gave rise to the superior agronomic traits of B. carinata. Notably, we identified an expansion of transcription factor networks and agronomically important gene families. Completion of the Triangle of U comparative genomics platform has allowed us to examine the dynamics of polyploid evolution and the role of subgenome dominance in the domestication and continuing agronomic improvement of B. carinata and other Brassica species.
Collapse
Affiliation(s)
| | | | - Dongna Ma
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hong An
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65201, USA
| | - Kevin A Bird
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824, USA
| | - David D Curdie
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Samuel Wang
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Hyun Don Ham
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | | | - Jay S Kirkwood
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California, Riverside, California 92521, USA
| | - Manhoi Hur
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California, Riverside, California 92521, USA
| | - Juan K Q Solomon
- Department of Agriculture, Veterinary & Rangeland Sciences, University of Nevada, Reno, Nevada 89557, USA
| | - Jeffrey F Harper
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Dylan K Kosma
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | | | - John C Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824, USA
| | - Annaliese S Mason
- Plant Breeding Department, INRES, The University of Bonn, Bonn 53115, Germany
| | - J Chris Pires
- Division of Biological Sciences, Bond Life Sciences Center, , University of Missouri, Columbia, Missouri 65211, USA
| | - Haibao Tang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xingtan Zhang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
20
|
Zhang Z, Xun H, Lv R, Gou X, Ma X, Li J, Zhao J, Li N, Gong L, Liu B. Effects of homoeologous exchange on gene expression and alternative splicing in a newly formed allotetraploid wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1267-1282. [PMID: 35763523 DOI: 10.1111/tpj.15886] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Homoeologous exchange (HE) is a major mechanism generating post-polyploidization genetic variation with important evolutionary consequences. However, the direct impacts of HE on gene expression and transcript diversity in allopolyploids without the intertwined evolutionary processes remain to be fully understood. Here, we analyzed high-throughput RNA-seq data of young leaves from plant groups of a synthetic allotetraploid wheat (AADD), which contained variable numbers of HEs. We aimed to investigate if and to which extent HE directly impacts gene expression and alternative splicing (AS). We found that HE impacts expression of genes located within HE regions primarily via a cis-acting dosage effect, which led to significant changes in the total expression level of homoeologous gene pairs, especially for homoeologs whose original expression was biased. In parallel, HE also influences expression of a large number of genes residing in non-HE regions by trans-regulation leading to convergent expression of homoeologs. Intriguingly, when taking the original relative homoeolog expression states into account, homoeolog pairs under trans-effect are more prone to manifesting a convergent response to the HEs whereas those under cis-regulation tended to show further exacerbated subgenome-biased expression. Moreover, HE-induced quantitative, largely individual-specific, changes of AS events were detected. Similar to homoeologous expression, homoeo-AS events under trans-effect were more responsive to HE. HE therefore exerts multifaceted immediate effects on gene expression and, to a less extent, on individualized transcript diversity in nascent allopolyploidy.
Collapse
Affiliation(s)
- Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Hongwei Xun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ruili Lv
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Xiaowan Gou
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
- School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
| | - Xintong Ma
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Juzuo Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jing Zhao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
21
|
Wu J, Liang J, Lin R, Cai X, Zhang L, Guo X, Wang T, Chen H, Wang X. Investigation of Brassica and its relative genomes in the post-genomics era. HORTICULTURE RESEARCH 2022; 9:uhac182. [PMID: 36338847 PMCID: PMC9627752 DOI: 10.1093/hr/uhac182] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/07/2022] [Indexed: 06/16/2023]
Abstract
The Brassicaceae family includes many economically important crop species, as well as cosmopolitan agricultural weed species. In addition, Arabidopsis thaliana, a member of this family, is used as a molecular model plant species. The genus Brassica is mesopolyploid, and the genus comprises comparatively recently originated tetrapolyploid species. With these characteristics, Brassicas have achieved the commonly accepted status of model organisms for genomic studies. This paper reviews the rapid research progress in the Brassicaceae family from diverse omics studies, including genomics, transcriptomics, epigenomics, and three-dimensional (3D) genomics, with a focus on cultivated crops. The morphological plasticity of Brassicaceae crops is largely due to their highly variable genomes. The origin of several important Brassicaceae crops has been established. Genes or loci domesticated or contributing to important traits are summarized. Epigenetic alterations and 3D structures have been found to play roles in subgenome dominance, either in tetraploid Brassica species or their diploid ancestors. Based on this progress, we propose future directions and prospects for the genomic investigation of Brassicaceae crops.
Collapse
Affiliation(s)
| | | | | | - Xu Cai
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Lei Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Xinlei Guo
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Tianpeng Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Haixu Chen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | | |
Collapse
|
22
|
Sharbrough J, Conover JL, Fernandes Gyorfy M, Grover CE, Miller ER, Wendel JF, Sloan DB. Global Patterns of Subgenome Evolution in Organelle-Targeted Genes of Six Allotetraploid Angiosperms. Mol Biol Evol 2022; 39:msac074. [PMID: 35383845 PMCID: PMC9040051 DOI: 10.1093/molbev/msac074] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Whole-genome duplications (WGDs) are a prominent process of diversification in eukaryotes. The genetic and evolutionary forces that WGD imposes on cytoplasmic genomes are not well understood, despite the central role that cytonuclear interactions play in eukaryotic function and fitness. Cellular respiration and photosynthesis depend on successful interaction between the 3,000+ nuclear-encoded proteins destined for the mitochondria or plastids and the gene products of cytoplasmic genomes in multi-subunit complexes such as OXPHOS, organellar ribosomes, Photosystems I and II, and Rubisco. Allopolyploids are thus faced with the critical task of coordinating interactions between the nuclear and cytoplasmic genes that were inherited from different species. Because the cytoplasmic genomes share a more recent history of common descent with the maternal nuclear subgenome than the paternal subgenome, evolutionary "mismatches" between the paternal subgenome and the cytoplasmic genomes in allopolyploids might lead to the accelerated rates of evolution in the paternal homoeologs of allopolyploids, either through relaxed purifying selection or strong directional selection to rectify these mismatches. We report evidence from six independently formed allotetraploids that the subgenomes exhibit unequal rates of protein-sequence evolution, but we found no evidence that cytonuclear incompatibilities result in altered evolutionary trajectories of the paternal homoeologs of organelle-targeted genes. The analyses of gene content revealed mixed evidence for whether the organelle-targeted genes are lost more rapidly than the non-organelle-targeted genes. Together, these global analyses provide insights into the complex evolutionary dynamics of allopolyploids, showing that the allopolyploid subgenomes have separate evolutionary trajectories despite sharing the same nucleus, generation time, and ecological context.
Collapse
Affiliation(s)
- Joel Sharbrough
- Department of Biology, Colorado State University, Fort Collins, CO, USA
- Department of Biology, New Mexico Institute of Mining and Technology, Socorro, NM, USA
| | - Justin L. Conover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | | | - Corrinne E. Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Emma R. Miller
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Jonathan F. Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Daniel B. Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
23
|
Shi R, Jin J, Nifong JM, Shew D, Lewis RS. Homoeologous chromosome exchange explains the creation of a QTL affecting soil-borne pathogen resistance in tobacco. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:47-58. [PMID: 34453871 PMCID: PMC8710904 DOI: 10.1111/pbi.13693] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/26/2021] [Indexed: 05/29/2023]
Abstract
Crop plant partial resistance to plant pathogens controlled by quantitative trait loci (QTL) is desirable in cultivar development programmes because of its increased durability. Mechanisms underlying such resistance are difficult to study. We performed RNA-seq analyses for tobacco (Nicotiana tabacum) nearly isogenic lines (NILs) with and without favourable allele(s) at Phn7.1, a major QTL influencing partial resistance to the soil-borne pathogens Phytophthora nicotianae and Ralstonia solanacearum. Based upon combined analyses of transcriptome-based sequence variation and gene expression profiles, we concluded that allelic variability at the Phn7.1 locus was likely generated from homoeologous exchange, which led to deletion of low-expressing members of the SAR8.2 gene family and duplication of high-expressing SAR8.2 genes from a different subgenome of allotetraploid tobacco. The high expression of endogenous Phn7.1-associated SAR8.2 genes was correlated with observed resistance to P. nicotianae. Our findings suggest a role for genomic rearrangements in the generation of favourable genetic variability affecting resistance to pathogens in plants.
Collapse
Affiliation(s)
- Rui Shi
- Department of Crop and Soil SciencesNorth Carolina State UniversityRaleighNCUSA
| | - Jing Jin
- Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNCUSA
| | - Jessica M. Nifong
- Department of Crop and Soil SciencesNorth Carolina State UniversityRaleighNCUSA
| | - David Shew
- Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNCUSA
| | - Ramsey S. Lewis
- Department of Crop and Soil SciencesNorth Carolina State UniversityRaleighNCUSA
| |
Collapse
|
24
|
Woodhouse S, He Z, Woolfenden H, Steuernagel B, Haerty W, Bancroft I, Irwin JA, Morris RJ, Wells R. Validation of a novel associative transcriptomics pipeline in Brassica oleracea: identifying candidates for vernalisation response. BMC Genomics 2021; 22:539. [PMID: 34256693 PMCID: PMC8278714 DOI: 10.1186/s12864-021-07805-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/08/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Associative transcriptomics has been used extensively in Brassica napus to enable the rapid identification of markers correlated with traits of interest. However, within the important vegetable crop species, Brassica oleracea, the use of associative transcriptomics has been limited due to a lack of fixed genetic resources and the difficulties in generating material due to self-incompatibility. Within Brassica vegetables, the harvestable product can be vegetative or floral tissues and therefore synchronisation of the floral transition is an important goal for growers and breeders. Vernalisation is known to be a key determinant of the floral transition, yet how different vernalisation treatments influence flowering in B. oleracea is not well understood. RESULTS Here, we present results from phenotyping a diverse set of 69 B. oleracea accessions for heading and flowering traits under different environmental conditions. We developed a new associative transcriptomics pipeline, and inferred and validated a population structure, for the phenotyped accessions. A genome-wide association study identified miR172D as a candidate for the vernalisation response. Gene expression marker association identified variation in expression of BoFLC.C2 as a further candidate for vernalisation response. CONCLUSIONS This study describes a new pipeline for performing associative transcriptomics studies in B. oleracea. Using flowering time as an example trait, it provides insights into the genetic basis of vernalisation response in B. oleracea through associative transcriptomics and confirms its characterisation as a complex G x E trait. Candidate leads were identified in miR172D and BoFLC.C2. These results could facilitate marker-based breeding efforts to produce B. oleracea lines with more synchronous heading dates, potentially leading to improved yields.
Collapse
Affiliation(s)
| | - Zhesi He
- Department of Biology, University of York, YO105DD, Heslington, York, UK
| | - Hugh Woolfenden
- Computational & Systems Biology, John Innes Centre, NR47UH, Norwich, UK
| | | | - Wilfried Haerty
- Earlham Institute, NR47UH, Norwich, UK
- School of Biological Sciences, University of East Anglia, NR47TJ, Norwich, UK
| | - Ian Bancroft
- Department of Biology, University of York, YO105DD, Heslington, York, UK
| | - Judith A Irwin
- Department of Crop Genetics, John Innes Centre, NR47UH, Norwich, UK
| | - Richard J Morris
- Computational & Systems Biology, John Innes Centre, NR47UH, Norwich, UK.
| | - Rachel Wells
- Department of Crop Genetics, John Innes Centre, NR47UH, Norwich, UK.
| |
Collapse
|
25
|
Taagen E, Tanaka J, Gul A, Sorrells ME. Positional-based cloning 'fail-safe' approach is overpowered by wheat chromosome structural variation. THE PLANT GENOME 2021; 14:e20106. [PMID: 34197040 DOI: 10.1002/tpg2.20106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/19/2021] [Indexed: 06/13/2023]
Abstract
Positional-based cloning is a foundational method for understanding the genes and gene networks that control valuable agronomic traits such as grain yield components. In this study, we sought to positionally clone the causal genetic variant of a 1000-grain weight (TGW) quantitative trait loci (QTL) on wheat (Triticum aestivum L.) chromosome arm 5AL. We developed heterogenous inbred families (HIFs) (>5,000 plants) for enhanced genotypic resolution and fine-mapped the QTL to a 10-Mbp region. The transcriptome of developing grains from positive and negative control HIF haplotypes revealed presence-absence chromosome arm 5AS structural variation and unexpectedly no differential expression of genes within the chromosome arm 5AL candidate region. Evaluation of genomic, transcriptomic, and phenotypic data, and predicted function of genes, identified that the 5AL QTL was the result of strong linkage disequilibrium (LD) with chromosome arm 5AS presence or absence (HIF r2 = 0.91). Structural variation is common in wheat, and our results highlight that the redundant polyploid genome's masking of such variation is a significant barrier to positional cloning. We propose recommendations for more efficient and robust detection of structural variation, including transitioning from a single nucleotide polymorphism (SNP) to a haplotype-based approach to identify positional cloning targets. We also present nine candidate genes for grain yield components based on chromosome arm 5AS presence or absence, which may unveil hidden variation of homoeolog dosage-dependent genes across the group five chromosome short arms. Taken together, our discovery demonstrates the phenotypic resiliency of polyploid genomic structural variation and highlights a considerable challenge to routine positional cloning in wheat.
Collapse
Affiliation(s)
- Ella Taagen
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - James Tanaka
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Alvina Gul
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Mark E Sorrells
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
26
|
He Z, Ji R, Havlickova L, Wang L, Li Y, Lee HT, Song J, Koh C, Yang J, Zhang M, Parkin IAP, Wang X, Edwards D, King GJ, Zou J, Liu K, Snowdon RJ, Banga SS, Machackova I, Bancroft I. Genome structural evolution in Brassica crops. NATURE PLANTS 2021; 7:757-765. [PMID: 34045706 DOI: 10.1038/s41477-021-00928-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/22/2021] [Indexed: 05/15/2023]
Abstract
The cultivated Brassica species include numerous vegetable and oil crops of global importance. Three genomes (designated A, B and C) share mesohexapolyploid ancestry and occur both singly and in each pairwise combination to define the Brassica species. With organizational errors (such as misplaced genome segments) corrected, we showed that the fundamental structure of each of the genomes is the same, irrespective of the species in which it occurs. This enabled us to clarify genome evolutionary pathways, including updating the Ancestral Crucifer Karyotype (ACK) block organization and providing support for the Brassica mesohexaploidy having occurred via a two-step process. We then constructed genus-wide pan-genomes, drawing from genes present in any species in which the respective genome occurs, which enabled us to provide a global gene nomenclature system for the cultivated Brassica species and develop a methodology to cost-effectively elucidate the genomic impacts of alien introgressions. Our advances not only underpin knowledge-based approaches to the more efficient breeding of Brassica crops but also provide an exemplar for the study of other polyploids.
Collapse
Affiliation(s)
- Zhesi He
- Department of Biology, University of York, York, UK
| | - Ruiqin Ji
- Department of Biology, University of York, York, UK
- Department of Horticulture, Shenyang Agricultural University, Shenyang, China
| | | | - Lihong Wang
- Department of Biology, University of York, York, UK
| | - Yi Li
- Department of Biology, University of York, York, UK
| | - Huey Tyng Lee
- Department of Plant Breeding, Justus Liebig University of Giessen, Giessen, Germany
| | - Jiaming Song
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Chushin Koh
- Global Institute for Food Security (GIFS), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jinghua Yang
- Department of Horticulture, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, China
| | - Mingfang Zhang
- Department of Horticulture, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, China
| | | | - Xiaowu Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences (IVF, CAAS), Beijing, China
| | - David Edwards
- School of Biological Sciences and the Institute of Agriculture, Faculty of Science, The University of Western Australia, Crawley, Western Australia, Australia
| | - Graham J King
- Southern Cross Plant Science, Southern Cross University, Lismore, New South Wales, Australia
| | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Kede Liu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Rod J Snowdon
- Department of Plant Breeding, Justus Liebig University of Giessen, Giessen, Germany
| | - Surinder S Banga
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Ivana Machackova
- Selgen, a.s., Plant breeding station, Chlumec nad Cidlinou, Czech Republic
| | - Ian Bancroft
- Department of Biology, University of York, York, UK.
| |
Collapse
|
27
|
Lv Z, Li Z, Wang M, Zhao F, Zhang W, Li C, Gong L, Zhang Y, Mason AS, Liu B. Conservation and trans-regulation of histone modification in the A and B subgenomes of polyploid wheat during domestication and ploidy transition. BMC Biol 2021; 19:42. [PMID: 33750361 PMCID: PMC7944620 DOI: 10.1186/s12915-021-00985-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/17/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Polyploidy has played a prominent role in the evolution of plants and many other eukaryotic lineages. However, how polyploid genomes adapt to the abrupt presence of two or more sets of chromosomes via genome regulation remains poorly understood. Here, we analyzed genome-wide histone modification and gene expression profiles in relation to domestication and ploidy transition in the A and B subgenomes of polyploid wheat. RESULTS We found that epigenetic modification patterns by two typical euchromatin histone markers, H3K4me3 and H3K27me3, for the great majority of homoeologous triad genes in A and B subgenomes were highly conserved between wild and domesticated tetraploid wheats and remained stable in the process of ploidy transitions from hexaploid to extracted tetraploid and then back to resynthesized hexaploid. However, a subset of genes was differentially modified during tetraploid and hexaploid wheat domestication and in response to ploidy transitions, and these genes were enriched for particular gene ontology (GO) terms. The extracted tetraploid wheat manifested higher overall histone modification levels than its hexaploid donor, and which were reversible and restored to normal levels in the resynthesized hexaploid. Further, while H3K4me3 marks were distally distributed along each chromosome and significantly correlated with subgenome expression as expected, H3K27me3 marks showed only a weak distal bias and did not show a significant correlation with gene expression. CONCLUSIONS Our results reveal overall high stability of histone modification patterns in the A and B subgenomes of polyploid wheat during domestication and in the process of ploidy transitions. However, modification levels of a subset of functionally relevant genes in the A and B genomes were trans-regulated by the D genome in hexaploid wheat.
Collapse
Affiliation(s)
- Zhenling Lv
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
- Department of Plant Breeding, University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany
| | - Zijuan Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Meiyue Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjie Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Changping Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Yijng Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Annaliese S Mason
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
- Department of Plant Breeding, University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany.
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
28
|
Chawla HS, Lee H, Gabur I, Vollrath P, Tamilselvan‐Nattar‐Amutha S, Obermeier C, Schiessl SV, Song J, Liu K, Guo L, Parkin IAP, Snowdon RJ. Long-read sequencing reveals widespread intragenic structural variants in a recent allopolyploid crop plant. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:240-250. [PMID: 32737959 PMCID: PMC7868984 DOI: 10.1111/pbi.13456] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/12/2020] [Accepted: 07/21/2020] [Indexed: 05/05/2023]
Abstract
Genome structural variation (SV) contributes strongly to trait variation in eukaryotic species and may have an even higher functional significance than single-nucleotide polymorphism (SNP). In recent years, there have been a number of studies associating large chromosomal scale SV ranging from hundreds of kilobases all the way up to a few megabases to key agronomic traits in plant genomes. However, there have been little or no efforts towards cataloguing small- (30-10 000 bp) to mid-scale (10 000-30 000 bp) SV and their impact on evolution and adaptation-related traits in plants. This might be attributed to complex and highly duplicated nature of plant genomes, which makes them difficult to assess using high-throughput genome screening methods. Here, we describe how long-read sequencing technologies can overcome this problem, revealing a surprisingly high level of widespread, small- to mid-scale SV in a major allopolyploid crop species, Brassica napus. We found that up to 10% of all genes were affected by small- to mid-scale SV events. Nearly half of these SV events ranged between 100 bp and 1000 bp, which makes them challenging to detect using short-read Illumina sequencing. Examples demonstrating the contribution of such SV towards eco-geographical adaptation and disease resistance in oilseed rape suggest that revisiting complex plant genomes using medium-coverage long-read sequencing might reveal unexpected levels of functional gene variation, with major implications for trait regulation and crop improvement.
Collapse
Affiliation(s)
| | - HueyTyng Lee
- Department of Plant BreedingJustus Liebig UniversityGiessenGermany
| | - Iulian Gabur
- Department of Plant BreedingJustus Liebig UniversityGiessenGermany
| | - Paul Vollrath
- Department of Plant BreedingJustus Liebig UniversityGiessenGermany
| | | | | | - Sarah V. Schiessl
- Department of Plant BreedingJustus Liebig UniversityGiessenGermany
- Department of Botany and Molecular EvolutionSenckenberg Research Institute and Natural History Museum FrankfurtFrankfurt am MainGermany
| | - Jia‐Ming Song
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Kede Liu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Liang Guo
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | | | - Rod J. Snowdon
- Department of Plant BreedingJustus Liebig UniversityGiessenGermany
| |
Collapse
|
29
|
Cenci A, Sardos J, Hueber Y, Martin G, Breton C, Roux N, Swennen R, Carpentier SC, Rouard M. Unravelling the complex story of intergenomic recombination in ABB allotriploid bananas. ANNALS OF BOTANY 2021; 127:7-20. [PMID: 32104882 DOI: 10.1093/aob/mcaa032/5760888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/25/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND AND AIMS Bananas (Musa spp.) are a major staple food for hundreds of millions of people in developing countries. The cultivated varieties are seedless and parthenocarpic clones of which the ancestral origin remains to be clarified. The most important cultivars are triploids with an AAA, AAB or ABB genome constitution, with A and B genomes provided by M. acuminata and M. balbisiana, respectively. Previous studies suggested that inter-genome recombinations were relatively common in banana cultivars and that triploids were more likely to have passed through an intermediate hybrid. In this study, we investigated the chromosome structure within the ABB group, composed of starchy cooking bananas that play an important role in food security. METHODS Using SNP markers called from RADSeq data, we studied the chromosome structure of 36 ABB genotypes spanning defined taxonomic subgroups. To complement our understanding, we searched for similar events within nine AB hybrid genotypes. KEY RESULTS Recurrent homologous exchanges (HEs), i.e. chromatin exchanges between A and B subgenomes, were unravelled with at least nine founding events (HE patterns) at the origin of ABB bananas prior to clonal diversification. Two independent founding events were found for Pisang Awak genotypes. Two HE patterns, corresponding to genotypes Pelipita and Klue Teparod, show an over-representation of B genome contribution. Three HE patterns mainly found in Indian accessions shared some recombined regions and two additional patterns did not correspond to any known subgroups. CONCLUSIONS The discovery of the nine founding events allowed an investigation of the possible routes that led to the creation of the different subgroups, which resulted in new hypotheses. Based on our observations, we suggest different routes that gave rise to the current diversity in the ABB cultivars, routes involving primary AB hybrids, routes leading to shared HEs and routes leading to a B excess ratio. Genetic fluxes took place between M. acuminata and M. balbisiana, particularly in India, where these unbalanced AB hybrids and ABB allotriploids originated, and where cultivated M. balbisiana are abundant. The result of this study clarifies the classification of ABB cultivars, possibly leading to the revision of the classification of this subgroup.
Collapse
Affiliation(s)
- Alberto Cenci
- Alliance Bioversity International - CIAT, Montpellier, France
| | - Julie Sardos
- Alliance Bioversity International - CIAT, Montpellier, France
| | - Yann Hueber
- Alliance Bioversity International - CIAT, Montpellier, France
| | - Guillaume Martin
- AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
- CIRAD, UMR AGAP, Montpellier, France
| | | | - Nicolas Roux
- Alliance Bioversity International - CIAT, Montpellier, France
| | - Rony Swennen
- Alliance Bioversity International - CIAT, Leuven, Belgium
- Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, KU Leuven, Leuven, Belgium
- International Institute of Tropical Agriculture, c/o The Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania
| | | | - Mathieu Rouard
- Alliance Bioversity International - CIAT, Montpellier, France
| |
Collapse
|
30
|
Cenci A, Sardos J, Hueber Y, Martin G, Breton C, Roux N, Swennen R, Carpentier SC, Rouard M. Unravelling the complex story of intergenomic recombination in ABB allotriploid bananas. ANNALS OF BOTANY 2021; 127:7-20. [PMID: 32104882 PMCID: PMC7750727 DOI: 10.1093/aob/mcaa032] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/25/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND AND AIMS Bananas (Musa spp.) are a major staple food for hundreds of millions of people in developing countries. The cultivated varieties are seedless and parthenocarpic clones of which the ancestral origin remains to be clarified. The most important cultivars are triploids with an AAA, AAB or ABB genome constitution, with A and B genomes provided by M. acuminata and M. balbisiana, respectively. Previous studies suggested that inter-genome recombinations were relatively common in banana cultivars and that triploids were more likely to have passed through an intermediate hybrid. In this study, we investigated the chromosome structure within the ABB group, composed of starchy cooking bananas that play an important role in food security. METHODS Using SNP markers called from RADSeq data, we studied the chromosome structure of 36 ABB genotypes spanning defined taxonomic subgroups. To complement our understanding, we searched for similar events within nine AB hybrid genotypes. KEY RESULTS Recurrent homologous exchanges (HEs), i.e. chromatin exchanges between A and B subgenomes, were unravelled with at least nine founding events (HE patterns) at the origin of ABB bananas prior to clonal diversification. Two independent founding events were found for Pisang Awak genotypes. Two HE patterns, corresponding to genotypes Pelipita and Klue Teparod, show an over-representation of B genome contribution. Three HE patterns mainly found in Indian accessions shared some recombined regions and two additional patterns did not correspond to any known subgroups. CONCLUSIONS The discovery of the nine founding events allowed an investigation of the possible routes that led to the creation of the different subgroups, which resulted in new hypotheses. Based on our observations, we suggest different routes that gave rise to the current diversity in the ABB cultivars, routes involving primary AB hybrids, routes leading to shared HEs and routes leading to a B excess ratio. Genetic fluxes took place between M. acuminata and M. balbisiana, particularly in India, where these unbalanced AB hybrids and ABB allotriploids originated, and where cultivated M. balbisiana are abundant. The result of this study clarifies the classification of ABB cultivars, possibly leading to the revision of the classification of this subgroup.
Collapse
Affiliation(s)
- Alberto Cenci
- Alliance Bioversity International - CIAT, Montpellier, France
| | - Julie Sardos
- Alliance Bioversity International - CIAT, Montpellier, France
| | - Yann Hueber
- Alliance Bioversity International - CIAT, Montpellier, France
| | - Guillaume Martin
- AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
- CIRAD, UMR AGAP, Montpellier, France
| | | | - Nicolas Roux
- Alliance Bioversity International - CIAT, Montpellier, France
| | - Rony Swennen
- Alliance Bioversity International - CIAT, Leuven, Belgium
- Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, KU Leuven, Leuven, Belgium
- International Institute of Tropical Agriculture, c/o The Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania
| | | | - Mathieu Rouard
- Alliance Bioversity International - CIAT, Montpellier, France
| |
Collapse
|
31
|
Tudor EH, Jones DM, He Z, Bancroft I, Trick M, Wells R, Irwin JA, Dean C. QTL-seq identifies BnaFT.A02 and BnaFLC.A02 as candidates for variation in vernalization requirement and response in winter oilseed rape (Brassica napus). PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2466-2481. [PMID: 32452611 PMCID: PMC7680531 DOI: 10.1111/pbi.13421] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/10/2020] [Accepted: 05/11/2020] [Indexed: 05/05/2023]
Abstract
Winter, spring and biennial varieties of Brassica napus that vary in vernalization requirement are grown for vegetable and oil production. Here, we show that the obligate or facultative nature of the vernalization requirement in European winter oilseed rape is determined by allelic variation at a 10 Mbp region on chromosome A02. This region includes orthologues of the key floral regulators FLOWERING LOCUS C (BnaFLC.A02) and FLOWERING LOCUS T (BnaFT.A02). Polymorphism at BnaFLC.A02 and BnaFT.A02, mostly in cis-regulatory regions, results in distinct gene expression dynamics in response to vernalization treatment. Our data suggest allelic variation at BnaFT.A02 is associated with flowering time in the absence of vernalization, while variation at BnaFLC.A02 is associated with flowering time under vernalizing conditions. We hypothesize selection for BnaFLC.A02 and BnaFT.A02 gene expression variation has facilitated the generation of European winter oilseed rape varieties that are adapted to different winter climates. This knowledge will allow for the selection of alleles of flowering time regulators that alter the vernalization requirement of oilseed rape, informing the generation of new varieties with adapted flowering times and improved yields.
Collapse
Affiliation(s)
| | | | - Zhesi He
- Department of BiologyUniversity of YorkYorkUK
| | | | | | | | | | | |
Collapse
|
32
|
Harper AL, He Z, Langer S, Havlickova L, Wang L, Fellgett A, Gupta V, Kumar Pradhan A, Bancroft I. Validation of an Associative Transcriptomics platform in the polyploid crop species Brassica juncea by dissection of the genetic architecture of agronomic and quality traits. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1885-1893. [PMID: 32530074 DOI: 10.1111/tpj.14876] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/22/2020] [Accepted: 06/01/2020] [Indexed: 05/22/2023]
Abstract
The development of more productive crops will be key to addressing the challenges that climate change, population growth and diminishing resources pose to global food security. Advanced 'omics techniques can help to accelerate breeding by facilitating the identification of genetic markers for use in marker-assisted selection. Here, we present the validation of a new Associative Transcriptomics platform in the important oilseed crop Brassica juncea. To develop this platform, we established a pan-transcriptome reference for B. juncea, to which we mapped transcriptome data from a diverse panel of B. juncea accessions. From this panel, we identified 355 050 single nucleotide polymorphism variants and quantified the abundance of 93 963 transcripts. Subsequent association analysis of functional genotypes against a number of important agronomic and quality traits revealed a promising candidate gene for seed weight, BjA.TTL, as well as additional markers linked to seed colour and vitamin E content. The establishment of the first full-scale Associative Transcriptomics platform for B. juncea enables rapid progress to be made towards an understanding of the genetic architecture of trait variation in this important species, and provides an exemplar for other crops.
Collapse
Affiliation(s)
- Andrea L Harper
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Zhesi He
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Swen Langer
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Lenka Havlickova
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Lihong Wang
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Alison Fellgett
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Vibha Gupta
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, 110021, India
| | - Akshay Kumar Pradhan
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, 110021, India
| | - Ian Bancroft
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| |
Collapse
|
33
|
Homoeologous exchanges occur through intragenic recombination generating novel transcripts and proteins in wheat and other polyploids. Proc Natl Acad Sci U S A 2020; 117:14561-14571. [PMID: 32518116 DOI: 10.1073/pnas.2003505117] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recombination between homeologous chromosomes, also known as homeologous exchange (HE), plays a significant role in shaping genome structure and gene expression in interspecific hybrids and allopolyploids of several plant species. However, the molecular mechanisms that govern HEs are not well understood. Here, we studied HE events in the progeny of a nascent allotetraploid (genome AADD) derived from two diploid progenitors of hexaploid bread wheat using cytological and whole-genome sequence analyses. In total, 37 HEs were identified and HE junctions were mapped precisely. HEs exhibit typical patterns of homologous recombination hotspots, being biased toward low-copy, subtelomeric regions of chromosome arms and showing association with known recombination hotspot motifs. But, strikingly, while homologous recombination preferentially takes place upstream and downstream of coding regions, HEs are highly enriched within gene bodies, giving rise to novel recombinant transcripts, which in turn are predicted to generate new protein fusion variants. To test whether this is a widespread phenomenon, a dataset of high-resolution HE junctions was analyzed for allopolyploid Brassica, rice, Arabidopsis suecica, banana, and peanut. Intragenic recombination and formation of chimeric genes was detected in HEs of all species and was prominent in most of them. HE thus provides a mechanism for evolutionary novelty in transcript and protein sequences in nascent allopolyploids.
Collapse
|
34
|
Lee H, Chawla HS, Obermeier C, Dreyer F, Abbadi A, Snowdon R. Chromosome-Scale Assembly of Winter Oilseed Rape Brassica napus. FRONTIERS IN PLANT SCIENCE 2020; 11:496. [PMID: 32411167 PMCID: PMC7202327 DOI: 10.3389/fpls.2020.00496] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/01/2020] [Indexed: 05/19/2023]
Abstract
Rapeseed (Brassica napus), the second most important oilseed crop globally, originated from an interspecific hybridization between B. rapa and B. oleracea. After this genome collision, B. napus underwent extensive genome restructuring, via homoeologous chromosome exchanges, resulting in widespread segmental deletions and duplications. Illicit pairing among genetically similar homoeologous chromosomes during meiosis is common in recent allopolyploids like B. napus, and post-polyploidization restructuring compounds the difficulties of assembling a complex polyploid plant genome. Specifically, genomic rearrangements between highly similar chromosomes are challenging to detect due to the limitation of sequencing read length and ambiguous alignment of reads. Recent advances in long read sequencing technologies provide promising new opportunities to unravel the genome complexities of B. napus by encompassing breakpoints of genomic rearrangements with high specificity. Moreover, recent evidence revealed ongoing genomic exchanges in natural B. napus, highlighting the need for multiple reference genomes to capture structural variants between accessions. Here we report the first long-read genome assembly of a winter B. napus cultivar. We sequenced the German winter oilseed rape accession 'Express 617' using 54.5x of long reads. Short reads, linked reads, optical map data and high-density genetic maps were used to further correct and scaffold the assembly to form pseudochromosomes. The assembled Express 617 genome provides another valuable resource for Brassica genomics in understanding the genetic consequences of polyploidization, crop domestication, and breeding of recently-formed crop species.
Collapse
Affiliation(s)
- HueyTyng Lee
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Harmeet Singh Chawla
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Christian Obermeier
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | | | | | - Rod Snowdon
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
- *Correspondence: Rod Snowdon,
| |
Collapse
|
35
|
Lee H, Chawla HS, Obermeier C, Dreyer F, Abbadi A, Snowdon R. Chromosome-Scale Assembly of Winter Oilseed Rape Brassica napus. FRONTIERS IN PLANT SCIENCE 2020; 11:496. [PMID: 32411167 DOI: 10.3389/fpls.2020.00496/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/01/2020] [Indexed: 05/21/2023]
Abstract
Rapeseed (Brassica napus), the second most important oilseed crop globally, originated from an interspecific hybridization between B. rapa and B. oleracea. After this genome collision, B. napus underwent extensive genome restructuring, via homoeologous chromosome exchanges, resulting in widespread segmental deletions and duplications. Illicit pairing among genetically similar homoeologous chromosomes during meiosis is common in recent allopolyploids like B. napus, and post-polyploidization restructuring compounds the difficulties of assembling a complex polyploid plant genome. Specifically, genomic rearrangements between highly similar chromosomes are challenging to detect due to the limitation of sequencing read length and ambiguous alignment of reads. Recent advances in long read sequencing technologies provide promising new opportunities to unravel the genome complexities of B. napus by encompassing breakpoints of genomic rearrangements with high specificity. Moreover, recent evidence revealed ongoing genomic exchanges in natural B. napus, highlighting the need for multiple reference genomes to capture structural variants between accessions. Here we report the first long-read genome assembly of a winter B. napus cultivar. We sequenced the German winter oilseed rape accession 'Express 617' using 54.5x of long reads. Short reads, linked reads, optical map data and high-density genetic maps were used to further correct and scaffold the assembly to form pseudochromosomes. The assembled Express 617 genome provides another valuable resource for Brassica genomics in understanding the genetic consequences of polyploidization, crop domestication, and breeding of recently-formed crop species.
Collapse
Affiliation(s)
- HueyTyng Lee
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Harmeet Singh Chawla
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Christian Obermeier
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | | | | | - Rod Snowdon
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
36
|
Kittipol V, He Z, Wang L, Doheny-Adams T, Langer S, Bancroft I. Data in support of genetic architecture of glucosinolate variations in Brassica napus. Data Brief 2019; 25:104402. [PMID: 31497635 PMCID: PMC6722234 DOI: 10.1016/j.dib.2019.104402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 11/25/2022] Open
Abstract
The transcriptome-based GWAS approach, Associative Transcriptomics (AT), which was employed to uncover the genetic basis controlling quantitative variation of glucosinolates in Brassica napus vegetative tissues is described. This article includes the phenotypic data of leaf and root glucosinolate (GSL) profiles across a diversity panel of 288 B. napus genotypes, as well as information on population structure and levels of GSLs grouped by crop types. Moreover, data on genetic associations of single nucleotide polymorphism (SNP) markers and gene expression markers (GEMs) for the major GSL types are presented in detail, while Manhattan plots and QQ plots for the associations of individual GSLs are also included. Root genetic association are supported by differential expression analysis generated from root RNA-seq. For further interpretation and details, please see the related research article entitled 'Genetic architecture of glucosinolate variation in Brassica napus' (Kittipol et al., 2019).
Collapse
Affiliation(s)
- Varanya Kittipol
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Zhesi He
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Lihong Wang
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Tim Doheny-Adams
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Swen Langer
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Ian Bancroft
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| |
Collapse
|
37
|
Zhang Z, Fu T, Liu Z, Wang X, Xun H, Li G, Ding B, Dong Y, Lin X, Sanguinet KA, Liu B, Wu Y, Gong L. Extensive changes in gene expression and alternative splicing due to homoeologous exchange in rice segmental allopolyploids. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2295-2308. [PMID: 31098756 DOI: 10.1007/s00122-019-03355-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
We report rampant homoeologous exchanges in progenies of a newly synthesized rice segmental allotetraploid and demonstrate their consequences to changes of gene expression and alternative splicing. Allopolyploidization is recurrent across the tree of angiosperms and known as a driving evolutionary force in both plants and animals. A salient feature of allopolyploidization is the induction of homoeologous exchange (HE) events between the constituent subgenomes, which may in turn cause changes in gene expression, transcript alternative splicing, and phenotypic novelty. However, this issue has been poorly studied, largely because lack of a system in which the exact parentage donating the subgenomes is known and the HE events are occurring in real time. Here, we employed whole-genome re-sequencing and RNA-seq-based transcriptome profiling in four randomly chosen progeny individuals (at the 10th-selfed generation) of segmental allotetraploids that were constructed by colchicine-mediated whole-genome doubling of F1 hybrids between the two subspecies (japonica and indica) of Asian cultivated Oryza sativa. We show that rampant HE events occurred in these tetraploid individuals, which converted most of the otherwise heterozygous genomic regions into a homogenized state of one parental subgenome. We demonstrate that genes within these homogenized genomic regions in the tetraploids showed high frequencies of altered expression and enhanced alternative splicing relative to their counterparts in the corresponding diploid parents in the embryo tissue. Intriguingly, limited overlaps between the differentially expressed genes and the differential alternative spliced genes were identified, which were partitioned to distinctly enriched gene ontology terms. Together, our results indicate that HE is a major mechanism to rapidly generate novelty in gene expression and transcriptome diversity, which may facilitate phenotypic innovation in nascent allopolyploids and relevant to allopolyploid crop breeding.
Collapse
Affiliation(s)
- Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Tiansi Fu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zhijian Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Xutong Wang
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Hongwei Xun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Guo Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Baoxu Ding
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Yuzhu Dong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Xiuyun Lin
- Jilin Academy of Agricultural Sciences (JAAS), Changchun, 136100, China
| | - Karen A Sanguinet
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ying Wu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
38
|
Hejna O, Havlickova L, He Z, Bancroft I, Curn V. Analysing the genetic architecture of clubroot resistance variation in Brassica napus by associative transcriptomics. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2019; 39:112. [PMID: 31396013 PMCID: PMC6647481 DOI: 10.1007/s11032-019-1021-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/08/2019] [Indexed: 06/01/2023]
Abstract
Clubroot is a destructive soil-borne pathogen of Brassicaceae that causes significant recurrent reductions in yield of cruciferous crops. Although there is some resistance in oilseed rape (a crop type of the species Brassica napus), the genetic basis of that resistance is poorly understood. In this study, we used an associative transcriptomics approach to elucidate the genetic basis of resistance to clubroot pathotype ECD 17/31/31 across a genetic diversity panel of 245 accessions of B. napus. A single nucleotide polymorphism (SNP) association analysis was performed with 256,397 SNPs distributed across the genome of B. napus and combined with transcript abundance data of 53,889 coding DNA sequence (CDS) gene models. The SNP association analysis identified two major loci (on chromosomes A2 and A3) controlling resistance and seven minor loci. Within these were a total of 86 SNP markers. Altogether, 392 genes were found in these regions. Another 21 genes were implicated as potentially involved in resistance using gene expression marker (GEM) analysis. After GO enrichment analysis and InterPro functional analysis of the identified genes, 82 candidate genes were identified as having roles in clubroot resistance. These results provide useful information for marker-assisted breeding which could lead to acceleration of pyramiding of multiple clubroot resistance genes in new varieties.
Collapse
Affiliation(s)
- Ondrej Hejna
- Biotechnological Centre, Faculty of Agriculture, University of South Bohemia, Studentska, 1668 Ceske Budejovice, Czech Republic
- Department of Biology, University of York, Heslington, York, YO10 5DD UK
| | - Lenka Havlickova
- Department of Biology, University of York, Heslington, York, YO10 5DD UK
| | - Zhesi He
- Department of Biology, University of York, Heslington, York, YO10 5DD UK
| | - Ian Bancroft
- Department of Biology, University of York, Heslington, York, YO10 5DD UK
| | - Vladislav Curn
- Biotechnological Centre, Faculty of Agriculture, University of South Bohemia, Studentska, 1668 Ceske Budejovice, Czech Republic
| |
Collapse
|
39
|
He Z, Bancroft I. Organization of the genome sequence of the polyploid crop species Brassica juncea. Nat Genet 2019; 50:1496-1497. [PMID: 30250124 DOI: 10.1038/s41588-018-0239-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhesi He
- Department of Biology, University of York, Heslington, York, UK
| | - Ian Bancroft
- Department of Biology, University of York, Heslington, York, UK.
| |
Collapse
|
40
|
Gabur I, Chawla HS, Snowdon RJ, Parkin IAP. Connecting genome structural variation with complex traits in crop plants. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:733-750. [PMID: 30448864 DOI: 10.1007/s00122-018-3233-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/07/2018] [Indexed: 05/05/2023]
Abstract
Structural genome variation is a major determinant of useful trait diversity. We describe how genome analysis methods are enabling discovery of trait-associated structural variants and their potential impact on breeding. As our understanding of complex crop genomes continues to grow, there is growing evidence that structural genome variation plays a major role in determining traits important for breeding and agriculture. Identifying the extent and impact of structural variants in crop genomes is becoming increasingly feasible with ongoing advances in the sophistication of genome sequencing technologies, particularly as it becomes easier to generate accurate long sequence reads on a genome-wide scale. In this article, we discuss the origins of structural genome variation in crops from ancient and recent genome duplication and polyploidization events and review high-throughput methods to assay such variants in crop populations in order to find associations with phenotypic traits. There is increasing evidence from such studies that gene presence-absence and copy number variation resulting from segmental chromosome exchanges may be at the heart of adaptive variation of crops to counter abiotic and biotic stress factors. We present examples from major crops that demonstrate the potential of pangenomic diversity as a key resource for future plant breeding for resilience and sustainability.
Collapse
Affiliation(s)
- Iulian Gabur
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Harmeet Singh Chawla
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Rod J Snowdon
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
| | - Isobel A P Parkin
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N OX2, Canada
| |
Collapse
|
41
|
Edger PP, Poorten TJ, VanBuren R, Hardigan MA, Colle M, McKain MR, Smith RD, Teresi SJ, Nelson ADL, Wai CM, Alger EI, Bird KA, Yocca AE, Pumplin N, Ou S, Ben-Zvi G, Brodt A, Baruch K, Swale T, Shiue L, Acharya CB, Cole GS, Mower JP, Childs KL, Jiang N, Lyons E, Freeling M, Puzey JR, Knapp SJ. Origin and evolution of the octoploid strawberry genome. Nat Genet 2019; 51:541-547. [PMID: 30804557 PMCID: PMC6882729 DOI: 10.1038/s41588-019-0356-4] [Citation(s) in RCA: 362] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 01/15/2019] [Indexed: 01/19/2023]
Abstract
Cultivated strawberry emerged from the hybridization of two wild octoploid species, both descendants from the merger of four diploid progenitor species into a single nucleus more than 1 million years ago. Here we report a near-complete chromosome-scale assembly for cultivated octoploid strawberry (Fragaria × ananassa) and uncovered the origin and evolutionary processes that shaped this complex allopolyploid. We identified the extant relatives of each diploid progenitor species and provide support for the North American origin of octoploid strawberry. We examined the dynamics among the four subgenomes in octoploid strawberry and uncovered the presence of a single dominant subgenome with significantly greater gene content, gene expression abundance, and biased exchanges between homoeologous chromosomes, as compared with the other subgenomes. Pathway analysis showed that certain metabolomic and disease-resistance traits are largely controlled by the dominant subgenome. These findings and the reference genome should serve as a powerful platform for future evolutionary studies and enable molecular breeding in strawberry.
Collapse
Affiliation(s)
- Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI, USA.
- Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI, USA.
| | - Thomas J Poorten
- Department of Plant Sciences, University of California-Davis, Davis, California, USA
| | - Robert VanBuren
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
| | - Michael A Hardigan
- Department of Plant Sciences, University of California-Davis, Davis, California, USA
| | - Marivi Colle
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
| | - Michael R McKain
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA
| | - Ronald D Smith
- Department of Biology, College of William and Mary, Williamsburg, VA, USA
| | - Scott J Teresi
- Department of Biology, College of William and Mary, Williamsburg, VA, USA
| | | | - Ching Man Wai
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
| | - Elizabeth I Alger
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
| | - Kevin A Bird
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
- Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI, USA
| | - Alan E Yocca
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
| | - Nathan Pumplin
- Department of Plant Sciences, University of California-Davis, Davis, California, USA
| | - Shujun Ou
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
- Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI, USA
| | | | | | | | | | | | - Charlotte B Acharya
- Department of Plant Sciences, University of California-Davis, Davis, California, USA
| | - Glenn S Cole
- Department of Plant Sciences, University of California-Davis, Davis, California, USA
| | - Jeffrey P Mower
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, USA
| | - Kevin L Childs
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Center for Genomics Enabled Plant Science, Michigan State University, East Lansing, MI, USA
| | - Ning Jiang
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
- Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI, USA
| | - Eric Lyons
- School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Michael Freeling
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Joshua R Puzey
- Department of Biology, College of William and Mary, Williamsburg, VA, USA
| | - Steven J Knapp
- Department of Plant Sciences, University of California-Davis, Davis, California, USA.
| |
Collapse
|
42
|
Snowdon RJ, Schiessl S. Illuminating Crop Adaptation Using Population Genomics. MOLECULAR PLANT 2019; 12:27-29. [PMID: 30582999 DOI: 10.1016/j.molp.2018.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Affiliation(s)
- Rod J Snowdon
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| | - Sarah Schiessl
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| |
Collapse
|
43
|
Martín AC, Borrill P, Higgins J, Alabdullah A, Ramírez-González RH, Swarbreck D, Uauy C, Shaw P, Moore G. Genome-Wide Transcription During Early Wheat Meiosis Is Independent of Synapsis, Ploidy Level, and the Ph1 Locus. FRONTIERS IN PLANT SCIENCE 2018; 9:1791. [PMID: 30564262 PMCID: PMC6288783 DOI: 10.3389/fpls.2018.01791] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/19/2018] [Indexed: 05/22/2023]
Abstract
Polyploidization is a fundamental process in plant evolution. One of the biggest challenges faced by a new polyploid is meiosis, particularly discriminating between multiple related chromosomes so that only homologous chromosomes synapse and recombine to ensure regular chromosome segregation and balanced gametes. Despite its large genome size, high DNA repetitive content and similarity between homoeologous chromosomes, hexaploid wheat completes meiosis in a shorter period than diploid species with a much smaller genome. Therefore, during wheat meiosis, mechanisms additional to the classical model based on DNA sequence homology, must facilitate more efficient homologous recognition. One such mechanism could involve exploitation of differences in chromosome structure between homologs and homoeologs at the onset of meiosis. In turn, these chromatin changes, can be expected to be linked to transcriptional gene activity. In this study, we present an extensive analysis of a large RNA-seq data derived from six different genotypes: wheat, wheat-rye hybrids and newly synthesized octoploid triticale, both in the presence and absence of the Ph1 locus. Plant material was collected at early prophase, at the transition leptotene-zygotene, when the telomere bouquet is forming and synapsis between homologs is beginning. The six genotypes exhibit different levels of synapsis and chromatin structure at this stage; therefore, recombination and consequently segregation, are also different. Unexpectedly, our study reveals that neither synapsis, whole genome duplication nor the absence of the Ph1 locus are associated with major changes in gene expression levels during early meiotic prophase. Overall wheat transcription at this meiotic stage is therefore highly resilient to such alterations, even in the presence of major chromatin structural changes. Further studies in wheat and other polyploid species will be required to reveal whether these observations are specific to wheat meiosis.
Collapse
Affiliation(s)
| | - Philippa Borrill
- John Innes Centre, Norwich, United Kingdom
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | | | | | | | | | | | - Peter Shaw
- John Innes Centre, Norwich, United Kingdom
| | | |
Collapse
|
44
|
Blischak PD, Mabry ME, Conant GC, Pires JC. Integrating Networks, Phylogenomics, and Population Genomics for the Study of Polyploidy. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2018. [DOI: 10.1146/annurev-ecolsys-121415-032302] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Duplication events are regarded as sources of evolutionary novelty, but our understanding of general trends for the long-term trajectory of additional genomic material is still lacking. Organisms with a history of whole genome duplication (WGD) offer a unique opportunity to study potential trends in the context of gene retention and/or loss, gene and network dosage, and changes in gene expression. In this review, we discuss the prevalence of polyploidy across the tree of life, followed by an overview of studies investigating genome evolution and gene expression. We then provide an overview of methods in network biology, phylogenomics, and population genomics that are critical for advancing our understanding of evolution post-WGD, highlighting the need for models that can accommodate polyploids. Finally, we close with a brief note on the importance of random processes in the evolution of polyploids with respect to neutral versus selective forces, ancestral polymorphisms, and the formation of autopolyploids versus allopolyploids.
Collapse
Affiliation(s)
- Paul D. Blischak
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Makenzie E. Mabry
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, USA
| | - Gavin C. Conant
- Division of Animal Sciences, University of Missouri, Columbia, Missouri 65211, USA
- Current affiliation: Bioinformatics Research Center, Program in Genetics and Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - J. Chris Pires
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211-7310, USA
| |
Collapse
|
45
|
Jones DM, Wells R, Pullen N, Trick M, Irwin JA, Morris RJ. Spatio-temporal expression dynamics differ between homologues of flowering time genes in the allopolyploid Brassica napus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:103-118. [PMID: 29989238 PMCID: PMC6175450 DOI: 10.1111/tpj.14020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/18/2018] [Accepted: 06/19/2018] [Indexed: 05/20/2023]
Abstract
Polyploidy is a recurrent feature of eukaryotic evolution and has been linked to increases in complexity, adaptive radiation and speciation. Within angiosperms such events have occurred repeatedly in many plant lineages. Here we investigate the retention and spatio-temporal expression dynamics of duplicated genes predicted to regulate the floral transition in Brassica napus (oilseed rape, OSR). We show that flowering time genes are preferentially retained relative to other genes in the OSR genome. Using a transcriptome time series in two tissues (leaf and shoot apex) across development we show that 67% of these retained flowering time genes are expressed. Furthermore, between 64% (leaf) and 74% (shoot apex) of the retained gene homologues show diverged expression patterns relative to each other across development, suggesting neo- or subfunctionalization. A case study of homologues of the shoot meristem identity gene TFL1 reveals differences in cis-regulatory elements that could explain this divergence. Such differences in the expression dynamics of duplicated genes highlight the challenges involved in translating gene regulatory networks from diploid model systems to more complex polyploid crop species.
Collapse
Affiliation(s)
- D. Marc Jones
- Crop GeneticsJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
- Computational and Systems BiologyJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Rachel Wells
- Crop GeneticsJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Nick Pullen
- Crop GeneticsJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Martin Trick
- Computational and Systems BiologyJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Judith A. Irwin
- Crop GeneticsJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Richard J. Morris
- Crop GeneticsJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
- Computational and Systems BiologyJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| |
Collapse
|
46
|
Bird KA, VanBuren R, Puzey JR, Edger PP. The causes and consequences of subgenome dominance in hybrids and recent polyploids. THE NEW PHYTOLOGIST 2018; 220:87-93. [PMID: 29882360 DOI: 10.1111/nph.15256] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/02/2018] [Indexed: 05/22/2023]
Abstract
Contents Summary 87 I. Introduction 87 II. Evolution in action: subgenome dominance within newly formed hybrids and polyploids 88 III. Summary and future directions 90 Acknowledgements 92 References 92 SUMMARY: The merger of divergent genomes, via hybridization or allopolyploidization, frequently results in a 'genomic shock' that induces a series of rapid genetic and epigenetic modifications as a result of conflicts between parental genomes. This conflict among the subgenomes routinely leads one subgenome to become dominant over the other subgenome(s), resulting in subgenome biases in gene content and expression. Recent advances in methods to analyze hybrid and polyploid genomes with comparisons to extant parental progenitors have allowed for major strides in understanding the mechanistic basis for subgenome dominance. In particular, our understanding of the role that homoeologous exchange might play in subgenome dominance and genome evolution is quickly growing. Here we describe recent discoveries uncovering the underlying mechanisms and provide a framework to predict subgenome dominance in hybrids and allopolyploids with far-reaching implications for agricultural, ecological, and evolutionary research.
Collapse
Affiliation(s)
- Kevin A Bird
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI, 48824, USA
| | - Robert VanBuren
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| | - Joshua R Puzey
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
47
|
Shao GM, Li XY, Wang Y, Wang ZW, Li Z, Zhang XJ, Zhou L, Gui JF. Whole Genome Incorporation and Epigenetic Stability in a Newly Synthetic Allopolyploid of Gynogenetic Gibel Carp. Genome Biol Evol 2018; 10:2394-2407. [PMID: 30085110 PMCID: PMC6143163 DOI: 10.1093/gbe/evy165] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2018] [Indexed: 12/23/2022] Open
Abstract
Allopolyploidization plays an important role in speciation, and some natural or synthetic allopolyploid fishes have been extensively applied to aquaculture. Although genetic and epigenetic inheritance and variation associated with plant allopolyploids have been well documented, the relative research in allopolyploid animals is scarce. In this study, the genome constitution and DNA methylation inheritance in a newly synthetic allopolyploid of gynogenetic gibel carp were analyzed. The incorporation of a whole genome of paternal common carp sperm in the allopolyploid was confirmed by genomic in situ hybridization, chromosome localization of 45S rDNAs, and sequence comparison. Pooled sample-based methylation sensitive amplified polymorphism (MSAP) revealed that an overwhelming majority (98.82%) of cytosine methylation patterns in the allopolyploid were inherited from its parents of hexaploid gibel carp clone D and common carp. Compared to its parents, 11 DNA fragments in the allopolyploid were proved to be caused by interindividual variation, recombination, deletion, and mutation through individual sample-based MSAP and sequencing. Contrast to the rapid and remarkable epigenetic changes in most of analyzed neopolyploids, no cytosine methylation variation was detected in the gynogenetic allopolyploid. Therefore, the newly synthetic allopolyploid of gynogenetic gibel carp combined genomes from its parents and maintained genetic and epigenetic stability after its formation and subsequently seven successive gynogenetic generations. Our current results provide a paradigm for recurrent polyploidy consequences in the gynogenetic allopolyploid animals.
Collapse
Affiliation(s)
- Guang-Ming Shao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xi-Yin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhong-Wei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
48
|
Higgins EE, Clarke WE, Howell EC, Armstrong SJ, Parkin IAP. Detecting de Novo Homoeologous Recombination Events in Cultivated Brassica napus Using a Genome-Wide SNP Array. G3 (BETHESDA, MD.) 2018; 8:2673-2683. [PMID: 29907649 PMCID: PMC6071606 DOI: 10.1534/g3.118.200118] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/12/2018] [Indexed: 11/20/2022]
Abstract
The heavy selection pressure due to intensive breeding of Brassica napus has created a narrow gene pool, limiting the ability to produce improved varieties through crosses between B. napus cultivars. One mechanism that has contributed to the adaptation of important agronomic traits in the allotetraploid B. napus has been chromosomal rearrangements resulting from homoeologous recombination between the constituent A and C diploid genomes. Determining the rate and distribution of such events in natural B. napus will assist efforts to understand and potentially manipulate this phenomenon. The Brassica high-density 60K SNP array, which provides genome-wide coverage for assessment of recombination events, was used to assay 254 individuals derived from 11 diverse cultivated spring type B. napus These analyses identified reciprocal allele gain and loss between the A and C genomes and allowed visualization of de novo homoeologous recombination events across the B. napus genome. The events ranged from loss/gain of 0.09 Mb to entire chromosomes, with almost 5% aneuploidy observed across all gametes. There was a bias toward sub-telomeric exchanges leading to genome homogenization at chromosome termini. The A genome replaced the C genome in 66% of events, and also featured more dominantly in gain of whole chromosomes. These analyses indicate de novo homoeologous recombination is a continuous source of variation in established Brassica napus and the rate of observed events appears to vary with genetic background. The Brassica 60K SNP array will be a useful tool in further study and manipulation of this phenomenon.
Collapse
Affiliation(s)
- Erin E Higgins
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Wayne E Clarke
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Elaine C Howell
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Susan J Armstrong
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Isobel A P Parkin
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| |
Collapse
|
49
|
Edger PP, McKain MR, Bird KA, VanBuren R. Subgenome assignment in allopolyploids: challenges and future directions. CURRENT OPINION IN PLANT BIOLOGY 2018; 42:76-80. [PMID: 29649616 DOI: 10.1016/j.pbi.2018.03.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/21/2018] [Accepted: 03/26/2018] [Indexed: 05/11/2023]
Abstract
Whole genome duplications (WGDs), also known as polyploid events, have played a crucial role in the evolutionary success of angiosperms across recent and ancient timescales. A recurrent observation from the analysis of allopolyploids is that one of the parental subgenomes is generally more dominant, referred to as 'subgenome dominance', based on higher gene content and expression patterns. Subgenome dominance has far reaching implications to research areas ranging from crop improvement efforts to evolutionary and ecological studies. However, the analysis of subgenome dominance in more ancient polyploids is complicated by a long history of homoeologous exchanges among subgenomes. Here, we will discuss how resulting homoeolog rearrangements and replacements have been ignored in previous studies and urge future studies to integrate phylogenetic approaches to assign homoeologs to parental subgenomes.
Collapse
Affiliation(s)
- Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA; Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI 48824, USA.
| | - Michael R McKain
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Kevin A Bird
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA; Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI 48824, USA
| | - Robert VanBuren
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
50
|
Blary A, Gonzalo A, Eber F, Bérard A, Bergès H, Bessoltane N, Charif D, Charpentier C, Cromer L, Fourment J, Genevriez C, Le Paslier MC, Lodé M, Lucas MO, Nesi N, Lloyd A, Chèvre AM, Jenczewski E. FANCM Limits Meiotic Crossovers in Brassica Crops. FRONTIERS IN PLANT SCIENCE 2018; 9:368. [PMID: 29628933 PMCID: PMC5876677 DOI: 10.3389/fpls.2018.00368] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/06/2018] [Indexed: 05/18/2023]
Abstract
Meiotic crossovers (COs) are essential for proper chromosome segregation and the reshuffling of alleles during meiosis. In WT plants, the number of COs is usually small, which limits the genetic variation that can be captured by plant breeding programs. Part of this limitation is imposed by proteins like FANCM, the inactivation of which results in a 3-fold increase in COs in Arabidopsis thaliana. Whether the same holds true in crops needed to be established. In this study, we identified EMS induced mutations in FANCM in two species of economic relevance within the genus Brassica. We showed that CO frequencies were increased in fancm mutants in both diploid and tetraploid Brassicas, Brassica rapa and Brassica napus respectively. In B. rapa, we observed a 3-fold increase in the number of COs, equal to the increase observed previously in Arabidopsis. In B. napus we observed a lesser but consistent increase (1.3-fold) in both euploid (AACC) and allohaploid (AC) plants. Complementation tests in A. thaliana suggest that the smaller increase in crossover frequency observed in B. napus reflects residual activity of the mutant C copy of FANCM. Altogether our results indicate that the anti-CO activity of FANCM is conserved across the Brassica, opening new avenues to make a wider range of genetic diversity accessible to crop improvement.
Collapse
Affiliation(s)
- Aurélien Blary
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National De La Recherche Scientifique, Université Paris-Saclay, Versailles, France
| | - Adrián Gonzalo
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National De La Recherche Scientifique, Université Paris-Saclay, Versailles, France
| | - Frédérique Eber
- IGEPP, Institut National de la Recherche Agronomique, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| | - Aurélie Bérard
- EPGV US 1279, Institut National de la Recherche Agronomique, CEA-IG-CNG, Université Paris-Saclay, Evry, France
| | - Hélène Bergès
- Institut National de la Recherche Agronomique UPR 1258, Centre National des Ressources Génomiques Végétales, Castanet-Tolosan, France
| | - Nadia Bessoltane
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National De La Recherche Scientifique, Université Paris-Saclay, Versailles, France
| | - Delphine Charif
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National De La Recherche Scientifique, Université Paris-Saclay, Versailles, France
| | - Catherine Charpentier
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National De La Recherche Scientifique, Université Paris-Saclay, Versailles, France
| | - Laurence Cromer
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National De La Recherche Scientifique, Université Paris-Saclay, Versailles, France
| | - Joelle Fourment
- Institut National de la Recherche Agronomique UPR 1258, Centre National des Ressources Génomiques Végétales, Castanet-Tolosan, France
| | - Camille Genevriez
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National De La Recherche Scientifique, Université Paris-Saclay, Versailles, France
| | - Marie-Christine Le Paslier
- EPGV US 1279, Institut National de la Recherche Agronomique, CEA-IG-CNG, Université Paris-Saclay, Evry, France
| | - Maryse Lodé
- IGEPP, Institut National de la Recherche Agronomique, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| | - Marie-Odile Lucas
- IGEPP, Institut National de la Recherche Agronomique, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| | - Nathalie Nesi
- IGEPP, Institut National de la Recherche Agronomique, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| | - Andrew Lloyd
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National De La Recherche Scientifique, Université Paris-Saclay, Versailles, France
| | - Anne-Marie Chèvre
- IGEPP, Institut National de la Recherche Agronomique, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| | - Eric Jenczewski
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National De La Recherche Scientifique, Université Paris-Saclay, Versailles, France
- *Correspondence: Eric Jenczewski
| |
Collapse
|