1
|
Kang NK, Koh HG, Choi Y, Min H, Ort DR, Jin YS. Bioconversion of CO 2 into valuable bioproducts via synthetic modular co-culture of engineered Chlamydomonas reinhardtii and Escherichia coli. Metab Eng 2025; 90:57-66. [PMID: 40057263 DOI: 10.1016/j.ymben.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/23/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
With increasing concern over environmental problems and energy crises, interest in the biological conversion of CO2 into bioproducts is growing. Although microalgae efficiently utilize CO2, their metabolic engineering remains challenging. In contrast, while synthetic biology tools are advanced for many heterotrophic bacteria, these organisms cannot directly utilize CO2. As such, a modular co-culture system with a glycolate dehydrogenase 1 (GYD1) deficient Chlamydomonas reinhardtii mutant and Escherichia coli was developed. The GYD1 mutant secretes glycolic acid via photorespiration, which E. coli metabolizes via the glyoxylate cycle. E. coli growth was improved by implementing two-stage continuous systems to 2.0 mg L-1 h-1 on CO2. The production of green fluorescent protein (0.52 ng L-1 h-1) and lycopene (6.3 μg L-1 h-1) was also demonstrated. This study represents a successful case of a synthetic modular co-culture with a microalga and a heterotrophic bacterium, potentially contributing to sustainable industrial processes and reducing environmental impact.
Collapse
Affiliation(s)
- Nam Kyu Kang
- Department of Chemical Engineering, College of Engineering, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Hyun Gi Koh
- Department of Biological and Chemical Engineering, Hongik University, Sejong, 30016, Republic of Korea
| | - Yujung Choi
- Department of Chemical Engineering, College of Engineering, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Hyunjun Min
- Department of Chemical Engineering, College of Engineering, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Donald R Ort
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Department of Plant Biology and Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yong-Su Jin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
2
|
Zhu T, Ning P, Liu Y, Liu M, Yang J, Wang Z, Li M. Knowledge of microalgal Rubiscos helps to improve photosynthetic efficiency of crops. PLANTA 2025; 261:78. [PMID: 40042639 DOI: 10.1007/s00425-025-04645-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/16/2025] [Indexed: 03/29/2025]
Abstract
MAIN CONCLUSION A comprehensive understanding of microalgal Rubiscos offers opportunities to enhance photosynthetic efficiency of crops. As food production fails to meet the needs of the expanding population, there is increasing concern about Ribulose-1, 5-diphosphate (RuBP) carboxylase/oxygenase (Rubisco), the enzyme that catalyzes CO2 fixation in photosynthesis. There have been many attempts to optimize Rubisco in crops, but the complex multicellular structure of higher plants makes optimization more difficult. Microalgae have the characteristics of rapid growth, simple structure and easy molecular modification, and the function and properties of their Rubiscos are basically the same as those of higher plants. Research on microalgal Rubiscos helps to broaden the understanding of Rubiscos of higher plants. Also, transferring all or part of better microalgal Rubiscos into crop cells or giving crop Rubiscos the advantages of microalgal Rubiscos can help improve the photosynthesis of crops. In this review, the distribution, origin, evolution, molecular structure, folding, assembly, activation and kinetic properties of microalgal Rubiscos are summarized. Moreover, the development of some effective methods to improve the properties and application of Rubiscos in microalgae are also described.
Collapse
Affiliation(s)
- Tongtong Zhu
- Energy-Rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, No. 700 Changchen Road, Qingdao, 266109, People's Republic of China
| | - Peng Ning
- Energy-Rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, No. 700 Changchen Road, Qingdao, 266109, People's Republic of China
| | - Yiguo Liu
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Min Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 250100, People's Republic of China
| | - Jianming Yang
- Energy-Rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, No. 700 Changchen Road, Qingdao, 266109, People's Republic of China
| | - Zhaobao Wang
- Energy-Rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, No. 700 Changchen Road, Qingdao, 266109, People's Republic of China.
| | - Meijie Li
- Energy-Rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, No. 700 Changchen Road, Qingdao, 266109, People's Republic of China.
| |
Collapse
|
3
|
Orsi E, Schulz-Mirbach H, Cotton CAR, Satanowski A, Petri HM, Arnold SL, Grabarczyk N, Verbakel R, Jensen KS, Donati S, Paczia N, Glatter T, Küffner AM, Chotel T, Schillmüller F, De Maria A, He H, Lindner SN, Noor E, Bar-Even A, Erb TJ, Nikel PI. Computation-aided designs enable developing auxotrophic metabolic sensors for wide-range glyoxylate and glycolate detection. Nat Commun 2025; 16:2168. [PMID: 40038270 PMCID: PMC11880463 DOI: 10.1038/s41467-025-57407-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 02/18/2025] [Indexed: 03/06/2025] Open
Abstract
Auxotrophic metabolic sensors (AMS) are microbial strains modified so that biomass formation correlates with the availability of specific metabolites. These sensors are essential for bioengineering (e.g., in growth-coupled designs) but creating them is often a time-consuming and low-throughput process that can be streamlined by in silico analysis. Here, we present a systematic workflow for designing, implementing, and testing versatile AMS based on Escherichia coli. Glyoxylate, a key metabolite in (synthetic) CO2 fixation and carbon-conserving pathways, served as the test analyte. Through iterative screening of a compact metabolic model, we identify non-trivial growth-coupled designs that result in six AMS with a wide sensitivity range for glyoxylate, spanning three orders of magnitude in the detected analyte concentration. We further adapt these E. coli AMS for sensing glycolate and demonstrate their utility in both pathway engineering (testing a key metabolic module for carbon assimilation via glyoxylate) and environmental monitoring (quantifying glycolate produced by photosynthetic microalgae). Adapting this workflow to the sensing of different metabolites could facilitate the design and implementation of AMS for diverse biotechnological applications.
Collapse
Affiliation(s)
- Enrico Orsi
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
| | | | | | - Ari Satanowski
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Henrik M Petri
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Susanne L Arnold
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Natalia Grabarczyk
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Rutger Verbakel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Karsten S Jensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Stefano Donati
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Nicole Paczia
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Timo Glatter
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | | | - Tanguy Chotel
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | | | - Alberto De Maria
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Hai He
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Steffen N Lindner
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Department of Biochemistry, Charité Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität, Berlin, Germany
| | - Elad Noor
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Arren Bar-Even
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Tobias J Erb
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
4
|
Luo J, Huang Y, Lai J, Liang J, Luo X, Li C, Zhang Y, Zhao M. Effects of tritium pollution on photosynthesis, respiration and redox of microalgae under rising temperature. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177766. [PMID: 39644631 DOI: 10.1016/j.scitotenv.2024.177766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 11/11/2024] [Accepted: 11/24/2024] [Indexed: 12/09/2024]
Abstract
Due to rising sea surface temperatures and thermal emissions from nuclear power plants, temperature has been recognized as a significant factor in evaluating the potential biological effect of tritium. In this work, tritium pollution in a freshwater system was simulated, and the dynamic changes of microalgal growth in semi-natural state were monitored in real time. The effects of tritium exposure on photosynthesis and respiration of Chlamydomonas reinhardtii (C. reinhardtii) were further analyzed in the context of rising temperatures. It was found that under tritium exposure (3.7 × 106 Bq/L, 12.17 μGy/h, resulting in a dose for 96 h of exposure is about 1 mGy), elevated temperature promoted the accumulation of organically bound tritium (OBT) and reactive oxygen species (ROS), which damaged the cell structure, reduced the photosynthetic performance and photosynthetic energy transfer efficiency, and interfered with the energy levels and redox states in C. reinhardtii. At the transcriptional level, elevated temperature exacerbated the inhibition of tritium exposure on key metabolic pathways related to photosynthetic system and respiratory metabolism of C. reinhardtii, while simultaneously causing double-stranded DNA damage in algal cells. Under the low-dose of tritium exposure with elevated temperature, the accumulation of ROS may lead to the disruption of algae's defense mechanisms, subsequently reducing their ability to resist genetic damage. This study provides insights for reassessing the potential risks to aquatic ecosystem considering the discharge of low-level tritium-containing wastewater in the context of global warming.
Collapse
Affiliation(s)
- Jing Luo
- College of Life Science, Northeast Forestry University, No. 26, Hexing Road, Harbin 150040, China
| | - Yan Huang
- School of Life Sciences, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jinlong Lai
- School of Life Sciences, Southwest University of Science and Technology, Mianyang 621010, China; State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | | | - Xuegang Luo
- School of Life Sciences, Southwest University of Science and Technology, Mianyang 621010, China; Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Chen Li
- College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong 723000, China
| | - Yu Zhang
- School of Life Sciences, Southwest University of Science and Technology, Mianyang 621010, China; Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Min Zhao
- College of Life Science, Northeast Forestry University, No. 26, Hexing Road, Harbin 150040, China.
| |
Collapse
|
5
|
Dietz K, Sagstetter C, Speck M, Roth A, Klamt S, Fabarius JT. A novel engineered strain of Methylorubrum extorquens for methylotrophic production of glycolic acid. Microb Cell Fact 2024; 23:344. [PMID: 39716233 DOI: 10.1186/s12934-024-02583-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/08/2024] [Indexed: 12/25/2024] Open
Abstract
The conversion of CO2 into methanol depicts one of the most promising emerging renewable routes for the chemical and biotech industry. Under this regard, native methylotrophs have a large potential for converting methanol into value-added products but require targeted engineering approaches to enhance their performances and to widen their product spectrum. Here we use a systems-based approach to analyze and engineer M. extorquens TK 0001 for production of glycolic acid. Application of constraint-based metabolic modeling reveals the great potential of M. extorquens for that purpose, which is not yet described in literature. In particular, a superior theoretical product yield of 1.0 C-molGlycolic acid C-molMethanol-1 is predicted by our model, surpassing theoretical yields of sugar fermentation. Following this approach, we show here that strain engineering is viable and present 1st generation strains producing glycolic acid via a heterologous NADPH-dependent glyoxylate reductase. It was found that lactic acid is a surprising by-product of glycolic acid formation in M. extorquens, most likely due to a surplus of available NADH upon glycolic acid synthesis. Finally, the best performing strain was tested in a fed-batch fermentation producing a mixture of up to total 1.2 g L-1 glycolic acid and lactic acid. Several key performance indicators of our glycolic acid producer strain are superior to state-of-the-art synthetic methylotrophs. The presented results open the door for further strain engineering of the native methylotroph M. extorquens and pave the way to produce two promising biopolymer building blocks from green methanol, i.e., glycolic acid and lactic acid.
Collapse
Affiliation(s)
- Katharina Dietz
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Straubing Branch BioCat, Schulgasse 11a, Straubing, Germany
| | - Carina Sagstetter
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Straubing Branch BioCat, Schulgasse 11a, Straubing, Germany
| | - Melanie Speck
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Straubing Branch BioCat, Schulgasse 11a, Straubing, Germany
| | - Arne Roth
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Straubing Branch BioCat, Schulgasse 11a, Straubing, Germany
| | - Steffen Klamt
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, Magdeburg, Germany
| | - Jonathan Thomas Fabarius
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Straubing Branch BioCat, Schulgasse 11a, Straubing, Germany.
| |
Collapse
|
6
|
Yan S, Hou Y, Cui M, Cheng T, Lu S, Liu Z, Deng B, Liu W, Shi M, Lin L, Yu L, Zhao L. Engineering microalgae for robust glycolate biosynthesis: Targeted knockout of hydroxypyruvate reductase 1 combined with optimized culture conditions enhance glycolate production in Chlamydomonas reinhardtii. BIORESOURCE TECHNOLOGY 2024; 412:131372. [PMID: 39209231 DOI: 10.1016/j.biortech.2024.131372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/06/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Microalgae-based glycolate production through the photorespiratory pathway is considered an environmentally friendly approach. However, the potential for glycolate production is limited by photoautotrophic cultivation with low cell density and existing strains. In this study, a targeted knockout approach was used to disrupt the key photorespiration enzyme, Chlamydomonas reinhardtii hydroxypyruvate reductase 1 (CrHPR1), leading to a significant increase in glycolate production of 280.1 mg/L/OD750. The highest potency yield reached 2.1 g/L under optimized mixotrophic conditions, demonstrating the possibility of synchronizing cell growth with glycolate biosynthesis in microalgae. Furthermore, the hypothesis that the cell wall-deficient mutant facilitates glycolate excretion was proposed and validated by comparing the glycolate accumulation trends of various Chlamydomonas reinhardtii strains. This study will facilitate the development of microalgae-based biotechnology and shed lights on the continuous advancement of green biomanufacturing for industrial application.
Collapse
Affiliation(s)
- Suihao Yan
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China; Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yuyong Hou
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China; Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; University of Chinese Academy of Sciences, Beijing, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Meijie Cui
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China; Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Tingfeng Cheng
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; University of Chinese Academy of Sciences, Beijing, China
| | - Sihan Lu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Zhiyong Liu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Bicheng Deng
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Weijia Liu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Menglin Shi
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Liangcai Lin
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Longjiang Yu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Lei Zhao
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; University of Chinese Academy of Sciences, Beijing, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China.
| |
Collapse
|
7
|
Bellido-Pedraza CM, Torres MJ, Llamas A. The Microalgae Chlamydomonas for Bioremediation and Bioproduct Production. Cells 2024; 13:1137. [PMID: 38994989 PMCID: PMC11240456 DOI: 10.3390/cells13131137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024] Open
Abstract
The extensive metabolic diversity of microalgae, coupled with their rapid growth rates and cost-effective production, position these organisms as highly promising resources for a wide range of biotechnological applications. These characteristics allow microalgae to address crucial needs in the agricultural, medical, and industrial sectors. Microalgae are proving to be valuable in various fields, including the remediation of diverse wastewater types, the production of biofuels and biofertilizers, and the extraction of various products from their biomass. For decades, the microalga Chlamydomonas has been widely used as a fundamental research model organism in various areas such as photosynthesis, respiration, sulfur and phosphorus metabolism, nitrogen metabolism, and flagella synthesis, among others. However, in recent years, the potential of Chlamydomonas as a biotechnological tool for bioremediation, biofertilization, biomass, and bioproducts production has been increasingly recognized. Bioremediation of wastewater using Chlamydomonas presents significant potential for sustainable reduction in contaminants and facilitates resource recovery and valorization of microalgal biomass, offering important economic benefits. Chlamydomonas has also established itself as a platform for the production of a wide variety of biotechnologically interesting products, such as different types of biofuels, and high-value-added products. The aim of this review is to achieve a comprehensive understanding of the potential of Chlamydomonas in these aspects, and to explore their interrelationship, which would offer significant environmental and biotechnological advantages.
Collapse
Affiliation(s)
| | | | - Angel Llamas
- Department of Biochemistry and Molecular Biology, Campus de Rabanales and Campus Internacional de Excelencia Agroalimentario (CeiA3), University of Córdoba, Edificio Severo Ochoa, 14071 Córdoba, Spain; (C.M.B.-P.); (M.J.T.)
| |
Collapse
|
8
|
Wagner H, Schad A, Höhmann S, Briol TA, Wilhelm C. Carbon and energy balance of biotechnological glycolate production from microalgae in a pre-industrial scale flat panel photobioreactor. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:42. [PMID: 38486283 PMCID: PMC10941469 DOI: 10.1186/s13068-024-02479-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/15/2024] [Indexed: 03/17/2024]
Abstract
Glycolate is produced by microalgae under photorespiratory conditions and has the potential for sustainable organic carbon production in biotechnology. This study explores the glycolate production balance in Chlamydomonas reinhardtii, using a custom-built 10-L flat panel bioreactor with sophisticated measurements of process factors such as nutrient supply, gassing, light absorption and mass balances. As a result, detailed information regarding carbon and energy balance is obtained to support techno-economic analyses. It is shown how nitrogen is a crucial element in the biotechnological process and monitoring nitrogen content is vital for optimum performance. Moreover, the suitable reactor design is advantageous to efficiently adjust the gas composition. The oxygen content has to be slightly above 30% to induce photorespiration while maintaining photosynthetic efficiency. The final volume productivity reached 27.7 mg of glycolate per litre per hour, thus, the total process capacity can be calculated to 13 tonnes of glycolate per hectare per annum. The exceptional volume productivity of both biomass and glycolate production is demonstrated, and consequently can achieve a yearly CO2 sequestration rate of 35 tonnes per hectare. Although the system shows such high productivity, there are still opportunities to enhance the achieved volume productivity and thus exploit the biotechnological potential of glycolate production from microalgae.
Collapse
Affiliation(s)
- Heiko Wagner
- Department of Algal Biotechnology, Institute for Biology, University of Leipzig, Permoserstrasse 15, 04318, Leipzig, Germany.
| | - Antonia Schad
- Department of Algal Biotechnology, Institute for Biology, University of Leipzig, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Sonja Höhmann
- Department of Solar Materials, Helmholtz Center for Environmental Research-UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Tim Arik Briol
- Department of Solar Materials, Helmholtz Center for Environmental Research-UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Christian Wilhelm
- Department of Algal Biotechnology, Institute for Biology, University of Leipzig, Permoserstrasse 15, 04318, Leipzig, Germany
| |
Collapse
|
9
|
Hudson EP. The Calvin Benson cycle in bacteria: New insights from systems biology. Semin Cell Dev Biol 2024; 155:71-83. [PMID: 37002131 DOI: 10.1016/j.semcdb.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/21/2023] [Accepted: 03/16/2023] [Indexed: 03/31/2023]
Abstract
The Calvin Benson cycle in phototrophic and chemolithoautotrophic bacteria has ecological and biotechnological importance, which has motivated study of its regulation. I review recent advances in our understanding of how the Calvin Benson cycle is regulated in bacteria and the technologies used to elucidate regulation and modify it, and highlight differences between and photoautotrophic and chemolithoautotrophic models. Systems biology studies have shown that in oxygenic phototrophic bacteria, Calvin Benson cycle enzymes are extensively regulated at post-transcriptional and post-translational levels, with multiple enzyme activities connected to cellular redox status through thioredoxin. In chemolithoautotrophic bacteria, regulation is primarily at the transcriptional level, with effector metabolites transducing cell status, though new methods should now allow facile, proteome-wide exploration of biochemical regulation in these models. A biotechnological objective is to enhance CO2 fixation in the cycle and partition that carbon to a product of interest. Flux control of CO2 fixation is distributed over multiple enzymes, and attempts to modulate gene Calvin cycle gene expression show a robust homeostatic regulation of growth rate, though the synthesis rates of products can be significantly increased. Therefore, de-regulation of cycle enzymes through protein engineering may be necessary to increase fluxes. Non-canonical Calvin Benson cycles, if implemented with synthetic biology, could have reduced energy demand and enzyme loading, thus increasing the attractiveness of these bacteria for industrial applications.
Collapse
Affiliation(s)
- Elton P Hudson
- Department of Protein Science, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
10
|
Höhmann S, Briol TA, Ihle N, Frick O, Schmid A, Bühler B. Glycolate as alternative carbon source for Escherichia coli. J Biotechnol 2024; 381:76-85. [PMID: 38190849 DOI: 10.1016/j.jbiotec.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/20/2023] [Accepted: 01/01/2024] [Indexed: 01/10/2024]
Abstract
The physiology of different Escherichia coli stains was analyzed for growth with glycolate as a potentially promising sustainable sole source of carbon and energy. Different E. coli strains showed large differences regarding lag phases after provision of glycolate. Whereas E. coli W showed fast adaptation, E. coli BW25113, JM101, and BL21 (DE3) needed extensive time for adaption (up to 30 generations) until the attainable µmax was reached, which, at 30 °C, amounted to 0.20-0.25 h-1 for all strains. The overexpression of genes encoding glycolate degradation did neither overcome the need for adaptation of E. coli BL21 (DE3) nor improve growth of E. coli W. Rather, high level expression of proteins involved in uptake and initial degradation steps had an adverse effect on growth. Overall, the results show a promising capacity of E. coli strains for growth on glycolate.
Collapse
Affiliation(s)
- Sonja Höhmann
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany; Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Tim Arik Briol
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany; Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Nadine Ihle
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Oliver Frick
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Andreas Schmid
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Bruno Bühler
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany; Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany.
| |
Collapse
|
11
|
Beauclercq S, Grenier O, Arnold AA, Warschawski DE, Wikfors GH, Genard B, Tremblay R, Marcotte I. Metabolomics and lipidomics reveal the effects of the toxic dinoflagellate Alexandrium catenella on immune cells of the blue mussel, Mytilus edulis. HARMFUL ALGAE 2023; 129:102529. [PMID: 37951624 DOI: 10.1016/j.hal.2023.102529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/13/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023]
Abstract
The increasing occurrence of harmful algal blooms, mostly of the dinoflagellate Alexandrium catenella in Canada, profoundly disrupts mussel aquaculture. These filter-feeding shellfish feed on A. catenella and accumulate paralytic shellfish toxins, such as saxitoxin, in tissues, making them unsafe for human consumption. Algal toxins also have detrimental effects upon several physiological functions in mussels, but particularly on the activity of hemocytes - the mussel immune cells. The objective of this work was to determine the effects of experimental exposure to A. catenella upon hemocyte metabolism and activity in the blue mussel, Mytilus edulis. To do so, mussels were exposed to cultures of the toxic dinoflagellate A. catenella for 120 h. The resulting mussel saxitoxin load had measurable effects upon survival of hemocytes and induced a stress response measured as increased ROS production. The neutral lipid fraction of mussel hemocytes decreased two-fold, suggesting a differential use of lipids. Metabolomic 1H nuclear magnetic resonance (NMR) analysis showed that A. catenella modified the energy metabolism of hemocytes as well as hemocyte osmolyte composition. The modified energy metabolism was reenforced by contrasting plasma metabolomes between control and exposed mussels, suggesting that the blue mussel may reduce feed assimilation when exposed to A. catenella.
Collapse
Affiliation(s)
- Stéphane Beauclercq
- Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Downtown Station, Montréal, QC, Canada
| | - Olivier Grenier
- Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski, QC, Canada
| | - Alexandre A Arnold
- Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Downtown Station, Montréal, QC, Canada
| | - Dror E Warschawski
- Laboratoire des Biomolécules, LBM, CNRS UMR 7203, Sorbonne Université, École Normale Supérieure, PSL University, Paris, France
| | - Gary H Wikfors
- Northeast Fisheries Science Center (NEFSC), NOAA Fisheries, Milford, CT, USA
| | - Bertrand Genard
- Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski, QC, Canada; Les laboratoires Iso-BioKem Inc., 367 rue Gratien-Gélinas, Rimouski, QC, Canada
| | - Réjean Tremblay
- Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski, QC, Canada
| | - Isabelle Marcotte
- Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Downtown Station, Montréal, QC, Canada.
| |
Collapse
|
12
|
Griehl C, Schmid A, Wilhelm C. Meilensteine in der Algenbiotechnologie. BIOSPEKTRUM : ZEITSCHRIFT DER GESELLSCHAFT FUR BIOLOGISHE CHEMIE (GBCH) UND DER VEREINIGUNG FUR ALLGEMEINE UND ANGEWANDTE MIKROBIOLOGIE (VAAM) 2023; 29:306-309. [PMID: 37275943 PMCID: PMC10230451 DOI: 10.1007/s12268-023-1942-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recent progress in algal biotechnology has identified new products based on their broad evolutionary origin. Novel metabolites were found for pharmacy, food industry, medicine e.g. tumor suppression and antibiotics. However, sustainable and economical algal production for crude oil replacement is limited by extremely low space time yields in photobioreactors. The consequences are a high energy burden for mass flow dependent processes and the need of space being in conflict with sustainable landscape management. New concepts using algae not as biomass producers but as living catalysts may open new options.
Collapse
Affiliation(s)
- Carola Griehl
- Kompetenzzentrum Algenbiotechnologie, Hochschule Anhalt, Köthen, Deutschland
| | - Andreas Schmid
- Department Solare Materialien, UFZ Leipzig-Halle, Leipzig, Deutschland
| | - Christian Wilhelm
- Institut für Biologie, Universität Leipzig, D-04318 Leipzig, Permoserstraße 15, Deutschland
| |
Collapse
|
13
|
Lee TM, Lin JY, Tsai TH, Yang RY, Ng IS. Clustered regularly interspaced short palindromic repeats (CRISPR) technology and genetic engineering strategies for microalgae towards carbon neutrality: A critical review. BIORESOURCE TECHNOLOGY 2023; 368:128350. [PMID: 36414139 DOI: 10.1016/j.biortech.2022.128350] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Carbon dioxide is the major greenhouse gas and regards as the critical issue of global warming and climate changes. The inconspicuous microalgae are responsible for 40% of carbon fixation among all photosynthetic plants along with a higher photosynthetic efficiency and convert the carbon into lipids, protein, pigments, and bioactive compounds. Genetic approach and metabolic engineering are applied to accelerate the growth rate and biomass of microalgae, hence achieve the mission of carbon neutrality. Meanwhile, CRISPR/Cas9 is efficiently to enhance the productivity of high-value compounds in microalgae for it is easier operation, more affordable and is able to regulate multiple genes simultaneously. The genetic engineering strategies provide the multidisciplinary concept to evolute and increase the CO2 fixation rate through Calvin-Benson-Bassham cycle. Therefore, the technologies, bioinformatics tools, systematic engineering approaches for carbon neutrality and circular economy are summarized and leading one step closer to the decarbonization society in this review.
Collapse
Affiliation(s)
- Tse-Min Lee
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Jia-Yi Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Tsung-Han Tsai
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ru-Yin Yang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
14
|
Bauwe H. Photorespiration - Rubisco's repair crew. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153899. [PMID: 36566670 DOI: 10.1016/j.jplph.2022.153899] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/11/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
The photorespiratory repair pathway (photorespiration in short) was set up from ancient metabolic modules about three billion years ago in cyanobacteria, the later ancestors of chloroplasts. These prokaryotes developed the capacity for oxygenic photosynthesis, i.e. the use of water as a source of electrons and protons (with O2 as a by-product) for the sunlight-driven synthesis of ATP and NADPH for CO2 fixation in the Calvin cycle. However, the CO2-binding enzyme, ribulose 1,5-bisphosphate carboxylase (known under the acronym Rubisco), is not absolutely selective for CO2 and can also use O2 in a side reaction. It then produces 2-phosphoglycolate (2PG), the accumulation of which would inhibit and potentially stop the Calvin cycle and subsequently photosynthetic electron transport. Photorespiration removes the 2-PG and in this way prevents oxygenic photosynthesis from poisoning itself. In plants, the core of photorespiration consists of ten enzymes distributed over three different types of organelles, requiring interorganellar transport and interaction with several auxiliary enzymes. It goes together with the release and to some extent loss of freshly fixed CO2. This disadvantageous feature can be suppressed by CO2-concentrating mechanisms, such as those that evolved in C4 plants thirty million years ago, which enhance CO2 fixation and reduce 2PG synthesis. Photorespiration itself provided a pioneer variant of such mechanisms in the predecessors of C4 plants, C3-C4 intermediate plants. This article is a review and update particularly on the enzyme components of plant photorespiration and their catalytic mechanisms, on the interaction of photorespiration with other metabolism and on its impact on the evolution of photosynthesis. This focus was chosen because a better knowledge of the enzymes involved and how they are embedded in overall plant metabolism can facilitate the targeted use of the now highly advanced methods of metabolic network modelling and flux analysis. Understanding photorespiration more than before as a process that enables, rather than reduces, plant photosynthesis, will help develop rational strategies for crop improvement.
Collapse
Affiliation(s)
- Hermann Bauwe
- University of Rostock, Plant Physiology, Albert-Einstein-Straße 3, D-18051, Rostock, Germany.
| |
Collapse
|
15
|
Höhmann S, Ihle N, Schmid A, Bühler B. Glycolic acid as an alternative carbon and energy source for redox biocatalysis. CHEM-ING-TECH 2022. [DOI: 10.1002/cite.202255380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- S. Höhmann
- Helmholtz Centre for Environmental Research Solar Materials Permoserstr. 15 04318 Leipzig Germany
| | - N. Ihle
- Helmholtz Centre for Environmental Research Solar Materials Permoserstr. 15 04318 Leipzig Germany
| | - A. Schmid
- Helmholtz Centre for Environmental Research Solar Materials Permoserstr. 15 04318 Leipzig Germany
| | - B. Bühler
- Helmholtz Centre for Environmental Research Solar Materials Permoserstr. 15 04318 Leipzig Germany
| |
Collapse
|
16
|
Höhmann S, Ihle N, Schmid A, Bühler B. Glycolic acid as an alternative carbon and energy source for redox biocatalysis. CHEM-ING-TECH 2022. [DOI: 10.1002/cite.202255243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- S. Höhmann
- Helmholtz Centre for Environmental Research Solar Materials Permoserstr. 15 04318 Leipzig Germany
| | - N. Ihle
- Helmholtz Centre for Environmental Research Solar Materials Permoserstr. 15 04318 Leipzig Germany
| | - A. Schmid
- Helmholtz Centre for Environmental Research Solar Materials Permoserstr. 15 04318 Leipzig Germany
| | - B. Bühler
- Helmholtz Centre for Environmental Research Solar Materials Permoserstr. 15 04318 Leipzig Germany
| |
Collapse
|
17
|
Harth FM, Celis J, Taubert A, Rössler S, Wagner H, Goepel M, Wilhelm C, Gläser R. Ru/C-Catalyzed Hydrogenation of Aqueous Glycolic Acid from Microalgae - Influence of pH and Biologically Relevant Additives. ChemistryOpen 2022; 11:e202200050. [PMID: 35822926 PMCID: PMC9278103 DOI: 10.1002/open.202200050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/04/2022] [Indexed: 12/05/2022] Open
Abstract
Ethylene glycol (EG) is obtained by a novel, two-step approach combining a biotechnological and a heterogeneously catalyzed step. First, microalgae are cultivated to photobiocatalytically yield glycolic acid (GA) by means of photosynthesis from CO2 and water. GA is continuously excreted into the surrounding medium. In the second step, the GA-containing algal medium is used as feedstock for catalytic reduction with H2 to EG over a Ru/C catalyst. The present study focuses on the conversion of an authentic algae-derived GA solution. After identification of the key characteristics of the algal medium (compared to pure aqueous GA), the influence of pH, numerous salt additives, pH buffers and other relevant organic molecules on the catalytic GA reduction was investigated. Nitrogen- and sulfur-containing organic molecules can strongly inhibit the reaction. Moreover, pH adjustment by acidification is required, for which H2 SO4 is found most suitable. In combination with a modification of the biotechnological process to mitigate the use of inhibitory compounds, and after acidifying the algal medium, over Ru/C a EG yield of up to 21 % even at non-optimized reaction conditions was achieved.
Collapse
Affiliation(s)
- Florian M. Harth
- Institute of Chemical TechnologyUniversität LeipzigLinnéstr. 304103LeipzigGermany
| | - Joran Celis
- Institute of Chemical TechnologyUniversität LeipzigLinnéstr. 304103LeipzigGermany
| | - Anja Taubert
- Department of Algal BiotechnologyUniversität LeipzigPermoserstr. 1504318LeipzigGermany
| | - Sonja Rössler
- Department of Algal BiotechnologyUniversität LeipzigPermoserstr. 1504318LeipzigGermany
| | - Heiko Wagner
- Department of Algal BiotechnologyUniversität LeipzigPermoserstr. 1504318LeipzigGermany
| | - Michael Goepel
- Institute of Chemical TechnologyUniversität LeipzigLinnéstr. 304103LeipzigGermany
| | - Christian Wilhelm
- Department of Algal BiotechnologyUniversität LeipzigPermoserstr. 1504318LeipzigGermany
| | - Roger Gläser
- Institute of Chemical TechnologyUniversität LeipzigLinnéstr. 304103LeipzigGermany
| |
Collapse
|
18
|
Schad A, Rössler S, Nagel R, Wagner H, Wilhelm C. Crossing and selection of Chlamydomonas reinhardtii strains for biotechnological glycolate production. Appl Microbiol Biotechnol 2022; 106:3539-3554. [PMID: 35511277 PMCID: PMC9151519 DOI: 10.1007/s00253-022-11933-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 11/27/2022]
Abstract
Abstract As an alternative to chemical building blocks derived from algal biomass, the excretion of glycolate has been proposed. This process has been observed in green algae such as Chlamydomonas reinhardtii as a product of the photorespiratory pathway. Photorespiration generally occurs at low CO2 and high O2 concentrations, through the key enzyme RubisCO initiating the pathway via oxygenation of 1.5-ribulose-bisphosphate. In wild-type strains, photorespiration is usually suppressed in favour of carboxylation due to the cellular carbon concentrating mechanisms (CCMs) controlling the internal CO2 concentration. Additionally, newly produced glycolate is directly metabolized in the C2 cycle. Therefore, both the CCMs and the C2 cycle are the key elements which limit the glycolate production in wild-type cells. Using conventional crossing techniques, we have developed Chlamydomonas reinhardtii double mutants deficient in these two key pathways to direct carbon flux to glycolate excretion. Under aeration with ambient air, the double mutant D6 showed a significant and stable glycolate production when compared to the non-producing wild type. Interestingly, this mutant can act as a carbon sink by fixing atmospheric CO2 into glycolate without requiring any additional CO2 supply. Thus, the double-mutant strain D6 can be used as a photocatalyst to produce chemical building blocks and as a future platform for algal-based biotechnology. Key Points • Chlamydomonas reinhardtii cia5 gyd double mutants were developed by sexual crossing • The double mutation eliminates the need for an inhibitor in glycolate production • The strain D6 produces significant amounts of glycolate with ambient air only Supplementary Information The online version contains supplementary material available at 10.1007/s00253-022-11933-y.
Collapse
Affiliation(s)
- Antonia Schad
- Department of Algal Biotechnology, Faculty of Life Science, University of Leipzig, Permoserstraße 15, D-04318, Leipzig, Germany
| | - Sonja Rössler
- Department of Algal Biotechnology, Faculty of Life Science, University of Leipzig, Permoserstraße 15, D-04318, Leipzig, Germany
| | - Raimund Nagel
- Department of Plant Physiology, Faculty of Life Science, University of Leipzig, Johannisallee 21-23, D-04103, Leipzig, Germany
| | - Heiko Wagner
- Department of Algal Biotechnology, Faculty of Life Science, University of Leipzig, Permoserstraße 15, D-04318, Leipzig, Germany
| | - Christian Wilhelm
- Department of Algal Biotechnology, Faculty of Life Science, University of Leipzig, Permoserstraße 15, D-04318, Leipzig, Germany.
| |
Collapse
|
19
|
Selective Hydrogenation of Glycolic Acid to Renewable Ethylene Glycol over Supported Ruthenium Catalysts. ChemCatChem 2022. [DOI: 10.1002/cctc.202101275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Yang F, Zhang J, Cai Z, Zhou J, Li Y. Correction to: Exploring the oxygenase function of Form II Rubisco for production of glycolate from CO 2. AMB Express 2021; 11:132. [PMID: 34559321 PMCID: PMC8463643 DOI: 10.1186/s13568-021-01293-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
21
|
Moungmoon T, Chaichana C, Pumas C, Pathom-Aree W, Ruangrit K, Pekkoh J. Quantitative analysis of methane and glycolate production from microalgae using undiluted wastewater obtained from chicken-manure biogas digester. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136577. [PMID: 31982736 DOI: 10.1016/j.scitotenv.2020.136577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 01/03/2020] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
Microalgal biomass is often used as a raw material in methane production. Some microalgae possess a complex cell-wall structure which has a low degradability of microorganisms in anaerobic digestion. However, some microalgae produce glycolate, which is excreted outside the cell and can be used to produce methane under anaerobic condition. This research aims to investigate microalgal cultivation using wastewater to reduce nutrients and efficiently create glycolate. Two strains of microalgae (Acutodesmus sp. AARL G023, Chlorella sp. AARL G049) and two microalgal consortia were cultivated at dilutions of 0.5-fold (W50), 0.75-fold (W75) and undiluted wastewater (W100). The results showed that the microalgal consortium with undiluted wastewater (WCW100) consisted of Leptolyngbya sp. (30.4%), Chlorella sp. (16.1%) and Chlamydomonas sp. (52.2%), revealed the highest biomass productivity at 64.38 ± 14.54 mg·L-1·d-1 and the highest glycolate productivity at 5.12 ± 0.48 mmol·L-1·d-1. The cultivation of microalgae effectively reduced ammonium‑nitrogen (NH4+-N) and soluble reactive phosphorus (SRP) levels in the wastewater at 43.5 ± 1.3% and 49.6 ± 6.9%. Furthermore, WCW100 showed the highest biogas productivity at 1.44 ± 0.07 mL·g-1·d-1 and the highest methane content at 58.3 ± 6.0% v/v. This study indicates that there is a definite potential of using undiluted wastewater for microalgal biomass production and glycolate production that can reduce the wastewater volume and be applied as a raw material for methane production.
Collapse
Affiliation(s)
- Thoranit Moungmoon
- PhD Degree Program in Environmental Science, Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chatchawan Chaichana
- Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chayakorn Pumas
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wasu Pathom-Aree
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Khomsan Ruangrit
- Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jeeraporn Pekkoh
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|