1
|
Gogoi N, Susila H, Leach J, Müllner M, Jones B, Pogson BJ. Developing frameworks for nanotechnology-driven DNA-free plant genome-editing. TRENDS IN PLANT SCIENCE 2025; 30:249-268. [PMID: 39477773 DOI: 10.1016/j.tplants.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 03/08/2025]
Abstract
The bottlenecks of conventional plant genome-editing methods gave an innovative rise to nanotechnology as a delivery tool to manipulate gene(s) of interest. Studies suggest a strong correlation between the physicochemical properties of nanomaterials and their efficiency in gene delivery to different plant species/tissues. In this opinion article we highlight the need for a deeper understanding of plant-nanomaterial interactions to align their full capabilities with the strategic goals of plant genome-editing. Additionally, we emphasize DNA-free plant genome-editing approaches to potentially mitigate concerns surrounding genetically modified organisms (GMOs). Lastly, we propose a strategic integration of the principles of responsible research and innovation (RRI) in R&D. We aim to initiate a dialogue on developing collaborative and socio-technical frameworks for nanotechnology and DNA-free plant genome-editing.
Collapse
Affiliation(s)
- Neelam Gogoi
- ARC Training Centre for Future Crops Development, Research School of Biology, College of Science, The Australian National University, Canberra, ACT 2601, Australia.
| | - Hendry Susila
- ARC Training Centre for Future Crops Development, Research School of Biology, College of Science, The Australian National University, Canberra, ACT 2601, Australia
| | - Joan Leach
- ARC Training Centre for Future Crops Development, Research School of Biology, College of Science, The Australian National University, Canberra, ACT 2601, Australia; Australian National Centre for the Public Awareness of Science, The Australian National University, Canberra, ACT 2601, Australia
| | - Markus Müllner
- Key Centre for Polymers & Colloids, School of Chemistry, Faculty of Science, The University of Sydney, NSW 2006, Australia; Sydney Institute of Agriculture, The University of Sydney, NSW 2006, Australia; The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, NSW 2006, Australia
| | - Brian Jones
- Sydney Institute of Agriculture, The University of Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Barry J Pogson
- ARC Training Centre for Future Crops Development, Research School of Biology, College of Science, The Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
2
|
Wang Y, Sun M, Zhu W, Chen L, Zhu S, Zhao J, Teixeira da Silva JA, Yu X. Advances in the study of senescence mechanisms in the genus Paeonia. HORTICULTURE RESEARCH 2025; 12:uhae344. [PMID: 40236982 PMCID: PMC11997661 DOI: 10.1093/hr/uhae344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/01/2024] [Indexed: 04/17/2025]
Abstract
Tree and herbaceous peony are considerably important ornamental plants within the genus Paeonia, and hold substantial horticultural value. This review summarizes the progress in research on the senescence mechanisms of tree and herbaceous peony flowers, focusing on the regulation of gene expression, hormonal interactions, and the influence of environmental factors on senescence. Using high-throughput sequencing technologies, key genes displaying differential expression during senescence have been identified, and these play central roles in hormone signaling and cellular senescence. The interactions among plant hormones, including ethylene, abscisic acid, gibberellins, cytokinins, and auxins, also play key roles in the regulation of senescence. Adjustments in antioxidant levels, as well as water and energy metabolism, are critical factors in the delay of senescence. Environmental factors, including light, temperature, drought, and salt stress, also significantly affect senescence. Additionally, this review proposes future research directions, including the expansion of the molecular regulatory network of senescence in Paeonia, the use of gene editing technologies like CRISPR/Cas9, multiomics studies, and exploratory comparative research on spatial biology senescence mechanisms. These studies aim to deepen our understanding of the molecular mechanisms that underlie senescence in Paeonia and provide a scientific basis for cultivar improvement and postharvest management of these ornamental commodities in the horticultural industry.
Collapse
Affiliation(s)
- Yuxuan Wang
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, and Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China
| | - Miao Sun
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, and Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China
| | - Wei Zhu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Le Chen
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, and Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China
| | - Shaocai Zhu
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, and Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China
| | - Jiageng Zhao
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, and Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China
| | | | - Xiaonan Yu
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, and Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China
| |
Collapse
|
3
|
Baek S, Naing AH, Kang H, Chung MY, Kim CK. Overexpression of acdS in petunia reduces ethylene production and improves tolerance to heat stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:789-797. [PMID: 38858861 DOI: 10.1111/plb.13672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/16/2024] [Indexed: 06/12/2024]
Abstract
Petunia hybrida, widely grown as a bedding plant, has reduced growth and flower quality at temperatures above 30 °C (heat stress), primarily due to heat stress-induced ethylene (ET) production. The gene acdS encodes the 1-aminocyclopropane-1-carboxylate (ACC) deaminase (ACCD) enzyme, which is known for its role in reducing ET production by breaking down the ET precursor, ACC, in plant tissues. This study investigated the impact of heat stress on both 'Mirage Rose' WT petunia and its acdS-overexpressing transgenic lines. Heat stress-induced growth inhibition was observed in WT plants but not in transgenic plants. The increased stress tolerance of transgenic plants over WT plants was associated with lower ET production, ROS accumulation, higher SPAD values, water content, and relative water content. Furthermore, higher sensitivity of the WT to heat stress than the transgenic plants was confirmed by analysing ET signalling genes, heat shock transcription factor genes, and antioxidant- and proline-related genes, more strongly induced in WT than in transgenic plants. Overall, this study suggests the potential application of acdS overexpression in other floriculture plants as a viable strategy for developing heat stress-tolerant varieties. This approach holds promise for advancing the floricultural industry by overcoming challenges related to heat-induced growth inhibition and loss of flower quality.
Collapse
Affiliation(s)
- S Baek
- Department of Horticultural Science, Kyungpook National University, Daegu, South Korea
| | - A H Naing
- Department of Horticultural Science, Kyungpook National University, Daegu, South Korea
| | - H Kang
- Department of Horticultural Science, Kyungpook National University, Daegu, South Korea
| | - M Y Chung
- Department of Agricultural Education, Sunchon National University, Suncheon, South Korea
| | - C K Kim
- Department of Horticultural Science, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
4
|
Panda D, Karmakar S, Dash M, Tripathy SK, Das P, Banerjee S, Qi Y, Samantaray S, Mohapatra PK, Baig MJ, Molla KA. Optimized protoplast isolation and transfection with a breakpoint: accelerating Cas9/sgRNA cleavage efficiency validation in monocot and dicot. ABIOTECH 2024; 5:151-168. [PMID: 38974867 PMCID: PMC11224192 DOI: 10.1007/s42994-024-00139-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/18/2024] [Indexed: 07/09/2024]
Abstract
The CRISPR-Cas genome editing tools are revolutionizing agriculture and basic biology with their simplicity and precision ability to modify target genomic loci. Software-predicted guide RNAs (gRNAs) often fail to induce efficient cleavage at target loci. Many target loci are inaccessible due to complex chromatin structure. Currently, there is no suitable tool available to predict the architecture of genomic target sites and their accessibility. Hence, significant time and resources are spent on performing editing experiments with inefficient guides. Although in vitro-cleavage assay could provide a rough assessment of gRNA efficiency, it largely excludes the interference of native genomic context. Transient in-vivo testing gives a proper assessment of the cleavage ability of editing reagents in a native genomic context. Here, we developed a modified protocol that offers highly efficient protoplast isolation from rice, Arabidopsis, and chickpea, using a sucrose gradient, transfection using PEG (polyethylene glycol), and validation of single guide RNAs (sgRNAs) cleavage efficiency of CRISPR-Cas9. We have optimized various parameters for PEG-mediated protoplast transfection and achieved high transfection efficiency using our protocol in both monocots and dicots. We introduced plasmid vectors containing Cas9 and sgRNAs targeting genes in rice, Arabidopsis, and chickpea protoplasts. Using dual sgRNAs, our CRISPR-deletion strategy offers straightforward detection of genome editing success by simple agarose gel electrophoresis. Sanger sequencing of PCR products confirmed the editing efficiency of specific sgRNAs. Notably, we demonstrated that isolated protoplasts can be stored for up to 24/48 h with little loss of viability, allowing a pause between isolation and transfection. This high-efficiency protocol for protoplast isolation and transfection enables rapid (less than 7 days) validation of sgRNA cleavage efficiency before proceeding with stable transformation. The isolation and transfection method can also be utilized for rapid validation of editing strategies, evaluating diverse editing reagents, regenerating plants from transfected protoplasts, gene expression studies, protein localization and functional analysis, and other applications. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-024-00139-7.
Collapse
Affiliation(s)
- Debasmita Panda
- ICAR National Rice Research Institute, Cuttack, Odisha 753006 India
- Department of Botany, Ravenshaw University, Cuttack, Odisha 753003 India
| | | | - Manaswini Dash
- ICAR National Rice Research Institute, Cuttack, Odisha 753006 India
| | | | - Priya Das
- ICAR National Rice Research Institute, Cuttack, Odisha 753006 India
| | - Sagar Banerjee
- ICAR National Rice Research Institute, Cuttack, Odisha 753006 India
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742 USA
| | | | | | - Mirza J. Baig
- ICAR National Rice Research Institute, Cuttack, Odisha 753006 India
| | | |
Collapse
|
5
|
Karthik S, Chae J, Han SJ, Kim JH, Kim HJ, Chung YS, Kim HU, Heo JB. Improving the Traits of Perilla frutescens (L.) Britt Using Gene Editing Technology. PLANTS (BASEL, SWITZERLAND) 2024; 13:1466. [PMID: 38891275 PMCID: PMC11174989 DOI: 10.3390/plants13111466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Plant breeding has evolved significantly over time with the development of transformation and genome editing techniques. These new strategies help to improve desirable traits in plants. Perilla is a native oil crop grown in Korea. The leaves contain many secondary metabolites related to whitening, aging, antioxidants, and immunity, including rosmarinic acid, vitamin E, luteolin, anthocyanins, and beta-carotene. They are used as healthy and functional food ingredients. It is an industrially valuable cosmetics crop. In addition, perilla seeds are rich in polyunsaturated fatty acids, such as α-linolenic acid and linoleic acid. They are known to be effective in improving neutral lipids in the blood, improving blood circulation, and preventing dementia and cardiovascular diseases, making them excellent crops whose value can be increased through improved traits. This research will also benefit perilla seeds, which can increase their stock through various methods, such as the increased production of functional substances and improved productivity. Recently, significant attention has been paid to trait improvement research involving gene-editing technology. Among these strategies, CRISPR/Cas9 is highly adaptable, enabling accurate and efficient genome editing, targeted mutagenesis, gene knockouts, and the regulation of gene transcription. CRISPR/Cas9-based genome editing has enormous potential for improving perilla; however, the regulation of genome editing is still at an early stage. Therefore, this review summarizes the enhancement of perilla traits using genome editing technology and outlines future directions.
Collapse
Affiliation(s)
- Sivabalan Karthik
- Department of Molecular Genetic Engineering, Dong-A University, Busan 49315, Republic of Korea; (S.K.); (J.C.); (S.J.H.); (J.H.K.); (H.J.K.); (Y.-S.C.)
| | - Jia Chae
- Department of Molecular Genetic Engineering, Dong-A University, Busan 49315, Republic of Korea; (S.K.); (J.C.); (S.J.H.); (J.H.K.); (H.J.K.); (Y.-S.C.)
| | - Seong Ju Han
- Department of Molecular Genetic Engineering, Dong-A University, Busan 49315, Republic of Korea; (S.K.); (J.C.); (S.J.H.); (J.H.K.); (H.J.K.); (Y.-S.C.)
| | - Jee Hye Kim
- Department of Molecular Genetic Engineering, Dong-A University, Busan 49315, Republic of Korea; (S.K.); (J.C.); (S.J.H.); (J.H.K.); (H.J.K.); (Y.-S.C.)
| | - Hye Jeong Kim
- Department of Molecular Genetic Engineering, Dong-A University, Busan 49315, Republic of Korea; (S.K.); (J.C.); (S.J.H.); (J.H.K.); (H.J.K.); (Y.-S.C.)
| | - Young-Soo Chung
- Department of Molecular Genetic Engineering, Dong-A University, Busan 49315, Republic of Korea; (S.K.); (J.C.); (S.J.H.); (J.H.K.); (H.J.K.); (Y.-S.C.)
| | - Hyun Uk Kim
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Jae Bok Heo
- Department of Molecular Genetic Engineering, Dong-A University, Busan 49315, Republic of Korea; (S.K.); (J.C.); (S.J.H.); (J.H.K.); (H.J.K.); (Y.-S.C.)
| |
Collapse
|
6
|
Adedeji OS, Naing AH, Kang H, Xu J, Chung MY, Kim CK. Editing of the ethylene biosynthesis gene in carnation using CRISPR-Cas9 ribonucleoprotein complex. PLANT METHODS 2024; 20:20. [PMID: 38308305 PMCID: PMC10835871 DOI: 10.1186/s13007-024-01143-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/20/2024] [Indexed: 02/04/2024]
Abstract
The study aimed to edit ethylene (ET) biosynthesis genes [1-aminocyclopropane-1-carboxylic acid (ACC) synthetase 1 (ACS1) and ACC oxidase 1 (ACO1)] in carnation using the CRISPR/Cas9 ribonucleoprotein (RNP) complex system. Initially, the conserved regions of the target genes (ACS1 and ACO1) were validated for the generation of different single guide RNAs (sgRNAs), followed by the use of an in vitro cleavage assay to confirm the ability of the sgRNAs to cleave the target genes specifically. The in vitro cleavage assay revealed that the sgRNAs were highly effective in cleaving their respective target regions. The complex of sgRNA: Cas9 was directly delivered into the carnation protoplast, and the target genes in the protoplast were deep-sequenced. The results revealed that the sgRNAs were applicable for editing the ET biosynthesis genes, as the mutation frequency ranged from 8.8 to 10.8% for ACO1 and 0.2-58.5% for ACS1. When sequencing the target genes in the callus derived from the protoplasts transformed with sgRNA: Cas9, different indel patterns (+ 1, - 1, and - 8 bp) in ACO1 and (- 1, + 1, and + 11) in ACS1 were identified. This study highlighted the potential application of CRISPR/Cas9 RNP complex system in facilitating precise gene editing for ET biosynthesis in carnation.
Collapse
Affiliation(s)
| | - Aung Htay Naing
- Department of Horticulture, Kyungpook National University, Daegu, 41566, South Korea.
| | - Hyunhee Kang
- Department of Horticulture, Kyungpook National University, Daegu, 41566, South Korea
| | - Junping Xu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048, China
| | - Mi Young Chung
- Department of Agricultural Education, Sunchon National University, Suncheon, South Korea
| | - Chang Kil Kim
- Department of Horticulture, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
7
|
Mishra A, Pandey VP. CRISPR/Cas system: A revolutionary tool for crop improvement. Biotechnol J 2024; 19:e2300298. [PMID: 38403466 DOI: 10.1002/biot.202300298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/01/2023] [Accepted: 12/22/2023] [Indexed: 02/27/2024]
Abstract
World's population is elevating at an alarming rate thus, the rising demands of producing crops with better adaptability to biotic and abiotic stresses, superior nutritional as well as morphological qualities, and generation of high-yielding varieties have led to encourage the development of new plant breeding technologies. The availability and easy accessibility of genome sequences for a number of crop plants as well as the development of various genome editing technologies such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) has opened up possibilities to develop new varieties of crop plants with superior desirable traits. However, these approaches has limitation of being more expensive as well as having complex steps and time-consuming. The CRISPR/Cas genome editing system has been intensively studied for allowing versatile target-specific modifications of crop genome that fruitfully aid in the generation of novel varieties. It is an advanced and promising technology with the potential to meet hunger needs and contribute to food production for the ever-growing human population. This review summarizes the usage of novel CRISPR/Cas genome editing tool for targeted crop improvement in stress resistance, yield, quality and nutritional traits in the desired crop plants.
Collapse
Affiliation(s)
- Ayushi Mishra
- Department of Biochemistry, University of Lucknow, Lucknow, India
| | - Veda P Pandey
- Department of Biochemistry, University of Lucknow, Lucknow, India
| |
Collapse
|
8
|
Mekapogu M, Song HY, Lim SH, Jung JA. Genetic Engineering and Genome Editing Advances to Enhance Floral Attributes in Ornamental Plants: An Update. PLANTS (BASEL, SWITZERLAND) 2023; 12:3983. [PMID: 38068619 PMCID: PMC10707928 DOI: 10.3390/plants12233983] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 10/16/2024]
Abstract
The ornamental horticulture industry is a highly dynamic and rapidly changing market. Constant development of novel cultivars with elite traits is essential to sustain competitiveness. Conventional breeding has been used to develop cultivars, which is often laborious. Biotechnological strategies such as genetic engineering have been crucial in manipulating and improving various beneficial traits that are technically not possible through cross-breeding. One such trait is the highly desired blue-colored flower in roses and chrysanthemums, which can be achieved through transgenic technology. Advances in genome sequencing platforms have enhanced the opportunities to access the whole genome sequence in various ornamentals, facilitating the dissection of the molecular genetics and regulatory controls of different traits. The recent advent of genome editing tools, including CRISPR/Cas9, has revolutionized plant breeding. CRISPR/Cas9-based gene editing offers efficient and highly precise trait modification, contributing to various beneficial advancements. Although genome editing in ornamentals is currently in its infancy, the recent increase in the availability of ornamental genome sequences provides a platform to extend the frontiers of future genome editing in ornamentals. Hence, this review depicts the implication of various commercially valuable ornamental attributes, and details the research attempts and achievements in enhancing floral attributes using genetic engineering and genome editing in ornamental plants.
Collapse
Affiliation(s)
| | | | | | - Jae-A Jung
- Floriculture Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration, Wanju 55365, Republic of Korea
| |
Collapse
|
9
|
Partap M, Verma V, Thakur M, Bhargava B. Designing of future ornamental crops: a biotechnological driven perspective. HORTICULTURE RESEARCH 2023; 10:uhad192. [PMID: 38023473 PMCID: PMC10681008 DOI: 10.1093/hr/uhad192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/14/2023] [Indexed: 12/01/2023]
Abstract
With a basis in human appreciation of beauty and aesthetic values, the new era of ornamental crops is based on implementing innovative technologies and transforming symbols into tangible assets. Recent advances in plant biotechnology have attracted considerable scientific and industrial interest, particularly in terms of modifying desired plant traits and developing future ornamental crops. By utilizing omics approaches, genomic data, genetic engineering, and gene editing tools, scientists have successively explored the underlying molecular mechanism and potential gene(s) behind trait regulation such as floral induction, plant architecture, stress resistance, plasticity, adaptation, and phytoremediation in ornamental crop species. These signs of progress lay a theoretical and practical foundation for designing and enhancing the efficiency of ornamental plants for a wide range of applications. In this review, we briefly summarized the existing literature and advances in biotechnological approaches for the improvement of vital traits in ornamental plants. The future ornamental plants, such as light-emitting plants, biotic/abiotic stress detectors, and pollution abatement, and the introduction of new ornamental varieties via domestication of wild species are also discussed.
Collapse
Affiliation(s)
- Mahinder Partap
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR), Institute of Himalayan Bioresource Technology (IHBT), Post Box No. 6, 176 061 (HP) Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Vipasha Verma
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR), Institute of Himalayan Bioresource Technology (IHBT), Post Box No. 6, 176 061 (HP) Palampur, India
| | - Meenakshi Thakur
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR), Institute of Himalayan Bioresource Technology (IHBT), Post Box No. 6, 176 061 (HP) Palampur, India
| | - Bhavya Bhargava
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR), Institute of Himalayan Bioresource Technology (IHBT), Post Box No. 6, 176 061 (HP) Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| |
Collapse
|
10
|
Matinvafa MA, Makani S, Parsasharif N, Zahed MA, Movahed E, Ghiasvand S. CRISPR-Cas technology secures sustainability through its applications: a review in green biotechnology. 3 Biotech 2023; 13:383. [PMID: 37920190 PMCID: PMC10618153 DOI: 10.1007/s13205-023-03786-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 09/09/2023] [Indexed: 11/04/2023] Open
Abstract
The CRISPR-Cas system's applications in biotechnology offer a promising avenue for addressing pressing global challenges, such as climate change, environmental pollution, the energy crisis, and the food crisis, thereby advancing sustainability. The ever-growing demand for food due to the projected population of around 9.6 billion by 2050 requires innovation in agriculture. CRISPR-Cas technology emerges as a powerful solution, enhancing crop varieties, optimizing yields, and improving resilience to stressors. It offers multiple gene editing, base editing, and prime editing, surpassing conventional methods. CRISPR-Cas introduces disease and herbicide resistance, high-yielding, drought-tolerant, and water-efficient crops to address rising water utilization and to improve the efficiency of agricultural practices which promise food sustainability and revolutionize agriculture for the benefit of future generations. The application of CRISPR-Cas technology extends beyond agriculture to address environmental challenges. With the adverse impacts of climate change and pollution endangering ecosystems, there is a growing need for sustainable solutions. The technology's potential in carbon capture and reduction through bio-sequestration is a pivotal strategy for combating climate change. Genomic advancements allow for the development of genetically modified organisms, optimizing biofuel and biomaterial production, and contributing to a renewable and sustainable energy future. This study reviews the multifaceted applications of CRISPR-Cas technology in the agricultural and environmental fields and emphasizes its potential to secure a sustainable future.
Collapse
Affiliation(s)
- Mohammad Ali Matinvafa
- Department of Biotechnology & Environment, Faculty of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Shadi Makani
- Faculty of Biological Sciences, Kharazmi University, Tehran, 14911 - 15719 Iran
| | - Negin Parsasharif
- Faculty of Veterinary Medicine, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Mohammad Ali Zahed
- Faculty of Biological Sciences, Kharazmi University, Tehran, 14911 - 15719 Iran
| | - Elaheh Movahed
- Wadsworth Center, New York State Department of Health, Albany, NY USA
| | - Saeedeh Ghiasvand
- Department of Biology, Faculty of Basic Science, Malayer University, Malayer, Hamedan, Iran
| |
Collapse
|
11
|
Naing AH, Baek S, Campol JR, Kang H, Kim CK. Loss of ACO4 in petunia improves abiotic stress tolerance by reducing the deleterious effects of stress-induced ethylene. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:107998. [PMID: 37678091 DOI: 10.1016/j.plaphy.2023.107998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/07/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023]
Abstract
To investigate the role of ethylene (ET) in abiotic stress tolerance in petunia cv. 'Mirage Rose', petunia plants in which the ET biosynthesis gene 1-aminocyclopropane-1-carboxylic acid oxidase 4 (ACO4) was knocked out (phaco4 mutants) and wild-type (WT) plants were exposed to heat and drought conditions. Loss of function of ACO4 significantly delayed leaf senescence and chlorosis under heat and drought stress by maintaining the SPAD values and the relative water content, indicating a greater stress tolerance of phaco4 mutants than that of WT plants. This tolerance was related to the lower ET and reactive oxygen species levels in the mutants than in WT plants. Furthermore, the stress-induced expression of genes related to ET signal transduction, antioxidant and proline activities, heat response, and biosynthesis of abscisic acid was higher in the mutants than in WT plants, indicating a greater stress tolerance in the former than in the latter. These results demonstrate the deleterious effects of stress-induced ET on plant growth and provide a better physiological and molecular understanding of the role of stress ET in the abiotic stress response of petunia. Because the loss of function of ACO4 in petunia improved stress tolerance, we suggest that ACO4 plays a vital role in stress-induced leaf senescence and acts as a negative regulator of abiotic stress tolerance.
Collapse
Affiliation(s)
- Aung Htay Naing
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, South Korea
| | - Sangcheol Baek
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, South Korea
| | - Jova Riza Campol
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, South Korea
| | - Hyunhee Kang
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, South Korea
| | - Chang Kil Kim
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
12
|
Subburaj S, Agapito-Tenfen SZ. Establishment of targeted mutagenesis in soybean protoplasts using CRISPR/Cas9 RNP delivery via electro-transfection. FRONTIERS IN PLANT SCIENCE 2023; 14:1255819. [PMID: 37841627 PMCID: PMC10570537 DOI: 10.3389/fpls.2023.1255819] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/08/2023] [Indexed: 10/17/2023]
Abstract
The soybean (Glycine max L.) is an important crop with high agronomic value. The improvement of agronomic traits through gene editing techniques has broad application prospects in soybean. The polyethylene glycol (PEG)-mediated cell transfection has been successfully used to deliver the CRISPR/Cas9-based ribonucleoprotein (RNP) into soybean protoplasts. However, several downstream analyses or further cell regeneration protocols might be hampered by PEG contamination within the samples. Here in this study, we attempted to transfect CRISPR/Cas9 RNPs into trifoliate leaf-derived soybean protoplasts using Neon electroporation to overcome the need for PEG transfection for the first time. We investigated different electroporation parameters including pulsing voltage (V), strength and duration of pulses regarding protoplast morphology, viability, and delivery of CRISPR/Cas9. Electroporation at various pulsing voltages with 3 pulses and 10 ms per pulse was found optimal for protoplast electro-transfection. Following electro-transfection at various pulsing voltages (500 V, 700 V, 1,000 V, and 1,300 V), intact protoplasts were observed at all treatments. However, the relative frequency of cell viability and initial cell divisions decreased with increasing voltages. Confocal laser scanning microscopy (CLSM) confirmed that the green fluorescent protein (GFP)-tagged Cas9 was successfully internalized into the protoplasts. Targeted deep sequencing results revealed that on-target insertion/deletion (InDel) frequencies were increased with increasing voltages in protoplasts electro-transfected with CRISPR/Cas9 RNPs targeting constitutive pathogen response 5 (CPR5). InDel patterns ranged from +1 bp to -6 bp at three different target sites in CPR5 locus with frequencies ranging from 3.8% to 8.1% following electro-transfection at 1,300 V and 2.1% to 3.8% for 700 V and 1,000 V, respectively. Taken together, our results demonstrate that the CRISPR/Cas9 RNP system can be delivered into soybean protoplasts by the Neon electroporation system for efficient and effective gene editing. The electro-transfection system developed in this study would also further facilitate and serve as an alternative delivery method for DNA-free genome editing of soybean and other related species for genetic screens and potential trait improvement.
Collapse
Affiliation(s)
| | - Sarah Zanon Agapito-Tenfen
- NORCE Norwegian Research Centre AS, Climate & Environment Department, Siva Innovasjonssenter, Tromsø, Norway
| |
Collapse
|
13
|
Lee JS, Bae SJ, Kim JS, Kim C, Kang BC. A streamlined guide RNA screening system for genome editing in Sorghum bicolor. PLANT METHODS 2023; 19:90. [PMID: 37633915 PMCID: PMC10463630 DOI: 10.1186/s13007-023-01058-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/18/2023] [Indexed: 08/28/2023]
Abstract
BACKGROUND Genome editing tools derived from clustered regularly interspaced short palindromic repeats (CRISPR) systems have been developed for generating targeted mutations in plants. Although these tools hold promise for rapid crop improvement, target-specific guide RNAs exhibit variable activity. To improve genome editing, a rapid and precise method for evaluating their efficiency is necessary. RESULTS Here we report an efficient system for screening single guide RNAs (sgRNAs) for genome editing in sorghum using a transient protoplast transfection assay. Protoplasts were isolated from leaves from sorghum plants cultivated under three different conditions. Cultivation for three days of continuous darkness following seven days with a 16-h light and 8-h dark photoperiod resulted in the highest yield of viable protoplasts and the highest protoplast transfection efficiency. We tested both plasmid-mediated and ribonucleoprotein-based delivery to protoplasts, via polyethylene glycol-mediated transfection, of CRISPR components targeting the sorghum genome. The frequencies of small insertions and deletions induced by a set of sgRNAs targeting four endogenous sorghum genes were analyzed via targeted deep sequencing. Our screening system induced indels in sorghum protoplasts at frequencies of up to 77.8% (plasmid) and 18.5% (RNP). The entire screening system was completed within 16 days. CONCLUSIONS The screening system optimized in this study for predicting sgRNA activity for genome editing in sorghum is efficient and straightforward. This system will reduce the time and effort needed for sorghum genome editing.
Collapse
Affiliation(s)
- Jeong Sun Lee
- Center for Genome Engineering, Institute for Basic Science, Daejeon, Republic of Korea
- Department of Crop Science, College of Agricultural and Life Sciences, Chungnam National University, Daejeon, Republic of Korea
- National Research Safety Headquarters, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Su-Ji Bae
- Center for Genome Engineering, Institute for Basic Science, Daejeon, Republic of Korea
| | - Jin-Soo Kim
- NUS Synthetic Biology for Clinical & Technological Innovation (SynCTI) and Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Changsoo Kim
- Department of Crop Science, College of Agricultural and Life Sciences, Chungnam National University, Daejeon, Republic of Korea.
| | - Beum-Chang Kang
- Center for Genome Engineering, Institute for Basic Science, Daejeon, Republic of Korea.
- Department of Horticulture, College of Agricultural Life Science, Jeonbuk National University, Jeonju, Republic of Korea.
| |
Collapse
|
14
|
Ali A, Zafar MM, Farooq Z, Ahmed SR, Ijaz A, Anwar Z, Abbas H, Tariq MS, Tariq H, Mustafa M, Bajwa MH, Shaukat F, Razzaq A, Maozhi R. Breakthrough in CRISPR/Cas system: Current and future directions and challenges. Biotechnol J 2023; 18:e2200642. [PMID: 37166088 DOI: 10.1002/biot.202200642] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023]
Abstract
Targeted genome editing (GE) technology has brought a significant revolution in fictional genomic research and given hope to plant scientists to develop desirable varieties. This technology involves inducing site-specific DNA perturbations that can be repaired through DNA repair pathways. GE products currently include CRISPR-associated nuclease DNA breaks, prime editors generated DNA flaps, single nucleotide-modifications, transposases, and recombinases. The discovery of double-strand breaks, site-specific nucleases (SSNs), and repair mechanisms paved the way for targeted GE, and the first-generation GE tools, ZFNs and TALENs, were successfully utilized in plant GE. However, CRISPR-Cas has now become the preferred tool for GE due to its speed, reliability, and cost-effectiveness. Plant functional genomics has benefited significantly from the widespread use of CRISPR technology for advancements and developments. This review highlights the progress made in CRISPR technology, including multiplex editing, base editing (BE), and prime editing (PE), as well as the challenges and potential delivery mechanisms.
Collapse
Affiliation(s)
- Ahmad Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | | | - Zunaira Farooq
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Syed Riaz Ahmed
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Science (PIEAS), Nilore, Pakistan
| | - Aqsa Ijaz
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Science (PIEAS), Nilore, Pakistan
| | - Zunaira Anwar
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Science (PIEAS), Nilore, Pakistan
| | - Huma Abbas
- Department of Plant Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Sayyam Tariq
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Science (PIEAS), Nilore, Pakistan
| | - Hala Tariq
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Mahwish Mustafa
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | | | - Fiza Shaukat
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Abdul Razzaq
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Ren Maozhi
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Institute of, Urban Agriculture, Chinese Academy of Agriculture Science, Chengdu, China
| |
Collapse
|
15
|
Suputri NPAEO, Prasojo IS, Prabowo LAT, Purwestri YA, Semiarti E. Identification of early flowering mutant gene in Phalaenopsis amabilis (L.) Blume for sgRNA construction in CRISPR/Cas9 genome editing system. BRAZ J BIOL 2023; 84:e268133. [PMID: 37283391 DOI: 10.1590/1519-6984.268133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 04/12/2023] [Indexed: 06/08/2023] Open
Abstract
Phalaenopsis amabilis (L.) Blume commonly called Moth Orchid (Orchidaceae) is a natural orchid species designated as the National Flower of Indonesia for its beautiful flower shape and long-lasting flowering period. Basically, P. amabilis has a long vegetative phase that cause late flowering, about 2 to 3 years for flowering, hence a method to shorten vegetative period is desired. The latest technological approach that can be used to accelerate flowering of P. amabilis is the CRISPR/Cas9 genome editing method to inactivate the GAI (Gibberellic Acid Insensitive) gene as a mutant gene that can accelerate the regulation of FLOWERING TIME (FT) genes flowering biosynthesis pathway. The approach that needs to be taken is to silence the GAI gene with a knockout system which begins with identifying and characterizing the GAI target gene in the P. amabilis which will be used as a single guide RNA. CRISPR/Cas9 mediated knockout efficiency is highly dependent on the properties of the sgRNA used. SgRNA consists of a target sequence, determining its specificity performance. We executed phylogenetic clustering for the PaGAI protein with closely related orchid species such as Dendrobium capra, Dendrobium cultivars and Cymbidium sinensis. SWISS-Model as tool webserver for protein structure homology modeling. Results show that P. amabilis has a specific domain with the occurrence of point mutations in the two conservative domains. Therefore, a single guide RNA reconstruction needs to be implemented.
Collapse
Affiliation(s)
- N P A E O Suputri
- Universitas Gadjah Mada, Faculty of Biology, Department of Tropical Biology, Yogyakarta, Special Region of Yogyakarta, Indonesia
| | - I S Prasojo
- Universitas Gadjah Mada, Faculty of Biology, Department of Tropical Biology, Yogyakarta, Special Region of Yogyakarta, Indonesia
| | - L A T Prabowo
- Universitas Gadjah Mada, Faculty of Biology, Department of Tropical Biology, Yogyakarta, Special Region of Yogyakarta, Indonesia
| | - Y A Purwestri
- Universitas Gadjah Mada, Faculty of Biology, Department of Tropical Biology, Yogyakarta, Special Region of Yogyakarta, Indonesia
| | - E Semiarti
- Universitas Gadjah Mada, Faculty of Biology, Department of Tropical Biology, Yogyakarta, Special Region of Yogyakarta, Indonesia
| |
Collapse
|
16
|
Narayanan Z, Glick BR. Biotechnologically Engineered Plants. BIOLOGY 2023; 12:biology12040601. [PMID: 37106801 PMCID: PMC10135915 DOI: 10.3390/biology12040601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/08/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023]
Abstract
The development of recombinant DNA technology during the past thirty years has enabled scientists to isolate, characterize, and manipulate a myriad of different animal, bacterial, and plant genes. This has, in turn, led to the commercialization of hundreds of useful products that have significantly improved human health and well-being. Commercially, these products have been mostly produced in bacterial, fungal, or animal cells grown in culture. More recently, scientists have begun to develop a wide range of transgenic plants that produce numerous useful compounds. The perceived advantage of producing foreign compounds in plants is that compared to other methods of producing these compounds, plants seemingly provide a much less expensive means of production. A few plant-produced compounds are already commercially available; however, many more are in the production pipeline.
Collapse
Affiliation(s)
- Zareen Narayanan
- Division of Biological Sciences, School of STEM, University of Washington, Bothell, WA 98011, USA
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON N2L3G1, Canada
| |
Collapse
|
17
|
Li G, Serek M, Gehl C. Physiological changes besides the enhancement of pigmentation in Petunia hybrida caused by overexpression of PhAN2, an R2R3-MYB transcription factor. PLANT CELL REPORTS 2023; 42:609-627. [PMID: 36690873 DOI: 10.1007/s00299-023-02983-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Ectopic expression of PhAN2 in vegetative tissue can improve regeneration and adventitious rooting but inhibit axillary bud outgrowth of petunia, while overexpression specifically in flowers could shorten longevity. Anthocyanin 2 has been only treated as a critical positive regulation factor of anthocyanin biosynthesis in petunia flowers. To determine if this gene had other functions in plant growth, we overexpressed this gene in an an2 mutant petunia cultivar driven by promoters with different strengths or tissue specificity. Various physiological processes of transformants in different growth stages and environments were analyzed. Besides the expected pigmentation improvement in different tissues, the results also showed that ectopic expression of AN2 could improve the regeneration skill but inhibit the axillary bud germination of in vitro plants. Moreover, the rooting ability of shoot tips of transformants was significantly improved, while some transgenic lines' flower longevity was shortened. Gene expression analysis showed that the transcripts level of AN2, partner genes anthocyanin 1 (AN1), anthocyanin 11 (AN11), and target gene dihydroflavonol 4-reductase (DFR) was altered in the different transgenic lines. In addition, ethylene biosynthesis-related genes 1-aminocyclopropane-1-carboxylic acid synthase (ACS1) and ACC oxidase (ACO1) were upregulated in rooting and flower senescence processes but at different time points. Overall, our data demonstrate that the critical role of this AN2 gene in plant growth physiology may extend beyond that of a single activator of anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Guo Li
- Faculty of Natural Sciences, Institute of Horticultural Production Systems, Floriculture, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany.
| | - Margrethe Serek
- Faculty of Natural Sciences, Institute of Horticultural Production Systems, Floriculture, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Christian Gehl
- Faculty of Natural Sciences, Institute of Horticultural Production Systems, Floriculture, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| |
Collapse
|
18
|
Sharma P, Pandey A, Malviya R, Dey S, Karmakar S, Gayen D. Genome editing for improving nutritional quality, post-harvest shelf life and stress tolerance of fruits, vegetables, and ornamentals. Front Genome Ed 2023; 5:1094965. [PMID: 36911238 PMCID: PMC9998953 DOI: 10.3389/fgeed.2023.1094965] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/03/2023] [Indexed: 03/14/2023] Open
Abstract
Agricultural production relies on horticultural crops, including vegetables, fruits, and ornamental plants, which sustain human life. With an alarming increase in human population and the consequential need for more food, it has become necessary for increased production to maintain food security. Conventional breeding has subsidized the development of improved verities but to enhance crop production, new breeding techniques need to be acquired. CRISPR-Cas9 system is a unique and powerful genome manipulation tool that can change the DNA in a precise way. Based on the bacterial adaptive immune system, this technique uses an endonuclease that creates double-stranded breaks (DSBs) at the target loci under the guidance of a single guide RNA. These DSBs can be repaired by a cellular repair mechanism that installs small insertion and deletion (indels) at the cut sites. When equated to alternate editing tools like ZFN, TALENs, and meganucleases, CRISPR- The cas-based editing tool has quickly gained fast-forward for its simplicity, ease to use, and low off-target effect. In numerous horticultural and industrial crops, the CRISPR technology has been successfully used to enhance stress tolerance, self-life, nutritional improvements, flavor, and metabolites. The CRISPR-based tool is the most appropriate one with the prospective goal of generating non-transgenic yields and avoiding the regulatory hurdles to release the modified crops into the market. Although several challenges for editing horticultural, industrial, and ornamental crops remain, this new novel nuclease, with its crop-specific application, makes it a dynamic tool for crop improvement.
Collapse
Affiliation(s)
- Punam Sharma
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Anuradha Pandey
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Rinku Malviya
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Sharmistha Dey
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | | | - Dipak Gayen
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
19
|
Rahman SU, McCoy E, Raza G, Ali Z, Mansoor S, Amin I. Improvement of Soybean; A Way Forward Transition from Genetic Engineering to New Plant Breeding Technologies. Mol Biotechnol 2023; 65:162-180. [PMID: 35119645 DOI: 10.1007/s12033-022-00456-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/21/2022] [Indexed: 01/18/2023]
Abstract
Soybean is considered one of the important crops among legumes. Due to high nutritional contents in seed (proteins, sugars, oil, fatty acids, and amino acids), soybean is used globally for food, feed, and fuel. The primary consumption of soybean is vegetable oil and feed for chickens and livestock. Apart from this, soybean benefits soil fertility by fixing atmospheric nitrogen through root nodular bacteria. While conventional breeding is practiced for soybean improvement, with the advent of new biotechnological methods scientists have also engineered soybean to improve different traits (herbicide, insect, and disease resistance) to fulfill consumer requirements and to meet the global food deficiency. Genetic engineering (GE) techniques such as transgenesis and gene silencing help to minimize the risks and increase the adaptability of soybean. Recently, new plant breeding technologies (NPBTs) emerged such as zinc-finger nucleases, transcription activator-like effector nucleases, and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR/Cas9), which paved the way for enhanced genetic modification of soybean. These NPBTs have the potential to improve soybean via gene functional characterization precision genome engineering for trait improvement. Importantly, these NPBTs address the ethical and public acceptance issues related to genetic modifications and transgenesis in soybean. In the present review, we summarized the improvement of soybean through GE and NPBTs. The valuable traits that have been improved through GE for different constraints have been discussed. Moreover, the traits that have been improved through NPBTs and potential targets for soybean improvements via NPBTs and solutions for ethical and public acceptance are also presented.
Collapse
Affiliation(s)
- Saleem Ur Rahman
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Constituent College Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan
| | - Evan McCoy
- Center for Applied Genetic Technologies (CAGT), University of Georgia, Athens, USA
| | - Ghulam Raza
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Constituent College Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan
| | - Zahir Ali
- Laboratory for Genome Engineering, Center for Desert Agriculture and Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Shahid Mansoor
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Constituent College Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan
| | - Imran Amin
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.
- Constituent College Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan.
| |
Collapse
|
20
|
Kang H, Naing AH, Park SK, Chung MY, Kim CK. Protoplast isolation and transient gene expression in different petunia cultivars. PROTOPLASMA 2023; 260:271-280. [PMID: 35622155 DOI: 10.1007/s00709-022-01776-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
The protocol optimized for Petunia hybrida cv. Mirage Rose produced high protoplast yields in 3 out of other 11 cultivars (Damask White, Dreams White, and Opera Supreme White). Factors optimized in the protoplast transfection process showed that the best transfection efficiency (80%) was obtained using 2.5 × 105 protoplast density, 40% polyethylene glycol (PEG) concentration, 10 µg plasmid DNA, and 15 min of transfection time. Assessing the usability of the protocol for other cultivars (Damask White, Dreams White, and Opera Supreme White), a reasonable protoplast transfection efficiency (⁓50%) was observed in the cultivars Dreams White and Opera Supreme White, with lower efficiency (⁓50%) observed in the cv. Damask White. The transient expression of enhanced green fluorescent protein (eGFP) in the nucleus of the transfected protoplasts of all cultivars was confirmed using PCR. This system could be valuable for genome editing of unwanted genes in petunias using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) technology. Furthermore, it could contribute to other studies on protein subcellular localization, protein-protein interactions, and functional gene expression in the petunias.
Collapse
Affiliation(s)
- Hyunhee Kang
- Department of Horticulture, Kyungpook National University, Daegu, 41566, Korea
| | - Aung Htay Naing
- Department of Horticulture, Kyungpook National University, Daegu, 41566, Korea
| | - Soon Ki Park
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Korea
| | - Mi Young Chung
- Department of Agricultural Education, Sunchon National University, Suncheon, 540-950, Jeonnam, Korea
| | - Chang Kil Kim
- Department of Horticulture, Kyungpook National University, Daegu, 41566, Korea.
| |
Collapse
|
21
|
Devi R, Chauhan S, Dhillon TS. Genome editing for vegetable crop improvement: Challenges and future prospects. Front Genet 2022; 13:1037091. [PMID: 36482900 PMCID: PMC9723405 DOI: 10.3389/fgene.2022.1037091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/28/2022] [Indexed: 09/10/2024] Open
Abstract
Vegetable crops are known as protective foods due to their potential role in a balanced human diet, especially for vegetarians as they are a rich source of vitamins and minerals along with dietary fibers. Many biotic and abiotic stresses threaten the crop growth, yield and quality of these crops. These crops are annual, biennial and perennial in breeding behavior. Traditional breeding strategies pose many challenges in improving economic crop traits. As in most of the cases the large number of backcrosses and stringent selection pressure is required for the introgression of the useful traits into the germplasm, which is time and labour-intensive process. Plant scientists have improved economic traits like yield, quality, biotic stress resistance, abiotic stress tolerance, and improved nutritional quality of crops more precisely and accurately through the use of the revolutionary breeding method known as clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein-9 (Cas9). The high mutation efficiency, less off-target consequences and simplicity of this technique has made it possible to attain novel germplasm resources through gene-directed mutation. It facilitates mutagenic response even in complicated genomes which are difficult to breed using traditional approaches. The revelation of functions of important genes with the advancement of whole-genome sequencing has facilitated the CRISPR-Cas9 editing to mutate the desired target genes. This technology speeds up the creation of new germplasm resources having better agro-economical traits. This review entails a detailed description of CRISPR-Cas9 gene editing technology along with its potential applications in olericulture, challenges faced and future prospects.
Collapse
Affiliation(s)
- Ruma Devi
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, India
| | | | | |
Collapse
|
22
|
Yasmeen A, Shakoor S, Azam S, Bakhsh A, Shahid N, Latif A, Shahid AA, Husnain T, Rao AQ. CRISPR/Cas-mediated knockdown of vacuolar invertase gene expression lowers the cold-induced sweetening in potatoes. PLANTA 2022; 256:107. [PMID: 36342558 DOI: 10.1007/s00425-022-04022-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
VInv gene editing in potato using CRISPR/Cas9 resulted in knockdown of expression and a lower VInv enzymatic activity resulting in a decrease in post-harvest cold-storage sugars formation and sweetening in potatoes. CRISPR-Cas9-mediated knockdown of vacuolar invertase (VInv) gene was carried out using two sgRNAs in local cultivar of potato plants. The transformation efficiency of potatoes was found to be 11.7%. The primary transformants were screened through PCR, Sanger sequencing, digital PCR, and ELISA. The overall editing efficacy was determined to be 25.6% as per TIDE analysis. The amplicon sequencing data showed maximum indel frequency for potato plant T12 (14.3%) resulting in 6.2% gene knockout and 6% frame shift. While for plant B4, the maximum indel frequency of 2.0% was found which resulted in 4.4% knockout and 4% frameshift as analyzed by Geneious. The qRT-PCR data revealed that mRNA expression of VInv gene was reduced 90-99-fold in edited potato plants when compared to the non-edited control potato plant. Following cold storage, chips analysis of potatoes proved B4 and T12 as best lines. Reducing sugars' analysis by titration method determined fivefold reduction in percentage of reducing sugars in tubers of B4 transgenic lines as compared to the control. Physiologically genome-edited potatoes behaved like their conventional counterpart. This is first successful report of knockdown of potato VInv gene in Pakistan that addressed cold-induced sweetening resulting in minimum accumulation of reducing sugars in genome edited tubers.
Collapse
Affiliation(s)
- Aneela Yasmeen
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Sana Shakoor
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Saira Azam
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Allah Bakhsh
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Naila Shahid
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Ayesha Latif
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Ahmad Ali Shahid
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Tayyab Husnain
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Abdul Qayyum Rao
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan.
| |
Collapse
|
23
|
Kalaitzandonakes N, Willig C, Zahringer K. The economics and policy of genome editing in crop improvement. THE PLANT GENOME 2022:e20248. [PMID: 36321718 DOI: 10.1002/tpg2.20248] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/26/2022] [Indexed: 06/16/2023]
Abstract
In this review article we analyze the economics of genome editing and its potential long-term effect on crop improvement and agriculture. We describe the emergence of genome editing as a novel platform for crop improvement, distinct from the existing platforms of plant breeding and genetic engineering. We review key technical characteristics of genome editing and describe how it enables faster trait development, lower research and development costs, and the development of novel traits not possible through previous crop improvement methods. Given these fundamental technical and economic advantages, we describe how genome editing can greatly increase the productivity and broaden the scope of crop improvement with potential outsized economic effects. We further discuss how the global regulatory policy environment, which is still emerging, can shape the ultimate path of genome editing innovation, its effect on crop improvement, and its overall socioeconomic benefits to society.
Collapse
Affiliation(s)
| | | | - Kenneth Zahringer
- Division of Applied Social Sciences, Univ. of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
24
|
Overexpression of acdS in Petunia hybrida Improved Flower Longevity and Cadmium-Stress Tolerance by Reducing Ethylene Production in Floral and Vegetative Tissues. Cells 2022; 11:cells11203197. [PMID: 36291065 PMCID: PMC9600315 DOI: 10.3390/cells11203197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/04/2022] [Accepted: 10/09/2022] [Indexed: 11/25/2022] Open
Abstract
The role of acdS, which encodes the 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase enzyme, in extending flower longevity and improving tolerance to cadmium (Cd) stress was assessed using transgenic Petunia hybrida cv. ‘Mirage Rose’ overexpressing acdS and wild-type (WT) plants. The overexpression of acdS reduced ethylene production in floral tissue via suppression of ethylene-related genes and improved flower longevity, approximately 2 to 4 days longer than WT flowers. Under Cd stress, acdS significantly reduced Cd-induced ethylene production in vegetable tissues of transgenic plants through suppression of ethylene-related genes. This resulted in a lower accumulation of ethylene-induced reactive oxygen species (ROS) in the transgenic plants than in WT plants. In addition, expression of the genes involved in the activities of antioxidant and proline synthesis as well as the metal chelation process was also higher in the former than in the latter. Moreover, Cd accumulation was significantly higher in WT plants than in the transgenic plants. These results are linked to the greater tolerance of transgenic plants to Cd stress than the WT plants, which was determined based on plant growth and physiological performance. These results highlight the potential applicability of using acdS to extend flower longevity of ornamental bedding plants and also reveal the mechanism by which acdS improves Cd-stress tolerance. We suggest that acdS overexpression in plants can extend flower longevity and also help reduce the negative impact of Cd-induced ethylene on plant growth when the plants are unavoidably cultivated in Cd-contaminated soil.
Collapse
|
25
|
Nerkar G, Devarumath S, Purankar M, Kumar A, Valarmathi R, Devarumath R, Appunu C. Advances in Crop Breeding Through Precision Genome Editing. Front Genet 2022; 13:880195. [PMID: 35910205 PMCID: PMC9329802 DOI: 10.3389/fgene.2022.880195] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
The global climate change and unfavourable abiotic and biotic factors are limiting agricultural productivity and therefore intensifying the challenges for crop scientists to meet the rising demand for global food supply. The introduction of applied genetics to agriculture through plant breeding facilitated the development of hybrid varieties with improved crop productivity. However, the development of new varieties with the existing gene pools poses a challenge for crop breeders. Genetic engineering holds the potential to broaden genetic diversity by the introduction of new genes into crops. But the random insertion of foreign DNA into the plant's nuclear genome often leads to transgene silencing. Recent advances in the field of plant breeding include the development of a new breeding technique called genome editing. Genome editing technologies have emerged as powerful tools to precisely modify the crop genomes at specific sites in the genome, which has been the longstanding goal of plant breeders. The precise modification of the target genome, the absence of foreign DNA in the genome-edited plants, and the faster and cheaper method of genome modification are the remarkable features of the genome-editing technology that have resulted in its widespread application in crop breeding in less than a decade. This review focuses on the advances in crop breeding through precision genome editing. This review includes: an overview of the different breeding approaches for crop improvement; genome editing tools and their mechanism of action and application of the most widely used genome editing technology, CRISPR/Cas9, for crop improvement especially for agronomic traits such as disease resistance, abiotic stress tolerance, herbicide tolerance, yield and quality improvement, reduction of anti-nutrients, and improved shelf life; and an update on the regulatory approval of the genome-edited crops. This review also throws a light on development of high-yielding climate-resilient crops through precision genome editing.
Collapse
Affiliation(s)
- Gauri Nerkar
- Molecular Biology and Genetic Engineering Laboratory, Vasantdada Sugar Institute, Pune, India
| | - Suman Devarumath
- Vidya Pratishthan's College of Agricultural Biotechnology, Baramati, India
| | - Madhavi Purankar
- Molecular Biology and Genetic Engineering Laboratory, Vasantdada Sugar Institute, Pune, India
| | - Atul Kumar
- Molecular Biology and Genetic Engineering Laboratory, Vasantdada Sugar Institute, Pune, India
| | - R Valarmathi
- ICAR-Sugarcane Breeding Institute, Coimbatore, India
| | - Rachayya Devarumath
- Molecular Biology and Genetic Engineering Laboratory, Vasantdada Sugar Institute, Pune, India
| | - C Appunu
- ICAR-Sugarcane Breeding Institute, Coimbatore, India
| |
Collapse
|
26
|
Sirohi U, Kumar M, Sharma VR, Teotia S, Singh D, Chaudhary V, Yadav MK. CRISPR/Cas9 System: A Potential Tool for Genetic Improvement in Floricultural Crops. Mol Biotechnol 2022; 64:1303-1318. [PMID: 35751797 PMCID: PMC9244459 DOI: 10.1007/s12033-022-00523-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/09/2022] [Indexed: 11/25/2022]
Abstract
Demand of flowers is increasing with time worldwide. Floriculture has become one of the most important commercial trades in agriculture. Although traditional breeding methods like hybridization and mutation breeding have contributed significantly to the development of important flower varieties, flower production and quality of flowers can be significantly improved by employing modern breeding approaches. Novel traits of significance have interest to consumers and producers, such as fragrance, new floral color, change in floral architecture and morphology, vase life, aroma, and resistance to biotic and abiotic stresses, have been introduced by genetic manipulation. The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system has recently emerged as a powerful genome-editing tool for accurately changing DNA sequences at specific locations. It provides excellent means of genetically improving floricultural crops. CRISPR/Cas system has been utilized in gene editing in horticultural cops. There are few reports on the utilization of the CRISPR/Cas9 system in flowers. The current review summarizes the research work done by employing the CRISPR/Cas9 system in floricultural crops including improvement in flowering traits such as color modification, prolonging the shelf life of flowers, flower initiation, and development, changes in color of ornamental foliage by genome editing. CRISPR/Cas9 gene editing could be useful in developing novel cultivars with higher fragrance and enhanced essential oil and many other useful traits. The present review also highlights the basic mechanism and key components involved in the CRISPR/Cas9 system.
Collapse
Affiliation(s)
- Ujjwal Sirohi
- Present Address: National Institute of Plant Genome Research (NIPGR), New Delhi, 110067 India
- Department of Agricultural Biotechnology, College of Agriculture, SVPUAT, Meerut, Uttar Pradesh 250110 India
| | - Mukesh Kumar
- Department of Horticulture, College of Agriculture, SVPUAT, Meerut, Uttar Pradesh 250110 India
| | - Vinukonda Rakesh Sharma
- Plant Genetic Resources and Improvement, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh 226001 India
| | - Sachin Teotia
- Department of Biotechnology, Sharda University, Greater Noida, Uttar Pradesh 201306 India
| | - Deepali Singh
- School of Biotechnology, Gautam Buddha University, Gautam Budh Nagar, Greater Noida, Uttar Pradesh 201308 India
| | - Veena Chaudhary
- Department of Chemistry, Meerut College, Meerut, Uttar Pradesh 250003 India
| | - Manoj Kumar Yadav
- Department of Agricultural Biotechnology, College of Agriculture, SVPUAT, Meerut, Uttar Pradesh 250110 India
| |
Collapse
|
27
|
Lin Y, Jones ML. CRISPR/Cas9-Mediated Editing of Autophagy Gene 6 in Petunia Decreases Flower Longevity, Seed Yield, and Phosphorus Remobilization by Accelerating Ethylene Production and Senescence-Related Gene Expression. FRONTIERS IN PLANT SCIENCE 2022; 13:840218. [PMID: 35557714 PMCID: PMC9088004 DOI: 10.3389/fpls.2022.840218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
Developmental petal senescence is a type of programmed cell death (PCD), during which the production of ethylene is induced, the expression of PCD-related genes is upregulated, and nutrients are recycled. Autophagy is an intracellular mechanism involved in PCD modulation and nutrient cycling. As a central component of the autophagy pathway, Autophagy Gene 6 (ATG6) was previously shown as a negative regulator of petal senescence. To better understand the role of autophagy in ethylene biosynthesis and nutrient remobilization during petal senescence, we generated and characterized the knockout (KO) mutants of PhATG6 using CRISPR/Cas9 in Petunia × hybrida 'Mitchell Diploid.' PhATG6-KO lines exhibited decreased flower longevity when compared to the flowers of the wild-type or a non-mutated regenerative line (controls), confirming the negative regulatory role of ATG6 in petal senescence. Smaller capsules and fewer seeds per capsule were produced in the KO plants, indicating the crucial function of autophagy in seed production. Ethylene production and ethylene biosynthesis genes were upregulated earlier in the KO lines than the controls, indicating that autophagy affects flower longevity through ethylene. The transcript levels of petal PCD-related genes, including PhATG6, PhATG8d, PhPI3K (Phosphatidylinositol 3-Kinase), and a metacaspase gene PhMC1, were upregulated earlier in the corollas of PhATG6-KO lines, which supported the accelerated PCD in the KO plants. The remobilization of phosphorus was reduced in the KO lines, showing that nutrient recycling was compromised. Our study demonstrated the important role of autophagy in flower lifespan and seed production and supported the interactions between autophagy and various regulatory factors during developmental petal senescence.
Collapse
|
28
|
Kumari C, Sharma M, Kumar V, Sharma R, Kumar V, Sharma P, Kumar P, Irfan M. Genome Editing Technology for Genetic Amelioration of Fruits and Vegetables for Alleviating Post-Harvest Loss. Bioengineering (Basel) 2022; 9:bioengineering9040176. [PMID: 35447736 PMCID: PMC9028506 DOI: 10.3390/bioengineering9040176] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/02/2022] [Accepted: 04/15/2022] [Indexed: 01/13/2023] Open
Abstract
Food security and crop production are challenged worldwide due to overpopulation, changing environmental conditions, crop establishment failure, and various kinds of post-harvest losses. The demand for high-quality foods with improved nutritional quality is also growing day by day. Therefore, production of high-quality produce and reducing post-harvest losses of produce, particularly of perishable fruits and vegetables, are vital. For many decades, attempts have been made to improve the post-harvest quality traits of horticultural crops. Recently, modern genetic tools such as genome editing emerged as a new approach to manage and overcome post-harvest effectively and efficiently. The different genome editing tools including ZFNs, TALENs, and CRISPR/Cas9 system effectively introduce mutations (In Dels) in many horticultural crops to address and resolve the issues associated with post-harvest storage quality. Henceforth, we provide a broad review of genome editing applications in horticulture crops to improve post-harvest stability traits such as shelf life, texture, and resistance to pathogens without compromising nutritional value. Moreover, major roadblocks, challenges, and their possible solutions for employing genome editing tools are also discussed.
Collapse
Affiliation(s)
- Chanchal Kumari
- Department of Biotechnology, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh 173230, India; (C.K.); (M.S.); (V.K.); (R.S.); (P.K.)
| | - Megha Sharma
- Department of Biotechnology, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh 173230, India; (C.K.); (M.S.); (V.K.); (R.S.); (P.K.)
| | - Vinay Kumar
- Department of Biotechnology, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh 173230, India; (C.K.); (M.S.); (V.K.); (R.S.); (P.K.)
| | - Rajnish Sharma
- Department of Biotechnology, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh 173230, India; (C.K.); (M.S.); (V.K.); (R.S.); (P.K.)
| | - Vinay Kumar
- Department of Physiology and Cell Biology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| | - Parul Sharma
- Department of Biotechnology, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh 173230, India; (C.K.); (M.S.); (V.K.); (R.S.); (P.K.)
- Correspondence: (P.S.); (M.I.)
| | - Pankaj Kumar
- Department of Biotechnology, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh 173230, India; (C.K.); (M.S.); (V.K.); (R.S.); (P.K.)
| | - Mohammad Irfan
- Plant Biology Section, School of Integrative Plant Sciences, Cornell University, Ithaca, NY 14853, USA
- Correspondence: (P.S.); (M.I.)
| |
Collapse
|
29
|
Naik BJ, Shimoga G, Kim SC, Manjulatha M, Subramanyam Reddy C, Palem RR, Kumar M, Kim SY, Lee SH. CRISPR/Cas9 and Nanotechnology Pertinence in Agricultural Crop Refinement. FRONTIERS IN PLANT SCIENCE 2022; 13:843575. [PMID: 35463432 PMCID: PMC9024397 DOI: 10.3389/fpls.2022.843575] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/07/2022] [Indexed: 05/08/2023]
Abstract
The CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9) method is a versatile technique that can be applied in crop refinement. Currently, the main reasons for declining agricultural yield are global warming, low rainfall, biotic and abiotic stresses, in addition to soil fertility issues caused by the use of harmful chemicals as fertilizers/additives. The declining yields can lead to inadequate supply of nutritional food as per global demand. Grains and horticultural crops including fruits, vegetables, and ornamental plants are crucial in sustaining human life. Genomic editing using CRISPR/Cas9 and nanotechnology has numerous advantages in crop development. Improving crop production using transgenic-free CRISPR/Cas9 technology and produced fertilizers, pesticides, and boosters for plants by adopting nanotechnology-based protocols can essentially overcome the universal food scarcity. This review briefly gives an overview on the potential applications of CRISPR/Cas9 and nanotechnology-based methods in developing the cultivation of major agricultural crops. In addition, the limitations and major challenges of genome editing in grains, vegetables, and fruits have been discussed in detail by emphasizing its applications in crop refinement strategy.
Collapse
Affiliation(s)
- Banavath Jayanna Naik
- Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Jeju, South Korea
| | - Ganesh Shimoga
- Interaction Laboratory, Future Convergence Engineering, Advanced Technology Research Center, Korea University of Technology and Education, Cheonan-si, South Korea
| | - Seong-Cheol Kim
- Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Jeju, South Korea
| | | | | | | | - Manu Kumar
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Seoul, South Korea
| | - Sang-Youn Kim
- Interaction Laboratory, Future Convergence Engineering, Advanced Technology Research Center, Korea University of Technology and Education, Cheonan-si, South Korea
| | - Soo-Hong Lee
- Department of Medical Biotechnology, Dongguk University, Seoul, South Korea
| |
Collapse
|
30
|
Naing AH, Campol JR, Kang H, Xu J, Chung MY, Kim CK. Role of Ethylene Biosynthesis Genes in the Regulation of Salt Stress and Drought Stress Tolerance in Petunia. FRONTIERS IN PLANT SCIENCE 2022; 13:844449. [PMID: 35283920 PMCID: PMC8906779 DOI: 10.3389/fpls.2022.844449] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/03/2022] [Indexed: 06/12/2023]
Abstract
Ethylene plays a critical signaling role in the abiotic stress tolerance mechanism. However, the role of ethylene in regulating abiotic stress tolerance in petunia has not been well-investigated, and the underlying molecular mechanism by which ethylene regulates abiotic stress tolerance is still unknown. Therefore, we examined the involvement of ethylene in salt and drought stress tolerance of petunia using the petunia wild type cv. "Merage Rose" and the ethylene biosynthesis genes (PhACO1 and PhACO3)-edited mutants (phaco1 and phaco3). Here, we discovered that editing PhACO1 and PhACO3 reduced ethylene production in the mutants, and mutants were more sensitive to salt and drought stress than the wild type (WT). This was proven by the better outcomes of plant growth and physiological parameters and ion homeostasis in WT over the mutants. Molecular analysis revealed that the expression levels of the genes associated with antioxidant, proline synthesis, ABA synthesis and signaling, and ethylene signaling differed significantly between the WT and mutants, indicating the role of ethylene in the transcriptional regulation of the genes associated with abiotic stress tolerance. This study highlights the involvement of ethylene in abiotic stress adaptation and provides a physiological and molecular understanding of the role of ethylene in abiotic stress response in petunia. Furthermore, the finding alerts researchers to consider the negative effects of ethylene reduction on abiotic stress tolerance when editing the ethylene biosynthesis genes to improve the postharvest quality of horticultural crops.
Collapse
Affiliation(s)
- Aung Htay Naing
- Department of Horticulture, Kyungpook National University, Daegu, South Korea
| | - Jova Riza Campol
- Department of Horticulture, Kyungpook National University, Daegu, South Korea
| | - Hyunhee Kang
- Department of Horticulture, Kyungpook National University, Daegu, South Korea
| | - Junping Xu
- Department of Horticulture, Kyungpook National University, Daegu, South Korea
| | - Mi Young Chung
- Department of Agricultural Education, Sunchon National University, Suncheon, South Korea
| | - Chang Kil Kim
- Department of Horticulture, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
31
|
Yang Y, Xu C, Shen Z, Yan C. Crop Quality Improvement Through Genome Editing Strategy. Front Genome Ed 2022; 3:819687. [PMID: 35174353 PMCID: PMC8841430 DOI: 10.3389/fgeed.2021.819687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Good quality of crops has always been the most concerning aspect for breeders and consumers. However, crop quality is a complex trait affected by both the genetic systems and environmental factors, thus, it is difficult to improve through traditional breeding strategies. Recently, the CRISPR/Cas9 genome editing system, enabling efficiently targeted modification, has revolutionized the field of quality improvement in most crops. In this review, we briefly review the various genome editing ability of the CRISPR/Cas9 system, such as gene knockout, knock-in or replacement, base editing, prime editing, and gene expression regulation. In addition, we highlight the advances in crop quality improvement applying the CRISPR/Cas9 system in four main aspects: macronutrients, micronutrients, anti-nutritional factors and others. Finally, the potential challenges and future perspectives of genome editing in crop quality improvement is also discussed.
Collapse
Affiliation(s)
- Yihao Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou, China
- Department of Crop Genetics and Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| | - Chenda Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou, China
| | - Ziyan Shen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou, China
| | - Changjie Yan
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou, China
- Department of Crop Genetics and Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| |
Collapse
|
32
|
Naing AH, Xu J, Kim CK. Editing of 1-aminocyclopropane-1-carboxylate oxidase genes negatively affects petunia seed germination. PLANT CELL REPORTS 2022; 41:209-220. [PMID: 34665313 DOI: 10.1007/s00299-021-02802-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Editing of ACO genes involved in ethylene biosynthesis pathway reduces ethylene production in petunia seeds and inhibits seed germination. Ethylene production in the seeds of Petunia hybrida cv. 'Mirage Rose' was associated with expression of 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase (ACO) genes (PhACO1, PhACO3, and PhACO4). Suppression of their expression by ethylene inhibitor silver thiosulphate (STS) significantly reduced ethylene production and inhibited seed germination. When it was combined with ethylene precursor ACC, ethylene production was re-promoted via activation of the genes and higher seed germination was restored. This was confirmed using the mutants editing the genes and WT. In the present study, compared with wild type plants, three different mutants (phaco1, phaco3, and phaco4) showed significantly decreased germination percentages as well as delayed germination time and seedling growth. These reductions were associated with lighter seed weight, lower ACO transcript levels, and lower ethylene production in mutants. Inhibited seed germination owing to reduced ethylene production was further verified by the supplementation of exogenous ACC and gibberellic acid (GA3) to growth medium, which restored high seed germination activity in all mutants via enhanced ethylene production. In this study, we reported a key regulatory role of ethylene in seed germination mechanisms in petunia. Further, we highlighted on need to consider the negative effects of ethylene reduction in seed germination and plant growth when editing genes in the ethylene biosynthesis pathway for the maintenance of postharvest fruit, vegetable, and flower quality.
Collapse
Affiliation(s)
- Aung Htay Naing
- Department of Horticulture, Kyungpook National University, Daegu, 41566, Korea
| | - Junping Xu
- Department of Horticulture, Kyungpook National University, Daegu, 41566, Korea
- Floriculture Research Division, Rural Development Administration, National Institute of Horticultural and Herbal Science, Wanju, 55365, Korea
| | - Chang Kil Kim
- Department of Horticulture, Kyungpook National University, Daegu, 41566, Korea.
| |
Collapse
|
33
|
Guo J, Shan C, Zhang Y, Wang X, Tian H, Han G, Zhang Y, Wang B. Mechanisms of Salt Tolerance and Molecular Breeding of Salt-Tolerant Ornamental Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:854116. [PMID: 35574092 PMCID: PMC9093713 DOI: 10.3389/fpls.2022.854116] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/30/2022] [Indexed: 05/10/2023]
Abstract
As the area of salinized soils increases, and freshwater becomes more scarcer worldwide, an urgent measure for agricultural production is to use salinized land and conserve freshwater resources. Ornamental flowering plants, such as carnations, roses, chrysanthemums, and gerberas, are found around the world and have high economic, ornamental, ecological, and edible value. It is therefore prudent to improve the salt tolerance of these important horticultural crops. Here, we summarize the salt-adaptive mechanisms, genes, and molecular breeding of ornamental flowering crops. We also review the genome editing technologies that provide us with the means to obtain novel varieties with high salinity tolerance and improved utility value, and discuss future directions of research into ornamental plants like salt exclusion mechanism. We considered that the salt exclusion mechanism in ornamental flowering plants, the acquisition of flowers with high quality and novel color under salinity condition through gene editing techniques should be focused on for the future research.
Collapse
Affiliation(s)
- Jianrong Guo
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Ji’nan, China
- *Correspondence: Jianrong Guo,
| | - Changdan Shan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Ji’nan, China
| | - Yifan Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Ji’nan, China
| | - Xinlei Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Ji’nan, China
| | - Huaying Tian
- College of Forestry Engineering, Shandong Agriculture and Engineering University, Ji’nan, China
| | - Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Ji’nan, China
| | - Yi Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Ji’nan, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Ji’nan, China
- Baoshan Wang,
| |
Collapse
|
34
|
Zhong S, Sang L, Zhao Z, Deng Y, Liu H, Yu Y, Liu J. Phosphoproteome analysis reveals the involvement of protein dephosphorylation in ethylene-induced corolla senescence in petunia. BMC PLANT BIOLOGY 2021; 21:512. [PMID: 34732145 PMCID: PMC8565076 DOI: 10.1186/s12870-021-03286-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Senescence represents the last stage of flower development. Phosphorylation is the key posttranslational modification that regulates protein functions, and kinases may be more required than phosphatases during plant growth and development. However, little is known about global phosphorylation changes during flower senescence. RESULTS In this work, we quantitatively investigated the petunia phosphoproteome following ethylene or air treatment. In total, 2170 phosphosites in 1184 protein groups were identified, among which 2059 sites in 1124 proteins were quantified. To our surprise, treatment with ethylene resulted in 697 downregulated and only 117 upregulated phosphosites using a 1.5-fold threshold (FDR < 0.05), which showed that ethylene negatively regulates global phosphorylation levels and that phosphorylation of many proteins was not necessary during flower senescence. Phosphoproteome analysis showed that ethylene regulates ethylene and ABA signalling transduction pathways via phosphorylation levels. One of the major targets of ethylene-induced dephosphorylation is the plant mRNA splicing machinery, and ethylene treatment increases the number of alternative splicing events of precursor RNAs in petunia corollas. CONCLUSIONS Protein dephosphorylation could play an important role in ethylene-induced senescence, and ethylene treatment increased the number of AS precursor RNAs in petunia corollas.
Collapse
Affiliation(s)
- Shiwei Zhong
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642 China
- School of Landscape Architecture School of Tourism and Health, Zhejiang A & F University, Zhejiang, 311300 Hangzhou China
| | - Lina Sang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642 China
| | - Zhixia Zhao
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642 China
| | - Ying Deng
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642 China
| | - Haitao Liu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642 China
| | - Yixun Yu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642 China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642 China
| | - Juanxu Liu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642 China
- School of Landscape Architecture School of Tourism and Health, Zhejiang A & F University, Zhejiang, 311300 Hangzhou China
| |
Collapse
|
35
|
Kawall K. The Generic Risks and the Potential of SDN-1 Applications in Crop Plants. PLANTS (BASEL, SWITZERLAND) 2021; 10:2259. [PMID: 34834620 PMCID: PMC8622673 DOI: 10.3390/plants10112259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/01/2021] [Accepted: 10/18/2021] [Indexed: 12/26/2022]
Abstract
The use of site-directed nucleases (SDNs) in crop plants to alter market-oriented traits is expanding rapidly. At the same time, there is an on-going debate around the safety and regulation of crops altered with the site-directed nuclease 1 (SDN-1) technology. SDN-1 applications can be used to induce a variety of genetic alterations ranging from fairly 'simple' genetic alterations to complex changes in plant genomes using, for example, multiplexing approaches. The resulting plants can contain modified alleles and associated traits, which are either known or unknown in conventionally bred plants. The European Commission recently published a study on new genomic techniques suggesting an adaption of the current GMO legislation by emphasizing that targeted mutagenesis techniques can produce genomic alterations that can also be obtained by natural mutations or conventional breeding techniques. This review highlights the need for a case-specific risk assessment of crop plants derived from SDN-1 applications considering both the characteristics of the product and the process to ensure a high level of protection of human and animal health and the environment. The published literature on so-called market-oriented traits in crop plants altered with SDN-1 applications is analyzed here to determine the types of SDN-1 application in plants, and to reflect upon the complexity and the naturalness of such products. Furthermore, it demonstrates the potential of SDN-1 applications to induce complex alterations in plant genomes that are relevant to generic SDN-associated risks. In summary, it was found that nearly half of plants with so-called market-oriented traits contain complex genomic alterations induced by SDN-1 applications, which may also pose new types of risks. It further underscores the need for data on both the process and the end-product for a case-by-case risk assessment of plants derived from SDN-1 applications.
Collapse
Affiliation(s)
- Katharina Kawall
- Fachstelle Gentechnik und Umwelt, Frohschammerstr. 14, 80807 Munich, Germany
| |
Collapse
|
36
|
Neves M, Correia S, Cavaleiro C, Canhoto J. Modulation of Organogenesis and Somatic Embryogenesis by Ethylene: An Overview. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10061208. [PMID: 34198660 PMCID: PMC8232195 DOI: 10.3390/plants10061208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 05/13/2023]
Abstract
Ethylene is a plant hormone controlling physiological and developmental processes such as fruit maturation, hairy root formation, and leaf abscission. Its effect on regeneration systems, such as organogenesis and somatic embryogenesis (SE), has been studied, and progress in molecular biology techniques have contributed to unveiling the mechanisms behind its effects. The influence of ethylene on regeneration should not be overlooked. This compound affects regeneration differently, depending on the species, genotype, and explant. In some species, ethylene seems to revert recalcitrance in genotypes with low regeneration capacity. However, its effect is not additive, since in genotypes with high regeneration capacity this ability decreases in the presence of ethylene precursors, suggesting that regeneration is modulated by ethylene. Several lines of evidence have shown that the role of ethylene in regeneration is markedly connected to biotic and abiotic stresses as well as to hormonal-crosstalk, in particular with key regeneration hormones and growth regulators of the auxin and cytokinin families. Transcriptional factors of the ethylene response factor (ERF) family are regulated by ethylene and strongly connected to SE induction. Thus, an evident connection between ethylene, stress responses, and regeneration capacity is markedly established. In this review the effect of ethylene and the way it interacts with other players during organogenesis and somatic embryogenesis is discussed. Further studies on the regulation of ERF gene expression induced by ethylene during regeneration can contribute to new insights on the exact role of ethylene in these processes. A possible role in epigenetic modifications should be considered, since some ethylene signaling components are directly related to histone acetylation.
Collapse
Affiliation(s)
- Mariana Neves
- Center for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (M.N.); (S.C.)
| | - Sandra Correia
- Center for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (M.N.); (S.C.)
| | - Carlos Cavaleiro
- CIEPQPF, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
| | - Jorge Canhoto
- Center for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (M.N.); (S.C.)
- Correspondence:
| |
Collapse
|
37
|
Yu J, Tu L, Subburaj S, Bae S, Lee GJ. Simultaneous targeting of duplicated genes in Petunia protoplasts for flower color modification via CRISPR-Cas9 ribonucleoproteins. PLANT CELL REPORTS 2021; 40:1037-1045. [PMID: 32959126 DOI: 10.1007/s00299-020-02593-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 08/26/2020] [Indexed: 05/20/2023]
Abstract
KEY MESSAGE We obtained a complete mutant line of Petunia having mutations in both F3H genes via Cas9-ribonucleoproteins delivery, which exhibited a pale purplish pink flower color. The CRISPR-Cas system is now revolutionizing agriculture by allowing researchers to generate various desired mutations in plants at will. In particular, DNA-free genome editing via Cas9-ribonucleoproteins (RNPs) delivery has many advantages in plants; it does not require codon optimization or specific promoters for expression in plant cells; furthermore, it can bypass GMO regulations in some countries. Here, we have performed site-specific mutagenesis in Petunia to engineer flower color modifications. We determined that the commercial Petunia cultivar 'Madness Midnight' has two F3H coding genes and designed one guide RNA that targets both F3H genes at once. Among 67 T0 plants regenerated from Cas9-RNP transfected protoplasts, we obtained seven mutant lines that contain mutations in either F3HA or F3HB gene and one complete mutant line having mutations in both F3H genes without any selectable markers. It is noteworthy that only the f3ha f3hb exhibited a clearly modified, pale purplish pink flower color (RHS 69D), whereas the others, including the single copy gene knock-out plants, displayed purple violet (RHS 93A) flowers similar to the wild-type Petunia. To the best of our knowledge, we demonstrated a precedent of ornamental crop engineering by DNA-free CRISPR method for the first time, which will greatly accelerate a transition from a laboratory to a farmer's field.
Collapse
Affiliation(s)
- Jihyeon Yu
- Department of Chemistry, Hanyang University, Seoul, 04763, South Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Luhua Tu
- Department of Horticulture & Department of Smart Agriculture systems, Chungnam National University, Daejeon, 34134, South Korea
| | - Saminathan Subburaj
- Department of Horticulture & Department of Smart Agriculture systems, Chungnam National University, Daejeon, 34134, South Korea
| | - Sangsu Bae
- Department of Chemistry, Hanyang University, Seoul, 04763, South Korea.
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, South Korea.
| | - Geung-Joo Lee
- Department of Horticulture & Department of Smart Agriculture systems, Chungnam National University, Daejeon, 34134, South Korea.
| |
Collapse
|
38
|
Liu Q, Yang F, Zhang J, Liu H, Rahman S, Islam S, Ma W, She M. Application of CRISPR/Cas9 in Crop Quality Improvement. Int J Mol Sci 2021; 22:4206. [PMID: 33921600 PMCID: PMC8073294 DOI: 10.3390/ijms22084206] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
The various crop species are major agricultural products and play an indispensable role in sustaining human life. Over a long period, breeders strove to increase crop yield and improve quality through traditional breeding strategies. Today, many breeders have achieved remarkable results using modern molecular technologies. Recently, a new gene-editing system, named the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology, has also succeeded in improving crop quality. It has become the most popular tool for crop improvement due to its versatility. It has accelerated crop breeding progress by virtue of its precision in specific gene editing. This review summarizes the current application of CRISPR/Cas9 technology in crop quality improvement. It includes the modulation in appearance, palatability, nutritional components and other preferred traits of various crops. In addition, the challenge in its future application is also discussed.
Collapse
Affiliation(s)
- Qier Liu
- Institute of Agricultural Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
- State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia; (F.Y.); (J.Z.); (H.L.); (S.R.); (S.I.)
| | - Fan Yang
- State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia; (F.Y.); (J.Z.); (H.L.); (S.R.); (S.I.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Jingjuan Zhang
- State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia; (F.Y.); (J.Z.); (H.L.); (S.R.); (S.I.)
| | - Hang Liu
- State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia; (F.Y.); (J.Z.); (H.L.); (S.R.); (S.I.)
| | - Shanjida Rahman
- State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia; (F.Y.); (J.Z.); (H.L.); (S.R.); (S.I.)
| | - Shahidul Islam
- State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia; (F.Y.); (J.Z.); (H.L.); (S.R.); (S.I.)
| | - Wujun Ma
- State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia; (F.Y.); (J.Z.); (H.L.); (S.R.); (S.I.)
| | - Maoyun She
- State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia; (F.Y.); (J.Z.); (H.L.); (S.R.); (S.I.)
| |
Collapse
|
39
|
Park SI, Kim HB, Jeon HJ, Kim H. Agrobacterium-Mediated Capsicum annuum Gene Editing in Two Cultivars, Hot Pepper CM334 and Bell Pepper Dempsey. Int J Mol Sci 2021; 22:3921. [PMID: 33920210 PMCID: PMC8070316 DOI: 10.3390/ijms22083921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
Peppers (Capsicum annuum L.) are the most widespread and cultivated species of Solanaceae in subtropical and temperate countries. These vegetables are economically attractive worldwide. Although whole-genome sequences of peppers and genome-editing tools are currently available, the precision editing of peppers is still in its infancy because of the lack of a stable pepper transformation method. Here, we employed three Agrobacterium tumefaciens strains-AGL1, EHA101, and GV3101-to investigate which Agrobacterium strain could be used for pepper transformation. Hot pepper CM334 and bell pepper Dempsey were chosen in this study. Agrobacterium tumefaciens GV3101 induced the highest number of calli in cv. Dempsey. All three strains generated similar numbers of calli for cv. CM334. We optimized a suitable concentration of phosphinothricin (PPT) to select a CRISPR/Cas9 binary vector (pBAtC) for both pepper types. Finally, we screened transformed calli for PPT resistance (1 and 5 mg/L PPT for cv. CM334 and Dempsey, respectively). These selected calli showed different indel frequencies from the non-transformed calli. However, the primary indel pattern was consistent with a 1-bp deletion at the target locus of the C. annuumMLO gene (CaMLO2). These results demonstrate the different sensitivity between cv. CM334 and Dempsey to A. tumefaciens-mediated callus induction, and a differential selection pressure of PPT via pBAtC binary vector.
Collapse
Affiliation(s)
- Sung-il Park
- Interdisciplinary Graduate Program in BIT Medical Convergence, Kangwon National University, Chuncheon 24341, Korea;
| | - Hyun-Bin Kim
- Department of Biological Sciences, Kangwon National University, Chuncheon 24341, Korea; (H.-B.K.); (H.-J.J.)
| | - Hyun-Ji Jeon
- Department of Biological Sciences, Kangwon National University, Chuncheon 24341, Korea; (H.-B.K.); (H.-J.J.)
| | - Hyeran Kim
- Interdisciplinary Graduate Program in BIT Medical Convergence, Kangwon National University, Chuncheon 24341, Korea;
- Department of Biological Sciences, Kangwon National University, Chuncheon 24341, Korea; (H.-B.K.); (H.-J.J.)
| |
Collapse
|
40
|
Genome editing in fruit, ornamental, and industrial crops. Transgenic Res 2021; 30:499-528. [PMID: 33825100 DOI: 10.1007/s11248-021-00240-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/25/2021] [Indexed: 01/24/2023]
Abstract
The advent of genome editing has opened new avenues for targeted trait enhancement in fruit, ornamental, industrial, and all specialty crops. In particular, CRISPR-based editing systems, derived from bacterial immune systems, have quickly become routinely used tools for research groups across the world seeking to edit plant genomes with a greater level of precision, higher efficiency, reduced off-target effects, and overall ease-of-use compared to ZFNs and TALENs. CRISPR systems have been applied successfully to a number of horticultural and industrial crops to enhance fruit ripening, increase stress tolerance, modify plant architecture, control the timing of flower development, and enhance the accumulation of desired metabolites, among other commercially-important traits. As editing technologies continue to advance, so too does the ability to generate improved crop varieties with non-transgenic modifications; in some crops, direct transgene-free edits have already been achieved, while in others, T-DNAs have successfully been segregated out through crossing. In addition to the potential to produce non-transgenic edited crops, and thereby circumvent regulatory impediments to the release of new, improved crop varieties, targeted gene editing can speed up trait improvement in crops with long juvenile phases, reducing inputs resulting in faster market introduction to the market. While many challenges remain regarding optimization of genome editing in ornamental, fruit, and industrial crops, the ongoing discovery of novel nucleases with niche specialties for engineering applications may form the basis for additional and potentially crop-specific editing strategies.
Collapse
|
41
|
Giovannini A, Laura M, Nesi B, Savona M, Cardi T. Genes and genome editing tools for breeding desirable phenotypes in ornamentals. PLANT CELL REPORTS 2021; 40:461-478. [PMID: 33388891 PMCID: PMC7778708 DOI: 10.1007/s00299-020-02632-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/27/2020] [Indexed: 05/05/2023]
Abstract
We review the main genes underlying commercial traits in cut flower species and critically discuss the possibility to apply genome editing approaches to produce novel variation and phenotypes. Promoting flowering and flower longevity as well as creating novelty in flower structure, colour range and fragrances are major objectives of ornamental plant breeding. The novel genome editing techniques add new possibilities to study gene function and breed new varieties. The implementation of such techniques, however, relies on detailed information about structure and function of genomes and genes. Moreover, improved protocols for efficient delivery of editing reagents are required. Recent results of the application of genome editing techniques to elite ornamental crops are discussed in this review. Enabling technologies and genomic resources are reviewed in relation to the implementation of such approaches. Availability of the main gene sequences, underlying commercial traits and in vitro transformation protocols are provided for the world's best-selling cut flowers, namely rose, lily, chrysanthemum, lisianthus, tulip, gerbera, freesia, alstroemeria, carnation and hydrangea. Results obtained so far are described and their implications for the improvement of flowering, flower architecture, colour, scent and shelf-life are discussed.
Collapse
Affiliation(s)
- A. Giovannini
- CREA Research Centre for Vegetable and Ornamental Crops (CREA OF), Corso degli Inglesi 508, 18038 Sanremo, Italy
| | - M. Laura
- CREA Research Centre for Vegetable and Ornamental Crops (CREA OF), Corso degli Inglesi 508, 18038 Sanremo, Italy
| | - B. Nesi
- CREA Research Centre for Vegetable and Ornamental Crops (CREA OF), Via dei Fiori 8, 51017 Pescia, Italy
| | - M. Savona
- CREA Research Centre for Vegetable and Ornamental Crops (CREA OF), Corso degli Inglesi 508, 18038 Sanremo, Italy
| | - T. Cardi
- CREA Research Centre for Vegetable and Ornamental Crops (CREA OF), Via Cavalleggeri 25, 84098 Pontecagnano Faiano, Italy
| |
Collapse
|
42
|
Pramanik D, Shelake RM, Kim MJ, Kim JY. CRISPR-Mediated Engineering across the Central Dogma in Plant Biology for Basic Research and Crop Improvement. MOLECULAR PLANT 2021; 14:127-150. [PMID: 33152519 DOI: 10.1016/j.molp.2020.11.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/14/2020] [Accepted: 11/02/2020] [Indexed: 05/03/2023]
Abstract
The central dogma (CD) of molecular biology is the transfer of genetic information from DNA to RNA to protein. Major CD processes governing genetic flow include the cell cycle, DNA replication, chromosome packaging, epigenetic changes, transcription, posttranscriptional alterations, translation, and posttranslational modifications. The CD processes are tightly regulated in plants to maintain genetic integrity throughout the life cycle and to pass genetic materials to next generation. Engineering of various CD processes involved in gene regulation will accelerate crop improvement to feed the growing world population. CRISPR technology enables programmable editing of CD processes to alter DNA, RNA, or protein, which would have been impossible in the past. Here, an overview of recent advancements in CRISPR tool development and CRISPR-based CD modulations that expedite basic and applied plant research is provided. Furthermore, CRISPR applications in major thriving areas of research, such as gene discovery (allele mining and cryptic gene activation), introgression (de novo domestication and haploid induction), and application of desired traits beneficial to farmers or consumers (biotic/abiotic stress-resilient crops, plant cell factories, and delayed senescence), are described. Finally, the global regulatory policies, challenges, and prospects for CRISPR-mediated crop improvement are discussed.
Collapse
Affiliation(s)
- Dibyajyoti Pramanik
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea.
| | - Mi Jung Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea.
| |
Collapse
|
43
|
Naing AH, Jeong HY, Jung SK, Kim CK. Overexpression of 1-Aminocyclopropane-1-Carboxylic Acid Deaminase ( acdS) Gene in Petunia hybrida Improves Tolerance to Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2021; 12:737490. [PMID: 34795684 PMCID: PMC8594826 DOI: 10.3389/fpls.2021.737490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/12/2021] [Indexed: 05/07/2023]
Abstract
Abiotic stress induces the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) in plants, which consequently enhances ethylene production and inhibits plant growth. The bacterial ACC deaminase enzyme encoded by the acdS gene reduces stress-induced ethylene production and improves plant growth in response to stress. In this study, overexpression of acdS in Petunia hybrida ('Mirage Rose') significantly reduced expression of the ethylene biosynthesis gene ACC oxidase 1 (ACO1) and ethylene production relative to those in wild type (WT) under various abiotic stresses (cold, drought, and salt). The higher reduction of stress-induced ethylene in the transgenic plants, which was due to the overexpression of acdS, led to a greater tolerance to the stresses compared to that in the WT plants. The greater stress tolerances were proven based on better plant growth and physiological performance, which were linked to stress tolerance. Moreover, expression analysis of the genes involved in stress tolerance also supported the increased tolerance of transgenics relative to that with the WT. These results suggest the possibility that acdS is overexpressed in ornamental plants, particularly in bedding plants normally growing outside the environment, to overcome the deleterious effect of ethylene on plant growth under different abiotic stresses. The development of stress-tolerant plants will be helpful to advance the floricultural industry.
Collapse
Affiliation(s)
- Aung Htay Naing
- Department of Horticultural Science, Kyungpook National University, Daegu, South Korea
| | - Hui Yeong Jeong
- Department of Horticultural Science, Kyungpook National University, Daegu, South Korea
- Forest Medicinal Resources Research Center, NIFoS, Yeongju, South Korea
| | - Sung Keun Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, South Korea
| | - Chang Kil Kim
- Department of Horticultural Science, Kyungpook National University, Daegu, South Korea
- *Correspondence: Chang Kil Kim,
| |
Collapse
|
44
|
Lin Y, Jones ML. Silencing ATG6 and PI3K accelerates petal senescence and reduces flower number and shoot biomass in petunia. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110713. [PMID: 33288020 DOI: 10.1016/j.plantsci.2020.110713] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/30/2020] [Accepted: 10/03/2020] [Indexed: 06/12/2023]
Abstract
Petal senescence is a form of developmental programmed cell death (PCD) that is regulated by internal and environmental signals. Autophagy, a metabolic pathway that regulates intercellular nutrient recycling, is thought to play an important role in the regulation of petal senescence-associated PCD. To characterize the function of two central autophagy genes in petal senescence, we down-regulated Autophagy Gene 6 (PhATG6) and Phosphoinositide 3-Kinase (PhPI3K) using Virus-Induced Gene Silencing (VIGS) in Petunia × hybrida. The silencing of PhATG6 and PhPI3K accelerated petal senescence, thereby reducing flower longevity. Both PhATG6- and PhPI3K-silenced petunias had reduced flower numbers, flower biomass, and vegetative shoot biomass. These phenotypes were intensified when plants were grown under low nutrient conditions. Additionally, two important regulators of senescence, an ethylene biosynthesis gene (PhACS) and a type I metacaspase gene (PhMC1), were suppressed in senescing petals of PhATG6- and PhPI3K-silenced plants. In conclusion, our study identified PhATG6 and PhPI3K as negative regulators of flower senescence and demonstrated the influence of nutrient limitation on the function of autophagy during petal senescence. Our study also found that autophagy genes potentially influence the transcriptional regulation of metacaspases and ethylene biosynthetic genes during petal senescence. The results of this project will be fundamental for future studies of petal senescence and will provide genetic information for future crop improvement.
Collapse
Affiliation(s)
- Yiyun Lin
- Department of Horticulture and Crop Science, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), 1680 Madison Avenue, Wooster, OH, 44691, USA
| | - Michelle L Jones
- Department of Horticulture and Crop Science, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), 1680 Madison Avenue, Wooster, OH, 44691, USA.
| |
Collapse
|
45
|
Shipman EN, Yu J, Zhou J, Albornoz K, Beckles DM. Can gene editing reduce postharvest waste and loss of fruit, vegetables, and ornamentals? HORTICULTURE RESEARCH 2021; 8:1. [PMID: 33384412 PMCID: PMC7775472 DOI: 10.1038/s41438-020-00428-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 05/22/2023]
Abstract
Postharvest waste and loss of horticultural crops exacerbates the agricultural problems facing humankind and will continue to do so in the next decade. Fruits and vegetables provide us with a vast spectrum of healthful nutrients, and along with ornamentals, enrich our lives with a wide array of pleasant sensory experiences. These commodities are, however, highly perishable. Approximately 33% of the produce that is harvested is never consumed since these products naturally have a short shelf-life, which leads to postharvest loss and waste. This loss, however, could be reduced by breeding new crops that retain desirable traits and accrue less damage over the course of long supply chains. New gene-editing tools promise the rapid and inexpensive production of new varieties of crops with enhanced traits more easily than was previously possible. Our aim in this review is to critically evaluate gene editing as a tool to modify the biological pathways that determine fruit, vegetable, and ornamental quality, especially after storage. We provide brief and accessible overviews of both the CRISPR-Cas9 method and the produce supply chain. Next, we survey the literature of the last 30 years, to catalog genes that control or regulate quality or senescence traits that are "ripe" for gene editing. Finally, we discuss barriers to implementing gene editing for postharvest, from the limitations of experimental methods to international policy. We conclude that in spite of the hurdles that remain, gene editing of produce and ornamentals will likely have a measurable impact on reducing postharvest loss and waste in the next 5-10 years.
Collapse
Affiliation(s)
- Emma N Shipman
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
- Plant Biology Graduate Group, University of California, Davis, CA, 95616, USA.
| | - Jingwei Yu
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
- Graduate Group of Horticulture & Agronomy, University of California, Davis, CA, 95616, USA.
| | - Jiaqi Zhou
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
- Graduate Group of Horticulture & Agronomy, University of California, Davis, CA, 95616, USA.
| | - Karin Albornoz
- Departamento de Produccion Vegetal, Universidad de Concepcion, Region del BioBio, Concepcion, Chile.
| | - Diane M Beckles
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
46
|
Bhatta BP, Malla S. Improving Horticultural Crops via CRISPR/Cas9: Current Successes and Prospects. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1360. [PMID: 33066510 PMCID: PMC7602190 DOI: 10.3390/plants9101360] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/03/2020] [Accepted: 10/12/2020] [Indexed: 12/23/2022]
Abstract
Horticultural crops include a diverse array of crops comprising fruits, vegetables, nuts, flowers, aromatic and medicinal plants. They provide nutritional, medicinal, and aesthetic benefits to mankind. However, these crops undergo many biotic (e.g., diseases, pests) and abiotic stresses (e.g., drought, salinity). Conventional breeding strategies to improve traits in crops involve the use of a series of backcrossing and selection for introgression of a beneficial trait into elite germplasm, which is time and resource consuming. Recent new plant breeding tools such as clustered regularly interspaced short palindromic repeats (CRISPR) /CRISPR-associated protein-9 (Cas9) technique have the potential to be rapid, cost-effective, and precise tools for crop improvement. In this review article, we explore the CRISPR/Cas9 technology, its history, classification, general applications, specific uses in horticultural crops, challenges, existing resources, associated regulatory aspects, and the way forward.
Collapse
Affiliation(s)
- Bed Prakash Bhatta
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA;
- Texas A&M AgriLife Research and Extension Center, Uvalde, TX 78801, USA
| | - Subas Malla
- Texas A&M AgriLife Research and Extension Center, Uvalde, TX 78801, USA
| |
Collapse
|
47
|
Kim H, Choi J, Won KH. A stable DNA-free screening system for CRISPR/RNPs-mediated gene editing in hot and sweet cultivars of Capsicum annuum. BMC PLANT BIOLOGY 2020; 20:449. [PMID: 33004008 PMCID: PMC7528386 DOI: 10.1186/s12870-020-02665-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/23/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND DNA-free, clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein (Cas) ribonucleoprotein (RNP)-based genome editing is a simple, convincing, and promising tool for precision crop breeding. The efficacy of designed CRISPR-based genome editing tools is a critical prerequisite for successful precision gene editing in crops. RESULTS This study demonstrates that soil-grown leaf- or callus-derived pepper protoplasts are a useful system for screening of efficient guide RNAs for CRISPR/Cas9 or CRISPR/Cas12a (Cpf1). CRISPR/Cas9 or Cpf1 were delivered as CRISPR/RNP complexes of purified endonucleases mixed with the designed single guide RNA, which can edit the target gene, CaMLO2 in two pepper cultivars with whole genome sequenced, Capsicum annuum 'CM334' and C. annuum 'Dempsey'. The designed guide RNAs (sgRNAs for Cas9 or crRNAs for Cpf1) are conserved for CaMLO2 in both CM334 and Dempsey and cleave CaMLO2 in vitro. CRISPR/Cas9- or /Cpf1-RNP complexes were transfected into purely isolated protoplasts of the hot pepper CM334 and sweet pepper Dempsey by PEG-mediated delivery. Targeted deep sequencing analysis indicated that the targeted CaMLO2 gene was differentially edited in both cultivars, depending on the applied CRISPR/RNPs. CONCLUSIONS Pepper protoplast-based CRISPR guide-RNA selection is a robust method to check the efficacy of designed CRISPR tools and is a prerequisite for regenerating edited plants, which is a critical time-limiting procedure. The rapid and convincing selection of guide RNA against a target genome reduces the laborious efforts for tissue culture and facilitates effective gene editing for pepper improvement.
Collapse
Affiliation(s)
- Hyeran Kim
- Department of Biological Sciences, Kangwon National University, Kangwondaehak-gil 1, Chuncheon, 24341, South Korea.
| | - Jisun Choi
- Department of Biological Sciences, Kangwon National University, Kangwondaehak-gil 1, Chuncheon, 24341, South Korea
| | - Kang-Hee Won
- Department of Biological Sciences, Kangwon National University, Kangwondaehak-gil 1, Chuncheon, 24341, South Korea
| |
Collapse
|
48
|
Mekapogu M, Vasamsetti BMK, Kwon OK, Ahn MS, Lim SH, Jung JA. Anthocyanins in Floral Colors: Biosynthesis and Regulation in Chrysanthemum Flowers. Int J Mol Sci 2020; 21:ijms21186537. [PMID: 32906764 PMCID: PMC7554973 DOI: 10.3390/ijms21186537] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 12/21/2022] Open
Abstract
Chrysanthemum (Chrysanthemum morifolium) is an economically important ornamental crop across the globe. As floral color is the major factor determining customer selection, manipulation of floral color has been a major objective for breeders. Anthocyanins are one of the main pigments contributing to a broad variety of colors in the ray florets of chrysanthemum. Manipulating petal pigments has resulted in the development of a vast range of floral colors. Although the candidate genes involved in anthocyanin biosynthesis have been well studied, the genetic and transcriptional control of floral color remains unclear. Despite advances in multi-omics technology, these methods remain in their infancy in chrysanthemum, owing to its large complex genome and hexaploidy. Hence, there is a need to further elucidate and better understand the genetic and molecular regulatory mechanisms in chrysanthemum, which can provide a basis for future advances in breeding for novel and diverse floral colors in this commercially beneficial crop. Therefore, this review describes the significance of anthocyanins in chrysanthemum flowers, and the mechanism of anthocyanin biosynthesis under genetic and environmental factors, providing insight into the development of novel colored ray florets. Genetic and molecular regulatory mechanisms that control anthocyanin biosynthesis and the various breeding efforts to modify floral color in chrysanthemum are detailed.
Collapse
Affiliation(s)
- Manjulatha Mekapogu
- Floriculture Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration, Wanju 55365, Korea; (M.M.); (O.-K.K.); (M.-S.A.)
| | - Bala Murali Krishna Vasamsetti
- Chemical Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea;
| | - Oh-Keun Kwon
- Floriculture Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration, Wanju 55365, Korea; (M.M.); (O.-K.K.); (M.-S.A.)
| | - Myung-Suk Ahn
- Floriculture Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration, Wanju 55365, Korea; (M.M.); (O.-K.K.); (M.-S.A.)
| | - Sun-Hyung Lim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyoung National University, Anseong 17579, Korea;
| | - Jae-A Jung
- Floriculture Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration, Wanju 55365, Korea; (M.M.); (O.-K.K.); (M.-S.A.)
- Correspondence:
| |
Collapse
|
49
|
Protoplast Isolation and Shoot Regeneration from Protoplast-Derived Callus of Petunia hybrida Cv. Mirage Rose. BIOLOGY 2020; 9:biology9080228. [PMID: 32824283 PMCID: PMC7465674 DOI: 10.3390/biology9080228] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/03/2020] [Accepted: 08/13/2020] [Indexed: 11/16/2022]
Abstract
Despite the increasing use of protoplasts in plant biotechnology research, shoot regeneration from protoplasts remains challenging. In this study, we investigated the factors involved in protoplast isolation, callus induction, and shoot regeneration in Petunia hybrida cv. Mirage Rose. The following conditions were found to be most optimal for protoplast yield and viability: 0.6 M mannitol, 2.0% cellulase, and 6 h digestion time. A plating density of 10 × 104 protoplasts/mL under osmoticum condition (0.58 M mannitol) showed high microcolony viability in liquid culture. The Kao and Michayluk medium was found to be appropriate for callus proliferation from microcalli under a 16-h light photoperiod. Calli cultured in Murashige and Skoog medium containing 1.0 mg/L 6-benzylaminopurine and 0.2 mg/L 3-indole butyric acid showed the highest shoot regeneration frequency and number of shoots obtained per explant. Random amplification of polymorphic DNA analysis showed that the protoplast-derived shoots exhibited the same banding patterns as those of donor plants. Collectively, these findings can contribute to solving problems encountered in protoplast isolation and shoot regeneration in other petunia cultivars and related species. As the protocol developed by us is highly reproducible, it can be applied in biotechnology research on P. hybrida cv. Mirage Rose.
Collapse
|
50
|
Sandhya D, Jogam P, Allini VR, Abbagani S, Alok A. The present and potential future methods for delivering CRISPR/Cas9 components in plants. J Genet Eng Biotechnol 2020; 18:25. [PMID: 32638190 PMCID: PMC7340682 DOI: 10.1186/s43141-020-00036-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/04/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND CRISPR/Cas9 genome editing technology is a DNA manipulation tool for trait improvement. This technology has been demonstrated and successfully applied to edit the genome in various species of plants. The delivery of CRISPR/Cas9 components within rigid plant cells is very crucial for high editing efficiency. Here, we insight the strengths and weaknesses of each method of delivery. MAIN TEXT The mutation efficiency of genome editing may vary and affected by different factors. Out of various factors, the delivery of CRISPR/Cas9 components into cells and genome is vital. The way of delivery defines whether the edited plant is transgenic or transgene-free. In many countries, the transgenic approach of improvement is a significant limitation in the regulatory approval of genetically modified crops. Gene editing provides an opportunity for generating transgene-free edited genome of the plant. Nevertheless, the mode of delivery of the CRISPR/Cas9 component is of crucial importance for genome modification in plants. Different delivery methods such as Agrobacterium-mediated, bombardment or biolistic method, floral-dip, and PEG-mediated protoplast are frequently applied to crops for efficient genome editing. CONCLUSION We have reviewed different delivery methods with prons and cons for genome editing in plants. A novel nanoparticle and pollen magnetofection-mediated delivery systems which would be very useful in the near future. Further, the factors affecting editing efficiency, such as the promoter, transformation method, and selection pressure, are discussed in the present review.
Collapse
Affiliation(s)
- Dulam Sandhya
- Department of Biotechnology, Kakatiya University, Warangal, Telangana India
| | - Phanikanth Jogam
- Department of Biotechnology, Kakatiya University, Warangal, Telangana India
| | | | | | - Anshu Alok
- Department of Biotechnology, UIET, Panjab University, Chandigarh, India
| |
Collapse
|