1
|
Chen S, Li Y, Zhang H, Li J, Yang L, Wang Q, Zhang S, Luo P, Wang H, Jiang H. Multilayered visual metabolomics analysis framework for enhanced exploration of functional components in wolfberry. Food Chem 2025; 477:143583. [PMID: 40023033 DOI: 10.1016/j.foodchem.2025.143583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/20/2025] [Accepted: 02/22/2025] [Indexed: 03/04/2025]
Abstract
Wolfberry, regarded as a nutritious fruit, has garnered significant attention in the food industry due to potential health benefits. However, the tissue-specific distribution and dynamic accumulation patterns of nutritional metabolites such as flavonoids are still unclear. In this study, a novel spatial metabolomics framework was developed, incorporating instrumental optimization, metabolite identification, molecular network analysis, metabolic pathway mapping, and machine learning-based imaging. Using DESI-MSI, this approach enabled rapid, non-destructive, in situ analysis of wolfberry metabolites with enhanced sensitivity and spatial resolution. Detailed insights into chemical and spatial changes during ripening were obtained, with a focus on flavonoids. The visualization of the flavonoid biosynthetic pathway highlighted the impact of C-3 hydroxylation on flavonoid redistribution. Furthermore, a classification model achieved a prediction accuracy exceeding 99 %, consistent with metabolic network analyses. This framework provides a powerful tool for plant metabolomics, facilitating the exploration of functional components and metabolic pathways.
Collapse
Affiliation(s)
- Shiqi Chen
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, National Key Laboratory of Veterinary Public Health Security, Beijing 100193, China
| | - Yifan Li
- Sichuan Institute for Drug Control (Sichuan Testing Center of Medical Devices), NMAP Key Laboratory of Quality Evaluation of Chinese Patent Medicine (Traditional Chinese Patent Medicine), Chengdu 611731, China
| | - Huixia Zhang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, National Key Laboratory of Veterinary Public Health Security, Beijing 100193, China
| | - Jingguang Li
- NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China
| | - Liu Yang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, National Key Laboratory of Veterinary Public Health Security, Beijing 100193, China
| | - Qiqi Wang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, National Key Laboratory of Veterinary Public Health Security, Beijing 100193, China
| | - Shuai Zhang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, National Key Laboratory of Veterinary Public Health Security, Beijing 100193, China
| | - Pengjie Luo
- NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China
| | - Hongping Wang
- Sichuan Institute for Drug Control (Sichuan Testing Center of Medical Devices), NMAP Key Laboratory of Quality Evaluation of Chinese Patent Medicine (Traditional Chinese Patent Medicine), Chengdu 611731, China
| | - Haiyang Jiang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, National Key Laboratory of Veterinary Public Health Security, Beijing 100193, China.
| |
Collapse
|
2
|
Han C, Zhao J, Chen C, Li Y, Shi L. Subchronic Toxicity Test of Transgenic Herbicide-Tolerant Soybean ZH10-6 in Rats. J Appl Toxicol 2025; 45:1056-1064. [PMID: 39988325 DOI: 10.1002/jat.4766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/25/2025]
Abstract
The herbicide-tolerant soybean ZH10-6 was developed by modifying the Zhonghuang 10 (ZH10) variety with the G2-EPSPS and GAT genes, conferring resistance to glyphosate. This study aimed to assess the potential health effects of ZH10-6 in Sprague-Dawley rats through a 90-day subchronic toxicity test. Seven groups of rats (n = 10/sex/group) were fed a commercial AIN93G diet or diets containing 7.5%, 15%, or 30% ZH10-6 or ZH10 soybeans. General behavior, body weight, and food consumption were monitored weekly. At the end of the study, clinical pathology, including hematology, serum chemistry, urinalysis, and histopathology, were conducted. Throughout the study, all rats remained healthy and showed no abnormal clinical signs. Although some coagulation and serum biochemistry parameters showed statistical differences between groups, all values fell within the historical control ranges and were considered normal biological variability rather than treatment-related effects. The results indicate that ZH10-6 soybean consumption did not cause any adverse health effects in rats. These findings suggest that ZH10-6 is as safe as its nontransgenic parental variety, ZH10, with no evidence of toxicity after 90 days of exposure.
Collapse
Affiliation(s)
- Chao Han
- Key Laboratory of Trace Element Nutrition of National Health Commission, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - JinPeng Zhao
- Key Laboratory of Trace Element Nutrition of National Health Commission, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chen Chen
- Key Laboratory of Trace Element Nutrition of National Health Commission, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yan Li
- Key Laboratory of Trace Element Nutrition of National Health Commission, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - LiLi Shi
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
3
|
Chen J, Cui H, Li Z, Yu H, Yu Q, Li X. Increase in IAA levels by EPSPS copy number variation relates to fitness advantage in Eleusine indica. PEST MANAGEMENT SCIENCE 2025; 81:2742-2750. [PMID: 39868503 DOI: 10.1002/ps.8637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/28/2025]
Abstract
BACKGROUND Long-term use of chemical weed control has led to some weedy species evolving herbicide resistance traits with fitness advantage. Our previous studies revealed glyphosate resistance in an Eleusine indica population due to copy number variation of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) comes with fitness advantage under non-competitive conditions. Here, transcriptomics and targeted metabolomics were used to investigate physiological basis associated with the fitness advantage. RESULTS Relative copy number of EPSPS gene and plant dry weight of the glyphosate-resistant (R) population was 88.3- and 1.2- times, respectively, higher than that in the wild type (WT) plants that were isolated from within the R population. Seven genes were screened to be relevant to fitness growth trait by RNA-seq. The level of aromatic amino acids Tryptophan (Trp), Phenylalanine (Phe) and Tyrosine (Tyr), products in the shikimate pathway catalyzed by EPSPS, was 1.2-times higher in R compared to the WT plants. The metabolites associated with Trp metabolism indole-3-acetic acid (IAA), 3-indolepropionic acid (IPA), indole-3-acetamide (IAM) in the R plants were 2.0-, 1.8- and 1.4- times higher than that in the WT plants, respectively. CONCLUSION All the results indicate that fitness advantage in the studied R E. indica population may be caused by higher IAA production due to over-expression of the EPSPS gene and pleiotropically by elevated carbon metabolism. The findings in this research can provide reference information for control strategies to the glyphosate-resistant E. indica. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jingchao Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hailan Cui
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiling Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haiyan Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qin Yu
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment, University of Western Australia, Perth, Australia
| | - Xiangju Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Bharti J, Verma R, Thangaraj A, Sony SK, Fathy K, Rawat B, Kaul R, Chakraborty P, Gupta I, Kaul T. Combating aggressive weeds: Reinforcing herbicide resistance in pigeonpea (Cajanus cajan L.) through genome editing. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109550. [PMID: 40054114 DOI: 10.1016/j.plaphy.2025.109550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/10/2025] [Accepted: 01/22/2025] [Indexed: 05/07/2025]
Abstract
Pigeonpea (Cajanus cajan L.) is a drought-tolerant, tropical grain legume, rich in dietary proteins, vitamins, and micronutrients. However, the longstanding problem of weed infestation in the fields is a major constraint that significantly hampers the productivity of pigeonpea. Glyphosate, a widely used post-emergent, broad-spectrum, systemic herbicide, has emerged as an effective weed management strategy at the field level. It inhibits the chloroplastic enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) in the shikimate pathway by competitively inhibiting its substrate, phosphoenol pyruvate (PEP), thus curtailing the biosynthesis of essential aromatic amino acids (phenylalanine, tyrosine, and tryptophan). This makes glyphosate lethal to weeds and the main crop as well. To address this susceptibility towards glyphosate, we developed glyphosate-resistant pigeonpea plants by modifying the PEP-binding site within the native CcEPSPS enzyme at positions 182G-to-A, 183T-to-I, and 187P-to-S, for reducing glyphosate binding affinity. The targeted base-editing was achieved using the CRISPR-Cas9-based homology-directed repair (HDR) technique. T2-edited plants harbouring mCcEPSPS exhibited stable inheritance of the these GATIPS mutations, reduced glyphosate binding affinity, and maintained optimal photosynthetic and agronomic parameters post-glyphosate application. The mCcEPSPS enzyme efficiently catalysed the transformation of PEP and S3P to EPSP and demonstrated in vitro resistance to glyphosate. In contrast to treated control (TC) plants, the edited plants possessed excellent photosynthetic, agronomic, and physiological metrics following a post-foliar Roundup (6 ml/L) spray. This work offers the first efficient and precise gene-editing report in pigeonpea, offering an effective, sustainable strategy for broad-spectrum weed management to mitigate both quantitative and qualitative crop losses.
Collapse
Affiliation(s)
- Jyotsna Bharti
- Nutritional Improvement of Crops Group, Plant Biology and Biotechnology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rachana Verma
- Nutritional Improvement of Crops Group, Plant Biology and Biotechnology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Arulprakash Thangaraj
- Nutritional Improvement of Crops Group, Plant Biology and Biotechnology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sonia Khan Sony
- Nutritional Improvement of Crops Group, Plant Biology and Biotechnology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Khaled Fathy
- Nutritional Improvement of Crops Group, Plant Biology and Biotechnology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Bhupendra Rawat
- Nutritional Improvement of Crops Group, Plant Biology and Biotechnology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rashmi Kaul
- Nutritional Improvement of Crops Group, Plant Biology and Biotechnology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Puja Chakraborty
- Nutritional Improvement of Crops Group, Plant Biology and Biotechnology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Isha Gupta
- Nutritional Improvement of Crops Group, Plant Biology and Biotechnology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Tanushri Kaul
- Nutritional Improvement of Crops Group, Plant Biology and Biotechnology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
5
|
He K, Xu L, Zhu X, Zhang W, Ren L, Liu Y, Guo C, Ma Y, Yi Q, Xu Y, Yin J, Luo X, Zou L, Song L, Lu X, Tang Y, He M, Chen X, Li W. OsEPSPS Balances Disease Resistance and Plant Growth. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40241284 DOI: 10.1111/pce.15565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/10/2025] [Accepted: 04/07/2025] [Indexed: 04/18/2025]
Abstract
The balance between the antagonistic traits, such as plant growth and disease resistance, is crucial for developing elite crop varieties. While the roles of plant hormones in this balance are well established, the regulatory function of secondary metabolites remains largely unexplored. Here, we report that 5-enolpyruvylshikimate-3-phosphate synthase (OsEPSPS), a key enzyme in the shikimate pathway, regulates both plant growth and disease resistance. Silencing the OsEPSPS gene in rice compromises the shikimate pathway but enhances the nicotinate and nicotinamide metabolism, resulting in the accumulations of trigonelline and nicotinamide mononucleotide (NMN). These metabolites boost resistance to rice blast by activating plant immune responses rather than inhibiting the germination and growth of Magnaporthe oryzae. Furthermore, silencing OsEPSPS conferring disease resistance results in less growth in plant. Our findings highlight the pivotal role of OsEPSPS in coordinating plant growth and disease resistance.
Collapse
Grants
- This study was supported by the National Natural Science Foundation of China (32121003 and 32425005) to X.C., (32172419 and 32372555) to W.L., (32472565) to X.Z., (32272560) to L.Z. and (32272033) to Y.T.; National Key Research and Development program (2021YFA1300702), Major Projects in Agricultural Biological Breeding (2022ZD04002), and New Cornerstone Science Foundation through the XPLORER PRIZE to X.C. National Key Research and Development Program of China for Young Scientists (2022YFD1401400) to X.Z.; College Student Innovation and Entrepreneurship Training Program Project (S202410626003) to Y.X.; Sichuan Science and Technology Program (2023NSFSC0005) to X.C., (2023NSFSC1996) to W.L., (2024YFNH0014) to J.Y., (2023NSFSC1937) to L.Z., (2024NSFSC1317) to Q.O., (2024NSFSC0322) to L.S., and (2022NSFSC0166) to Y.T.
Collapse
Affiliation(s)
- Kaiwei He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Liting Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaobo Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wei Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Lifen Ren
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuchen Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Chunyu Guo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yahuan Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qian Yi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yingzhi Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Junjie Yin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiumei Luo
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences; Chengdu Agricultural Science and Technology Center, Chengdu, China
| | - Lijuan Zou
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Teachers' College, Mianyang, China
| | - Li Song
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiang Lu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yongyan Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Min He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Weitao Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
6
|
Li B, Chen C, Cui M, Sun Y, Lv J, Dai C. Exploring the potential role of EPSPS mutations for enhanced glyphosate resistance in Nicotiana tabacum. FRONTIERS IN PLANT SCIENCE 2025; 16:1516963. [PMID: 39996113 PMCID: PMC11847837 DOI: 10.3389/fpls.2025.1516963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/16/2025] [Indexed: 02/26/2025]
Abstract
Glyphosate is a widely used non-selective, broad-spectrum, systemic herbicide by interfering with the biosynthesis of aromatic amino acids. However, the emergence of glyphosate-resistant weeds has driven the need for enhanced herbicide resistance in crops. In this study, we engineered two mutant variants of the tobacco EPSPS gene through amino acid substitution (TIPS-NtEPSPS and P180S-NtEPSPS). These mutated EPSPS genes were overexpressed in tobacco under the control of CaMV35S promoters. Our results demonstrate that overexpression of TIPS-NtEPSPS significantly enhances glyphosate tolerance, allowing plants to withstand up to four times the recommended dose without compromising their fitness. This research highlights the potential of the TIPS-NtEPSPS mutant to improve herbicide resistance in tobacco, offering a viable approach for effective weed management.
Collapse
Affiliation(s)
- Bingjie Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chen Chen
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mengmeng Cui
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yuhe Sun
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Jing Lv
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Changbo Dai
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
7
|
Luo Q, Liu YG. Breeding herbicide-resistant rice using CRISPR-Cas gene editing and other technologies. PLANT COMMUNICATIONS 2025; 6:101172. [PMID: 39397365 PMCID: PMC11897542 DOI: 10.1016/j.xplc.2024.101172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/17/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
The emergence of herbicide-resistant weeds in crop fields and the extensive use of herbicides have led to a decrease in rice (Oryza sativa) yields and an increase in production costs. To address these challenges, researchers have focused on the discovery of new germplasm resources with herbicide resistance. The most promising candidate genes have been functionally studied and applied in rice breeding. Here, we review recent progress in the breeding of herbicide-resistant rice. We provide examples of various techniques used to breed herbicide-resistant rice, such as physical and chemical mutagenesis, genetic transformation, and CRISPR-Cas-mediated gene editing. We highlight factors involved in the breeding of herbicide-resistant rice, including target genes, rice varieties, degrees of herbicide resistance, and research tools. Finally, we suggest methods for breeding herbicide-resistant rice that could potentially be used for weed management in direct-seeding farm systems.
Collapse
Affiliation(s)
- Qiyu Luo
- Guangdong Laboratory for Lingnan Modern Agriculture, The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yao-Guang Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
8
|
Borphukan B, Khatun M, Fartyal D, James D, Reddy MK. A Gemini Virus-Derived Autonomously Replicating System for HDR-Mediated Genome Editing of the EPSP Synthase Gene in Indica Rice. PLANTS (BASEL, SWITZERLAND) 2025; 14:477. [PMID: 39943039 PMCID: PMC11821261 DOI: 10.3390/plants14030477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/22/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025]
Abstract
CRISPR/Cas9-mediated homology-directed repair (HDR) is a powerful tool for precise genome editing in plants, but its efficiency remains low, particularly for targeted amino acid substitutions or gene knock-ins. Successful HDR requires the simultaneous presence of Cas9, guide RNA, and a repair template (RT) in the same cell nucleus. Among these, the timely availability of the RT at the double-strand break (DSB) site is a critical bottleneck. To address this, we developed a sequential transformation strategy incorporating a deconstructed wheat dwarf virus (dWDV)-based autonomously replicating delivery system, effectively simplifying the process into a two-component system. Using this approach, we successfully achieved the targeted editing of the OsEPSPS gene in rice with a 10 percent HDR efficiency, generating three lines (TIPS1, TIPS2, and TIPS3) with amino acid substitutions (T172I and P177S) in the native EPSPS protein. The modifications were confirmed through Sanger sequencing and restriction digestion assays, and the edited lines showed no yield penalties compared to wild-type plants. This study demonstrates the utility of viral replicons in delivering gene-editing tools for precise genome modification, offering a promising approach for efficient HDR in crop improvement programs.
Collapse
Affiliation(s)
- Bhabesh Borphukan
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163, USA
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India;
| | - Muslima Khatun
- Molecular Biotechnology Division, National Institute of Biotechnology, Dhaka 1349, Bangladesh;
| | - Dhirendra Fartyal
- Plant Nutrition Division, INRES, University of Bonn, 53113 Bonn, Germany;
| | - Donald James
- Department of Biotechnology, Forest Genetics and Biotechnology Division, Kerala Forest Research Institute, Thrissur 680653, India;
| | - Malireddy K. Reddy
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India;
| |
Collapse
|
9
|
Luo B, Zhang X, Wang F, Wang Y, Wu W, Lin C, Rao L, Wang Q. Development of a double-antibody sandwich ELISA for quantification of mutated EPSPS gene expression in rice. Anal Biochem 2025; 696:115669. [PMID: 39265646 DOI: 10.1016/j.ab.2024.115669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/19/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Glyphosate resistance is a critically important trait for genetically modified (GM) crops. Mutation of the rice EPSPS gene results in a high level of glyphosate resistance, presenting significant potential for the development of glyphosate-tolerant crops. The resistance of rice to glyphosate is correlated with the expression levels of resistance genes. Therefore, developing a convenient, stable, and sensitive method for quantifying the OsmEPSPS protein is crucial for the development of glyphosate-resistant crops. We developed a double-antibody sandwich quantitative ELISA (DAS-ELISA) using a specific monoclonal antibody (mAb) for OsmEPSPS capture and an HRP-conjugated anti-OsmEPSPS rabbit polyclonal antibody (pAb). The method could be used to detect OsmEPSPS within a linear range of 16-256 ng/mL with robust intra- and inter-batch duplicability (%CV values: 0.17 %-7.24 %). OsmEPSPS expression in the transgenic rice lines (54.44-445.80 μg/g) was quantified using the DAS-ELISA. Furthermore, the expression of the OsmEPSPS gene was validated through Western blotting. This study demonstrated the reliability and stability of the DAS-ELISA for OsmEPSPS detection in GM rice.
Collapse
Affiliation(s)
- Biao Luo
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan Province, 410128, China; Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province, 310021, China
| | - Xianwen Zhang
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province, 310021, China; Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province, 310021, China
| | - Fang Wang
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province, 310021, China
| | - Yan Wang
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province, 310021, China
| | - Wei Wu
- Shanghai YouLong Biotech Co., Ltd., Shanghai, 201114, China
| | - Chaoyang Lin
- Institute of Insect Sciences, The Rural Development Academy, Zhejiang University, Hangzhou, Zhejiang Province, 310063, China
| | - Liqun Rao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan Province, 410128, China.
| | - Qiming Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan Province, 410128, China.
| |
Collapse
|
10
|
Chen J, Li Z, Yu H, Cui H, Li X. Affecting of Glyphosate Tolerance and Metabolite Content in Transgenic Arabidopsis thaliana Overexpressing EPSPS Gene from Eleusine indica. PLANTS (BASEL, SWITZERLAND) 2024; 14:78. [PMID: 39795338 PMCID: PMC11723125 DOI: 10.3390/plants14010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025]
Abstract
Long-term use of the global non-selective herbicide glyphosate for weed control has caused resistance in weeds. Overproducing of the target of glyphosate 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) is one of the resistance mechanisms in weeds. However, few studies have measured the effects on tolerance levels and metabolite content in model plant species overexpressing EPSPS from weeds. We assessed the resistance levels of transgenic Arabidopsis thaliana overexpressing EPSPS from Eleusine indica, and its effects on metabolite content using the method of both quasi-targeted and targeted metabolomics. The results showed that the average resistance index of the transgenic lines was 4.7 and the exogenous E. indica EPSPS expression levels were 265.3- to 532.0-fold higher than those in the wild-type (WT) line. The EPSPS protein ranged from 148.5 to 286.2 μg g-1, which was substantially higher than that in the WT line (9.1 μg g-1). 103 metabolites associated with flavone and flavonol biosynthesis, the metabolism of aromatic amino acids, energy metabolism, and auxin synthesis were significantly higher in the transgenic glyphosate-resistant individuals (R) than in the WT individuals. The results of quantitative analysis show that pyruvate, sedoheptulose 7-phosphate, and gluconic acid amounts in R plants were 1.1-, 1.6- and 1.3-fold higher than those in WT plants, respectively. However, both citric and glyceric acid levels were 0.9-fold lower than those in WT plants. The abundance of other metabolites in the glycolytic and pentose phosphate pathways of central carbon metabolism was similar in the WT and transgenic plants. Glutamic acid was significantly more abundant in the transgenic line than in the WT plants. In contrast, asparagine, glutamine, and lysine were less abundant. However, the concentration of other amino acids did not change significantly. Overexpression of E. indica EPSPS in A. thaliana conferred a moderate level of tolerance to glyphosate. Metabolites associated with flavone and flavonol biosynthesis, the metabolism of aromatic amino acids, and energy metabolism were significantly increased. The results of this study will be useful for evaluating the characterisation and risk assessment of transgenic plants, including identification of unintended effects of the respective transgenic modifications.
Collapse
Affiliation(s)
| | | | | | | | - Xiangju Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.C.); (H.Y.); (H.C.)
| |
Collapse
|
11
|
Ali F, Tang Z, Mo G, Zhang B, Ling X, Qiu Z. Taxonomic and functional changes in wheat rhizosphere microbiome caused by imidazoline-based herbicide and genetic modification. ENVIRONMENTAL RESEARCH 2024; 262:119726. [PMID: 39102937 DOI: 10.1016/j.envres.2024.119726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024]
Abstract
Genetically modified (GM) crop cultivation has received a lot of attention in recent years due to the substantial public debate. Consequently, an in-depth investigation of excessively used GM herbicide-tolerant crops is a vital step for the biosafety of genetically modified plants. Several studies have been conducted to study the impact of transgenic GM crops on soil microbial composition; however, research into the effects of non-transgenic GM crops is inadequate. In the current work, high-throughput sequencing was used to evaluate the impact of the acetolactate synthase (ALS)-mutant (WK170B), its control (YN19B), and the imazamox (IM) herbicide on the wheat rhizobiome. Under normal growth conditions, our work revealed a minimal impact of ALS-mutant WK170B on the rhizosphere microbiome compared to the control YN10B, except for some cyanobacterial microorganisms that showed a significant increase in abundance. This suggests that the gene mutation could potentially have a beneficial impact on the bacterial communities present in the rhizosphere. Following IM exposure, taxonomic analysis revealed a significant reduction in the relative abundance of Ralstonia pickettii and an unidentified member of the genus Ancylothrix 8 PC. Analyses of both alpha and beta diversity revealed a statistically significant increase in both microbial richness and species diversity. IM-induced relative abundance modulation was also evident through Linear discriminant analysis Effect Size (LEfSe), MetaStat, and heatmap analyses. The SIMPER analysis revealed that the microbial taxa Massilia, Limnobacter, Hydrogenophaga, Ralstonia, Nitrospira, and Ramlibacter exhibited the highest vulnerability to IM exposure. The functional attributes analysis revealed that the relative abundance of genes associated with the extracellular matrix-receptor interaction, which is responsible for structural support and stress response, increased significantly following IM exposure. Collectively, our study identifies key microbial taxa in the wheat rhizobiome that are sensitive to IM herbicides and provides a foundation for assessing the environmental risks associated with IM herbicide use.
Collapse
Affiliation(s)
- Farman Ali
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Zhaocheng Tang
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Gangao Mo
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Baolong Zhang
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xitie Ling
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Zeyu Qiu
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| |
Collapse
|
12
|
Xu P, Qin Y, Ma M, Liu T, Ruan F, Xue L, Cao J, Xiao G, Chen Y, Fu H, Zhou G, Xie Y, Xia D. Genome-wide association study reveals the genetic basis of rice resistance to three herbicides. FRONTIERS IN PLANT SCIENCE 2024; 15:1476829. [PMID: 39411656 PMCID: PMC11473433 DOI: 10.3389/fpls.2024.1476829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024]
Abstract
Crop resistance to herbicides is crucial for agricultural productivity and sustainability amidst escalating challenges of weed resistance. Uncovering herbicide resistant genes is particularly important for rice production. In this study, we tested the resistance to three commonly used herbicides: glufosinate, glyphosate and mesotrione of 421 diverse rice cultivars and employed genome-wide association studies (GWAS) to unravel the genetic underpinnings of resistance to these three herbicides in rice. We discovered that cultivated rice exhibited rich variation in resistance to the three herbicides, and the differences among subpopulations were significant. Six identified associations harboring candidate genes for resistance to these herbicides were significant. Among them, RGlu6 and RGly8 were the major QTL for resistance to glufosinate and glyphosate, respectively. The favorable alleles of RGlu6 and RGly8 were primarily present in japonica cultivars that originated from Europe, highlighting the geographic and genetic diversity of herbicide resistance and emphasizing the localized selection pressures in European rice varieties. Moreover, our findings might suggest that traditional target genes may not contain tolerant alleles in nature, and alternative mechanisms with novel loci associated with resistance may work. By mapping the genes for herbicide resistance, our results may help develop new strategies to combat the dual challenges on effective weed management and herbicide sustainability.
Collapse
Affiliation(s)
- Peizhou Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuhe Qin
- Department of Research and Development, Luzhou Taifeng Seed Industry Co., Ltd., Luzhou, Sichuan, China
| | - Maosen Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Tengfei Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Fenhua Ruan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Le Xue
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jiying Cao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guizong Xiao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yun Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hongyan Fu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Gege Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yonghua Xie
- Department of Research and Development, Zoeve Seed Co., Ltd., Chengdu, Sichuan, China
| | - Duo Xia
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
13
|
Kababji AM, Butt H, Mahfouz M. Synthetic directed evolution for targeted engineering of plant traits. FRONTIERS IN PLANT SCIENCE 2024; 15:1449579. [PMID: 39286837 PMCID: PMC11402689 DOI: 10.3389/fpls.2024.1449579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024]
Abstract
Improving crop traits requires genetic diversity, which allows breeders to select advantageous alleles of key genes. In species or loci that lack sufficient genetic diversity, synthetic directed evolution (SDE) can supplement natural variation, thus expanding the possibilities for trait engineering. In this review, we explore recent advances and applications of SDE for crop improvement, highlighting potential targets (coding sequences and cis-regulatory elements) and computational tools to enhance crop resilience and performance across diverse environments. Recent advancements in SDE approaches have streamlined the generation of variants and the selection processes; by leveraging these advanced technologies and principles, we can minimize concerns about host fitness and unintended effects, thus opening promising avenues for effectively enhancing crop traits.
Collapse
Affiliation(s)
- Ahad Moussa Kababji
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Haroon Butt
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Magdy Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
14
|
Reed KB, Kim W, Lu H, Larue CT, Guo S, Brooks SM, Montez MR, Wagner JW, Zhang YJ, Alper HS. Evolving dual-trait EPSP synthase variants using a synthetic yeast selection system. Proc Natl Acad Sci U S A 2024; 121:e2317027121. [PMID: 39159366 PMCID: PMC11363307 DOI: 10.1073/pnas.2317027121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 07/13/2024] [Indexed: 08/21/2024] Open
Abstract
The enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) functions in the shikimate pathway which is responsible for the production of aromatic amino acids and precursors of other essential secondary metabolites in all plant species. EPSPS is also the molecular target of the herbicide glyphosate. While some plant EPSPS variants have been characterized with reduced glyphosate sensitivity and have been used in biotechnology, the glyphosate insensitivity typically comes with a cost to catalytic efficiency. Thus, there exists a need to generate additional EPSPS variants that maintain both high catalytic efficiency and high glyphosate tolerance. Here, we create a synthetic yeast system to rapidly study and evolve heterologous EPSP synthases for these dual traits. Using known EPSPS variants, we first validate that our synthetic yeast system is capable of recapitulating growth characteristics observed in plants grown in varying levels of glyphosate. Next, we demonstrate that variants from mutagenesis libraries with distinct phenotypic traits can be isolated depending on the selection criteria applied. By applying strong dual-trait selection pressure, we identify a notable EPSPS mutant after just a single round of evolution that displays robust glyphosate tolerance (Ki of nearly 1 mM) and improved enzymatic efficiency over the starting point (~2.5 fold). Finally, we show the crystal structure of corn EPSPS and the top resulting mutants and demonstrate that certain mutants have the potential to outperform previously reported glyphosate-resistant EPSPS mutants, such as T102I and P106S (denoted as TIPS), in whole-plant testing. Altogether, this platform helps explore the trade-off between glyphosate resistance and enzymatic efficiency.
Collapse
Affiliation(s)
- Kevin B. Reed
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX78712
| | - Wantae Kim
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX78712
| | - Hongyuan Lu
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX78712
| | | | - Shirley Guo
- Crop Science Division, Bayer, Chesterfield, MO63017
| | - Sierra M. Brooks
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX78712
| | - Michael R. Montez
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX78712
| | - James W. Wagner
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX78712
| | - Y. Jessie Zhang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| | - Hal S. Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX78712
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX78712
| |
Collapse
|
15
|
Gadri Y, Avneri A, Peleg Z. Induced mutation in the SiALS gene offers new weed management opportunities for sesame crop. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 345:112104. [PMID: 38685454 DOI: 10.1016/j.plantsci.2024.112104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/10/2024] [Accepted: 04/21/2024] [Indexed: 05/02/2024]
Abstract
Weeds are the primary biotic constraint affecting sesame growth and production. Here, we applied EMS mutagenesis to an elite sesame cultivar and discovered a novel point mutation in the sesame SiALS gene conferring resistance to imidazolinone, a group of acetolactate-synthase (ALS)-inhibitors. The mutant line exhibited high resistance to imazamox, an ALS-inhibitor, with hybrid plants displaying an intermediate response. Field-based validation confirmed the mutant line's substantial resistance, leading to a significantly higher yield under imazamox treatment. Under pre-emergence application of imazapic, the mutant plants sustained growth, whereas wild-type and weed were effectively controlled. Field trials using s-metolachlor and imazapic combined resulted in weed-free plots compared to untreated controls. Consequently, this treatment showed a significantly greater yield (2280 vs. 880 Kg ha-1) than the commercial practice (s-metolachlor). Overall, our study unveils the potential of utilizing this point mutation in sesame breeding programs, offering new opportunities for integrated weed management strategies for sesame cultivation. Developing herbicide-resistant crop plants holds promise for supporting sustainable production and addressing the challenges of weed infestations in sesame farming.
Collapse
Affiliation(s)
- Yaron Gadri
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Asaf Avneri
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Zvi Peleg
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot 7610001, Israel.
| |
Collapse
|
16
|
Bharti J, Verma R, Gupta I, Chakraborty P, Eashwaran M, Sony SK, Nehra M, Thangraj A, Kaul R, Fathy K, Kaul T. Functional characterization of novel mutations in the conserved region of EPSPS for herbicide resistance in pigeonpea: structure-based coherent design. J Biomol Struct Dyn 2024; 42:6065-6080. [PMID: 37652402 DOI: 10.1080/07391102.2023.2243522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/21/2023] [Indexed: 09/02/2023]
Abstract
Prospectively, agroecosystems for the growth of crops provide the potential fertile, productive, and tropical environment which attracts infestation by weedy plant species that compete with the primary crop plants. Infestation by weed is a major biotic stress factor faced by pigeonpea that hampers the productivity of the crop. In the modern era with the development of chemicals the problem of weed infestation is dealt with armours called herbicides. The most widely utilized, post-emergent, broad-spectrum herbicide has an essential active ingredient called glyphosate. Glyphosate mechanistically inhibits a chloroplastic enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) by competitively interacting with the PEP binding site which hinders the shikimate pathway and the production of essential aromatic amino acids (Phe, Tyr, Trp) and other secondary metabolites in plants. Moreover, herbicide spray for weed management is lethal to both the primary crop and the weeds. Therefore, it is critical to develop herbicide-resistant crops for field purposes to reduce the associated yield and economic losses. In this study, the in-silico analysis drove the selection and validation of the point mutations in the conserved region of the EPSPS gene, which confers efficient herbicide resistance to mutated-CcEPSPS enzyme along with the retention of the normal enzyme function. An optimized in-silico validation of the target mutation before the development of the genome-edited resistant plant lines is a prerequisite for testing their efficacy as a proof of concept. We validated the combination of GATIPS mutation for its no-cost effect at the enzyme level via molecular dynamic (MD) simulation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jyotsna Bharti
- Nutritional Improvement of Crops Group, Plant Biology & Biotechnology, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Rachana Verma
- Nutritional Improvement of Crops Group, Plant Biology & Biotechnology, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Isha Gupta
- Nutritional Improvement of Crops Group, Plant Biology & Biotechnology, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Puja Chakraborty
- Nutritional Improvement of Crops Group, Plant Biology & Biotechnology, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Murugesh Eashwaran
- Nutritional Improvement of Crops Group, Plant Biology & Biotechnology, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Sonia Khan Sony
- Nutritional Improvement of Crops Group, Plant Biology & Biotechnology, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Mamta Nehra
- Nutritional Improvement of Crops Group, Plant Biology & Biotechnology, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Arulprakash Thangraj
- Nutritional Improvement of Crops Group, Plant Biology & Biotechnology, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Rashmi Kaul
- Nutritional Improvement of Crops Group, Plant Biology & Biotechnology, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Khaled Fathy
- Nutritional Improvement of Crops Group, Plant Biology & Biotechnology, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Tanushri Kaul
- Nutritional Improvement of Crops Group, Plant Biology & Biotechnology, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| |
Collapse
|
17
|
Mishra SK, Chaudhary C, Baliyan S, Poonia AK, Sirohi P, Kanwar M, Gazal S, Kumari A, Sircar D, Germain H, Chauhan H. Heat-stress-responsive HvHSFA2e gene regulates the heat and drought tolerance in barley through modulation of phytohormone and secondary metabolic pathways. PLANT CELL REPORTS 2024; 43:172. [PMID: 38874775 DOI: 10.1007/s00299-024-03251-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 05/28/2024] [Indexed: 06/15/2024]
Abstract
KEY MESSAGE The heat stress transcription factor HSFA2e regulates both temperature and drought response via hormonal and secondary metabolism alterations. High temperature and drought are the primary yield-limiting environmental constraints for staple food crops. Heat shock transcription factors (HSF) terminally regulate the plant abiotic stress responses to maintain growth and development under extreme environmental conditions. HSF genes of subclass A2 predominantly express under heat stress (HS) and activate the transcriptional cascade of defense-related genes. In this study, a highly heat-inducible HSF, HvHSFA2e was constitutively expressed in barley (Hordeum vulgare L.) to investigate its role in abiotic stress response and plant development. Transgenic barley plants displayed enhanced heat and drought tolerance in terms of increased chlorophyll content, improved membrane stability, reduced lipid peroxidation, and less accumulation of ROS in comparison to wild-type (WT) plants. Transcriptome analysis revealed that HvHSFA2e positively regulates the expression of abiotic stress-related genes encoding HSFs, HSPs, and enzymatic antioxidants, contributing to improved stress tolerance in transgenic plants. The major genes of ABA biosynthesis pathway, flavonoid, and terpene metabolism were also upregulated in transgenics. Our findings show that HvHSFA2e-mediated upregulation of heat-responsive genes, modulation in ABA and flavonoid biosynthesis pathways enhance drought and heat stress tolerance.
Collapse
Affiliation(s)
- Sumit Kumar Mishra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, Uttarakhand, India
- Magadh University, BodhGaya, 824234, Bihar, India
| | - Chanderkant Chaudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, Uttarakhand, India
| | - Suchi Baliyan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, Uttarakhand, India
| | - Anuj Kumar Poonia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, Uttarakhand, India
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Mohali, India
| | - Parul Sirohi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, Uttarakhand, India
| | - Meenakshi Kanwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, Uttarakhand, India
| | - Snehi Gazal
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 Bd des Forges, Trois-Rivières, QC, G9A 5H9, Canada
| | - Annu Kumari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, Uttarakhand, India
| | - Debabrata Sircar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, Uttarakhand, India
| | - Hugo Germain
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 Bd des Forges, Trois-Rivières, QC, G9A 5H9, Canada
| | - Harsh Chauhan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, Uttarakhand, India.
| |
Collapse
|
18
|
Peluso J, Gamarra F, Aronzon CM. Synergistic interactions between the emerging contaminant ivermectin and the ubiquitous pesticide glyphosate at an environmentally relevant ratio on Rhinella arenarum larvae. CHEMOSPHERE 2024; 358:142058. [PMID: 38642777 DOI: 10.1016/j.chemosphere.2024.142058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
Glyphosate (GLY) is a widely used broad-spectrum herbicide, and ivermectin (IVM) is a commonly used antiparasitic in livestock farming. Both substances can be found in water bodies from agricultural areas and can have negative impacts on ecosystems. The aim of this study was to evaluate the lethal and sublethal toxicity individually and in combination of a glyphosate-based herbicide (GBH) and an ivermectin commercial formulation (ICF). Groups of 10 larvae were exposed for 504 h, in triplicate to a concentration gradient of the commercial formulation of glyphosate and ivermectin, individually, and to a series of dilutions of a non-equitoxic mixture of both compounds based on environmental concentrations. Additionally, biomarkers of oxidative stress (catalase, glutathione S-transferase, and reduced glutathione) and neurotoxicity (acetylcholinesterase and butyrylcholinesterase) were evaluated at sublethal and environmental concentrations of ivermectin (0.00125 mg/L) and glyphosate (0.7 mg/L) individually and in mixture. The ICF (LC50-504h: 0.047 mg ai IVM/L) was more toxic to larvae than the GBH (LC50-504h: 24.73 mg ae GLY/L). In terms of lethality, exposure to the mixture was synergistic at all exposure times. Both compounds separately caused alterations in the biomarkers of oxidative stress and neurotoxicity. Regarding sublethal effects in organisms exposed to the mixture, potentiation was observed in acetylcholinesterase. The simultaneous exposure to both substances in water bodies can have synergistic and negative effects on aquatic organisms.
Collapse
Affiliation(s)
- Julieta Peluso
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín UNSAM, Campus Miguelete, 25 de mayo y Francia, 1650, San Martín, Provincia de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Fanny Gamarra
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín UNSAM, Campus Miguelete, 25 de mayo y Francia, 1650, San Martín, Provincia de Buenos Aires, Argentina
| | - Carolina M Aronzon
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín UNSAM, Campus Miguelete, 25 de mayo y Francia, 1650, San Martín, Provincia de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
19
|
Kaul T, Thangaraj A, Jain R, Bharti J, Kaul R, Verma R, Sony SK, Abdel Motelb KF, Yadav P, Agrawal PK. CRISPR/Cas9-mediated homology donor repair base editing system to confer herbicide resistance in maize (Zea mays L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108374. [PMID: 38310724 DOI: 10.1016/j.plaphy.2024.108374] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/20/2023] [Accepted: 01/12/2024] [Indexed: 02/06/2024]
Abstract
Weed infestation is a significant concern to crop yield loss, globally. The potent broad-spectrum glyphosate (N-phosphomethyl-glycine) has a widely utilized herbicide, acting on the shikimic acid pathway within chloroplast by inhibiting 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). This crucial enzyme plays a vital role in aromatic amino acid synthesis. Repurposing of CRISPR/Cas9-mediated gene-editing was the inflection point for generating novel crop germplasm with diverse genetic variations in essential agronomic traits, achieved through the introduction of nucleotide substitutions at target sites within the native genes, and subsequent induction of indels through error-prone non-homologous end-joining DNA repair mechanisms. Here, we describe the development of efficient herbicide-resistant maize lines by using CRISPR/Cas9 mediated site-specific native ZmEPSPS gene fragment replacement via knock-out of conserved region followed by knock-in of desired homologous donor repair (HDR-GATIPS-mZmEPSPS) with triple amino acid substitution. The novel triple substitution conferred high herbicide tolerance in edited maize plants. Transgene-free progeny harbouring the triple amino acid substitutions revealed agronomic performances similar to that of wild-type plants, suggesting that the GATIPS-mZmEPSPS allele substitutions are crucial for developing elite maize varieties with significantly enhanced glyphosate resistance. Furthermore, the aromatic amino acid contents in edited maize lines were significantly higher than in wild-type plants. The present study describing the introduction of site-specific CRISPR/Cas9- GATIPS mutations in the ZmEPSPS gene via genome editing has immense potential for higher tolerance to glyphosate with no yield penalty in maize.
Collapse
Affiliation(s)
- Tanushri Kaul
- Nutritional Improvement of Crops Group, Plant Molecular Biology Division, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067, India.
| | - Arulprakash Thangaraj
- Nutritional Improvement of Crops Group, Plant Molecular Biology Division, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067, India
| | - Rashmi Jain
- Nutritional Improvement of Crops Group, Plant Molecular Biology Division, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067, India
| | - Jyotsna Bharti
- Nutritional Improvement of Crops Group, Plant Molecular Biology Division, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067, India
| | - Rashmi Kaul
- Nutritional Improvement of Crops Group, Plant Molecular Biology Division, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067, India
| | - Rachana Verma
- Nutritional Improvement of Crops Group, Plant Molecular Biology Division, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067, India
| | - Sonia Khan Sony
- Nutritional Improvement of Crops Group, Plant Molecular Biology Division, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067, India
| | - Khaled Fathy Abdel Motelb
- Nutritional Improvement of Crops Group, Plant Molecular Biology Division, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067, India
| | - Pranjal Yadav
- Indian Council of Agricultural Research- Indian Institute of Maize Research, Pusa Campus, New Delhi, 110012, India
| | - Pawan Kumar Agrawal
- Indian Council of Agricultural Research, New Delhi, 110012, India; ICAR-National Institute of Biotic Stress Management, Raipur, 493225, Chhattisgarh, India
| |
Collapse
|
20
|
Sun LX, Li N, Yuan Y, Wang Y, Lu BR. Reduced Carbon Dioxide by Overexpressing EPSPS Transgene in Arabidopsis and Rice: Implications in Carbon Neutrality through Genetically Engineered Plants. BIOLOGY 2023; 13:25. [PMID: 38248456 PMCID: PMC10813641 DOI: 10.3390/biology13010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024]
Abstract
With the increasing challenges of climate change caused by global warming, the effective reduction of carbon dioxide (CO2) becomes an urgent environmental issue for the sustainable development of human society. Previous reports indicated increased biomass in genetically engineered (GE) Arabidopsis and rice overexpressing the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene, suggesting the possibility of consuming more carbon by GE plants. However, whether overexpressing the EPSPS gene in GE plants consumes more CO2 remains a question. To address this question, we measured expression of the EPSPS gene, intercellular CO2 concentration, photosynthetic ratios, and gene expression (RNA-seq and RT-qPCR) in GE (overexpression) and non-GE (normal expression) Arabidopsis and rice plants. Results showed substantially increased EPSPS expression accompanied with CO2 consumption in the GE Arabidopsis and rice plants. Furthermore, overexpressing the EPSPS gene affected carbon-fixation related biological pathways. We also confirmed significant upregulation of four key carbon-fixation associated genes, in addition to increased photosynthetic ratios, in all GE plants. Our finding of significantly enhanced carbon fixation in GE plants overexpressing the EPSPS transgene provides a novel strategy to reduce global CO2 for carbon neutrality by genetic engineering of plant species, in addition to increased plant production by enhanced photosynthesis.
Collapse
Affiliation(s)
- Li-Xue Sun
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai 200438, China; (L.-X.S.); (Y.Y.)
| | - Ning Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai 200438, China;
| | - Ye Yuan
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai 200438, China; (L.-X.S.); (Y.Y.)
| | - Ying Wang
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai 200438, China; (L.-X.S.); (Y.Y.)
| | - Bao-Rong Lu
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai 200438, China; (L.-X.S.); (Y.Y.)
| |
Collapse
|
21
|
Li S, Li P, Li X, Wen N, Wang Y, Lu W, Lin M, Lang Z. In maize, co-expression of GAT and GR79-EPSPS provides high glyphosate resistance, along with low glyphosate residues. ABIOTECH 2023; 4:277-290. [PMID: 38106436 PMCID: PMC10721750 DOI: 10.1007/s42994-023-00114-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/01/2023] [Indexed: 12/19/2023]
Abstract
Herbicide tolerance has been the dominant trait introduced during the global commercialization of genetically modified (GM) crops. Herbicide-tolerant crops, especially glyphosate-resistant crops, offer great advantages for weed management; however, despite these benefits, glyphosate-resistant maize (Zea mays L.) has not yet been commercially deployed in China. To develop a new bio-breeding resource for glyphosate-resistant maize, we introduced a codon-optimized glyphosate N-acetyltransferase gene, gat, and the enolpyruvyl-shikimate-3-phosphate synthase gene, gr79-epsps, into the maize variety B104. We selected a genetically stable high glyphosate resistance (GR) transgenic event, designated GG2, from the transgenic maize population through screening with high doses of glyphosate. A molecular analysis demonstrated that single copy of gat and gr79-epsps were integrated into the maize genome, and these two genes were stably transcribed and translated. Field trials showed that the transgenic event GG2 could tolerate 9000 g acid equivalent (a.e.) glyphosate per ha with no effect on phenotype or yield. A gas chromatography-mass spectrometry (GC-MS) analysis revealed that, shortly after glyphosate application, the glyphosate (PMG) and aminomethylphosphonic acid (AMPA) residues in GG2 leaves decreased by more than 90% compared to their levels in HGK60 transgenic plants, which only harbored the epsps gene. Additionally, PMG and its metabolic residues (AMPA and N-acetyl-PMG) were not detected in the silage or seeds of GG2, even when far more than the recommended agricultural dose of glyphosate was applied. The co-expression of gat and gr79-epsps, therefore, confers GG2 with high GR and a low risk of herbicide residue accumulation, making this germplasm a valuable GR event in herbicide-tolerant maize breeding. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-023-00114-8.
Collapse
Affiliation(s)
- Shengyan Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pengcheng Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiangyin Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ning Wen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yinxiao Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Lu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Min Lin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhihong Lang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan China
| |
Collapse
|
22
|
Li Z, Zhang Z, Liu Y, Ma Y, Lv X, Zhang D, Gu Q, Ke H, Wu L, Zhang G, Ma Z, Wang X, Sun Z. Identification and Expression Analysis of EPSPS and BAR Families in Cotton. PLANTS (BASEL, SWITZERLAND) 2023; 12:3366. [PMID: 37836107 PMCID: PMC10574212 DOI: 10.3390/plants12193366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023]
Abstract
Weeds seriously affect the yield and quality of crops. Because manual weeding is time-consuming and laborious, the use of herbicides becomes an effective way to solve the harm caused by weeds in fields. Both 5-enolpyruvyl shikimate-3-phosphate synthetase (EPSPS) and acetyltransferase genes (bialaphos resistance, BAR) are widely used to improve crop resistance to herbicides. However, cotton, as the most important natural fiber crop, is not tolerant to herbicides in China, and the EPSPS and BAR family genes have not yet been characterized in cotton. Therefore, we explore the genes of these two families to provide candidate genes for the study of herbicide resistance mechanisms. In this study, 8, 8, 4, and 5 EPSPS genes and 6, 6, 5, and 5 BAR genes were identified in allotetraploid Gossypium hirsutum and Gossypium barbadense, diploid Gossypium arboreum and Gossypium raimondii, respectively. Members of the EPSPS and BAR families were classified into three subgroups based on the distribution of phylogenetic trees, conserved motifs, and gene structures. In addition, the promoter sequences of EPSPS and BAR family members included growth and development, stress, and hormone-related cis-elements. Based on the expression analysis, the family members showed tissue-specific expression and differed significantly in response to abiotic stresses. Finally, qRT-PCR analysis revealed that the expression levels of GhEPSPS3, GhEPSPS4, and GhBAR1 were significantly upregulated after exogenous spraying of herbicides. Overall, we characterized the EPSPS and BAR gene families of cotton at the genome-wide level, which will provide a basis for further studying the functions of EPSPS and BAR genes during growth and development and herbicide stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Xingfen Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory for Crop Germplasm Resources of Hebei, College of Agronomy, Hebei Agricultural University, Baoding 071000, China; (Z.L.); (Z.Z.); (Y.L.); (Y.M.); (X.L.); (D.Z.); (Q.G.); (H.K.); (L.W.); (G.Z.); (Z.M.)
| | - Zhengwen Sun
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory for Crop Germplasm Resources of Hebei, College of Agronomy, Hebei Agricultural University, Baoding 071000, China; (Z.L.); (Z.Z.); (Y.L.); (Y.M.); (X.L.); (D.Z.); (Q.G.); (H.K.); (L.W.); (G.Z.); (Z.M.)
| |
Collapse
|
23
|
Chawla R, Poonia A, Samantara K, Mohapatra SR, Naik SB, Ashwath MN, Djalovic IG, Prasad PVV. Green revolution to genome revolution: driving better resilient crops against environmental instability. Front Genet 2023; 14:1204585. [PMID: 37719711 PMCID: PMC10500607 DOI: 10.3389/fgene.2023.1204585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/11/2023] [Indexed: 09/19/2023] Open
Abstract
Crop improvement programmes began with traditional breeding practices since the inception of agriculture. Farmers and plant breeders continue to use these strategies for crop improvement due to their broad application in modifying crop genetic compositions. Nonetheless, conventional breeding has significant downsides in regard to effort and time. Crop productivity seems to be hitting a plateau as a consequence of environmental issues and the scarcity of agricultural land. Therefore, continuous pursuit of advancement in crop improvement is essential. Recent technical innovations have resulted in a revolutionary shift in the pattern of breeding methods, leaning further towards molecular approaches. Among the promising approaches, marker-assisted selection, QTL mapping, omics-assisted breeding, genome-wide association studies and genome editing have lately gained prominence. Several governments have progressively relaxed their restrictions relating to genome editing. The present review highlights the evolutionary and revolutionary approaches that have been utilized for crop improvement in a bid to produce climate-resilient crops observing the consequence of climate change. Additionally, it will contribute to the comprehension of plant breeding succession so far. Investing in advanced sequencing technologies and bioinformatics will deepen our understanding of genetic variations and their functional implications, contributing to breakthroughs in crop improvement and biodiversity conservation.
Collapse
Affiliation(s)
- Rukoo Chawla
- Department of Genetics and Plant Breeding, Maharana Pratap University of Agriculture and Technology, Udaipur, Rajasthan, India
| | - Atman Poonia
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh Haryana Agricultural University, Bawal, Haryana, India
| | - Kajal Samantara
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Sourav Ranjan Mohapatra
- Department of Forest Biology and Tree Improvement, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - S. Balaji Naik
- Institute of Integrative Biology and Systems, University of Laval, Quebec City, QC, Canada
| | - M. N. Ashwath
- Department of Forest Biology and Tree Improvement, Kerala Agricultural University, Thrissur, Kerala, India
| | - Ivica G. Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Novi Sad, Serbia
| | - P. V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
24
|
Chen X, Zhao Y, Zhong Y, Chen J, Qi X. Deciphering the functional roles of transporter proteins in subcellular metal transportation of plants. PLANTA 2023; 258:17. [PMID: 37314548 DOI: 10.1007/s00425-023-04170-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023]
Abstract
MAIN CONCLUSION The role of transporters in subcellular metal transport is of great significance for plants in coping with heavy metal stress and maintaining their proper growth and development. Heavy metal toxicity is a serious long-term threat to plant growth and agricultural production, becoming a global environmental concern. Excessive heavy metal accumulation not only damages the biochemical and physiological functions of plants but also causes chronic health hazard to human beings through the food chain. To deal with heavy metal stress, plants have evolved a series of elaborate mechanisms, especially a variety of spatially distributed transporters, to strictly regulate heavy metal uptake and distribution. Deciphering the subcellular role of transporter proteins in controlling metal absorption, transport and separation is of great significance for understanding how plants cope with heavy metal stress and improving their adaptability to environmental changes. Hence, we herein introduce the detrimental effects of excessive common essential and non-essential heavy metals on plant growth, and describe the structural and functional characteristics of transporter family members, with a particular emphasis on their roles in maintaining heavy metal homeostasis in various organelles. Besides, we discuss the potential of controlling transporter gene expression by transgenic approaches in response to heavy metal stress. This review will be valuable to researchers and breeders for enhancing plant tolerance to heavy metal contamination.
Collapse
Affiliation(s)
- Xingqi Chen
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Yuanchun Zhao
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Yuqing Zhong
- Environmental Monitoring Station of Suzhou City, Suzhou, 215004, China
| | - Jiajia Chen
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Xin Qi
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215011, China.
| |
Collapse
|
25
|
Chen K, Yang H, Peng Y, Liu D, Zhang J, Zhao Z, Wu L, Lin T, Bai L, Wang L. Genomic analyses provide insights into the polyploidization-driven herbicide adaptation in Leptochloa weeds. PLANT BIOTECHNOLOGY JOURNAL 2023. [PMID: 37154437 PMCID: PMC10363762 DOI: 10.1111/pbi.14065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/21/2023] [Accepted: 04/14/2023] [Indexed: 05/10/2023]
Abstract
Polyploidy confers a selective advantage under stress conditions; however, whether polyploidization mediates enhanced herbicide adaptation remains largely unknown. Tetraploid Leptochloa chinensis is a notorious weed in the rice ecosystem, causing severe yield loss in rice. In China, L. chinensis has only one sister species, the diploid L. panicea, whose damage is rarely reported. To gain insights into the effects of polyploidization on herbicide adaptation, we first assembled a high-quality genome of L. panicea and identified genome structure variations with L. chinensis. Moreover, we identified herbicide-resistance genes specifically expanded in L. chinensis, which may confer a greater herbicide adaptability in L. chinensis. Analysis of gene retention and loss showed that five herbicide target-site genes and several herbicide nontarget-site resistance gene families were retained during polyploidization. Notably, we identified three pairs of polyploidization-retained genes including LcABCC8, LcCYP76C1 and LcCYP76C4 that may enhance herbicide resistance. More importantly, we found that both copies of LcCYP76C4 were under herbicide selection during the spread of L. chinensis in China. Furthermore, we identified another gene potentially involved in herbicide resistance, LcCYP709B2, which is also retained during polyploidization and under selection. This study provides insights into the genomic basis of the enhanced herbicide adaptability of Leptochloa weeds during polyploidization and provides guidance for the precise and efficient control of polyploidy weeds.
Collapse
Affiliation(s)
- Ke Chen
- State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha, China
- Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Ministry of Agriculture and Rural Affairs, Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
- Huangpu Research Institute of Longping Agricultural Science and Technology, Guangzhou, China
- Longping Branch, College of Biology, Hunan University, Changsha, China
- Hunan Weed Science Key Laboratory, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Haona Yang
- State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha, China
- Huangpu Research Institute of Longping Agricultural Science and Technology, Guangzhou, China
- Hunan Weed Science Key Laboratory, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yajun Peng
- State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha, China
- Hunan Weed Science Key Laboratory, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Ducai Liu
- Hunan Weed Science Key Laboratory, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | | | - Zhenghong Zhao
- State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha, China
- Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Ministry of Agriculture and Rural Affairs, Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
- Huangpu Research Institute of Longping Agricultural Science and Technology, Guangzhou, China
- Longping Branch, College of Biology, Hunan University, Changsha, China
| | - Lamei Wu
- Hunan Weed Science Key Laboratory, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Tao Lin
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Lianyang Bai
- State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha, China
- Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Ministry of Agriculture and Rural Affairs, Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
- Huangpu Research Institute of Longping Agricultural Science and Technology, Guangzhou, China
- Longping Branch, College of Biology, Hunan University, Changsha, China
- Hunan Weed Science Key Laboratory, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Lifeng Wang
- State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha, China
- Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Ministry of Agriculture and Rural Affairs, Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
- Huangpu Research Institute of Longping Agricultural Science and Technology, Guangzhou, China
- Longping Branch, College of Biology, Hunan University, Changsha, China
- Hunan Weed Science Key Laboratory, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
26
|
Sony SK, Kaul T, Motelb KFA, Thangaraj A, Bharti J, Kaul R, Verma R, Nehra M. CRISPR/Cas9-mediated homology donor repair base editing confers glyphosate resistance to rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1122926. [PMID: 36959937 PMCID: PMC10027715 DOI: 10.3389/fpls.2023.1122926] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Globally, CRISPR-Cas9-based genome editing has ushered in a novel era of crop advancements. Weeds pose serious a threat to rice crop productivity. Among the numerous herbicides, glyphosate [N-(phosphonomethyl)-glycine] has been employed as a post-emergent, broad-spectrum herbicide that represses the shikimate pathway via inhibition of EPSPS (5'-enolpyruvylshikimate-3-phosphate synthase) enzyme in chloroplasts. Here, we describe the development of glyphosate-resistant rice lines by site-specific amino acid substitutions (G172A, T173I, and P177S: GATIPS-mOsEPSPS) and modification of phosphoenolpyruvate-binding site in the native OsEPSPS gene employing fragment knockout and knock-in of homology donor repair (HDR) template harboring desired mutations through CRISPR-Cas9-based genome editing. The indigenously designed two-sgRNA OsEPSPS-NICTK-1_pCRISPR-Cas9 construct harboring rice codon-optimized SpCas9 along with OsEPSPS-HDR template was transformed into rice. Stable homozygous T2 edited rice lines revealed significantly high degree of glyphosate-resistance both in vitro (4 mM/L) and field conditions (6 ml/L; Roundup Ready) in contrast to wild type (WT). Edited T2 rice lines (ER1-6) with enhanced glyphosate resistance revealed lower levels of endogenous shikimate (14.5-fold) in contrast to treated WT but quite similar to WT. ER1-6 lines exhibited increased aromatic amino acid contents (Phe, two-fold; Trp, 2.5-fold; and Tyr, two-fold) than WT. Interestingly, glyphosate-resistant Cas9-free EL1-6 rice lines displayed a significant increment in grain yield (20%-22%) in comparison to WT. Together, results highlighted that the efficacy of GATIPS mutations in OsEPSPS has tremendously contributed in glyphosate resistance (foliar spray of 6 ml/L), enhanced aromatic amino acids, and improved grain yields in rice. These results ensure a novel strategy for weed management without yield penalties, with a higher probability of commercial release.
Collapse
|
27
|
Liu Y, Li A, Liang M, Zhang Q, Wu J. Overexpression of the maize genes ZmSKL1 and ZmSKL2 positively regulates drought stress tolerance in transgenic Arabidopsis. PLANT CELL REPORTS 2023; 42:521-533. [PMID: 36585973 DOI: 10.1007/s00299-022-02974-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Overexpression in Arabidopsis of the maize shikimate kinase-like genes SKL1 and SKL2 enhances tolerance to drought stress. The shikimate pathway has been reported to play an important role in plant signaling, reproduction, and development. However, its role in abiotic stress has not yet been reported. Here, two shikimate kinase-like genes, SKL1 and SKL2, were cloned from maize and their functions in mediating drought tolerance were investigated. Transcript levels of ZmSKL1 and ZmSKL2 in roots and leaves were strongly induced by drought stress. Both proteins were localized in the chloroplast. Furthermore, compared to the wild-type, transgenic Arabidopsis plants overexpressing ZmSKL1 or ZmSKL2 exhibited improved drought stress tolerance through increases in relative water content and stomatal closure. Additionally, the transgenic lines showed reduced accumulation of reactive oxygen species as a results of increased antioxidant enzyme activity. Interestingly, overexpression of ZmSKL1 or ZmSKL2 also increased sensitivity to exogenous abscisic acid. In addition, the ROS-related and stress-responsive genes were activated in transgenic lines under drought stress. Moreover, ZmSKL1 and ZmSKL2 were found to separately interact with ZmASR3, which is an important regulatory protein in mediating drought tolerance, suggesting that ZmSKL1 and ZmSKL2, together with ZmASR3, are proteins that may confer drought tolerance as candidates in plant genetic breeding manipulations.
Collapse
Affiliation(s)
- Yuqing Liu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Aiqi Li
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Mengna Liang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Qin Zhang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Jiandong Wu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, Anhui, China.
| |
Collapse
|
28
|
Vennapusa AR, Agarwal S, Rao Hm H, Aarthy T, Babitha KC, Thulasiram HV, Kulkarni MJ, Melmaiee K, Sudhakar C, Udayakumar M, S Vemanna R. Stacking herbicide detoxification and resistant genes improves glyphosate tolerance and reduces phytotoxicity in tobacco (Nicotiana tabacum L.) and rice (Oryza sativa L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 189:126-138. [PMID: 36084528 DOI: 10.1016/j.plaphy.2022.08.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/15/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Glyphosate residues retained in the growing meristematic tissues or in grains of glyphosate-resistant crops affect the plants physiological functions and crop yield. Removing glyphosate residues in the plants is desirable with no penalty on crop yield and quality. We report a new combination of scientific strategy to detoxify glyphosate that reduces the residual levels and improve crop resistance. The glyphosate detoxifying enzymes Aldo-keto reductase (AKR1) and mutated glycine oxidase (mGO) with different modes of action were co-expressed with modified EPSPS, which is insensitive to glyphosate in tobacco (Nicotiana tabacum L.) and rice (Oryza sativa L.). The transgenic tobacco plants expressing individual PsAKR1, mGO, CP4-EPSPS, combinations of PsAKR1:CP4EPSPS, PsAKR1:mGO, and multigene with PsAKR1: mGO: CP4EPSPS genes were developed. The bio-efficacy studies of in-vitro leaf regeneration on different concentrations of glyphosate, seedling bioassay, and spray on transgenic tobacco plants demonstrate that glyphosate detoxification with enhanced resistance. Comparative analysis of the transgenic tobacco plants reveals that double and multigene expressing transgenics had reduced accumulation of shikimic acid, glyphosate, and its primary residue AMPA, and increased levels of sarcosine were observed in all PsAKR1 expressing transgenics. The multigene expressing rice transgenics showed improved glyphosate resistance with yield maintenance. In summary, results suggest that stacking genes with two different detoxification mechanisms and insensitive EPSPS is a potential approach for developing glyphosate-resistant plants with less residual content.
Collapse
Affiliation(s)
- Amaranatha Reddy Vennapusa
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore, 560065, India; Department of Botany, Sri Krishnadevaraya University, Anantapur, 515001, India; Department of Agriculture and Natural Resources, Delaware State University, Dover, DE, 19901, USA.
| | - Subham Agarwal
- Laboratory of Plant Functional Genomics, Regional Center for Biotechnology, Faridabad, 121001, India
| | - Hanumanth Rao Hm
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore, 560065, India
| | | | - K C Babitha
- Laboratory of Plant Functional Genomics, Regional Center for Biotechnology, Faridabad, 121001, India
| | | | | | - Kalpalatha Melmaiee
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE, 19901, USA
| | - Chinta Sudhakar
- Department of Botany, Sri Krishnadevaraya University, Anantapur, 515001, India
| | - M Udayakumar
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore, 560065, India
| | - Ramu S Vemanna
- Laboratory of Plant Functional Genomics, Regional Center for Biotechnology, Faridabad, 121001, India.
| |
Collapse
|
29
|
Jiang Y, Peng X, Zhang Q, Liu Y, Li A, Cheng B, Wu J. Regulation of Drought and Salt Tolerance by OsSKL2 and OsASR1 in Rice. RICE (NEW YORK, N.Y.) 2022; 15:46. [PMID: 36036369 PMCID: PMC9424430 DOI: 10.1186/s12284-022-00592-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 08/22/2022] [Indexed: 05/26/2023]
Abstract
Abiotic stresses such as salinity and drought greatly impact the growth and production of crops worldwide. Here, a shikimate kinase-like 2 (SKL2) gene was cloned from rice and characterized for its regulatory function in salinity and drought tolerance. OsSKL2 was localized in the chloroplast, and its transcripts were significantly induced by drought and salinity stress as well as H2O2 and abscisic acid (ABA) treatment. Meanwhile, overexpression of OsSKL2 in rice increased tolerance to salinity, drought and oxidative stress by increasing antioxidant enzyme activity, and reducing levels of H2O2, malondialdehyde, and relative electrolyte leakage. In contrast, RNAi-induced suppression of OsSKL2 increased sensitivity to stress treatment. Interestingly, overexpression of OsSKL2 also increased sensitivity to exogenous ABA, with an increase in reactive oxygen species (ROS) accumulation. Moreover, OsSKL2 was found to physically interact with OsASR1, a well-known chaperone-like protein, which also exhibited positive roles in salt and drought tolerance. A reduction in ROS production was also observed in leaves of Nicotiana benthamiana showing transient co-expression of OsSKL2 with OsASR1. Taken together, these findings suggest that OsSKL2 together with OsASR1 act as important regulatory factors that confer salt and drought tolerance in rice via ROS scavenging.
Collapse
Affiliation(s)
- Yingli Jiang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Xiaojian Peng
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Qin Zhang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Yuqing Liu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Aiqi Li
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Beijiu Cheng
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Jiandong Wu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, Anhui, China.
| |
Collapse
|
30
|
Zhang Q, Liang M, Zeng J, Yang C, Qin J, Qiang W, Lan X, Chen M, Lin M, Liao Z. Engineering tropane alkaloid production and glyphosate resistance by overexpressing AbCaM1 and G2-EPSPS in Atropa belladonna. Metab Eng 2022; 72:237-246. [PMID: 35390492 DOI: 10.1016/j.ymben.2022.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 03/16/2022] [Accepted: 03/26/2022] [Indexed: 11/27/2022]
Abstract
Atropa belladonna is an important industrial crop for producing anticholinergic tropane alkaloids (TAs). Using glyphosate as selection pressure, transgenic homozygous plants of A. belladonna are generated, in which a novel calmodulin gene (AbCaM1) and a reported EPSPS gene (G2-EPSPS) are co-overexpressed. AbCaM1 is highly expressed in secondary roots of A. belladonna and has calcium-binding activity. Three transgenic homozygous lines were generated and their glyphosate tolerance and TAs' production were evaluated in the field. Transgenic homozygous lines produced TAs at much higher levels than wild-type plants. In the leaves of T2GC02, T2GC05, and T2GC06, the hyoscyamine content was 8.95-, 10.61-, and 9.96 mg/g DW, the scopolamine content was 1.34-, 1.50- and 0.86 mg/g DW, respectively. Wild-type plants of A. belladonna produced hyoscyamine and scopolamine respectively at the levels of 2.45 mg/g DW and 0.30 mg/g DW in leaves. Gene expression analysis indicated that AbCaM1 significantly up-regulated seven key TA biosynthesis genes. Transgenic homozygous lines could tolerate a commercial recommended dose of glyphosate in the field. In summary, new varieties of A. belladonna not only produce pharmaceutical TAs at high levels but tolerate glyphosate, facilitating industrial production of TAs and weed management at a much lower cost.
Collapse
Affiliation(s)
- Qiaozhuo Zhang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Mengjiao Liang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Junlan Zeng
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Chunxian Yang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jianbo Qin
- Chongqing Academy of Science and Technology, Chongqing, 401123, China
| | - Wei Qiang
- College of Life Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Xiaozhong Lan
- TAAHC-SWU Medicinal Plant Joint R&D Centre, Xizang Agricultural and Husbandry College, Nyingchi of Tibet, 860000, China
| | - Min Chen
- College of Pharmaceutical Sciences, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Ministry of Education), Southwest University, Chongqing, 400715, China
| | - Min Lin
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400712, China
| | - Zhihua Liao
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, 400715, China; Chongqing Academy of Science and Technology, Chongqing, 401123, China.
| |
Collapse
|
31
|
Nazish T, Huang YJ, Zhang J, Xia JQ, Alfatih A, Luo C, Cai XT, Xi J, Xu P, Xiang CB. Understanding paraquat resistance mechanisms in Arabidopsis thaliana to facilitate the development of paraquat-resistant crops. PLANT COMMUNICATIONS 2022; 3:100321. [PMID: 35576161 PMCID: PMC9251430 DOI: 10.1016/j.xplc.2022.100321] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/06/2022] [Accepted: 03/24/2022] [Indexed: 06/15/2023]
Abstract
Paraquat (PQ) is the third most used broad-spectrum nonselective herbicide around the globe after glyphosate and glufosinate. Repeated usage and overreliance on this herbicide have resulted in the emergence of PQ-resistant weeds that are a potential hazard to agriculture. It is generally believed that PQ resistance in weeds is due to increased sequestration of the herbicide and its decreased translocation to the target site, as well as an enhanced ability to scavenge reactive oxygen species. However, little is known about the genetic bases and molecular mechanisms of PQ resistance in weeds, and hence no PQ-resistant crops have been developed to date. Forward genetics of the model plant Arabidopsis thaliana has advanced our understanding of the molecular mechanisms of PQ resistance. This review focuses on PQ resistance loci and resistance mechanisms revealed in Arabidopsis and examines the possibility of developing PQ-resistant crops using the elucidated mechanisms.
Collapse
Affiliation(s)
- Tahmina Nazish
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Yi-Jie Huang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Jing Zhang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Jin-Qiu Xia
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Alamin Alfatih
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Chao Luo
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu Province 210037, China
| | - Xiao-Teng Cai
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China.
| | - Jing Xi
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Ping Xu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China.
| | - Cheng-Bin Xiang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China.
| |
Collapse
|
32
|
Peluso J, Furió Lanuza A, Pérez Coll CS, Aronzon CM. Synergistic effects of glyphosate- and 2,4-D-based pesticides mixtures on Rhinella arenarum larvae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:14443-14452. [PMID: 34617223 DOI: 10.1007/s11356-021-16784-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Glyphosate and 2,4-D are two herbicides commonly used together. Since there is little information about the interactions between these pesticides, the aim of this study was to evaluate the single and joint lethal toxicity of the glyphosate-based herbicide (GBH) ATANOR® (43.8% of glyphosate, isopropylamine salt) and the 2,4-D-based herbicide (2,4-DBH) Así Max 50® (602000 mg/L of 2,4-D) on Rhinella arenarum larvae. Equitoxic and non-equitoxic mixtures were prepared according to the recommendation for their combination and analyzed with a fixed ratio design at different exposure times and levels of lethality (LC10, LC50, and LC90). GBH (504h-LC50=38.67 mg ae/L) was significantly more toxic than 2,4-DBH (504h-LC50=250.31 mg ae/L) and their toxicity was time-dependent. At 48h, the equitoxic mixture toxicity was additive and from the 96h was antagonistic at LC10 and LC50 effect level. The non-equitoxic mixture toxicity was additive at LC10 effect level from the 48h to the 168h, and synergistic from the 240h. At LC50 and LC90 effect level, the mixture interaction resulted synergistic for all exposure times. This is the first study to report the synergistic interactions between GBH and 2,4-DBH on amphibians, alerting about its negative impact on aquatic ecosystems.
Collapse
Affiliation(s)
- Julieta Peluso
- Instituto de Investigación e Ingeniería Ambiental, IIIA, UNSAM-CONICET, 3iA, Campus Miguelete, 25 de Mayo y Francia, C.P. 1650 San Martín, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - Agustina Furió Lanuza
- Instituto de Investigación e Ingeniería Ambiental, IIIA, UNSAM-CONICET, 3iA, Campus Miguelete, 25 de Mayo y Francia, C.P. 1650 San Martín, Buenos Aires, Argentina
| | - Cristina S Pérez Coll
- Instituto de Investigación e Ingeniería Ambiental, IIIA, UNSAM-CONICET, 3iA, Campus Miguelete, 25 de Mayo y Francia, C.P. 1650 San Martín, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - Carolina M Aronzon
- Instituto de Investigación e Ingeniería Ambiental, IIIA, UNSAM-CONICET, 3iA, Campus Miguelete, 25 de Mayo y Francia, C.P. 1650 San Martín, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
33
|
Identification of yield-related genes through genome-wide association: case study of weeping forsythia, an emerging medicinal crop. Genes Genomics 2022; 44:145-154. [PMID: 34767154 PMCID: PMC8586636 DOI: 10.1007/s13258-021-01186-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/02/2021] [Indexed: 11/12/2022]
Abstract
KEY MESSAGE This study identified candidate genes related to fruit yield for an emerging medicinal crop, weeping forsythia. BACKGROUND The genetic basis of crop yield is an agricultural research hotspot. Identifying the genes related to yield traits is the key to increase the yield. Weeping forsythia is an emerging medicinal crop that currently lacks excellent varieties. The genes related to fruit yield in weeping forsythia have not been identified. OBJECTIVE Thus, we aimed to screen the candidate genes related to fruit yield of weeping forsythia by using genome-wide association analysis. METHODS Here, 60 samples from the same field and source of weeping forsythia were collected to identify its yield-related candidate genes. Association analysis was performed on the variant loci and the traits related to yield, i.e., fruit length, width, thickness, and weight. RESULTS Results from admixture, neighbor-joining, and kinship matrix analyses supported the non-significant genetic differentiation of these samples. Significant association was found between 2 variant loci and fruit length, 8 loci and fruit width, 24 loci and fruit thickness, and 13 loci and fruit weight. Further search on the 20 kb up/downstream of these variant loci revealed 1 gene related to fruit length, 16 genes related to fruit width, 12 genes related to fruit thickness, and 13 genes related to fruit weight. Among which, 4 genes, namely, WRKY transcription factor 35, salicylic acid-binding protein, auxin response factor 6, and alpha-mannosidase were highly related to the fruit development of weeping forsythia. CONCLUSION This study identify four candidate genes related to fruit development, which will provide useful information for the subsequent molecular-assisted and genetic breeding of weeping forsythia.
Collapse
|
34
|
Li Z, Li X, Cui H, Zhao G, Zhai D, Chen J. Vegetative and Fecundity Fitness Benefit Found in a Glyphosate-Resistant Eleusine indica Population Caused by 5-Enolpyruvylshikimate-3-Phosphate Synthase Overexpression. FRONTIERS IN PLANT SCIENCE 2021; 12:776990. [PMID: 34868176 PMCID: PMC8639585 DOI: 10.3389/fpls.2021.776990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/25/2021] [Indexed: 05/27/2023]
Abstract
Fitness is an important trait in weed species that have developed herbicide resistance, including resistance to the popular herbicide glyphosate. Fitness cost is commonly found in weeds with glyphosate resistance, which is caused by target-site mutations. In this study, the vegetative and fecundity fitness traits in a glyphosate-resistant (GR) Eleusine indica population caused by 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) overexpression were investigated under glyphosate-free conditions. The results showed that the resistance index of the population resistant (R) to glyphosate compared with that of the population susceptible (WT) to it was approximately 4.0. Furthermore, EPSPS expression level in the R plants was 20.1-82.7 times higher than that in the WT plants. The dry weight of the R population was significantly higher than that of the WT population at the later growth stage after planting; a similar trend was observed for leaf area. In addition, seed production in the R population was 1.4 times higher than that in the WT population. The R and WT populations showed similar maximum germination rates and T50 values. UPLC-MS/MS was performed for the metabolic extracts prepared from the leaves of R and WT populations to address changes in the metabolome. A total of 121 differential metabolites were identified between R and WT individuals. The levels of 6-hydroxy-1H-indole-3-acetamide and indole acetaldehyde, which are associated with auxin synthesis, were significantly higher in plants of the R population than in those of the WT population. However, some secondary metabolite levels were slightly lower in the R population than in the WT population. To conclude, in this study, vegetative and fecundity fitness benefits were found in the GR E. indica population. The results of metabolome analysis indicate that the increase in 6-hydroxy-1H-indole-3-acetamide and indole acetaldehyde levels may be the result of fitness benefit. Further studies should be conducted to confirm the functions of these metabolites.
Collapse
Affiliation(s)
- Zhiling Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiangju Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hailan Cui
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guodong Zhao
- School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Dan Zhai
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Jingchao Chen
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
35
|
Ouyang C, Liu W, Chen S, Zhao H, Chen X, Jin X, Li X, Wu Y, Zeng X, Huang P, He X, An B. The Naturally Evolved EPSPS From Goosegrass Confers High Glyphosate Resistance to Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:756116. [PMID: 34777434 PMCID: PMC8586540 DOI: 10.3389/fpls.2021.756116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Glyphosate-resistant crops developed by the CP4-EPSPS gene from Agrobacterium have been planted on a massive scale globally, which benefits from the high efficiency and broad spectrum of glyphosate in weed control. Some glyphosate-resistant (GR) genes from microbes have been reported, which might raise biosafety concerns. Most of them were obtained through a hygromycin-HPT transformation system. Here we reported the plant source with 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene from goosegrass endowed rice with high resistance to glyphosate. The integrations and inheritability of the transgenes in the rice genome were investigated within two generations. The EiEPSPS transgenic plants displayed similar growth and development to wild type under no glyphosate selection pressure but better reproductive performance under lower glyphosate selection pressure. Furthermore, we reconstructed a binary vector pCEiEPSPS and established the whole stage glyphosate selection using the vector. The Glyphosate-pCEiEPSPS selection system showed a significantly higher transformation efficiency compared with the hygromycin-HPT transformation system. Our results provided a promising alternative gene resource to the development of GR plants and also extended the plant transformation toolbox.
Collapse
Affiliation(s)
- Chao Ouyang
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| | - Wei Liu
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
| | - Silan Chen
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| | - Huimin Zhao
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| | - Xinyan Chen
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| | - Xiongxia Jin
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| | - Xinpeng Li
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| | - Yongzhong Wu
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| | - Xiang Zeng
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| | - Peijin Huang
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| | - Xiuying He
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
| | - Baoguang An
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| |
Collapse
|
36
|
Mehta S, Kumar A, Achary VMM, Ganesan P, Rathi N, Singh A, Sahu KP, Lal SK, Das TK, Reddy MK. Antifungal activity of glyphosate against fungal blast disease on glyphosate-tolerant OsmEPSPS transgenic rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 311:111009. [PMID: 34482912 DOI: 10.1016/j.plantsci.2021.111009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/20/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
Weeds, pests, and pathogens are among the pre-harvest constraints in rice farming across rice-growing countries. For weed management, manual weeding and herbicides are widely practiced. Among the herbicides, glyphosate [N-(phosphonomethyl) glycine] is a broad-spectrum systemic chemical extensively used in agriculture. Being a competitive structural analog to phosphoenolpyruvate, it selectively inhibits the conserved 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) enzyme required for the biosynthesis of aromatic amino acids and essential metabolites in eukaryotes and prokaryotes. In the present study, we investigated the antifungal and defense elicitor activity of glyphosate against Magnaporthe oryzae on transgenic-rice overexpressing a glyphosate-resistance OsEPSPS gene (T173I + P177S; TIPS OsmEPSPS) for blast disease management. The glyphosate foliar spray on OsmEPSPS transgenic rice lines showed both prophylactic and curative suppression of blast disease comparable to a blasticide, tricyclazole. The glyphosate displayed direct antifungal activity on Magnaporthe oryzae as well as enhanced the levels of antioxidant enzymes and photosynthetic pigments in rice. However, the genes associated with phytohormones-mediated defense (OsPAD4, OsNPR1.3, and OsFMO) and innate immunity pathway (OsCEBiP and OsCERK1) were found repressed upon glyphosate spray. Altogether, the current study is the first report highlighting the overexpression of a crop-specific TIPS mutation in conjugation with glyphosate application showing potential for blast disease management in rice cultivation.
Collapse
Affiliation(s)
- Sahil Mehta
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Aundy Kumar
- ICAR-Indian Agricultural Research Institute, New Delhi, India.
| | - V Mohan Murali Achary
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Prakash Ganesan
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Neelmani Rathi
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Asmita Singh
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Shambhu Krishan Lal
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India; ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India
| | - T K Das
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Malireddy K Reddy
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| |
Collapse
|
37
|
Wen L, Zhong J, Cui Y, Duan Z, Zhou F, Li C, Ma W, Yin C, Chen H, Lin Y. Coexpression of I. variabilis-EPSPS* and WBceGO-B3S1 Genes Contributes to High Glyphosate Tolerance and Low Glyphosate Residues in Transgenic Rice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7388-7398. [PMID: 33909432 DOI: 10.1021/acs.jafc.1c00880] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Weeds are one of the main factors that affect the yield and quality of rice. The combination of glyphosate-resistant transgenic crops and glyphosate is regarded as an important strategy for weed management in modern agriculture. In this study, a codon-optimized glyphosate oxidase gene WBceGO-B3S1 from a variant BceGO-B3S1 and a glyphosate-tolerant gene I. variabilis-EPSPS* from the bacterium Isoptericola variabilis were transformed into an Oryza sativa subsp. geng rice variety Zhonghua11 by Agrobacterium-mediated genetic transformation. Molecular detection and field agronomic trait analysis contributed to the selection of three homozygous lines with stable expression of a single copy of the transferred genes integrated into the intergenic region. Under the treatment of glyphosate at a test amount in the field, transgenic lines exhibited no differences in agronomic traits. Under the treatment by 3600 g ha-1 glyphosate, the glyphosate residues in the aboveground tissues of the three candidate transgenic homozygous lines were significantly lower than those in the transgenic homozygous line with I. variabilis-EPSPS* alone at 1, 5, and 10 days. The transgenic line coexpressing I. variabilis-EPSPS* and WBceGO-B3S1 has great application value in breeding of transgenic rice varieties with high glyphosate resistance and low glyphosate residues. This study is a step forward in solving the problem of herbicide residues in food crops by taking advantage of genes that degrade glyphosate.
Collapse
Affiliation(s)
- Lixian Wen
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Jue Zhong
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Ying Cui
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zhenchun Duan
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Fei Zhou
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - ChangYan Li
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Weihua Ma
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Changxi Yin
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Hao Chen
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| |
Collapse
|
38
|
Increased Longevity and Dormancy of Soil-Buried Seeds from Advanced Crop–Wild Rice Hybrids Overexpressing the EPSPS Transgene. BIOLOGY 2021; 10:biology10060562. [PMID: 34203092 PMCID: PMC8234842 DOI: 10.3390/biology10060562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/06/2021] [Accepted: 06/10/2021] [Indexed: 11/29/2022]
Abstract
Simple Summary Estimating the survival and reproductive ability caused by a transgene moved from a genetically engineered (GE) crop to its wild relative populations through gene flow plays an important role in assessing the potential environmental risks of the GE crop. Such estimation has essentially focused on the survival and reproduction-related characteristics above the ground, but with little attention to the GE seeds shattered in the soil seed banks. We demonstrated that the herbicide-resistant transgene overexpressing the rice endogenous EPSP enzyme increased the survival and longevity of the GE crop–wild (Oryza rufipogon) hybrid seeds in soil seed banks. In addition, enhanced survival and longevity of the GE hybrid seeds are likely associated with increases in seed dormancy and a growth hormone (auxin) via overexpressing the EPSPS transgene. Therefore, the EPSPS transgene can persist in the soil seed banks and spread in the environment, causing unwanted environmental impacts. Abstract Estimating the fitness effect conferred by a transgene introgressed into populations of wild relative species from a genetically engineered (GE) crop plays an important role in assessing the potential environmental risks caused by transgene flow. Such estimation has essentially focused on the survival and fecundity-related characteristics measured above the ground, but with little attention to the fate of GE seeds shattered in the soil seed banks after maturation. To explore the survival and longevity of GE seeds in soil, we examined the germination behaviors of crop–wild hybrid seeds (F4–F6) from the lineages of a GE herbicide-tolerant rice (Oryzasativa) line that contains an endogenous EPSPS transgene hybridized with two wild O. rufipogon populations after the seeds were buried in soil. The results showed significantly increased germination of the GE crop–wild hybrid seeds after soil burial, compared with that of the non-GE hybrid seeds. Additionally, the proportion of dormant seeds and the content of the growth hormone auxin (indole-3-acetic acid, IAA) in the GE crop–wild hybrid seeds significantly increased. Evidently, the EPSPS transgene enhances the survival and longevity of GE crop–wild rice seeds in the soil seed banks. The enhanced survival and longevity of the GE hybrid seeds is likely associated with the increases in seed dormancy and auxin (IAA) by overexpressing the rice endogenous EPSPS transgene. Thus, the fate of GE seeds in the soil seed banks should be earnestly considered when assessing the environmental risks caused by transgene flow.
Collapse
|
39
|
Dong H, Huang Y, Wang K. The Development of Herbicide Resistance Crop Plants Using CRISPR/Cas9-Mediated Gene Editing. Genes (Basel) 2021; 12:genes12060912. [PMID: 34204760 PMCID: PMC8231513 DOI: 10.3390/genes12060912] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/04/2021] [Accepted: 06/10/2021] [Indexed: 12/26/2022] Open
Abstract
The rapid increase in herbicide-resistant weeds creates a huge challenge to global food security because it can reduce crop production, causing considerable losses. Combined with a lack of novel herbicides, cultivating herbicide-resistant crops becomes an effective strategy to control weeds because of reduced crop phytotoxicity, and it expands the herbicidal spectrum. Recently developed clustered regularly interspaced short palindromic repeat/CRISPR-associated protein (CRISPR/Cas)-mediated genome editing techniques enable efficiently targeted modification and hold great potential in creating desired plants with herbicide resistance. In the present review, we briefly summarize the mechanism responsible for herbicide resistance in plants and then discuss the applications of traditional mutagenesis and transgenic breeding in cultivating herbicide-resistant crops. We mainly emphasize the development and use of CRISPR/Cas technology in herbicide-resistant crop improvement. Finally, we discuss the future applications of the CRISPR/Cas system for developing herbicide-resistant crops.
Collapse
|
40
|
Hussain A, Ding X, Alariqi M, Manghwar H, Hui F, Li Y, Cheng J, Wu C, Cao J, Jin S. Herbicide Resistance: Another Hot Agronomic Trait for Plant Genome Editing. PLANTS (BASEL, SWITZERLAND) 2021; 10:621. [PMID: 33805182 PMCID: PMC8064318 DOI: 10.3390/plants10040621] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022]
Abstract
Weeds have continually interrupted crop plants since their domestication, leading to a greater yield loss compared to diseases and pests that necessitated the practice of weed control measures. The control of weeds is crucial to ensuring the availability of sufficient food for a rapidly increasing human population. Chemical weed control (herbicides) along with integrated weed management (IWM) practices can be the most effective and reliable method of weed management programs. The application of herbicides for weed control practices calls for the urgency to develop herbicide-resistant (HR) crops. Recently, genome editing tools, especially CRISPR-Cas9, have brought innovation in genome editing technology that opens up new possibilities to provide sustainable farming in modern agricultural industry. To date, several non-genetically modified (GM) HR crops have been developed through genome editing that can present a leading role to combat weed problems along with increasing crop productivity to meet increasing food demand around the world. Here, we present the chemical method of weed control, approaches for herbicide resistance development, and possible advantages and limitations of genome editing in herbicide resistance. We also discuss how genome editing would be effective in combating intensive weed problems and what would be the impact of genome-edited HR crops in agriculture.
Collapse
Affiliation(s)
- Amjad Hussain
- Tobacco Research Institute of Hubei Province, Wuhan 430030, China; (A.H.); (Y.L.); (J.C.); (C.W.)
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (X.D.); (M.A.); (F.H.)
| | - Xiao Ding
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (X.D.); (M.A.); (F.H.)
| | - Muna Alariqi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (X.D.); (M.A.); (F.H.)
| | - Hakim Manghwar
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China;
| | - Fengjiao Hui
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (X.D.); (M.A.); (F.H.)
| | - Yapei Li
- Tobacco Research Institute of Hubei Province, Wuhan 430030, China; (A.H.); (Y.L.); (J.C.); (C.W.)
| | - Junqi Cheng
- Tobacco Research Institute of Hubei Province, Wuhan 430030, China; (A.H.); (Y.L.); (J.C.); (C.W.)
| | - Chenglin Wu
- Tobacco Research Institute of Hubei Province, Wuhan 430030, China; (A.H.); (Y.L.); (J.C.); (C.W.)
| | - Jinlin Cao
- Tobacco Research Institute of Hubei Province, Wuhan 430030, China; (A.H.); (Y.L.); (J.C.); (C.W.)
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (X.D.); (M.A.); (F.H.)
| |
Collapse
|
41
|
Kanabar M, Bauer S, Ezedum ZM, Dwyer IP, Moore WS, Rodriguez G, Mall A, Littleton AT, Yudell M, Kanabar J, Tucker WJ, Daniels ER, Iqbal M, Khan H, Mirza A, Yu JC, O'Neal M, Volkenborn N, Pochron ST. Roundup negatively impacts the behavior and nerve function of the Madagascar hissing cockroach (Gromphadorhina portentosa). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-13021-6. [PMID: 33635453 DOI: 10.1007/s11356-021-13021-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Glyphosate is the active ingredient in Roundup formulations. Glyphosate-based herbicides are used globally in agriculture, forestry, horticulture, and in urban settings. Glyphosate can persist for years in our soil, potentially impacting the soil-dwelling arthropods that are primary drivers of a suite of ecosystem services. Furthermore, although glyphosate is not generally classified as neurotoxic to insects, evidence suggests that it may cause nerve damage in other organisms. In a series of experiments, we used food to deliver environmentally realistic amounts of Roundup ready-to-use III, a common 2% glyphosate-based herbicide formulation that lists isopropylamine salt as its active ingredient, to Madagascar hissing cockroaches. We then assessed the impact of contamination on body mass, nerve health, and behavior. Contaminated food contained both 30.6 mg glyphosate and so-called inert ingredients. Food was refreshed weekly for 26-60 days, depending on the experiment. We found that consumption of contaminated food did not impact adult and juvenile survivorship or body weight. However, consumption of contaminated food decreased ventral nerve cord action-potential velocity by 32%, caused a 29% increase in respiration rate, and caused a 74.4% decrease in time spent on a motorized exercise wheel. Such changes in behavior may make cockroaches less capable of fulfilling their ecological service, such as pollinating or decomposing litter. Furthermore, their lack of coordination may make them more susceptible to predation, putting their population at risk. Given the decline of terrestrial insect abundance, understanding common risks to terrestrial insect populations has never been more critical. Results from our experiments add to the growing body of literature suggesting that this popular herbicide can act as a neurotoxin.
Collapse
Affiliation(s)
- Megha Kanabar
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | - Samuel Bauer
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | - Zimuzo M Ezedum
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | - Ian P Dwyer
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | - William S Moore
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | - Gabriella Rodriguez
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | - Aditya Mall
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | - Anne T Littleton
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | - Michael Yudell
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | | | - Wade J Tucker
- Miller Place High School, Miller Place, NY, 11764, USA
| | - Emily R Daniels
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | - Mohima Iqbal
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | - Hira Khan
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | - Ashra Mirza
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | - Joshua C Yu
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | - Marvin O'Neal
- Department of Biology, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | - Nils Volkenborn
- Marine Sciences Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | - Sharon T Pochron
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA.
| |
Collapse
|