1
|
Cui Y, Huang L, Liu P, Wang X, Wu B, Tan Y, Huang X, Hu X, He Z, Xia Y, Li Z, Zhang W, Tang W, Xing Y, Chen C, Mao D. Suppressing an auxin efflux transporter enhances rice adaptation to temperate habitats. Nat Commun 2025; 16:4100. [PMID: 40316514 PMCID: PMC12048566 DOI: 10.1038/s41467-025-59449-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 04/23/2025] [Indexed: 05/04/2025] Open
Abstract
Rice (Oryza sativa L.), a chilling-sensitive staple crop originating from tropical and subtropical Asia, can be cultivated in temperate regions through the introduction of chilling tolerance traits. However, the molecular mechanisms underlying this adaptation remain largely unknown. Herein, we show that HAN2, a quantitative trait locus, confers chilling tolerance in temperate japonica rice. HAN2 encodes an auxin efflux transporter (OsABCB5) and negatively regulates chilling tolerance, potentially via auxin-mediated signaling pathway. During rice domestication, HAN2 has undergone selective divergence between the indica and temperate japonica subspecies. In temperate japonica rice, the insertion of a Copia long terminal repeat retrotransposon downstream of HAN2 reduces its expression, thereby enhancing chilling tolerance and facilitating adaptation to temperate climates. Introgression of the temperate japonica HAN2 allele into indica rice significantly improves chilling tolerance at both seedling and booting stages. These findings advance our understanding of rice northward expansion and provide a valuable genetic resource for improving yield stability under chilling stress.
Collapse
Affiliation(s)
- Yanchun Cui
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Lifang Huang
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Peng Liu
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xiaodong Wang
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bi Wu
- Yazhou Bay National Laboratory, Sanya, China
| | - Yongjun Tan
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| | - Xuan Huang
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaojie Hu
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Australia
| | - Zhankun He
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yuqi Xia
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zebang Li
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenli Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, Nanjing, China
| | - Wenbang Tang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| | | | - Caiyan Chen
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Donghai Mao
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Yuelushan Laboratory, Changsha, China.
| |
Collapse
|
2
|
Zhu P, Liu G, Chen Z, Kong D, Luo L, Yu X. Identification of a key locus, qRL8.1, associated with root length traits during seed germination under salt stress via a genome-wide association study in rice. BMC PLANT BIOLOGY 2025; 25:287. [PMID: 40045220 PMCID: PMC11881369 DOI: 10.1186/s12870-025-06207-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/04/2025] [Indexed: 03/09/2025]
Abstract
BACKGROUND Salt stress is a major abiotic constraint limiting rice (Oryza sativa L.) production worldwide, particularly in saline-affected regions. Improving salt tolerance at the seed germination stage is crucial for increasing stand establishment and yield stability, especially under direct seeding conditions. Identifying loci associated with salt-tolerant germination and characterizing key candidate genes offers valuable insights for breeding strategies. RESULTS We evaluated the salt tolerance of 406 drought-resistant rice accessions at the germination stage under 0, 100, 150, and 200 mM NaCl conditions. Four germination-related traits-germination potential (GP), relative germination potential (RGP), root length (RL), and relative root length (RRL)-were measured. Significant phenotypic variation was observed, with GP, RGP, RL, and RRL sharply decreasing as the NaCl concentration increased. Using a genome-wide association study (GWAS) with 65,069 high-quality SNPs, we identified 27 significantly associated loci. Among these genes, 9 colocalized with known QTLs/genes, and 18 were identified as novel. The key locus qRL8.1, identified under 200 mM NaCl stress, contained multiple closely linked SNPs and strongly associated with RL and RRL. Expression analyses of candidate genes within qRL8.1 indicated that LOC_Os08g41790 (encoding a phosphatidylinositol/uridine kinase family protein) and LOC_Os08g42080 (encoding a peroxidase precursor) were both highly expressed in roots and strongly induced by salt stress. Haplotype analysis revealed that favorable alleles of these genes are associated with improved seed germination and root elongation under salt stress conditions. Several elite varieties carrying superior haplotypes of both genes were identified, providing valuable genetic resources for breeding salt-tolerant rice cultivars. CONCLUSIONS This study identified multiple loci conferring salt tolerance at the germination stage, with qRL8.1 emerging as a key locus. Two candidate genes, LOC_Os08g41790 and LOC_Os08g42080, were significantly associated with increased salt tolerance. The elite haplotypes and varieties identified here can be directly utilized in rice breeding programs. These findings increase our understanding of the genetic mechanisms underlying salt tolerance during early seedling establishment and offer new avenues for developing salt-resistant rice varieties.
Collapse
Affiliation(s)
- Peiwen Zhu
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai Agrobiological Gene Center, Shanghai, 201106, China
| | - Guolan Liu
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai Agrobiological Gene Center, Shanghai, 201106, China
| | - Zhihao Chen
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai Agrobiological Gene Center, Shanghai, 201106, China
| | - Deyan Kong
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai Agrobiological Gene Center, Shanghai, 201106, China
| | - Lijun Luo
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai Agrobiological Gene Center, Shanghai, 201106, China.
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
- Institute of Water-saving and Drought-resistance Rice Green Industry, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Xinqiao Yu
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai Agrobiological Gene Center, Shanghai, 201106, China.
- Institute of Water-saving and Drought-resistance Rice Green Industry, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Hussain MA, Huang Y, Luo D, Mehmood SS, Raza A, Zhang X, Cheng Y, Cheng H, Zou X, Ding X, Zeng L, Duan L, Wu B, Hu K, Lv Y. Integrative analyses reveal Bna-miR397a-BnaLAC2 as a potential modulator of low-temperature adaptability in Brassica napus L. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 40035175 DOI: 10.1111/pbi.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/02/2024] [Accepted: 02/12/2025] [Indexed: 03/05/2025]
Abstract
Brassica napus L. (B. napus) is a major edible oil crop grown around the southern part of China, which often faces cold stress, posing potential damage to vegetative tissues. To sustain growth and reproduction, a detailed understanding of fundamental regulatory processes in B. napus against long-term low temperature (LT) stress is necessary for breeders to adjust the level of LT adaption in a given region and is therefore of great economic importance. Till now, studies on microRNAs (miRNAs) in coping with LT adaption in B. napus are limited. Here, we performed an in-depth analysis on two B. napus varieties with distinct adaptability to LT stress. Through integration of RNA sequencing (RNA-seq) and small RNA-sequencing (sRNA-seq), we identified 106 modules comprising differentially expressed miRNAs and corresponding potential targets based on strong negative correlations between their dynamic expression patterns. Specifically, we demonstrated that Bna-miR397a post-transcriptionally regulates a LACCASE (LAC) gene, BnaLAC2, to enhance the adaption to LT stresses in B. napus by reducing the total lignin remodelling and ROS homeostasis. In addition, the miR397-LAC2 module was also proved to improve freezing tolerance of Arabidopsis, indicating a conserved role of miR397-LAC2 in Cruciferae plants. Overall, this work provides the first description of a miRNA-mediated-module signature for LT adaption and highlights the prominent role of laccase in future breeding programme of LT tolerant B. napus.
Collapse
Affiliation(s)
- Muhammad Azhar Hussain
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Yong Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Dan Luo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Sundas Saher Mehmood
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Ali Raza
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | | | - Yong Cheng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Hongtao Cheng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Xiling Zou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Xiaoyu Ding
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Liu Zeng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Liu Duan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Bian Wu
- Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Keming Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Yan Lv
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| |
Collapse
|
4
|
Ma Y, Zhao S, Ma X, Dong G, Liu C, Ding Y, Hou B. A high temperature responsive UDP-glucosyltransferase gene OsUGT72F1 enhances heat tolerance in rice and Arabidopsis. PLANT CELL REPORTS 2025; 44:48. [PMID: 39900733 DOI: 10.1007/s00299-025-03438-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/18/2025] [Indexed: 02/05/2025]
Abstract
KEY MESSAGE OsUGT72F1 enhances heat tolerance in plants by improving ROS scavenging and modifying multiple metabolic pathways, under the regulation of transcription factors OsHSFA3 and OsHSFA4a. High temperature is one of the most critical environmental constraints affecting plant growth and development, ultimately leading to yield losses in crops such as rice (Oryza sativa L.). UDP (uridine diphosphate)-dependent glycosyltransferases (UGTs) are believed to play crucial roles in coping with environmental stresses. However, the functions for the vast majority of UGTs under high temperature stress remain largely unknown. In this study, we isolated and characterized a high temperature responsive UDP-glycosyltransferase gene OsUGT72F1 in rice. Our findings demonstrated that overexpression of OsUGT72F1 enhanced heat-stress tolerance, while the mutant plants displayed a sensitive phenotype under the same stress conditions. Ectopic expression of OsUGT72F1 in Arabidopsis thaliana also conferred improved heat tolerance to the plants. Further investigation revealed that OsUGT72F1 reduced the generation of reactive oxygen species (ROS) and boosted the activity of antioxidant enzymes, thereby alleviating oxidative damage under heat-stress conditions. Moreover, transcriptomic analysis indicated that the action of OsUGT72F1 leads to the upregulation of multiple metabolic pathways including phenylpropanoid biosynthesis, zeatin biosynthesis, and flavonoid biosynthesis. In addition, the upstream regulatory mechanism of the OsUGT72F1 gene has been identified. We found that the transcription factors OsHSFA3 and OsHSFA4a can bind to the OsUGT72F1 promoter and enhance its transcription level. Together, this study revealed that the glycosyltransferase gene OsUGT72F1 plays a vital role in the adaptive adjustment of high temperature stress in plants, revealing a new heat tolerance pathway and providing a promising gene candidate for the breeding of heat-resistant crop varieties.
Collapse
Affiliation(s)
- Yuqing Ma
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Shuman Zhao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Xinmei Ma
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Guangrui Dong
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Chonglin Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Yi Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Bingkai Hou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
5
|
Jo S, Jang SG, Lee SB, Lee JY, Cho JH, Kang JW, Kwon Y, Lee SM, Park DS, Kwon SW, Lee JH. Analysis of quantitative trait loci and candidate gene exploration associated with cold tolerance in rice ( Oryza sativa L.) during the seedling stage. FRONTIERS IN PLANT SCIENCE 2025; 15:1508333. [PMID: 39840352 PMCID: PMC11747135 DOI: 10.3389/fpls.2024.1508333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/10/2024] [Indexed: 01/23/2025]
Abstract
Cold stress during the seedling stage significantly threatens rice (Oryza sativa L.) production, specifically in temperate climates. This study aimed to identify quantitative trait loci (QTLs) associated with cold tolerance at the seedling stage. QTL analysis was conducted on a doubled haploid (DH) population derived from a cross between the cold-sensitive indica cultivar 93-11 and the cold-tolerant japonica cultivar Milyang352. Phenotypic analysis was conducted over 2 years (2022-2023) under cold water treatment (13°C) at the Chuncheon Substation, South Korea. Cold tolerance scores were used to classify the DH populations and parental lines. In 2022, three QTLs were identified on chromosomes 3, 10, and 11; in 2023, a single QTL was identified on chromosome 10. The QTL qCTS1022/23 on chromosome 10 was consistently observed across both years, explaining up to 16.06% and 40.55% of the phenotypic variance, respectively. Fine-mapping of qCTS1022/23 narrowed the candidate region to a 300-kb interval containing 44 polymorphic single-nucleotide polymorphisms. Among the candidate genes, Os10g0409400 was significantly expressed in the cold-tolerant japonica parent Milyang352 under cold stress, indicating its role in conferring cold tolerance. These findings offer valuable insights into the genetic mechanisms of cold tolerance and highlight qCTS1022/23 as a potential target for marker-assisted selection in rice breeding programs to enhance cold tolerance.
Collapse
Affiliation(s)
- Sumin Jo
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration (RDA), Miryang, Republic of Korea
| | - Seong-Gyu Jang
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration (RDA), Miryang, Republic of Korea
| | - Sais-Beul Lee
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration (RDA), Miryang, Republic of Korea
| | - Ji-Yoon Lee
- Planning and Coordination Division, National Institute of Crop Science, Rural Development Administration (RDA), Jeonju, Republic of Korea
| | - Jun-Hyeon Cho
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration (RDA), Miryang, Republic of Korea
| | - Ju-Won Kang
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration (RDA), Miryang, Republic of Korea
| | - Yeongho Kwon
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration (RDA), Miryang, Republic of Korea
| | - So-Myeong Lee
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration (RDA), Miryang, Republic of Korea
| | - Dong-Soo Park
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration (RDA), Miryang, Republic of Korea
| | - Soon-Wook Kwon
- Department of Plant Bioscience, Pusan National University, Miryang, Republic of Korea
| | - Jong-Hee Lee
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration (RDA), Miryang, Republic of Korea
| |
Collapse
|
6
|
Jiang T, Huang N, Wang Z, Li J, Ma L, Wang X, Shen L, Zhang Y, Yu Y, Wang W, Fan Y, Liu K, Zhao Z, Xiong Z, Song Q, Tang H, Zhang H, Bao Y. MEMBRANE PROTEIN 1 encoding an amino acid transporter confers resistance to blast fungus and leaf-blight bacterium in rice. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:7284-7299. [PMID: 39171750 DOI: 10.1093/jxb/erae350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/21/2024] [Indexed: 08/23/2024]
Abstract
Amino acid transporters (AATs) have been shown to be involved in immune responses during plant-pathogen interactions; however, the molecular mechanism by which they function in this process remains unclear. Here, we used a joint analysis of a genome-wide association study and quantitative trait locus (QTL) mapping to identify MEMBRANE PROTEIN 1, which acts as a QTL in rice against blast fungus. Heterogeneous expression of OsMP1 in yeast supported its function in transporting a wide range of amino acids, including Thr, Ser, Phe, His, and Glu. OsMP1 could also mediate 15N-Glu efflux and influx in Xenopus oocyte cells. The expression of OsMP1 was significantly induced by Magnaporthe oryzae in the resistant rice landrace Heikezijing, whereas no such induction was observed in the susceptible landrace Suyunuo. Overexpressing OsMP1 in Suyunuo enhanced disease resistance to blast fungus and leaf blight bacterium without resulting in a yield penalty. In addition, the overexpression of OsMP1 led to increased accumulation of Thr, Ser, Phe, and His in the leaves and this contributed to the reduced disease susceptibility, which was associated with up-regulation of the jasmonic acid pathway. Our results demonstrate the important role of OsMP1 in disease resistance in rice and provide a potential target for breeding more resistant cultivars without reducing yield.
Collapse
Affiliation(s)
- Tingting Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ning Huang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhixue Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiawen Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Lu Ma
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinying Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Lingtong Shen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yao Yu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunxin Fan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kunquan Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhi Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ziwei Xiong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qisheng Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Haijuan Tang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongsheng Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yongmei Bao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
7
|
Wu B, Fu M, Du J, Wang M, Zhang S, Li S, Chen J, Zha W, Li C, Liu K, Xu H, Wang H, Shi S, Wu Y, Li P, You A, Zhou L. Identification of the Cold-Related Genes COLD11 and OsCTS11 via BSA-seq and Fine Mapping at the Rice Seedling Stage. RICE (NEW YORK, N.Y.) 2024; 17:72. [PMID: 39576378 PMCID: PMC11584825 DOI: 10.1186/s12284-024-00749-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/06/2024] [Indexed: 11/25/2024]
Abstract
Cold stress has a significantly negative effect on the growth, development, and yield of rice. However, the genetic basis for the differences in the cold tolerance of Xian/indica and Geng/japonica rice seedlings is still largely unknown. In this study, an RIL population was generated by crossing of the cold-tolerant japonica variety Nipponbare and the cold-sensitive indica variety WD16343 for BSA-seq analysis, and a major cold tolerance QTL qCTS11 was identified on chromosome 11. This locus was narrowed to the 584 kb region through fine mapping. Sequence alignment and expression analysis identified the cloned gene COLD11 and a novel cold-related gene OsCTS11. According to the reported functional variation of COLD11, Nipponbare (TCG + 3GCG)×2 presented more GCG repeats in the 1st exon than WD16343 (TCG + 3GCG), partially explaining the difference in cold tolerance between the parents. OsCTS11, encoding a stress enhanced protein based on phylogenetic analysis, was strongly induced by cold stress and located in the chloroplast and the nucleus. oscts11-mutant lines generated via CRISPR/Cas9 system improved the cold tolerance of rice seedlings. Our study not only reveals novel genetic loci associated with cold tolerance, but also provides potentially valuable gene resources for the cultivation of cold-tolerant rice.
Collapse
Affiliation(s)
- Bian Wu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Minghui Fu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
| | - Jinghua Du
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
- Huazhong Agricultural University, Wuhan, 430070, China
| | - Mengjing Wang
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
- Huazhong Agricultural University, Wuhan, 430070, China
| | - Siyue Zhang
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
- Huazhong Agricultural University, Wuhan, 430070, China
| | - Sanhe Li
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Junxiao Chen
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Wenjun Zha
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Changyan Li
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Kai Liu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Huashan Xu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Huiying Wang
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Shaojie Shi
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yan Wu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Peide Li
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Aiqing You
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| | - Lei Zhou
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
8
|
Guo J, Wang W, Li W. Genome-wide association study reveals novel QTLs and candidate genes for panicle number in rice. Front Genet 2024; 15:1470294. [PMID: 39563736 PMCID: PMC11573766 DOI: 10.3389/fgene.2024.1470294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/23/2024] [Indexed: 11/21/2024] Open
Abstract
Introduction Panicle number (PN) is one of the three key yield components in rice, maintaining stable tiller and PN is a crucial characteristic of an ideal plant architecture. Understanding the molecular mechanisms underlying PN is essential for breeders aiming to improve rice yield. Methods To dissect the genetic architecture of panicle number, a genome-wide association study (GWAS) was conducted in 411 japonica rice varieties. GWAS analysis was carried out with the mixed linear model using 743,678 high-quality SNPs. Results Over two experimental years, we detected a total of seven quantitative trait loci (QTLs), located on chromosomes 1, 4, 6, 8, 11, and 12; notably, qPN1.1 and qPN8 were detected consistently in both years. By combining haplotype and expression analyses, OsCKX11 was identified as the candidate gene for qPN8, while LOC_Os01g07870 and LOC_Os01g07950 were identified as candidate genes for qPN1.1. Significant differences were observed among the haplotypes of these candidate genes. Additionally, qRT-PCR results showed that LOC_Os01g07870 expression levels were significantly lower in accessions with high panicle numbers compared to those with low panicle numbers. Discussion To understand the natural biological function of these candidate genes, further research involving overexpression or silencing in rice is needed. Despite these challenges, our results will lay the foundation for further study of panicle development and provide valuable genetic resources for developing high-panicle-number rice cultivars using genetic engineering and molecular breeding.
Collapse
Affiliation(s)
- Jiangfan Guo
- School of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Wenbin Wang
- School of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Wei Li
- Research Institute of Life Sciences Computing, Zhejiang Lab, Hangzhou, China
| |
Collapse
|
9
|
Hu D, Yao Y, Lv Y, You J, Zhang Y, Lv Q, Li J, Hutin S, Xiong H, Zubieta C, Lai X, Xiong L. The OsSRO1c-OsDREB2B complex undergoes protein phase transition to enhance cold tolerance in rice. MOLECULAR PLANT 2024; 17:1520-1538. [PMID: 39169629 DOI: 10.1016/j.molp.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/20/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024]
Abstract
Cold stress is one of the major abiotic stress factors affecting rice growth and development, leading to significant yield loss in the context of global climate change. Exploring natural variants that confer cold resistance and the underlying molecular mechanism responsible for this is the major strategy to breed cold-tolerant rice varieties. Here, we show that natural variations of a SIMILAR to RCD ONE (SRO) gene, OsSRO1c, confer cold tolerance in rice at both seedling and booting stages. Our in vivo and in vitro experiments demonstrated that OsSRO1c possesses intrinsic liquid-liquid phase-separation ability and recruits OsDREB2B, an AP2/ERF transcription factor that functions as a positive regulator of cold stress, into its biomolecular condensates in the nucleus, resulting in elevated transcriptional activity of OsDREB2B. We found that the OsSRO1c-OsDREB2B complex directly responds to low temperature through dynamic phase transitions and regulates key cold-response genes, including COLD1. Furthermore, we showed that introgression of an elite haplotype of OsSRO1c into a cold-susceptible indica rice could significantly increase its cold resistance. Collectively, our work reveals a novel cold-tolerance regulatory module in rice and provides promising genetic targets for molecular breeding of cold-tolerant rice varieties.
Collapse
Affiliation(s)
- Dan Hu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yilong Yao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yan Lv
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jun You
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yu Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Qingya Lv
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jiawei Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Stephanie Hutin
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble-Alpes, CNRS, CEA, INRAE, IRIG-DBSCI, 38000 Grenoble, France
| | - Haiyan Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Chloe Zubieta
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble-Alpes, CNRS, CEA, INRAE, IRIG-DBSCI, 38000 Grenoble, France
| | - Xuelei Lai
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
10
|
Shi H, Zhang W, Cao H, Zhai L, Song Q, Xu J. Identification of Candidate Genes for Cold Tolerance at Seedling Stage by GWAS in Rice ( Oryza sativa L.). BIOLOGY 2024; 13:784. [PMID: 39452093 PMCID: PMC11505075 DOI: 10.3390/biology13100784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024]
Abstract
Due to global climate change, cold temperatures have significantly impacted rice production, resulting in reduced yield and quality. In this study, we investigated two traits related to the cold tolerance (CT) of 1992 diverse rice accessions at the seedling stage. Geng accessions exhibited higher levels of CT compared to xian accessions, with the GJ-tmp subgroup displaying the strongest CT. However, extreme CT accessions were also identified within the xian subspecies. Through GWAS analysis based on the survival rate (SR) and leaf score of cold tolerance (SCT), a total of 29 QTLs associated with CT at the seedling stage were identified, among which four QTLs (qSR3.1a, qSR4.1a, qSR11.1x, and qSR12.1a) were found to be important. Furthermore, five candidate genes (LOC_Os03g44760, LOC_Os04g06900, LOC_Os04g07260, LOC_Os11g40610, and LOC_Os12g10710) along with their favorable haplotypes were identified through gene function annotation and haplotype analysis. Pyramiding multiple favorable haplotypes resulted in a significant improvement in CT performance. Subsequently, three selected accessions (CX534, B236, and IRIS_313-8565), carrying different superior alleles for CT, were selected and recommended for molecular breeding for CT using marker-assisted selection (MAS). The findings from this study provide valuable resources for enhancing rice's ability for CT while laying a foundation for the future cloning of novel genes involved in conferring CT.
Collapse
Affiliation(s)
- Huimin Shi
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China;
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (W.Z.); (H.C.)
| | - Wenyu Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (W.Z.); (H.C.)
| | - Huimin Cao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (W.Z.); (H.C.)
| | - Laiyuan Zhai
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China;
| | - Qingxin Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China;
| | - Jianlong Xu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (W.Z.); (H.C.)
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China;
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| |
Collapse
|
11
|
Li K, Hassan MA, Guo J, Zhao X, Gan Q, Lin C, Ten B, Zhou K, Li M, Shi Y, Ni D, Song F. Analysis of genome-wide association studies of low-temperature germination in Xian and Geng rice. FRONTIERS IN PLANT SCIENCE 2024; 15:1404879. [PMID: 39166241 PMCID: PMC11333256 DOI: 10.3389/fpls.2024.1404879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/15/2024] [Indexed: 08/22/2024]
Abstract
Rice is the leading global staple crop. Low temperatures pose negative impacts on rice's optimal growth and development. Rice cultivars acclimating to low temperatures exhibited improved seedling emergence under direct-seeded sowing conditions, yet little is known about the genes that regulate germination at low temperatures (LTG). In this research investigation, we've performed whole genome sequencing for the 273 rice plant materials. Using the best linear unbiased prediction (BLUP) values for each rice material, we identified 7 LTG-related traits and performed the efficient genetic analysis and genome-wide association study (GWAS). As a result of this, 95 quantitative trait loci (QTLs) and 1001 candidate genes associated with LTG in rice were identified. Haplotype analysis and functional annotation of the candidate genes resulted in the identification of three promising candidate genes (LOC_Os08g30520 for regulating LTG4 and LTG5, LOC_Os10g02625 for regulating LTG6, LTg7 and LTG8, and LOC_Os12g31460 for regulating LTG7, LTg8 and LTG9) involving in the regulation of LTG in rice. This research provides a solid foundation for addressing the LTG issue in rice and will be valuable in future direct-seeded rice breeding programs.
Collapse
Affiliation(s)
- Kang Li
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | | | - Jinmeng Guo
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Xueyu Zhao
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Quan Gan
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Cuixiang Lin
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Bin Ten
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Kunneng Zhou
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Min Li
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Yingyao Shi
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Dahu Ni
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Fengshun Song
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| |
Collapse
|
12
|
Chang Y, Fang Y, Liu J, Ye T, Li X, Tu H, Ye Y, Wang Y, Xiong L. Stress-induced nuclear translocation of ONAC023 improves drought and heat tolerance through multiple processes in rice. Nat Commun 2024; 15:5877. [PMID: 38997294 PMCID: PMC11245485 DOI: 10.1038/s41467-024-50229-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 07/04/2024] [Indexed: 07/14/2024] Open
Abstract
Drought and heat are major abiotic stresses frequently coinciding to threaten rice production. Despite hundreds of stress-related genes being identified, only a few have been confirmed to confer resistance to multiple stresses in crops. Here we report ONAC023, a hub stress regulator that integrates the regulations of both drought and heat tolerance in rice. ONAC023 positively regulates drought and heat tolerance at both seedling and reproductive stages. Notably, the functioning of ONAC023 is obliterated without stress treatment and can be triggered by drought and heat stresses at two layers. The expression of ONAC023 is induced in response to stress stimuli. We show that overexpressed ONAC23 is translocated to the nucleus under stress and evidence from protoplasts suggests that the dephosphorylation of the remorin protein OSREM1.5 can promote this translocation. Under drought or heat stress, the nuclear ONAC023 can target and promote the expression of diverse genes, such as OsPIP2;7, PGL3, OsFKBP20-1b, and OsSF3B1, which are involved in various processes including water transport, reactive oxygen species homeostasis, and alternative splicing. These results manifest that ONAC023 is fine-tuned to positively regulate drought and heat tolerance through the integration of multiple stress-responsive processes. Our findings provide not only an underlying connection between drought and heat responses, but also a promising candidate for engineering multi-stress-resilient rice.
Collapse
Affiliation(s)
- Yu Chang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yujie Fang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| | - Jiahan Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tiantian Ye
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaokai Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haifu Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ying Ye
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yao Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
13
|
Zhai M, Chen Y, Pan X, Chen Y, Zhou J, Jiang X, Zhang Z, Xiao G, Zhang H. OsEIN2-OsEIL1/2 pathway negatively regulates chilling tolerance by attenuating OsICE1 function in rice. PLANT, CELL & ENVIRONMENT 2024; 47:2561-2577. [PMID: 38518060 DOI: 10.1111/pce.14900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/27/2024] [Accepted: 03/11/2024] [Indexed: 03/24/2024]
Abstract
Low temperature severely affects rice development and yield. Ethylene signal is essential for plant development and stress response. Here, we reported that the OsEIN2-OsEIL1/2 pathway reduced OsICE1-dependent chilling tolerance in rice. The overexpressing plants of OsEIN2, OsEIL1 and OsEIL2 exhibited severe stress symptoms with excessive reactive oxygen species (ROS) accumulation under chilling, while the mutants (osein2 and oseil1) and OsEIL2-RNA interference plants (OsEIL2-Ri) showed the enhanced chilling tolerance. We validated that OsEIL1 and OsEIL2 could form a heterxodimer and synergistically repressed OsICE1 expression by binding to its promoter. The expression of OsICE1 target genes, ROS scavenging- and photosynthesis-related genes were downregulated by OsEIN2 and OsEIL1/2, which were activated by OsICE1, suggesting that OsEIN2-OsEIL1/2 pathway might mediate ROS accumulation and photosynthetic capacity under chilling by attenuating OsICE1 function. Moreover, the association analysis of the seedling chilling tolerance with the haplotype showed that the lower expression of OsEIL1 and OsEIL2 caused by natural variation might confer chilling tolerance on rice seedlings. Finally, we generated OsEIL2-edited rice with an enhanced chilling tolerance. Taken together, our findings reveal a possible mechanism integrating OsEIN2-OsEIL1/2 pathway with OsICE1-dependent cascade in regulating chilling tolerance, providing a practical strategy for breeding chilling-tolerant rice.
Collapse
Affiliation(s)
- Mingjuan Zhai
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yating Chen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Xiaowu Pan
- Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Ying Chen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiahao Zhou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaodan Jiang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhijin Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guiqing Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Haiwen Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
14
|
Wu J, Liu H, Zhang Y, Zhang Y, Li D, Liu S, Lu S, Wei L, Hua J, Zou B. A major gene for chilling tolerance variation in Indica rice codes for a kinase OsCTK1 that phosphorylates multiple substrates under cold. THE NEW PHYTOLOGIST 2024; 242:2077-2092. [PMID: 38494697 DOI: 10.1111/nph.19696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/28/2024] [Indexed: 03/19/2024]
Abstract
Rice is susceptible to chilling stress. Identifying chilling tolerance genes and their mechanisms are key to improve rice performance. Here, we performed a genome-wide association study to identify regulatory genes for chilling tolerance in rice. One major gene for chilling tolerance variation in Indica rice was identified as a casein kinase gene OsCTK1. Its function and natural variation are investigated at the physiological and molecular level by its mutants and transgenic plants. Potential substrates of OsCTK1 were identified by phosphoproteomic analysis, protein-protein interaction assay, in vitro kinase assay, and mutant characterization. OsCTK1 positively regulates rice chilling tolerance. Three of its putative substrates, acidic ribosomal protein OsP3B, cyclic nucleotide-gated ion channel OsCNGC9, and dual-specific mitogen-activated protein kinase phosphatase OsMKP1, are each involved in chilling tolerance. In addition, a natural OsCTK1 chilling-tolerant (CT) variant exhibited a higher kinase activity and conferred greater chilling tolerance compared with a chilling-sensitive (CS) variant. The CT variant is more prevalent in CT accessions and is distributed more frequently in higher latitude compared with the CS variant. This study thus enables a better understanding of chilling tolerance mechanisms and provides gene variants for genetic improvement of chilling tolerance in rice.
Collapse
Affiliation(s)
- Jiawen Wu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huimin Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China
| | - Yan Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
- China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou, 310006, China
| | - Yingdong Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dongling Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shiyan Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shan Lu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lihui Wei
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jian Hua
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Baohong Zou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
15
|
Zhang C, Wang H, Tian X, Lin X, Han Y, Han Z, Sha H, Liu J, Liu J, Zhang J, Bu Q, Fang J. A transposon insertion in the promoter of OsUBC12 enhances cold tolerance during japonica rice germination. Nat Commun 2024; 15:2211. [PMID: 38480722 PMCID: PMC10937917 DOI: 10.1038/s41467-024-46420-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/27/2024] [Indexed: 03/17/2024] Open
Abstract
Low-temperature germination (LTG) is an important agronomic trait for rice (Oryza sativa). Japonica rice generally has greater capacity for germination at low temperatures than the indica subpopulation. However, the genetic basis and molecular mechanisms underlying this complex trait are poorly understood. Here, we report that OsUBC12, encoding an E2 ubiquitin-conjugating enzyme, increases low-temperature germinability in japonica, owing to a transposon insertion in its promoter enhancing its expression. Natural variation analysis reveals that transposon insertion in the OsUBC12 promoter mainly occurs in the japonica lineage. The variation detected in eight representative two-line male sterile lines suggests the existence of this allele introgression by indica-japonica hybridization breeding, and varieties carrying the japonica OsUBC12 locus (transposon insertion) have higher low-temperature germinability than varieties without the locus. Further molecular analysis shows that OsUBC12 negatively regulate ABA signaling. OsUBC12-regulated seed germination and ABA signaling mainly depend on a conserved active site required for ubiquitin-conjugating enzyme activity. Furthermore, OsUBC12 directly associates with rice SUCROSE NON-FERMENTING 1-RELATED PROTEIN KINASE 1.1 (OsSnRK1.1), promoting its degradation. OsSnRK1.1 inhibits LTG by enhancing ABA signaling and acts downstream of OsUBC12. These findings shed light on the underlying mechanisms of UBC12 regulating LTG and provide genetic reference points for improving LTG in indica rice.
Collapse
Affiliation(s)
- Chuanzhong Zhang
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 150081, Harbin, China
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Hongru Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xiaojie Tian
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 150081, Harbin, China
| | - Xinyan Lin
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 150081, Harbin, China
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin Province, 136000, China
| | - Yunfei Han
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 150081, Harbin, China
| | - Zhongmin Han
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 150081, Harbin, China
| | - Hanjing Sha
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 150081, Harbin, China
| | - Jia Liu
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 150081, Harbin, China
| | - Jianfeng Liu
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin Province, 136000, China
| | - Jian Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Qingyun Bu
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 150081, Harbin, China
| | - Jun Fang
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 150081, Harbin, China.
- Yazhouwan National Laboratory, Sanya, 572024, China.
| |
Collapse
|
16
|
Jan S, Rustgi S, Barmukh R, Shikari AB, Leske B, Bekuma A, Sharma D, Ma W, Kumar U, Kumar U, Bohra A, Varshney RK, Mir RR. Advances and opportunities in unraveling cold-tolerance mechanisms in the world's primary staple food crops. THE PLANT GENOME 2024; 17:e20402. [PMID: 37957947 DOI: 10.1002/tpg2.20402] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 11/15/2023]
Abstract
Temperatures below or above optimal growth conditions are among the major stressors affecting productivity, end-use quality, and distribution of key staple crops including rice (Oryza sativa), wheat (Triticum aestivum), and maize (Zea mays L.). Among temperature stresses, cold stress induces cellular changes that cause oxidative stress and slowdown metabolism, limit growth, and ultimately reduce crop productivity. Perception of cold stress by plant cells leads to the activation of cold-responsive transcription factors and downstream genes, which ultimately impart cold tolerance. The response triggered in crops to cold stress includes gene expression/suppression, the accumulation of sugars upon chilling, and signaling molecules, among others. Much of the information on the effects of cold stress on perception, signal transduction, gene expression, and plant metabolism are available in the model plant Arabidopsis but somewhat lacking in major crops. Hence, a complete understanding of the molecular mechanisms by which staple crops respond to cold stress remain largely unknown. Here, we make an effort to elaborate on the molecular mechanisms employed in response to low-temperature stress. We summarize the effects of cold stress on the growth and development of these crops, the mechanism of cold perception, and the role of various sensors and transducers in cold signaling. We discuss the progress in cold tolerance research at the genome, transcriptome, proteome, and metabolome levels and highlight how these findings provide opportunities for designing cold-tolerant crops for the future.
Collapse
Affiliation(s)
- Sofora Jan
- Division of Genetics & Plant Breeding, Faculty of Agriculture (FoA), SKUAST-Kashmir, Wadura Campus, Sopore Kashmir, India
| | - Sachin Rustgi
- Department of Plant and Environmental Sciences, Clemson University, Florence, South Carolina, USA
| | - Rutwik Barmukh
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Centre for Crop & Food Innovation, State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Asif B Shikari
- Division of Genetics & Plant Breeding, Faculty of Agriculture (FoA), SKUAST-Kashmir, Wadura Campus, Sopore Kashmir, India
| | - Brenton Leske
- Department of Primary Industries and Regional Development, South Perth, Western Australia, Australia
| | - Amanuel Bekuma
- Department of Primary Industries and Regional Development, South Perth, Western Australia, Australia
| | - Darshan Sharma
- Department of Primary Industries and Regional Development, South Perth, Western Australia, Australia
| | - Wujun Ma
- Centre for Crop & Food Innovation, State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- College of Agronomy, Qingdao Agriculture University, Qingdao, China
| | - Upendra Kumar
- Department of Plant Science, Mahatma Jyotiba Phule Rohilkhand University, Bareilly, Uttar Pradesh, India
| | - Uttam Kumar
- Borlaug Institute for South Asia (BISA), Ludhiana, Punjab, India
| | - Abhishek Bohra
- Centre for Crop & Food Innovation, State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Rajeev K Varshney
- Centre for Crop & Food Innovation, State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Reyazul Rouf Mir
- Division of Genetics & Plant Breeding, Faculty of Agriculture (FoA), SKUAST-Kashmir, Wadura Campus, Sopore Kashmir, India
| |
Collapse
|
17
|
Dong Z, Guo L, Li X, Li Y, Liu W, Chen Z, Liu L, Liu Z, Guo Y, Pan X. Genome-Wide Association Study of Arsenic Accumulation in Polished Rice. Genes (Basel) 2023; 14:2186. [PMID: 38137008 PMCID: PMC10742485 DOI: 10.3390/genes14122186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
The accumulation of arsenic (As) in rice poses a significant threat to food safety and human health. Breeding rice varieties with low As accumulation is an effective strategy for mitigating the health risks associated with arsenic-contaminated rice. However, the genetic mechanisms underlying As accumulation in rice grains remain incompletely understood. We evaluated the As accumulation capacity of 313 diverse rice accessions grown in As-contaminated soils with varying As concentrations. Six rice lines with low As accumulation were identified. Additionally, a genome-wide association studies (GWAS) analysis identified 5 QTLs significantly associated with As accumulation, with qAs4 being detected in both of the experimental years. Expression analysis demonstrated that the expression of LOC_Os04g50680, which encodes an MYB transcription factor, was up-regulated in the low-As-accumulation accessions compared to the high-As-accumulation accessions after As treatment. Therefore, LOC_Os04g50680 was selected as a candidate gene for qAs4. These findings provide insights for exploiting new functional genes associated with As accumulation and facilitating the development of low-As-accumulation rice varieties through marker-assisted breeding.
Collapse
Affiliation(s)
- Zheng Dong
- Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Ministry of Agriculture, Changsha 410125, China
| | - Liang Guo
- Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Ministry of Agriculture, Changsha 410125, China
| | - Xiaoxiang Li
- Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Ministry of Agriculture, Changsha 410125, China
| | - Yongchao Li
- Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Ministry of Agriculture, Changsha 410125, China
| | - Wenqiang Liu
- Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Ministry of Agriculture, Changsha 410125, China
| | - Zuwu Chen
- Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Ministry of Agriculture, Changsha 410125, China
| | - Licheng Liu
- Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Ministry of Agriculture, Changsha 410125, China
| | - Zhixi Liu
- Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Ministry of Agriculture, Changsha 410125, China
| | - Yujing Guo
- Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Ministry of Agriculture, Changsha 410125, China
| | - Xiaowu Pan
- Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Ministry of Agriculture, Changsha 410125, China
| |
Collapse
|
18
|
Gu S, Zhang Z, Li J, Sun J, Cui Z, Li F, Zhuang J, Chen W, Su C, Wu L, Wang X, Guo Z, Xu H, Zhao M, Ma D, Chen W. Natural variation in OsSEC13 HOMOLOG 1 modulates redox homeostasis to confer cold tolerance in rice. PLANT PHYSIOLOGY 2023; 193:2180-2196. [PMID: 37471276 DOI: 10.1093/plphys/kiad420] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/17/2023] [Accepted: 06/05/2023] [Indexed: 07/22/2023]
Abstract
Rice (Oryza sativa L.) is a cold-sensitive species that often faces cold stress, which adversely affects yield productivity and quality. However, the genetic basis for low-temperature adaptation in rice remains unclear. Here, we demonstrate that 2 functional polymorphisms in O. sativa SEC13 Homolog 1 (OsSEH1), encoding a WD40-repeat nucleoporin, between the 2 subspecies O. sativa japonica and O. sativa indica rice, may have facilitated cold adaptation in japonica rice. We show that OsSEH1 of the japonica variety expressed in OsSEH1MSD plants (transgenic line overexpressing the OsSEH1 allele from Mangshuidao [MSD], cold-tolerant landrace) has a higher affinity for O. sativa metallothionein 2b (OsMT2b) than that of OsSEH1 of indica. This high affinity of OsSEH1MSD for OsMT2b results in inhibition of OsMT2b degradation, with decreased accumulation of reactive oxygen species and increased cold tolerance. Transcriptome analysis indicates that OsSEH1 positively regulates the expression of the genes encoding dehydration-responsive element-binding transcription factors, i.e. OsDREB1 genes, and induces the expression of multiple cold-regulated genes to enhance cold tolerance. Our findings highlight a breeding resource for improving cold tolerance in rice.
Collapse
Affiliation(s)
- Shuang Gu
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhe Zhang
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | - Jinquan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Strube Research GmbH & Co. KG, Söllingen 38387, Germany
| | - Jian Sun
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhibo Cui
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | - Fengcheng Li
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | - Jia Zhuang
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | - Wanchun Chen
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | - Chang Su
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | - Lian Wu
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaoliang Wang
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhifu Guo
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | - Hai Xu
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | - Minghui Zhao
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | | | - Wenfu Chen
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
19
|
Ma Z, Lv J, Wu W, Fu D, Lü S, Ke Y, Yang P. Regulatory network of rice in response to heat stress and its potential application in breeding strategy. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:68. [PMID: 37608925 PMCID: PMC10440324 DOI: 10.1007/s11032-023-01415-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/14/2023] [Indexed: 08/24/2023]
Abstract
The rapid development of global industrialization has led to serious environmental problems, among which global warming has become one of the major concerns. The gradual rise in global temperature resulted in the loss of food production, and hence a serious threat to world food security. Rice is the main crop for approximately half of the world's population, and its geographic distribution, yield, and quality are frequently reduced due to elevated temperature stress, and breeding rice varieties with tolerance to heat stress is of immense significance. Therefore, it is critical to study the molecular mechanism of rice in response to heat stress. In the last decades, large amounts of studies have been conducted focusing on rice heat stress response. Valuable information has been obtained, which not only sheds light on the regulatory network underlying this physiological process but also provides some candidate genes for improved heat tolerance breeding in rice. In this review, we summarized the studies in this field. Hopefully, it will provide some new insights into the mechanisms of rice under high temperature stress and clues for future engineering breeding of improved heat tolerance rice.
Collapse
Affiliation(s)
- Zemin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Jun Lv
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000 China
| | - Wenhua Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Dong Fu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Yinggen Ke
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| |
Collapse
|
20
|
Wang J, Hu K, Wang J, Gong Z, Li S, Deng X, Li Y. Integrated Transcriptomic and Metabolomic Analyses Uncover the Differential Mechanism in Saline-Alkaline Tolerance between Indica and Japonica Rice at the Seedling Stage. Int J Mol Sci 2023; 24:12387. [PMID: 37569762 PMCID: PMC10418499 DOI: 10.3390/ijms241512387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Saline-alkaline stress is one of the major damages that severely affects rice (Oryza sativa L.) growth and grain yield; however, the mechanism of the tolerance remains largely unknown in rice. Herein, we comparatively investigated the transcriptome and metabolome of two contrasting rice subspecies genotypes, Luohui 9 (abbreviation for Chao2R under study, O. sativa ssp. indica, saline-alkaline-sensitive) and RPY geng (O. sativa ssp. japonica, saline-alkaline-tolerant), to identify the main pathways and important factors related to saline-alkaline tolerance. Transcriptome analysis showed that 68 genes involved in fatty acid, amino acid (such as phenylalanine and tryptophan), phenylpropanoid biosynthesis, energy metabolism (such as Glycolysis and TCA cycle), as well as signal transduction (such as hormone and MAPK signaling) were identified to be specifically upregulated in RPY geng under saline-alkaline conditions, implying that a series of cascade changes from these genes promotes saline-alkaline stress tolerance. The transcriptome changes observed in RPY geng were in high accordance with the specifically accumulation of metabolites, consisting mainly of 14 phenolic acids, 8 alkaloids, and 19 lipids based on the combination analysis of transcriptome and metabolome. Moreover, some genes involved in signal transduction as hub genes, such as PR5, FLS2, BRI1, and NAC, may participate in the saline-alkaline stress response of RPY geng by modulating key genes involved in fatty acid, phenylpropanoid biosynthesis, amino acid metabolism, and glycolysis metabolic pathways based on the gene co-expression network analysis. The present research results not only provide important insights for understanding the mechanism underlying of rice saline-alkaline tolerance at the transcriptome and metabolome levels but also provide key candidate target genes for further enhancing rice saline-alkaline stress tolerance.
Collapse
Affiliation(s)
- Jianyong Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.W.); (K.H.); (J.W.); (Z.G.); (S.L.); (X.D.)
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
| | - Keke Hu
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.W.); (K.H.); (J.W.); (Z.G.); (S.L.); (X.D.)
| | - Jien Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.W.); (K.H.); (J.W.); (Z.G.); (S.L.); (X.D.)
| | - Ziyun Gong
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.W.); (K.H.); (J.W.); (Z.G.); (S.L.); (X.D.)
| | - Shuangmiao Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.W.); (K.H.); (J.W.); (Z.G.); (S.L.); (X.D.)
| | - Xiaoxiao Deng
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.W.); (K.H.); (J.W.); (Z.G.); (S.L.); (X.D.)
| | - Yangsheng Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.W.); (K.H.); (J.W.); (Z.G.); (S.L.); (X.D.)
| |
Collapse
|
21
|
Yang L, Lei L, Wang J, Zheng H, Xin W, Liu H, Zou D. qCTB7 positively regulates cold tolerance at booting stage in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:135. [PMID: 37222778 DOI: 10.1007/s00122-023-04388-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/12/2023] [Indexed: 05/25/2023]
Abstract
KEY MESSAGE LOC_Os07g07690 on qCTB7 is associated with cold tolerance at the booting stage in rice, and analysis of transgenic plants demonstrated that qCTB7 influenced cold tolerance by altering the morphology and cytoarchitecture of anthers and pollen. Cold tolerance at the booting stage (CTB) in rice can significantly affect yield in high-latitude regions. Although several CTB genes have been isolated, their ability to induce cold tolerance is insufficient to ensure adequate rice yields in cold regions at high latitudes. Here, we identified the PHD-finger domain-containing protein gene qCTB7 using QTL-seq and linkage analysis through systematic measurement of CTB differences and the spike fertility of the Longjing31 and Longdao3 cultivars, resulting in the derivation of 1570 F2 progeny under cold stress. We then characterized the function of qCTB7 in rice. It was found that overexpression of qCTB7 promoted CTB and the same yield as Longdao3 under normal growing conditions while the phenotype of qctb7 knockout showed anther and pollen failure under cold stress. When subjected to cold stress, the germination of qctb7 pollen on the stigma was reduced, resulting in lower spike fertility. These findings indicate that qCTB7 regulates the appearance, morphology, and cytoarchitecture of the anthers and pollen. Three SNPs in the promoter region and coding region of qCTB7 were identified as recognition signals for CTB in rice and could assist breeding efforts to improve cold tolerance for rice production in high latitudes.
Collapse
Affiliation(s)
- Luomiao Yang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Lei Lei
- Institute of Crop Cultivation and Cultivation, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Jingguo Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Hongliang Zheng
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Wei Xin
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Hualong Liu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.
| | - Detang Zou
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
22
|
Liao M, Ma Z, Kang Y, Zhang B, Gao X, Yu F, Yang P, Ke Y. ENHANCED DISEASE SUSCEPTIBILITY 1 promotes hydrogen peroxide scavenging to enhance rice thermotolerance. PLANT PHYSIOLOGY 2023:kiad257. [PMID: 37099454 PMCID: PMC10400032 DOI: 10.1093/plphys/kiad257] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/30/2023] [Accepted: 04/25/2023] [Indexed: 06/19/2023]
Abstract
Heat stress is a major factor limiting the production and geographic distribution of rice (Oryza sativa), and breeding rice varieties with tolerance to heat stress is of immense importance. Although extensive studies have revealed that reactive oxygen species (ROS) play a critical role in rice acclimation to heat stress, the molecular basis of rice controlling ROS homeostasis remains largely unclear. In this study, we discovered a novel heat stress-responsive strategy that orchestrates ROS homeostasis centering on an immune activator, rice ENHANCED DISEASE SUSCEPTIBILITY 1 (OsEDS1). OsEDS1, which confers heat stress tolerance, promotes hydrogen peroxide (H2O2) scavenging by stimulating catalase activity through the OsEDS1-catalase association. The loss-of-function mutation in OsEDS1 causes increased sensitivity to heat stress, whereas overexpression of OsEDS1 enhances thermotolerance. Furthermore, overexpression lines greatly improved rice tolerance to heat stress during the reproductive stage, which was associated with substantially increased seed setting, grain weight, and plant yield. Rice CATALASE C (OsCATC), whose activity is promoted by OsEDS1, degrades H2O2 to activate rice heat stress tolerance. Our findings greatly expand our understanding of heat stress responses in rice. We reveal a molecular framework that promotes heat tolerance through ROS homeostasis regulation, suggesting a theoretical basis and providing genetic resources for breeding heat-tolerant rice varieties.
Collapse
Affiliation(s)
- Min Liao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Zemin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yuanrong Kang
- Department of plant pathology, university of Kentucky, Lexington, Ky, 40506, USA
| | - Biaoming Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xuanlin Gao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Feng Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yinggen Ke
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
23
|
Niu Y, Fan S, Cheng B, Li H, Wu J, Zhao H, Huang Z, Yan F, Qi B, Zhang L, Zhang G. Comparative transcriptomics and co-expression networks reveal cultivar-specific molecular signatures associated with reproductive-stage cold stress in rice. PLANT CELL REPORTS 2023; 42:707-722. [PMID: 36723676 DOI: 10.1007/s00299-023-02984-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
The resistance of Huaidao5 results from the high constitutive expression of tolerance genes, while that of Huaidao9 is due to the cold-induced resistance in flag leaves and panicles. The regulation mechanism of rice seedlings' cold tolerance is relatively clear, and knowledge of its underlying mechanisms at the reproductive stage is limited. We performed differential expression and co-expression network analyses to transcriptomes from panicle and flag leaf tissues of a cold-tolerant cultivar (Huaidao5), and a sensitive cultivar (Huaidao9), under reproductive-stage cold stress. The results revealed that the expression levels of genes in stress-related pathways such as MAPK signaling pathway, diterpenoid biosynthesis, glutathione metabolism, plant-pathogen interaction and plant hormone signal transduction were constitutively highly expressed in Huaidao5, especially in panicles. Moreover, the Hudaidao5's panicle sample-specific (under cold) module contained some genes related to rice yield, such as GW5L, GGC2, SG1 and CTPS1. However, the resistance of Huaidao9 was derived from the induced resistance to cold in flag leaves and panicles. In the flag leaves, the responses included a series of stress response and signal transduction, while in the panicles nitrogen metabolism was severely affected, especially 66 endosperm-specific genes. Through integrating differential expression with co-expression networks, we predicted 161 candidate genes (79 cold-responsive genes common to both cultivars and 82 cold-tolerance genes associated with differences in cold tolerance between cultivars) potentially affecting cold response/tolerance, among which 85 (52.80%) were known to be cold-related genes. Moreover, 52 (65.82%) cold-responsive genes (e.g., TIFY11C, LSK1 and LPA) could be confirmed by previous transcriptome studies and 72 (87.80%) cold-tolerance genes (e.g., APX5, OsFbox17 and OsSTA109) were located within QTLs associated with cold tolerance. This study provides an efficient strategy for further discovery of mechanisms of cold tolerance in rice.
Collapse
Affiliation(s)
- Yuan Niu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Song Fan
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Baoshan Cheng
- Huaiyin Institute of Agricultural Science in Xuhuai Region of Jiangsu Province, Huai'an, 223001, China.
| | - Henan Li
- Shanghai Bioelectronica Limited Liability Company, Shanghai, 200131, China
| | - Jiang Wu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Hongliang Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Zhiwei Huang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Feiyu Yan
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Bo Qi
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Linqing Zhang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Guoliang Zhang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
- State Key Laboratory of Soil and Agricultural Sustainable Development, Nanjing, 210008, China.
- Jiangsu Key Laboratory of Attapulgite Clay Resource Utilization, Huai'an, 223003, China.
| |
Collapse
|
24
|
Wang Z, Wu X, Chen Y, Wu C, Long W, Zhu S. Transcriptomic profiling of the cold stress and recovery responsiveness of two contrasting Guizhou HE rice genotypes. Genes Genomics 2023; 45:401-412. [PMID: 36469228 DOI: 10.1007/s13258-022-01321-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/28/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND At the seed germination stage, rice is sensitive to cold stress, which adversely affects its growth and development. Guizhou HE rice comprises several different landraces, most of which are cold tolerant. OBJECTIVE To identify differentially expressed genes and molecular mechanism underlying the cold tolerance of Guizhou HE. METHODS Two Guizhou HE genotypes, AC44 (cold-sensitive) and AC96 (cold-tolerant), which exhibit opposite phenotypes in response to cold treatment at the seed germination stage were used. Comprehensive gene expressions of AC44 and AC96 under 4 °C cold treatment and subsequent recovery conditions were comparatively analyzed by RNA sequencing. RESULTS Overall, 11,082 and 7749 differentially expressed genes were detected in AC44 and AC96, respectively. Comparative transcriptome analysis demonstrated that, compared with AC44, AC96 presented fewer upregulated and downregulated genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses demonstrated that AC96 presented more upregulated GO terms, especially terms associated with biological processes. However, AC44 presented more terms related to cellular components, mainly chloroplasts. Moreover, DEGs related to the auxin signaling pathway (including ARF and IAA family members) and transcription factors (including members of the F-box, bZIP, basic helix-loop-helix [bHLH], and MYB-like transcription factor families) were found to be expressed specifically in AC96; thus, these DEGs may be responsible for the cold tolerance of AC96. CONCLUSIONS These findings present information about the cold tolerance mechanism of Guizhou HE rice at the germination stage, providing valuable resources and candidate genes for breeding cold-tolerant rice genotypes.
Collapse
Affiliation(s)
- Zhongni Wang
- Guizhou Rice Research Institute, Guizhou Provincial Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Xian Wu
- Guizhou Rice Research Institute, Guizhou Provincial Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Yuxuan Chen
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Chaoxin Wu
- Guizhou Rice Research Institute, Guizhou Provincial Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Wuhua Long
- Guizhou Rice Research Institute, Guizhou Provincial Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Susong Zhu
- Guizhou Rice Research Institute, Guizhou Provincial Academy of Agricultural Sciences, Guiyang, 550006, China.
| |
Collapse
|
25
|
Zhan C, Zhu P, Chen Y, Chen X, Liu K, Chen S, Hu J, He Y, Xie T, Luo S, Yang Z, Chen S, Tang H, Zhang H, Cheng J. Identification of a key locus, qNL3.1, associated with seed germination under salt stress via a genome-wide association study in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:58. [PMID: 36912929 PMCID: PMC10011300 DOI: 10.1007/s00122-023-04252-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 12/07/2022] [Indexed: 06/18/2023]
Abstract
Two causal OsTTL and OsSAPK1 genes of the key locus qNL3.1 significantly associated with seed germination under salt stress were identified via a genome-wide association study, which could improve rice seed germination under salt stress. Rice is a salt-sensitive crop, and its seed germination determines subsequent seedling establishment and yields. In this study, 168 accessions were investigated for the genetic control of seed germination under salt stress based on the germination rate (GR), germination index (GI), time at which 50% germination was achieved (T50) and mean level (ML). Extensive natural variation in seed germination was observed among accessions under salt stress. Correlation analysis showed significantly positive correlations among GR, GI and ML and a negative correlation with T50 during seed germination under salt stress. Forty-nine loci significantly associated with seed germination under salt stress were identified, and seven of these were identified in both years. By comparison, 16 loci were colocated with the previous QTLs, and the remaining 33 loci might be novel. qNL3.1, colocated with qLTG-3, was simultaneously identified with the four indices in two years and might be a key locus for seed germination under salt stress. Analysis of candidate genes showed that two genes, the similar to transthyretin-like protein OsTTL and the serine/threonine protein kinase OsSAPK1, were the causal genes of qNL3.1. Germination tests indicated that both Osttl and Ossapk1 mutants significantly reduced seed germination under salt stress compared to the wild type. Haplotype analysis showed that Hap.1 of OsTTL and Hap.1 of OsSAPK1 genes were excellent alleles, and their combination resulted in high seed germination under salt stress. Eight accessions with elite performance of seed germination under salt stress were identified, which could improve rice seed germination under salt stress.
Collapse
Affiliation(s)
- Chengfang Zhan
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Peiwen Zhu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yongji Chen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xinyi Chen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Kexin Liu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shanshan Chen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jiaxiao Hu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ying He
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ting Xie
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shasha Luo
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zeyuan Yang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Sunlu Chen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Haijuan Tang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hongsheng Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China.
| | - Jinping Cheng
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
26
|
Shen Q, Zhang S, Ge C, Liu S, Chen J, Liu R, Ma H, Song M, Pang C. Genome-wide association study identifies GhSAL1 affects cold tolerance at the seedling emergence stage in upland cotton (Gossypium hirsutum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:27. [PMID: 36810826 DOI: 10.1007/s00122-023-04317-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Genomic analysis of upland cotton revealed that cold tolerance was associated with ecological distribution. GhSAL1 on chromosome D09 negatively regulated cold tolerance of upland cotton. Cotton can undergo low-temperature stress at the seedling emergence stage, which adversely affects growth and yield; however, the regulatory mechanism underlying cold tolerance remains nebulous. Here, we analyze the phenotypic and physiological parameters in 200 accessions from 5 ecological distributions under constant chilling (CC) and diurnal variation of chilling (DVC) stresses at the seedling emergence stage. All accessions were clustered into four groups, of which Group IV, with most germplasms from the northwest inland region (NIR), had better phenotypes than Groups I-III under the two kinds of chilling stresses. A total of 575 significantly associated single-nucleotide polymorphism (SNP) were identified, and 35 stable genetic quantitative trait loci (QTL) were obtained, of which 5 were associated with traits under CC and DVC stress, respectively, while the remaining 25 were co-associated. The accumulation of dry weight (DW) of seedling was associated with the flavonoid biosynthesis process regulated by Gh_A10G0500. The emergence rate (ER), DW, and total length of seedling (TL) under CC stress were associated with the SNPs variation of Gh_D09G0189 (GhSAL1). GhSAL1HapB was the elite haplotype, which increased ER, DW, and TL by 19.04%, 11.26%, and 7.69%, respectively, compared with that of GhSAL1HapA. The results of virus-induced gene silencing (VIGS) experiment and determination of metabolic substrate content preliminarily illustrated that GhSAL1 negatively regulated cotton cold tolerance through IP3-Ca2+ signaling pathway. The elite haplotypes and candidate genes identified in this study could be used to improve cold tolerance at the seedling emergence stage in future upland cotton breeding.
Collapse
Affiliation(s)
- Qian Shen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- MOA Key Laboratory of Crop Eco-physiology and Farming system in the Middle Reaches of Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430000, Hubei, China
| | - Siping Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Changwei Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Shaodong Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Jing Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Ruihua Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Huijuan Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Meizhen Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
- Zhengzhou Research Station, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Chaoyou Pang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
- Zhengzhou Research Station, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
27
|
Li Z, Wang B, Luo W, Xu Y, Wang J, Xue Z, Niu Y, Cheng Z, Ge S, Zhang W, Zhang J, Li Q, Chong K. Natural variation of codon repeats in COLD11 endows rice with chilling resilience. SCIENCE ADVANCES 2023; 9:eabq5506. [PMID: 36608134 PMCID: PMC9821855 DOI: 10.1126/sciadv.abq5506] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 12/06/2022] [Indexed: 06/07/2023]
Abstract
Abnormal temperature caused by global climate change threatens the rice production. Defense signaling network for chilling has been uncovered in plants. However, less is known about repairing DNA damage produced from overwhelmed defense and its evolution during domestication. Here, we genetically identified a major QTL, COLD11, using the data-merging genome-wide association study based on an algorithm combining polarized data from two subspecies, indica and japonica, into one system. Rice loss-of-function mutations of COLD11 caused reduced chilling tolerance. Genome evolution analysis of representative rice germplasms suggested that numbers of GCG sequence repeats in the first exon of COLD11 were subjected to strong domestication selection during the northern expansion of rice planting. The repeat numbers affected the biochemical activity of DNA repair protein COLD11/RAD51A1 in renovating DNA damage under chilling stress. Our findings highlight a potential way to finely manipulate key genes in rice genome and effectively improve chilling tolerance through molecular designing.
Collapse
Affiliation(s)
- Zhitao Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Luo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunyuan Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinjuan Wang
- School of Mathematics and Statistics, Beijing Institute of Technology, Beijing, 100181, China
| | - Zhihui Xue
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yuda Niu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhukuan Cheng
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Song Ge
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Wei Zhang
- LSC, NCMIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
| | - Jingyu Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qizhai Li
- University of Chinese Academy of Sciences, Beijing 100049, China
- LSC, NCMIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
28
|
Li J, Khatab AA, Hu L, Zhao L, Yang J, Wang L, Xie G. Genome-Wide Association Mapping Identifies New Candidate Genes for Cold Stress and Chilling Acclimation at Seedling Stage in Rice ( Oryza sativa L.). Int J Mol Sci 2022; 23:ijms232113208. [PMID: 36361995 PMCID: PMC9655271 DOI: 10.3390/ijms232113208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Rice (Oryza sativa L.) is a chilling-sensitive staple food crop, and thus, low temperature significantly affects rice growth and yield. Many studies have focused on the cold shock of rice although chilling acclimation is more likely to happen in the field. In this paper, a genome-wide association study (GWAS) was used to identify the genes that participated in cold stress and chilling accumulation. A total of 235 significantly associated single-nucleotide polymorphisms (SNPs) were identified. Among them, we detected 120 and 88 SNPs for the relative shoot fresh weight under cold stress and chilling acclimation, respectively. Furthermore, 11 and 12 quantitative trait loci (QTLs) were identified for cold stress and chilling acclimation, respectively, by integrating the co-localized SNPs. Interestingly, we identified 10 and 15 candidate genes in 11 and 12 QTLs involved in cold stress and chilling acclimation, respectively, and two new candidate genes (LOC_Os01g62410, LOC_Os12g24490) were obviously up-regulated under chilling acclimation. Furthermore, OsMYB3R-2 (LOC_Os01g62410) that encodes a R1R2R3 MYB gene was associated with cold tolerance, while a new C3HC4-type zinc finger protein-encoding gene LOC_Os12g24490 was found to function as a putative E3 ubiquitin-protein ligase in rice. Moreover, haplotype, distribution, and Wright’s fixation index (FST) of both genes showed that haplotype 3 of LOC_Os12g24490 is more stable in chilling acclimation, and the SNP (A > T) showed a difference in latitudinal distribution. FST analysis of SNPs in OsMYB3R-2 (LOC_Os01g62410) and LOC_Os12g24490 indicated that several SNPs were under selection in rice indica and japonica subspecies. This study provided new candidate genes in genetic improvement of chilling acclimation response in rice.
Collapse
Affiliation(s)
- Jianguo Li
- State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ahmed Adel Khatab
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lihua Hu
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
- College of Life Science & Technology, Guangxi University, Nanning 530004, China
| | - Liyan Zhao
- State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiangyi Yang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
- College of Life Science & Technology, Guangxi University, Nanning 530004, China
| | - Lingqiang Wang
- State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence:
| | - Guosheng Xie
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
29
|
Khatab AA, Li J, Hu L, Yang J, Fan C, Wang L, Xie G. Global identification of quantitative trait loci and candidate genes for cold stress and chilling acclimation in rice through GWAS and RNA-seq. PLANTA 2022; 256:82. [PMID: 36103054 DOI: 10.1007/s00425-022-03995-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Associated analysis of GWAS with RNA-seq had detected candidate genes responsible for cold stress and chilling acclimation in rice. Haplotypes of two candidate genes and geographic distribution were analyzed. To explore new candidate genes and genetic resources for cold tolerance improvement in rice, genome-wide association study (GWAS) mapping experiments with 351 rice core germplasms was performed for three traits (survival rate, shoot length and chlorophyll content) under three temperature conditions (normal temperature, cold stress and chilling acclimation), yielding a total of 134 QTLs, of which 54, 59 and 21 QTLs were responsible for normal temperature, cold stress and chilling acclimation conditions, respectively. Integrated analysis of significant SNPs in 134 QTLs further identified 116 QTLs for three temperature treatments, 53, 43 and 18 QTLs responsible for normal temperature, cold stress and chilling acclimation, respectively, and 2 QTLs were responsible for both cold stress and chilling acclimation. Matching differentially expressed genes from RNA-seq to 43 and 18 QTLs for cold stress and chilling acclimation, we identified 69 and 44 trait-associated candidate genes, respectively, to be classified into six and five groups, particularly involved in metabolisms, reactive oxygen species scavenging and hormone signaling. Interestingly, two candidate genes LOC_Os01g04814, encoding a vacuolar protein sorting-associating protein 4B, and LOC_Os01g48440, encoding glycosyltransferase family 43 protein, showed the highest expression levels under chilling acclimation. Haplotype analysis revealed that both genes had a distinctive differentiation with subpopulation. Haplotypes of both genes with more japonica accessions have higher latitude distribution and higher chilling tolerance than the chilling sensitive indica accessions. These findings reveal the new insight into the molecular mechanism and candidate genes for cold stress and chilling acclimation in rice.
Collapse
Affiliation(s)
- Ahmed Adel Khatab
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianguo Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Lihua Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
- College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Jiangyi Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
- College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Chuchuan Fan
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lingqiang Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China.
| | - Guosheng Xie
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
30
|
Combination of Genomics, Transcriptomics Identifies Candidate Loci Related to Cold Tolerance in Dongxiang Wild Rice. PLANTS 2022; 11:plants11182329. [PMID: 36145730 PMCID: PMC9506393 DOI: 10.3390/plants11182329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/22/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022]
Abstract
Rice, a cold-sensitive crop, is a staple food for more than 50% of the world’s population. Low temperature severely compromises the growth of rice and challenges China’s food safety. Dongxiang wild rice (DXWR) is the most northerly common wild rice in China and has strong cold tolerance, but the genetic basis of its cold tolerance is still unclear. Here, we report quantitative trait loci (QTLs) analysis for seedling cold tolerance (SCT) using a high-density single nucleotide polymorphism linkage map in the backcross recombinant inbred lines that were derived from a cross of DXWR, and an indica cultivar, GZX49. A total of 10 putative QTLs were identified for SCT under 4 °C cold treatment, each explaining 2.0–6.8% of the phenotypic variation in this population. Furthermore, transcriptome sequencing of DXWR seedlings before and after cold treatment was performed, and 898 and 3413 differentially expressed genes (DEGs) relative to 0 h in cold-tolerant for 4 h and 12 h were identified, respectively. Gene ontology and Kyoto encyclopedia of genes and genomes (KEGG) analysis were performed on these DEGs. Using transcriptome data and genetic linkage analysis, combined with qRT-PCR, sequence comparison, and bioinformatics, LOC_Os08g04840 was putatively identified as a candidate gene for the major effect locus qSCT8. These findings provided insights into the genetic basis of SCT for the improvement of cold stress potential in rice breeding programs.
Collapse
|
31
|
Lou Q, Guo H, Li J, Han S, Khan NU, Gu Y, Zhao W, Zhang Z, Zhang H, Li Z, Li J. Cold-adaptive evolution at the reproductive stage in Geng/japonica subspecies reveals the role of OsMAPK3 and OsLEA9. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1032-1051. [PMID: 35706359 DOI: 10.1111/tpj.15870] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Cold stress at the reproductive stage severely affects the production and geographic distribution of rice. The Geng/japonica subpopulation gradually developed stronger cold adaptation than the Xian/indica subpopulation during the long-term domestication of cultivated rice. However, the evolutionary path and natural alleles underlying the cold adaptability of intra-Geng subspecies remain largely unknown. Here, we identified MITOGEN-ACTIVATED PROTEIN KINASE 3 (OsMAPK3) and LATE EMBRYOGENESIS ABUNDANT PROTEIN 9 (OsLEA9) as two important regulators for the cold adaptation of Geng subspecies from a combination of transcriptome analysis and genome-wide association study. Transgenic validation showed that OsMAPK3 and OsLEA9 confer cold tolerance at the reproductive stage. Selection and evolution analysis suggested that the Geng version of OsMAPK3 (OsMAPK3Geng ) directly evolved from Chinese Oryza rufipogon III and was largely retained in high-latitude and high-altitude regions with low temperatures during domestication. Later, the functional nucleotide polymorphism (FNP-776) in the Kunmingxiaobaigu and Lijiangxiaoheigu version of the OsLEA9 (OsLEA9KL ) promoter originated from novel variation of intra-Geng was selected and predominantly retained in temperate Geng to improve the adaptation of Geng together with OsMAPK3Geng to colder climatic conditions in high-latitude areas. Breeding potential analysis suggested that pyramiding of OsMAPK3Geng and OsLEA9KL enhanced the cold tolerance of Geng and promotes the expansion of cultivated rice to colder regions. This study not only highlights the evolutionary path taken by the cold-adaptive differentiation of intra-Geng, but also provides new genetic resources for rice molecular breeding in low-temperature areas.
Collapse
Affiliation(s)
- Qijin Lou
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Haifeng Guo
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jin Li
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Shichen Han
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Najeeb Ullah Khan
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yunsong Gu
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Weitong Zhao
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhanying Zhang
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Hongliang Zhang
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zichao Li
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jinjie Li
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
32
|
Sun Y, Song K, Guo M, Wu H, Ji X, Hou L, Liu X, Lu S. A NAC Transcription Factor from 'Sea Rice 86' Enhances Salt Tolerance by Promoting Hydrogen Sulfide Production in Rice Seedlings. Int J Mol Sci 2022; 23:ijms23126435. [PMID: 35742880 PMCID: PMC9223411 DOI: 10.3390/ijms23126435] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
Soil salinity severely threatens plant growth and crop performance. Hydrogen sulfide (H2S), a plant signal molecule, has been implicated in the regulation of plant responses to salinity stress. However, it is unclear how the transcriptional network regulates H2S biosynthesis during salt stress response. In this study, we identify a rice NAC (NAM, ATAF and CUC) transcription factor, OsNAC35-like (OsNACL35), from a salt-tolerant cultivar ‘Sea Rice 86′ (SR86) and further show that it may have improved salt tolerance via enhanced H2S production. The expression of OsNACL35 was significantly upregulated by high salinity and hydrogen peroxide (H2O2). The OsNACL35 protein was localized predominantly in the nucleus and was found to have transactivation activity in yeast. The overexpression of OsNACL35 (OsNACL35-OE) in japonica cultivar Nipponbare ramatically increased resistance to salinity stress, whereas its dominant-negative constructs (SUPERMAN repression domain, SRDX) conferred hypersensitivity to salt stress in the transgenic lines at the vegetative stage. Moreover, the quantitative real-time PCR analysis showed that many stress-associated genes were differentially expressed in the OsNACL35-OE and OsNACL35-SRDX lines. Interestingly, the ectopic expression of OsNACL35 triggered a sharp increase in H2S content by upregulating the expression of a H2S biosynthetic gene, OsDCD1, upon salinity stress. Furthermore, the dual luciferase and yeast one-hybrid assays indicated that OsNACL35 directly upregulated the expression of OsDCD1 by binding to the promoter sequence of OsDCD1. Taken together, our observations illustrate that OsNACL35 acts as a positive regulator that links H2S production to salt stress tolerance, which may hold promising utility in breeding salt-tolerant rice cultivar.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xin Liu
- Correspondence: (X.L.); (S.L.); Tel.: +86-0532-58957480 (S.L.)
| | - Songchong Lu
- Correspondence: (X.L.); (S.L.); Tel.: +86-0532-58957480 (S.L.)
| |
Collapse
|
33
|
Yang B, Chen M, Zhan C, Liu K, Cheng Y, Xie T, Zhu P, He Y, Zeng P, Tang H, Tsugama D, Chen S, Zhang H, Cheng J. Identification of OsPK5 involved in rice glycolytic metabolism and GA/ABA balance for improving seed germination via genome-wide association study. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3446-3461. [PMID: 35191960 PMCID: PMC9162179 DOI: 10.1093/jxb/erac071] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 02/19/2022] [Indexed: 06/12/2023]
Abstract
Seed germination plays a pivotal role in the plant life cycle, and its precise regulatory mechanisms are not clear. In this study, 19 quantitative trait loci (QTLs) associated with rice seed germination were identified through genome-wide association studies (GWAS) of the following traits in 2016 and 2017: germination rate (GR) at 3, 5, and 7 days after imbibition (DAI) and germination index (GI). Two major stable QTLs, qSG4 and qSG11.1, were found to be associated with GR and GI over 2 continuous years. Furthermore, OsPK5, encoding a pyruvate kinase, was shown to be a crucial regulator of seed germination in rice, and might be a causal gene of the key QTL qSG11.1, on chromosome 11. Natural variation in OsPK5 function altered the activity of pyruvate kinase. The disruption of OsPK5 function resulted in slow germination and seedling growth during seed germination, blocked glycolytic metabolism, caused glucose accumulation, decreased energy levels, and affected the GA/ABA balance. Taken together, our results provide novel insights into the roles of OsPK5 in seed germination, and facilitate its application in rice breeding to improve seed vigour.
Collapse
Affiliation(s)
| | | | | | - Kexin Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Cyrus Tang Innovation Center for Seed Industry, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanhao Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Cyrus Tang Innovation Center for Seed Industry, Nanjing Agricultural University, Nanjing 210095, China
| | - Ting Xie
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Cyrus Tang Innovation Center for Seed Industry, Nanjing Agricultural University, Nanjing 210095, China
| | - Peiwen Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Cyrus Tang Innovation Center for Seed Industry, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying He
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Cyrus Tang Innovation Center for Seed Industry, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Zeng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Cyrus Tang Innovation Center for Seed Industry, Nanjing Agricultural University, Nanjing 210095, China
| | - Haijuan Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Cyrus Tang Innovation Center for Seed Industry, Nanjing Agricultural University, Nanjing 210095, China
| | - Daisuke Tsugama
- Asian Natural Environmental Science Center (ANESC), The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo-shi, Tokyo 188-0002, Japan
| | - Sunlu Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Cyrus Tang Innovation Center for Seed Industry, Nanjing Agricultural University, Nanjing 210095, China
| | | | | |
Collapse
|
34
|
Yu Y, Ma L, Wang X, Zhao Z, Wang W, Fan Y, Liu K, Jiang T, Xiong Z, Song Q, Li C, Wang P, Ma W, Xu H, Wang X, Zhao Z, Wang J, Zhang H, Bao Y. Genome-Wide Association Study Identifies a Rice Panicle Blast Resistance Gene, Pb2, Encoding NLR Protein. Int J Mol Sci 2022; 23:ijms23105668. [PMID: 35628477 PMCID: PMC9145240 DOI: 10.3390/ijms23105668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/15/2022] [Accepted: 05/15/2022] [Indexed: 12/24/2022] Open
Abstract
Rice blast is one of the main diseases in rice and can occur in different rice growth stages. Due to the complicated procedure of panicle blast identification and instability of panicle blast infection influenced by the environment, most cloned rice resistance genes are associated with leaf blast. In this study, a rice panicle blast resistance gene, Pb2, was identified by genome-wide association mapping based on the panicle blast resistance phenotypes of 230 Rice Diversity Panel 1 (RDP1) accessions with 700,000 single-nucleotide polymorphism (SNP) markers. A genome-wide association study identified 18 panicle blast resistance loci (PBRL) within two years, including 9 reported loci and 2 repeated loci (PBRL2 and PBRL13, PBRL10 and PBRL18). Among them, the repeated locus (PBRL10 and PBRL18) was located in chromosome 11. By haplotype and expression analysis, one of the Nucleotide-binding domain and Leucine-rich Repeat (NLR) Pb2 genes was highly conserved in multiple resistant rice cultivars, and its expression was significantly upregulated after rice blast infection. Pb2 encodes a typical NBS-LRR protein with NB-ARC domain and LRR domain. Compared with wild type plants, the transgenic rice of Pb2 showed enhanced resistance to panicle and leaf blast with reduced lesion number. Subcellular localization of Pb2 showed that it is located on plasma membrane, and GUS tissue-staining observation found that Pb2 is highly expressed in grains, leaf tips and stem nodes. The Pb2 transgenic plants showed no difference in agronomic traits with wild type plants. It indicated that Pb2 could be useful for breeding of rice blast resistance.
Collapse
Affiliation(s)
- Yao Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (L.M.); (X.W.); (Z.Z.); (W.W.); (Y.F.); (K.L.); (T.J.); (Z.X.); (Q.S.); (C.L.); (H.X.); (X.W.); (Z.Z.); (J.W.); (H.Z.)
| | - Lu Ma
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (L.M.); (X.W.); (Z.Z.); (W.W.); (Y.F.); (K.L.); (T.J.); (Z.X.); (Q.S.); (C.L.); (H.X.); (X.W.); (Z.Z.); (J.W.); (H.Z.)
| | - Xinying Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (L.M.); (X.W.); (Z.Z.); (W.W.); (Y.F.); (K.L.); (T.J.); (Z.X.); (Q.S.); (C.L.); (H.X.); (X.W.); (Z.Z.); (J.W.); (H.Z.)
| | - Zhi Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (L.M.); (X.W.); (Z.Z.); (W.W.); (Y.F.); (K.L.); (T.J.); (Z.X.); (Q.S.); (C.L.); (H.X.); (X.W.); (Z.Z.); (J.W.); (H.Z.)
| | - Wei Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (L.M.); (X.W.); (Z.Z.); (W.W.); (Y.F.); (K.L.); (T.J.); (Z.X.); (Q.S.); (C.L.); (H.X.); (X.W.); (Z.Z.); (J.W.); (H.Z.)
| | - Yunxin Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (L.M.); (X.W.); (Z.Z.); (W.W.); (Y.F.); (K.L.); (T.J.); (Z.X.); (Q.S.); (C.L.); (H.X.); (X.W.); (Z.Z.); (J.W.); (H.Z.)
| | - Kunquan Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (L.M.); (X.W.); (Z.Z.); (W.W.); (Y.F.); (K.L.); (T.J.); (Z.X.); (Q.S.); (C.L.); (H.X.); (X.W.); (Z.Z.); (J.W.); (H.Z.)
| | - Tingting Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (L.M.); (X.W.); (Z.Z.); (W.W.); (Y.F.); (K.L.); (T.J.); (Z.X.); (Q.S.); (C.L.); (H.X.); (X.W.); (Z.Z.); (J.W.); (H.Z.)
| | - Ziwei Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (L.M.); (X.W.); (Z.Z.); (W.W.); (Y.F.); (K.L.); (T.J.); (Z.X.); (Q.S.); (C.L.); (H.X.); (X.W.); (Z.Z.); (J.W.); (H.Z.)
| | - Qisheng Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (L.M.); (X.W.); (Z.Z.); (W.W.); (Y.F.); (K.L.); (T.J.); (Z.X.); (Q.S.); (C.L.); (H.X.); (X.W.); (Z.Z.); (J.W.); (H.Z.)
| | - Changqing Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (L.M.); (X.W.); (Z.Z.); (W.W.); (Y.F.); (K.L.); (T.J.); (Z.X.); (Q.S.); (C.L.); (H.X.); (X.W.); (Z.Z.); (J.W.); (H.Z.)
| | - Panting Wang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Wenjing Ma
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Huanan Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (L.M.); (X.W.); (Z.Z.); (W.W.); (Y.F.); (K.L.); (T.J.); (Z.X.); (Q.S.); (C.L.); (H.X.); (X.W.); (Z.Z.); (J.W.); (H.Z.)
| | - Xinyu Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (L.M.); (X.W.); (Z.Z.); (W.W.); (Y.F.); (K.L.); (T.J.); (Z.X.); (Q.S.); (C.L.); (H.X.); (X.W.); (Z.Z.); (J.W.); (H.Z.)
| | - Zijing Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (L.M.); (X.W.); (Z.Z.); (W.W.); (Y.F.); (K.L.); (T.J.); (Z.X.); (Q.S.); (C.L.); (H.X.); (X.W.); (Z.Z.); (J.W.); (H.Z.)
| | - Jianfei Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (L.M.); (X.W.); (Z.Z.); (W.W.); (Y.F.); (K.L.); (T.J.); (Z.X.); (Q.S.); (C.L.); (H.X.); (X.W.); (Z.Z.); (J.W.); (H.Z.)
| | - Hongsheng Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (L.M.); (X.W.); (Z.Z.); (W.W.); (Y.F.); (K.L.); (T.J.); (Z.X.); (Q.S.); (C.L.); (H.X.); (X.W.); (Z.Z.); (J.W.); (H.Z.)
| | - Yongmei Bao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (L.M.); (X.W.); (Z.Z.); (W.W.); (Y.F.); (K.L.); (T.J.); (Z.X.); (Q.S.); (C.L.); (H.X.); (X.W.); (Z.Z.); (J.W.); (H.Z.)
- Correspondence:
| |
Collapse
|
35
|
Mao F, Wu D, Lu F, Yi X, Gu Y, Liu B, Liu F, Tang T, Shi J, Zhao X, Liu L, Ji L. QTL mapping and candidate gene analysis of low temperature germination in rice ( Oryza sativa L.) using a genome wide association study. PeerJ 2022; 10:e13407. [PMID: 35578671 PMCID: PMC9107303 DOI: 10.7717/peerj.13407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/18/2022] [Indexed: 01/14/2023] Open
Abstract
Low temperature germination (LTG) is a key agronomic trait in rice (Oryza sativa L.). However, the genetic basis of natural variation for LTG is largely unknown. Here, a genome-wide association study (GWAS) was performed using 276 accessions from the 3,000 Rice Genomes (3K-RG) project with 497 k single nucleotide polymorphisms (SNPs) to uncover potential genes for LTG in rice. In total, 37 quantitative trait loci (QTLs) from the 6th day (D6) to the 10th day (D10) were detected in the full population, overlapping with 12 previously reported QTLs for LTG. One novel QTL, namely qLTG1-2, was found stably on D7 in both 2019 and 2020. Based on two germination-specific transcriptome datasets, 13 seed-expressed genes were isolated within a 200 kb interval of qLTG1-2. Combining with haplotype analysis, a functional uncharacterized gene, LOC_Os01g23580, and a seed germination-associated gene, LOC_Os01g23620 (OsSar1a), as promising candidate genes, both of which were significantly differentially expressed between high and low LTG accessions. Collectively, the candidate genes with favorable alleles may be useful for the future characterization of the LTG mechanism and the improvement of the LTG trait in rice breeding.
Collapse
Affiliation(s)
- Feng Mao
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, Jiangsu, China,Jiangsu Key Laboratory for Eco-Agriculture Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’an, Jiangsu, China
| | - Depeng Wu
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’an, Jiangsu, China,Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai’an, Jiangsu, China
| | - Fangfang Lu
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’an, Jiangsu, China
| | - Xin Yi
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’an, Jiangsu, China,Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai’an, Jiangsu, China
| | - Yujuan Gu
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’an, Jiangsu, China
| | - Bin Liu
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’an, Jiangsu, China
| | - Fuxia Liu
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’an, Jiangsu, China,Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai’an, Jiangsu, China
| | - Tang Tang
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’an, Jiangsu, China,Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai’an, Jiangsu, China
| | - Jianxin Shi
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangxiang Zhao
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’an, Jiangsu, China,Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai’an, Jiangsu, China
| | - Lei Liu
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’an, Jiangsu, China,Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai’an, Jiangsu, China
| | - Lilian Ji
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, Jiangsu, China
| |
Collapse
|
36
|
Wu N, Yao Y, Xiang D, Du H, Geng Z, Yang W, Li X, Xie T, Dong F, Xiong L. A MITE variation-associated heat-inducible isoform of a heat-shock factor confers heat tolerance through regulation of JASMONATE ZIM-DOMAIN genes in rice. THE NEW PHYTOLOGIST 2022; 234:1315-1331. [PMID: 35244216 DOI: 10.1111/nph.18068] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
High temperatures cause huge yield losses in rice. Heat-shock factors (Hsfs) are key transcription factors which regulate the expression of heat stress-responsive genes, but natural variation in and functional characterization of Hsfs have seldom been reported. A significant heat response locus was detected via a genome-wide association study (GWAS) using green leaf area as an indicative trait. A miniature inverted-repeat transposable element (MITE) in the promoter of a candidate gene, HTG3 (heat-tolerance gene on chromosome 3), was found to be significantly associated with heat-induced expression of HTG3 and heat tolerance (HT). The MITE-absent variant has been selected in heat-prone rice-growing regions. HTG3a is an alternatively spliced isoform encoding a functional Hsf, and experiments using overexpression and knockout rice lines showed that HTG3a positively regulates HT at both vegetative and reproductive stages. The HTG3-regulated genes were enriched for heat shock proteins and jasmonic acid signaling. Two heat-responsive JASMONATE ZIM-DOMAIN (JAZ) genes were confirmed to be directly upregulated by HTG3a, and one of them, OsJAZ9, positively regulates HT. We conclude that HTG3 plays an important role in HT through the regulation of JAZs and other heat-responsive genes. The MITE-absent allele may be valuable for HT breeding in rice.
Collapse
Affiliation(s)
- Nai Wu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, China
| | - Yilong Yao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, China
| | - Denghao Xiang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, China
| | - Hao Du
- Institute of Crop science, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Zedong Geng
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, China
| | - Wanneng Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, China
| | - Tingting Xie
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, China
| | - Faming Dong
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, China
| |
Collapse
|
37
|
Phenotypic and Molecular Characterization of Rice Genotypes’ Tolerance to Cold Stress at the Seedling Stage. SUSTAINABILITY 2022. [DOI: 10.3390/su14094871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Rice plants are affected by low-temperature stress during germination, vegetative growth, and reproductive stages. Thirty-nine rice genotypes including 36 near-isogenic lines (NILs) of BRRI dhan29 were evaluated to investigate the level of cold tolerance under artificially induced low temperature at the seedling stage. Three cold-related traits, leaf discolouration (LD), survivability, and recovery rate, were measured to determine the level of cold tolerance. Highly significant variation among the genotypes was observed for LD, survivability, and recovery rate. Three NILs, IR90688-74-1-1-1-1-1, IR90688-81-1-1-1-1-1, and IR90688-103-1-1-1-1-1, showed tolerance in all three traits, while IR90688-118-1-1-1-1-1 showed cold tolerance with LD and recovery rate. IR90688-92-1-1-1-1-1, IR90688-125-1-1-1-1-1, IR90688-104-1-1-1-1-1, IR90688-124-1-1-1-1-P2, IR90688-15-1-1-1-1-1, and IR90688-27-1-1-1-1-1 showed significantly higher yield coupled with short growth duration and good grain quality. Genetic analysis with SSRs markers revealed that the high-yielding NILs were genetically 67% similar to BRRI dhan28 and possessed cold tolerance at the seedling stage. These cold-tolerant NILs could be used as potential resources to broaden the genetic base of the breeding germplasm to develop high-yielding cold-tolerant rice varieties.
Collapse
|
38
|
Peng L, Sun S, Yang B, Zhao J, Li W, Huang Z, Li Z, He Y, Wang Z. Genome-wide association study reveals that the cupin domain protein OsCDP3.10 regulates seed vigour in rice. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:485-498. [PMID: 34665915 PMCID: PMC8882794 DOI: 10.1111/pbi.13731] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 05/06/2023]
Abstract
Seed vigour is an imperative trait for the direct seeding of rice. In this study, we examined the genetic regulation of seedling percentage at the early germination using a genome-wide association study in rice. One major quantitative trait loci qSP3 for seedling percentage was identified, and the candidate gene was validated as qSP3, encoding a cupin domain protein OsCDP3.10 for the synthesis of 52 kDa globulin. Disruption of this gene in Oscdp3.10 mutants reduced the seed vigour, including the germination potential and seedling percentage, at the early germination in rice. The lacking accumulation of 52 kDa globulin was observed in the mature grains of the Oscdp3.10 mutants. The significantly lower amino acid contents were observed in the mature grains and the early germinating seeds of the Oscdp3.10 mutants compared with those of wild-type. Rice OsCDP3.10 regulated seed vigour mainly via modulating the amino acids e.g. Met, Glu, His, and Tyr that contribute to hydrogen peroxide (H2 O2 ) accumulation in the germinating seeds. These results provide important insights into the application of seed priming with the amino acids and the selection of OsCDP3.10 to improve seed vigour in rice.
Collapse
Affiliation(s)
- Liling Peng
- The Laboratory of Seed Science and TechnologyGuangdong Key Laboratory of Plant Molecular BreedingGuangdong Laboratory of Lingnan Modern AgricultureState Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
| | - Shan Sun
- The Laboratory of Seed Science and TechnologyGuangdong Key Laboratory of Plant Molecular BreedingGuangdong Laboratory of Lingnan Modern AgricultureState Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
| | - Bin Yang
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm ResourcesZhongkai University of Agriculture and EngineeringGuangzhouChina
| | - Jia Zhao
- The Laboratory of Seed Science and TechnologyGuangdong Key Laboratory of Plant Molecular BreedingGuangdong Laboratory of Lingnan Modern AgricultureState Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
| | - Wenjun Li
- The Laboratory of Seed Science and TechnologyGuangdong Key Laboratory of Plant Molecular BreedingGuangdong Laboratory of Lingnan Modern AgricultureState Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
| | - Zhibo Huang
- The Laboratory of Seed Science and TechnologyGuangdong Key Laboratory of Plant Molecular BreedingGuangdong Laboratory of Lingnan Modern AgricultureState Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
| | - Ziyin Li
- The Laboratory of Seed Science and TechnologyGuangdong Key Laboratory of Plant Molecular BreedingGuangdong Laboratory of Lingnan Modern AgricultureState Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
| | - Yongqi He
- The Laboratory of Seed Science and TechnologyGuangdong Key Laboratory of Plant Molecular BreedingGuangdong Laboratory of Lingnan Modern AgricultureState Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
| | - Zhoufei Wang
- The Laboratory of Seed Science and TechnologyGuangdong Key Laboratory of Plant Molecular BreedingGuangdong Laboratory of Lingnan Modern AgricultureState Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
39
|
Pan X, Guan L, Lei K, Li J, Zhang X. Transcriptional and physiological data revealed cold tolerance in a photo-thermo sensitive genic male sterile line Yu17S. BMC PLANT BIOLOGY 2022; 22:44. [PMID: 35062884 PMCID: PMC8781465 DOI: 10.1186/s12870-022-03437-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Rice is highly sensitive to chilling stress during the seedling stage. However, the adaptable photo-thermo sensitive genic male sterile (PTGMS) rice line, Yu17S, exhibits tolerance to low temperatures. Currently, the molecular characteristics of Yu17S are unclear. RESULTS To evaluate the molecular mechanisms behind cold responses in rice seedlings, a comparative transcriptome analysis was performed in Yu17S during seedling development under normal temperature and low temperature conditions. In total, 9317 differentially expressed genes were detected. Gene ontology and pathway analyses revealed that these genes were involved mostly in photosynthesis, carotenoid biosynthesis, carbohydrate metabolism and plant hormone signal transduction. An integrated analysis of specific pathways combined with physiological data indicated that rice seedlings improved the performance of photosystem II when exposed to cold conditions. Genes involved in starch degradation and sucrose metabolism were activated in rice plants exposed to cold stress treatments, which was accompanied by the accumulation of soluble sugar, trehalose, raffinose and galactinol. Furthermore, chilling stress induced the expression of phytoene desaturase, 15-cis-ζ-carotene isomerase, ζ-carotene desaturase, carotenoid isomerase and β-carotene hydroxylase; this was coupled with the activation of carotenoid synthase activity and increases in abscisic acid (ABA) levels in rice seedlings. CONCLUSIONS Our results suggest that Yu17S exhibited better tolerance to cold stress with the activation of carotenoid synthase activity and increasing of ABA levels, and as well as the expression of photosynthesis-related genes under cold condition in rice seedlings.
Collapse
Affiliation(s)
- Xiaoxue Pan
- Biotechnology Research Institute, Chongqing Academy of Agricultural Sciences/Chongqing Key Laboratory of Adversity Agriculture, Chongqing, 401329, China
| | - Ling Guan
- Biotechnology Research Institute, Chongqing Academy of Agricultural Sciences/Chongqing Key Laboratory of Adversity Agriculture, Chongqing, 401329, China
| | - Kairong Lei
- Biotechnology Research Institute, Chongqing Academy of Agricultural Sciences/Chongqing Key Laboratory of Adversity Agriculture, Chongqing, 401329, China
| | - Jingyong Li
- Chongqing Rationing Rice Research Center, Chongqing Academy of Agricultural Sciences, Chongqing, 402160, China
| | - Xianwei Zhang
- Chongqing Rationing Rice Research Center, Chongqing Academy of Agricultural Sciences, Chongqing, 402160, China.
| |
Collapse
|
40
|
Yu S, Ali J, Zhou S, Ren G, Xie H, Xu J, Yu X, Zhou F, Peng S, Ma L, Yuan D, Li Z, Chen D, Zheng R, Zhao Z, Chu C, You A, Wei Y, Zhu S, Gu Q, He G, Li S, Liu G, Liu C, Zhang C, Xiao J, Luo L, Li Z, Zhang Q. From Green Super Rice to green agriculture: Reaping the promise of functional genomics research. MOLECULAR PLANT 2022; 15:9-26. [PMID: 34883279 DOI: 10.1016/j.molp.2021.12.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 06/13/2023]
Abstract
Producing sufficient food with finite resources to feed the growing global population while having a smaller impact on the environment has always been a great challenge. Here, we review the concept and practices of Green Super Rice (GSR) that have led to a paradigm shift in goals for crop genetic improvement and models of food production for promoting sustainable agriculture. The momentous achievements and global deliveries of GSR have been fueled by the integration of abundant genetic resources, functional gene discoveries, and innovative breeding techniques with precise gene and whole-genome selection and efficient agronomic management to promote resource-saving, environmentally friendly crop production systems. We also provide perspectives on new horizons in genomic breeding technologies geared toward delivering green and nutritious crop varieties to further enhance the development of green agriculture and better nourish the world population.
Collapse
Affiliation(s)
- Sibin Yu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jauhar Ali
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Shaochuan Zhou
- Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Guangjun Ren
- Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Huaan Xie
- Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Jianlong Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinqiao Yu
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Fasong Zhou
- China National Seed Group Co., Ltd, Beijing, China
| | - Shaobing Peng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Liangyong Ma
- China National Rice Research Institute, Hangzhou, China
| | | | - Zefu Li
- Anhui Academy of Agricultural Sciences, Hefei, China
| | - Dazhou Chen
- Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | | | | | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Aiqing You
- Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yu Wei
- Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Susong Zhu
- Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Qiongyao Gu
- Yunnan Academy of Agricultural Sciences, Kunming, China
| | | | - Shigui Li
- Sichuan Agricultural University, Chengdu, China
| | - Guifu Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Changhua Liu
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Chaopu Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Lijun Luo
- Shanghai Agrobiological Gene Center, Shanghai, China.
| | - Zhikang Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Qifa Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
41
|
Li J, Zhang Z, Chong K, Xu Y. Chilling tolerance in rice: Past and present. JOURNAL OF PLANT PHYSIOLOGY 2022; 268:153576. [PMID: 34875419 DOI: 10.1016/j.jplph.2021.153576] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/21/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
Rice is generally sensitive to chilling stress, which seriously affects growth and yield. Since early in the last century, considerable efforts have been made to understand the physiological and molecular mechanisms underlying the response to chilling stress and improve rice chilling tolerance. Here, we review the research trends and advances in this field. The phenotypic and biochemical changes caused by cold stress and the physiological explanations are briefly summarized. Using published data from the past 20 years, we reviewed the past progress and important techniques in the identification of quantitative trait loci (QTL), novel genes, and cellular pathways involved in rice chilling tolerance. The advent of novel technologies has significantly advanced studies of cold tolerance, and the characterization of QTLs, key genes, and molecular modules have sped up molecular design breeding for cold tolerance in rice varieties. In addition to gene function studies based on overexpression or artificially generated mutants, elucidating natural allelic variation in specific backgrounds is emerging as a novel approach for the study of cold tolerance in rice, and the superior alleles identified using this approach can directly facilitate breeding.
Collapse
Affiliation(s)
- Junhua Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Zeyong Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yunyuan Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
42
|
Zhang G, Peng Y, Zhou J, Tan Z, Jin C, Fang S, Zhong S, Jin C, Wang R, Wen X, Li B, Lu S, Zhou G, Fu T, Guo L, Yao X. Genome-Wide Association Studies of Salt-Alkali Tolerance at Seedling and Mature Stages in Brassica napus. FRONTIERS IN PLANT SCIENCE 2022; 13:857149. [PMID: 35574128 PMCID: PMC9094488 DOI: 10.3389/fpls.2022.857149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/28/2022] [Indexed: 05/19/2023]
Abstract
Most plants are sensitive to salt-alkali stress, and the degree of tolerance to salt-alkali stress varies from different species and varieties. In order to explore the salt-alkali stress adaptability of Brassica napus, we collected the phenotypic data of 505 B. napus accessions at seedling and mature stages under control, low and high salt-alkali soil stress conditions in Inner Mongolia of China. Six resistant and 5 sensitive materials, respectively, have been identified both in Inner Mongolia and Xinjiang Uygur Autonomous Region of China. Genome-wide association studies (GWAS) for 15 absolute values and 10 tolerance coefficients (TCs) of growth and agronomic traits were applied to investigate the genetic basis of salt-alkali tolerance of B. napus. We finally mapped 9 significant QTLs related to salt-alkali stress response and predicted 20 candidate genes related to salt-alkali stress tolerance. Some important candidate genes, including BnABA4, BnBBX14, BnVTI12, BnPYL8, and BnCRR1, were identified by combining sequence variation annotation and expression differences. The identified valuable loci and germplasms could be useful for breeding salt-alkali-tolerant B.napus varieties. This study laid a foundation for understanding molecular mechanism of salt-alkali stress adaptation and provides rich genetic resources for the large-scale production of B. napus on salt-alkali land in the future.
Collapse
Affiliation(s)
- Guofang Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Yan Peng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jinzhi Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Zengdong Tan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Cheng Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Shuai Fang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Shengzhu Zhong
- Agriculture and Animal Husbandry Technology Promotion Center, Inner Mongolia, China
| | - Cunwang Jin
- Green Industry Development Center, Inner Mongolia, China
| | - Ruizhen Wang
- Agriculture and Animal Husbandry Technology Promotion Center, Inner Mongolia, China
| | - Xiaoliang Wen
- Agriculture and Animal Husbandry Technology Promotion Center, Inner Mongolia, China
| | - Binrui Li
- Agriculture and Animal Husbandry Technology Promotion Center, Inner Mongolia, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Guangsheng Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xuan Yao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- *Correspondence: Xuan Yao
| |
Collapse
|
43
|
Ali MK, Sun ZH, Yang XM, Pu XY, Duan CL, Li X, Wang LX, Yang JZ, Zeng YW. NILs of Cold Tolerant Japonica Cultivar Exhibited New QTLs for Mineral Elements in Rice. Front Genet 2021; 12:789645. [PMID: 34868277 PMCID: PMC8637755 DOI: 10.3389/fgene.2021.789645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Chilling stress at booting stage can cause floret deterioration and sterility by limiting the supply of food chain and the accumulation of essential mineral elements resulting in reduction of yield and grain quality attributes in rice. Genomic selection of chilling tolerant rice with reference to the accumulation of mineral elements will have great potential to cope with malnutrition and food security in times of climate change. Therefore, a study was conducted to explore the genomic determinants of cold tolerance and mineral elements content in near-isogenic lines (NILs) of japonica rice subjected to chilling stress at flowering stage. Detailed morphological analysis followed by quantitative analysis of 17 mineral elements revealed that the content of phosphorus (P, 3,253 mg/kg) and potassium (K, 2,485 mg/kg) were highest while strontium (Sr, 0.26 mg/kg) and boron (B, 0.34 mg/kg) were lowest among the mineral elements. The correlation analysis revealed extremely positive correlation of phosphorus (P) and copper (Cu) with most of the cold tolerance traits. Among all the effective ear and the second leaf length correlation was significant with half of the mineral elements. As a result of comparative analysis, some QTLs (qBRCC-1, qBRCIC-2, qBRZC-6, qBRCHC-6, qBRMC-6, qBRCIC-6a, qBRCIC-6b, qBRCHC-6, and qBRMC-6) identified for calcium (Ca), zinc (Zn), chromium (Cr) and magnesium (Mg) on chromosome number 1, 2, and 6 while, a novel QTL (qBCPC-1) was identified on chromosome number 1 for P element only. These findings provided bases for the identification of candidate genes involved in mineral accumulation and cold tolerance in rice at booting stage.
Collapse
Affiliation(s)
- Muhammad Kazim Ali
- Biotechnology and Germplasm Resource Institute, Yunnan Academy of Agricultural Sciences, Kunming, China.,Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi, Pakistan
| | - Zheng-Hai Sun
- School of Horticulture and Gardening, Southwest Forestry University, Kunming, China.,College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Xiao-Meng Yang
- Biotechnology and Germplasm Resource Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Xiao-Ying Pu
- Biotechnology and Germplasm Resource Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Cheng-Li Duan
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Xia Li
- Biotechnology and Germplasm Resource Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Lu-Xiang Wang
- Institute of Quality Standards and Testing Technology, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Jia-Zhen Yang
- Biotechnology and Germplasm Resource Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Ya-Wen Zeng
- Biotechnology and Germplasm Resource Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
44
|
Zhang J, Jia X, Guo X, Wei H, Zhang M, Wu A, Cheng S, Cheng X, Yu S, Wang H. QTL and candidate gene identification of the node of the first fruiting branch (NFFB) by QTL-seq in upland cotton (Gossypium hirsutum L.). BMC Genomics 2021; 22:882. [PMID: 34872494 PMCID: PMC8650230 DOI: 10.1186/s12864-021-08164-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 11/08/2021] [Indexed: 12/05/2022] Open
Abstract
Background The node of the first fruiting branch (NFFB) is an important precocious trait in cotton. Many studies have been conducted on the localization of quantitative trait loci (QTLs) and genes related to fiber quality and yield, but there has been little attention to traits related to early maturity, especially the NFFB, in cotton. Results To identify the QTL associated with the NFFB in cotton, a BC4F2 population comprising 278 individual plants was constructed. The parents and two DNA bulks for high and low NFFB were whole genome sequenced, and 243.8 Gb of clean nucleotide data were generated. A total of 449,302 polymorphic SNPs and 135,353 Indels between two bulks were identified for QTL-seq. Seventeen QTLs were detected and localized on 11 chromosomes in the cotton genome, among which two QTLs (qNFFB-Dt2–1 and qNFFB-Dt3–3) were located in hotspots. Two candidate genes (GhAPL and GhHDA5) related to the NFFB were identified using quantitative real-time PCR (qRT-PCR) and virus-induced gene silencing (VIGS) experiments in this study. Both genes exhibited higher expression levels in the early-maturing cotton material RIL182 during flower bud differentiation, and the silencing of GhAPL and GhHDA5 delayed the flowering time and increased the NFFB compared to those of VA plants in cotton. Conclusions Our study preliminarily found that GhAPL and GhHDA5 are related to the early maturity in cotton. The findings provide a basis for the further functional verification of candidate genes related to the NFFB and contribute to the study of early maturity in cotton. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08164-2.
Collapse
Affiliation(s)
- Jingjing Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Xiaoyun Jia
- Hebei Laboratory of Crop Genetics and Breeding, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, Hebei, China
| | - Xiaohao Guo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Meng Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Aimin Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Shuaishuai Cheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Xiaoqian Cheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| |
Collapse
|
45
|
Li C, Liu J, Bian J, Jin T, Zou B, Liu S, Zhang X, Wang P, Tan J, Wu G, Chen Q, Wang Y, Zhong Q, Huang S, Yang M, Huang T, He H, Bian J. Identification of cold tolerance QTLs at the bud burst stage in 211 rice landraces by GWAS. BMC PLANT BIOLOGY 2021; 21:542. [PMID: 34800993 PMCID: PMC8605578 DOI: 10.1186/s12870-021-03317-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Rice is a crop that is very sensitive to low temperature, and its morphological development and production are greatly affected by low temperature. Therefore, understanding the genetic basis of cold tolerance in rice is of great significance for mining favorable genes and cultivating excellent rice varieties. However, there have been limited studies focusing on cold tolerance at the bud burst stage; therefore, considerable attention should be given to the genetic basis of cold tolerance at this stage. RESULTS In this study, a natural population consisting of 211 rice landraces collected from 15 provinces in China and other countries was used for the first time to evaluate cold tolerance at the bud burst stage. Population structure analysis showed that this population was divided into two groups and was rich in genetic diversity. Our evaluation results confirmed that japonica rice was more tolerant to cold at the bud burst stage than indica rice. A genome-wide association study (GWAS) was performed with the phenotypic data of 211 rice landraces and a 36,727 SNP dataset under a mixed linear model. Twelve QTLs (P < 0.0001) were identified for the seedling survival rate (SR) after treatment at 4 °C, in which there were five QTLs (qSR2-2, qSR3-1, qSR3-2, qSR3-3 and qSR9) that were colocalized with those from previous studies and seven QTLs (qSR2-1, qSR3-4, qSR3-5, qSR3-6, qSR3-7, qSR4 and qSR7) that were reported for the first time. Among these QTLs, qSR9, harboring the most significant SNP, explained the most phenotypic variation. Through bioinformatics analysis, five genes (LOC_Os09g12440, LOC_Os09g12470, LOC_Os09g12520, LOC_Os09g12580 and LOC_Os09g12720) were identified as candidates for qSR9. CONCLUSION This natural population consisting of 211 rice landraces combined with high-density SNPs will serve as a better choice for identifying rice QTLs/genes in the future, and the detected QTLs associated with cold tolerance at the bud burst stage in rice will be conducive to further mining favorable genes and breeding rice varieties under cold stress.
Collapse
Affiliation(s)
- Caijing Li
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang, 330045 Jiangxi Province China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Nanchang, 330045 Jiangxi Province China
| | - Jindong Liu
- Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000 Guangdong Province China
| | - Jianxin Bian
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261325 Shandong Province China
| | - Tao Jin
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang, 330045 Jiangxi Province China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Nanchang, 330045 Jiangxi Province China
| | - Baoli Zou
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang, 330045 Jiangxi Province China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Nanchang, 330045 Jiangxi Province China
| | - Shilei Liu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang, 330045 Jiangxi Province China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Nanchang, 330045 Jiangxi Province China
| | - Xiangyu Zhang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang, 330045 Jiangxi Province China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Nanchang, 330045 Jiangxi Province China
| | - Peng Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang, 330045 Jiangxi Province China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Nanchang, 330045 Jiangxi Province China
| | - Jingai Tan
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang, 330045 Jiangxi Province China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Nanchang, 330045 Jiangxi Province China
| | - Guangliang Wu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang, 330045 Jiangxi Province China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Nanchang, 330045 Jiangxi Province China
| | - Qin Chen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang, 330045 Jiangxi Province China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Nanchang, 330045 Jiangxi Province China
| | - Yanning Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang, 330045 Jiangxi Province China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Nanchang, 330045 Jiangxi Province China
| | - Qi Zhong
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang, 330045 Jiangxi Province China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Nanchang, 330045 Jiangxi Province China
| | - Shiying Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang, 330045 Jiangxi Province China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Nanchang, 330045 Jiangxi Province China
| | - Mengmeng Yang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang, 330045 Jiangxi Province China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Nanchang, 330045 Jiangxi Province China
| | - Tao Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang, 330045 Jiangxi Province China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Nanchang, 330045 Jiangxi Province China
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang, 330045 Jiangxi Province China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Nanchang, 330045 Jiangxi Province China
| | - Jianmin Bian
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang, 330045 Jiangxi Province China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Nanchang, 330045 Jiangxi Province China
| |
Collapse
|
46
|
Phan H, Schläppi M. Low Temperature Antioxidant Activity QTL Associate with Genomic Regions Involved in Physiological Cold Stress Tolerance Responses in Rice ( Oryza sativa L.). Genes (Basel) 2021; 12:genes12111700. [PMID: 34828305 PMCID: PMC8618774 DOI: 10.3390/genes12111700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 02/07/2023] Open
Abstract
Boosting cold stress tolerance in crop plants can minimize stress-mediated yield losses. Asian rice (Oryza sativa L.), one of the most consumed cereal crops, originated from subtropical regions and is generally sensitive to low temperature environments. Within the two subspecies of rice, JAPONICA, and INDICA, the cold tolerance potential of its accessions is highly variable and depends on their genetic background. Yet, cold stress tolerance response mechanisms are complex and not well understood. This study utilized 370 accessions from the Rice Diversity Panel 1 (RDP1) to investigate and correlate four cold stress tolerance response phenotypes: membrane damage, seedling survivability, and catalase and anthocyanin antioxidative activity. Most JAPONICA accessions, and admixed accessions within JAPONICA, had lower membrane damage, higher antioxidative activity, and overall, higher seedling survivability compared to INDICA accessions. Genome-wide association study (GWAS) mapping was done using the four traits to find novel quantitative trait loci (QTL), and to validate and fine-map previously identified QTL. A total of 20 QTL associated to two or more traits were uncovered by our study. Gene Ontology (GO) term enrichment analyses satisfying four layers of filtering retrieved three potential pathways: signal transduction, maintenance of plasma membrane and cell wall integrity, and nucleic acids metabolism as general mechanisms of cold stress tolerance responses involving antioxidant activity.
Collapse
|
47
|
Li W, Yang B, Xu J, Peng L, Sun S, Huang Z, Jiang X, He Y, Wang Z. A genome-wide association study reveals that the 2-oxoglutarate/malate translocator mediates seed vigor in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:478-491. [PMID: 34376020 DOI: 10.1111/tpj.15455] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/01/2021] [Accepted: 08/05/2021] [Indexed: 05/25/2023]
Abstract
Seed vigor is an important trait for the direct seeding of rice (Oryza sativa L.). In this study, we examined the genetic architecture of variation in the germination rate using a diverse panel of rice accessions. Four quantitative trait loci for germination rate were identified using a genome-wide association study during early germination. One candidate gene, encoding the 2-oxoglutarate/malate translocator (OsOMT), was validated for qGR11. Disruption of this gene (Osomt mutants) reduced seed vigor, including seed germination and seedling growth, in rice. Functional analysis revealed that OsOMT influences seed vigor mainly by modulating amino acid levels and glycolysis and tricarboxylic acid cycle processes. The levels of most amino acids, including the Glu family (Glu, Pro, Arg, and GABA), Asp family (Asp, Thr, Lys, Ile, and Met), Ser family (Ser, Gly, and Cys), and others (His, Ala, Leu, and Val), were significantly reduced in the mature grains and the early germinating seeds of Osomt mutants compared to wild type (WT). The glucose and soluble sugar contents, as well as adenosine triphosphate levels, were significantly decreased in germinating seeds of Osomt mutants compared to WT. These results provide important insights into the role of OsOMT in seed vigor in rice.
Collapse
Affiliation(s)
- Wenjun Li
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, Guangdong Laboratory of Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Bin Yang
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Jiangyu Xu
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, Guangdong Laboratory of Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Liling Peng
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, Guangdong Laboratory of Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Shan Sun
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, Guangdong Laboratory of Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Zhibo Huang
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, Guangdong Laboratory of Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Xiuhua Jiang
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, Guangdong Laboratory of Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Yongqi He
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, Guangdong Laboratory of Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Zhoufei Wang
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, Guangdong Laboratory of Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
48
|
Li J, Zeng Y, Pan Y, Zhou L, Zhang Z, Guo H, Lou Q, Shui G, Huang H, Tian H, Guo Y, Yuan P, Yang H, Pan G, Wang R, Zhang H, Yang S, Guo Y, Ge S, Li J, Li Z. Stepwise selection of natural variations at CTB2 and CTB4a improves cold adaptation during domestication of japonica rice. THE NEW PHYTOLOGIST 2021; 231:1056-1072. [PMID: 33892513 DOI: 10.1111/nph.17407] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
The improvement of cold adaptation has contributed to the increased growing area of rice. Standing variation and de novo mutation are distinct natural sources of beneficial alleles in plant adaptation. However, the genetic mechanisms and evolutionary patterns underlying these sources in a single population during crop domestication remain elusive. Here we cloned the CTB2 gene, encoding a UDP-glucose sterol glucosyltransferase, for cold tolerance in rice at the booting stage. A single standing variation (I408V) in the conserved UDPGT domain of CTB2 originated from Chinese Oryza rufipogon and contributed to the cold adaptation of Oryza sativa ssp. japonica. CTB2 is located in a 56.8 kb region, including the previously reported gene CTB4a in which de novo mutation arose c. 3200 yr BP in Yunnan province, China, conferring cold tolerance. Standing variation of CTB2 and de novo mutation of CTB4a underwent stepwise selection to facilitate cold adaptation to expand rice cultivation from high-altitude to high-latitude regions. These results provide an example of stepwise selection on two kinds of variation and describe a new molecular mechanism of cold adaptation in japonica rice.
Collapse
Affiliation(s)
- Jilong Li
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yawen Zeng
- Biotechnology and Genetic Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
| | - Yinghua Pan
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Lei Zhou
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Zhanying Zhang
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Haifeng Guo
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Qijin Lou
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Lipid ALL Technologies Ltd, Changzhou, 213000, China
| | - Hanguang Huang
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - He Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yongmei Guo
- Institute of Crop Science, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
| | - Pingrong Yuan
- Institute of Crop Science, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
| | - Hong Yang
- Lijiang Institute of Agricultural Science, Lijiang, 674100, China
| | - Guojun Pan
- Rice Research Institute, Heilongjiang Academy of Agricultural Science, Jiamusi, 154026, China
| | - Ruiying Wang
- Rice Research Institute, Heilongjiang Academy of Agricultural Science, Jiamusi, 154026, China
| | - Hongliang Zhang
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jinjie Li
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zichao Li
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
49
|
Yao M, Guan M, Yang Q, Huang L, Xiong X, Jan HU, Voss-Fels KP, Werner CR, He X, Qian W, Snowdon RJ, Guan C, Hua W, Qian L. Regional association analysis coupled with transcriptome analyses reveal candidate genes affecting seed oil accumulation in Brassica napus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1545-1555. [PMID: 33677638 DOI: 10.1007/s00122-021-03788-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Regional association analysis of 50 re-sequenced Chinese semi-winter rapeseed accessions in combination with co-expression analysis reveal candidate genes affecting oil accumulation in Brassica napus. One of the breeding goals in rapeseed production is to enhance the seed oil content to cater to the increased demand for vegetable oils due to a growing global population. To investigate the genetic basis of variation in seed oil content, we used 60 K Brassica Infinium SNP array along with phenotype data of 203 Chinese semi-winter rapeseed accessions to perform a genome-wide analysis of haplotype blocks associated with the oil content. Nine haplotype regions harbouring lipid synthesis/transport-, carbohydrate metabolism- and photosynthesis-related genes were identified as significantly associated with the oil content and were mapped to chromosomes A02, A04, A05, A07, C03, C04, C05, C08 and C09, respectively. Regional association analysis of 50 re-sequenced Chinese semi-winter rapeseed accessions combined with transcriptome datasets from 13 accessions was further performed on these nine haplotype regions. This revealed natural variation in the BnTGD3-A02 and BnSSE1-A05 gene regions correlated with the phenotypic variation of the oil content within the A02 and A04 chromosome haplotype regions, respectively. Moreover, co-expression network analysis revealed that BnTGD3-A02 and BnSSE1-A05 were directly linked with fatty acid beta-oxidation-related gene BnKAT2-C04, thus forming a molecular network involved in the potential regulation of seed oil accumulation. The results of this study could be used to combine favourable haplotype alleles for further improvement of the seed oil content in rapeseed.
Collapse
Affiliation(s)
- Min Yao
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China
| | - Mei Guan
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China
| | - Qian Yang
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China
| | - Luyao Huang
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China
| | - Xinghua Xiong
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China
| | - Habib U Jan
- Molecular Biology, Department of Pathology, MTI-LRH, Peshawar, 25000, Pakistan
| | - Kai P Voss-Fels
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Christian R Werner
- The Roslin Institute University of Edinburgh Easter Bush Research Centre Midlothian, Midlothian, EH25 9RG, UK
| | - Xin He
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China
| | - Wei Qian
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Rod J Snowdon
- Department of Plant Breeding, Land Use and Nutrition, IFZ Research Centre for Biosystems, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Chunyun Guan
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China
| | - Wei Hua
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China.
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, 430062, China.
| | - Lunwen Qian
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
50
|
Yang L, Lei L, Li P, Wang J, Wang C, Yang F, Chen J, Liu H, Zheng H, Xin W, Zou D. Identification of Candidate Genes Conferring Cold Tolerance to Rice ( Oryza sativa L.) at the Bud-Bursting Stage Using Bulk Segregant Analysis Sequencing and Linkage Mapping. FRONTIERS IN PLANT SCIENCE 2021; 12:647239. [PMID: 33790929 PMCID: PMC8006307 DOI: 10.3389/fpls.2021.647239] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/22/2021] [Indexed: 05/29/2023]
Abstract
Low-temperature tolerance during the bud-bursting stage is an important characteristic of direct-seeded rice. The identification of cold-tolerance quantitative trait loci (QTL) in species that can stably tolerate cold environments is crucial for the molecular breeding of rice with such traits. In our study, high-throughput QTL-sequencing analyses were performed in a 460-individual F2 : 3 mapping population to identify the major QTL genomic regions governing cold tolerance at the bud-bursting (CTBB) stage in rice. A novel major QTL, qCTBB9, which controls seed survival rate (SR) under low-temperature conditions of 5°C/9 days, was mapped on the 5.40-Mb interval on chromosome 9. Twenty-six non-synonymous single-nucleotide polymorphism (nSNP) markers were designed for the qCTBB9 region based on re-sequencing data and local QTL mapping conducted using traditional linkage analysis. We mapped qCTBB9 to a 483.87-kb region containing 58 annotated genes, among which six predicted genes contained nine nSNP loci. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis revealed that only Os09g0444200 was strongly induced by cold stress. Haplotype analysis further confirmed that the SNP 1,654,225 bp in the Os09g0444200 coding region plays a key role in regulating the cold tolerance of rice. These results suggest that Os09g0444200 is a potential candidate for qCTBB9. Our results are of great significance to explore the genetic mechanism of rice CTBB and to improve the cold tolerance of rice varieties by marker-assisted selection.
Collapse
|