1
|
Shen Y, Wang J, Si X, Liang X, Zheng Z, Li Y, Qi Y, Li F, Zhang Y, Guo T, Li P. Revealing the molecular mechanism of biosynthesis and transcriptional regulation of PAs, caffeine and linalool globally under simulative stress in coffee plants. Int J Biol Macromol 2025; 310:143103. [PMID: 40250650 DOI: 10.1016/j.ijbiomac.2025.143103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/24/2025] [Accepted: 04/10/2025] [Indexed: 04/20/2025]
Abstract
Coffee has become one of the most popular beverages worldwide due to the variety of bioactive compounds, which also play crucial roles against biotic and abiotic stresses. However, little is known about how these defensive compounds are produced in coffee. Here, we found that the whole biosynthetic pathways and the production of caffeine and proanthocyanidins (PAs) were promoted under Methyl Jasmonate (MeJA) treatment. Co-expression data showed that some transcription factors were shared by caffeine and PA regulation, and further several candidate caffeine regulators were identified. The biosynthesis of monoterpene linalool was also triggered by MeJA, and the functions of coffee linalool synthase were characterized. Evolution and expression analyses revealed that the expression variation of linalool synthase is likely the major reason for the low linalool content in coffee leaves, despite of the linalool synthase expansion in coffee genome. Additionally, the JA signaling key regulator MYC2 could directly bind to and activate the promoter of linalool synthase to regulate linalool biosynthesis.
Collapse
Affiliation(s)
- Yihua Shen
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Jinsong Wang
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Xiongyuan Si
- Biotechnology Center, Anhui Agricultural University, Hefei 230036, China
| | - Xiaoyu Liang
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Ziqing Zheng
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Yaling Li
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Yujia Qi
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Fangdong Li
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Yanrui Zhang
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Tieying Guo
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili 678600, China.
| | - Penghui Li
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
2
|
Xiong B, Li Y, Yao J, Wang J, Han L, Ma Q, Deng T, Liao L, Deng L, Sun G, Zhang M, Wan X, He S, He J, Wang Z. Integration of transcriptomic and metabolomic analysis reveals light-regulated anthocyanin accumulation in the peel of 'Yinhongli' plum. BMC PLANT BIOLOGY 2025; 25:391. [PMID: 40148754 PMCID: PMC11948737 DOI: 10.1186/s12870-025-06414-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND The 'Yinhongli' cultivar of Chinese plum (Prunus salicina Lindl.) is characterized by a distinctive bicolored peel phenotype, in which anthocyanins serve as crucial determinants of both its visual characteristics and nutritional quality. However, the molecular mechanism of underlying light-dependent anthocyanin biosynthesis of plum, especially its regulatory network and pathway, need to be further studied and explored. RESULTS Comprehensive physiological analyses demonstrated distinct pigmentation patterns, revealing that dark-treated (YD) plum peels retained green coloration, whereas light-exposed (YL) and bag-removed samples (YDL) exhibited red pigmentation. Utilizing an integrated approach combining metabolomic and transcriptomic analyses, we identified 266 differentially accumulated flavonoids (DAFs), among which seven anthocyanin metabolites were established as principal determinants of peel coloration. Transcriptomic profiling revealed 6,900 differentially expressed genes (DEGs) between YD and YL, demonstrating significant correlations between the phenylpropanoid and flavonoid biosynthetic pathways. Through Weighted Gene Co-expression Network Analysis (WGCNA) and correlation heatmap analysis, we identified crucial regulatory networks encompassing five structural genes (PAL, 4CL, F3'H, CHI, and UFGT) and 15 candidate regulatory genes, including six light signal transduction factor genes (UVR8, COP1, PHYBs, PIF3, and HY5) and nine transcription factor genes (MYB1, MYB20, MYB73, MYB111, LHY, DRE2B, ERF5, bHLH35, and NAC87). Subsequent RT-qPCR validation demonstrated significant light-mediated up-regulation of key structural genes (PAL, F3H, CHI, 4CL, and UFGT) involved in anthocyanin biosynthesis along with positive regulatory factors (DRE2B and NAC87). Conversely, a cohort of negative regulators, including HY5, MYB1, MYB20, MYB73, MYB111, LHY, ERF5, and bHLH35, showed marked down-regulation in response to light exposure, suggesting their potential repressive roles in the light-dependent anthocyanin biosynthesis pathway. CONCLUSIONS This investigation provides comprehensive insights into the molecular mechanisms of anthocyanin biosynthesis in light-dependent anthocyanin biosynthesis in 'Yinhongli' plum, identifying critical structural genes and potential regulatory TFs. The findings offer substantial contributions to the understanding of anthocyanin regulation in fruit crops and provide a valuable foundation for molecular breeding initiatives aimed at enhancing quality traits in plum cultivars.
Collapse
Affiliation(s)
- Bo Xiong
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yisong Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Junfei Yao
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jialu Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linlyu Han
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qingqing Ma
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Taimei Deng
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ling Liao
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lijun Deng
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guochao Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mingfei Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xun Wan
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Siya He
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiaxian He
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhihui Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
3
|
Tong L, Jiang Y, Zhang X, Zhang X, Zhang W, Ren G, Chen Z, Zhao Y, Guo S, Yan H, Pan Y, Duan JA, Zhang F. Metabolic and molecular basis of flavonoid biosynthesis in Lycii fructus: An integration of metabolomic and transcriptomic analysis. J Pharm Biomed Anal 2025; 255:116653. [PMID: 39731927 DOI: 10.1016/j.jpba.2024.116653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/06/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
Flavonoids serve as bioactive components and contribute to medicinal and nutritional profile of Lycii fructus. However, there is limited information regarding the influence of ecological environments on the flavonoid biosynthesis pathway. In this study, we integrated transcriptome sequencing and metabonomic techniques across three distinct cultivation regions to elucidate the processes of flavonoids biosynthesis and the associated gene expression levels in L. fructus. LC-MS/MS based metabolomics revealed significant variations in metabolite profiles including 43 differential flavonoid metabolites, predominantly consisting of flavanol compounds across diverse regions. Additionally, 154 significantly differentially expressed genes (DEGs) were categorized in the flavonoid biosynthesis identified by de novo transcriptome assembly. Transcription factors C2C2 MYB, NAC, WRKY, AP2/ERF and B3 superfamily were the mainly hub genes regulating the flavonoids biosynthesis. The flavonoid pathway was built through integrated analysis of DEGs and DAMs to illustrate the molecular mechanism of flavonoid biosynthesis. Precipitation and temperature may serve as the primary environmental factors that affected the flavonoids variations. This study proposed a schematic of flavonoid biosynthesis in L. fructus, and further provided evidence for environmental response of L. fructus.
Collapse
Affiliation(s)
- Limei Tong
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Yinxiu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Xinrun Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Xia Zhang
- School of Pharmacy, Key Laboratory of Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750021, PR China.
| | - Wenhua Zhang
- Bairuiyuan Gouqi Co., Ltd, Yinchuan 750200, China.
| | - Gang Ren
- Haixi Agriculture and Animal Husbandry Technology Extension Service Center, Delingha 817000, China.
| | - Zhanping Chen
- Haixi Agriculture and Animal Husbandry Technology Extension Service Center, Delingha 817000, China.
| | - Yuling Zhao
- Jinghe Gouqi Industry Development Center of Bortala Mongolian Autonomous Prefecture, Bortala 833399, China.
| | - Sheng Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Hui Yan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Yang Pan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Fang Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
4
|
Li J, Cao Y, Meng Y, Zhang T, Qian J, Liu Y, Zhu C, Zhang B, Chen K, Xu C, Li X. Repressor MrERF4 and Activator MrERF34 Synergistically Regulate High Flavonol Accumulation Under UV-B Irradiation in Morella rubra Leaves. PLANT, CELL & ENVIRONMENT 2025; 48:2460-2477. [PMID: 39623671 DOI: 10.1111/pce.15310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/16/2024] [Accepted: 11/13/2024] [Indexed: 02/04/2025]
Abstract
Flavonols are important plant photoprotectants to defence UV-B irradiation, however, the underlying transcriptional regulatory mechanism of rapid flavonol accumulation in response to UV-B remains unknown. In this study, content of flavonols was significantly induced from 0.11 to 3.80 mg/g fresh weight by UV-B irradiation in leaves of Morella rubra seedlings. MrERF34 was identified as an activator that can regulate the expression of MrFLS2, and promoted flavonol biosynthesis with activator MrMYB12 under UV-B treatment. Transient overexpression of MrERF34 resulted in higher flavonol accumulation, while virus-induced gene silencing of MrERF34 reduced the content of flavonols in bayberry leaves. We further demonstrated that a repressor MrERF4 inhibited the expression of MrERF34 and MrMYB12 as well as MrFLS2 via ERF-associated-amphiphilic repression motif. Exposure to UV-B reduced the promoter activity and transcription of MrERF4, which weakened the inhibitory effect of MrERF4 on MrERF34, MrMYB12, and MrFLS2, leading to a tremendous accumulation of flavonols. Such inhibitory roles of MrERF4 in regulation of flavonol biosynthesis were further validated by transient overexpression in leaves of Nicotiana benthamiana and M. rubra. These findings enrich the synergistical regulatory mechanisms between repressor and activators in flavonol biosynthesis, and provide new insights into photoprotectants biosynthesis to mitigate UV-B stress in plants.
Collapse
Affiliation(s)
- Jiajia Li
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, China
| | - Yunlin Cao
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, China
| | - Yuan Meng
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, China
| | - Tong Zhang
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, China
| | - Jiafei Qian
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, China
| | - Yilong Liu
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Crop Growth and Development, Zhejiang University, Hangzhou, China
| | - Changqing Zhu
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Crop Growth and Development, Zhejiang University, Hangzhou, China
| | - Bo Zhang
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Crop Growth and Development, Zhejiang University, Hangzhou, China
| | - Kunsong Chen
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Crop Growth and Development, Zhejiang University, Hangzhou, China
| | - Changjie Xu
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Crop Growth and Development, Zhejiang University, Hangzhou, China
| | - Xian Li
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Crop Growth and Development, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Qian J, Ren C, Wang F, Cao Y, Guo Y, Zhao X, Liu Y, Zhu C, Li X, Xu H, Chen J, Chen K, Li X. Genome-wide identification of UDP-glycosyltransferases involved in flavonol glycosylation induced by UV-B irradiation in Eriobotrya japonica. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109481. [PMID: 39805168 DOI: 10.1016/j.plaphy.2025.109481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/18/2024] [Accepted: 01/04/2025] [Indexed: 01/16/2025]
Abstract
Flavonol glycosides are secondary metabolites important for plant development and stress defense such as UV-B irradiation. UDP-glycosyltransferase (UGT) catalyzes the last step in the biosynthesis of flavonol glycosides. Eriobotrya japonica is abundant in flavonol glycosides, but UGTs responsible for accumulation of flavonol glycosides remain unknown. Here, 13 flavonol glycosides including monoglycosides and diglycosides were characterized in different tissues of loquat by LC-MS/MS. UV-B irradiation significantly increased the accumulation of four quercetin glycosides and two kaempferol glycosides in loquat fruit. Based on UGT gene family analysis, transcriptome analysis, enzyme assays of recombinant proteins as well as transient overexpression assays in Nicotiana benthamiana, three UGTs were identified, i.e. EjUGT78T4 as flavonol 3-O-galactosyltransferase, EjUGT78S3 as flavonol 3-O-glucosyltransferase, and EjUGT91AK7 as flavonol 1 → 6 rhamnosyltransferase. This work elucidates the formation of flavonol glycosides in loquat through UGT-mediated glycosylation.
Collapse
Affiliation(s)
- Jiafei Qian
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, 310058, China.
| | - Chuanhong Ren
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, 310058, China; Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Fan Wang
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, 310058, China.
| | - Yunlin Cao
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, 310058, China.
| | - Yan Guo
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, 310058, China.
| | - Xiaoyong Zhao
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, 310058, China.
| | - Yilong Liu
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, 310058, China.
| | - Changqing Zhu
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, 310058, China.
| | - Xiaoying Li
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Hongxia Xu
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Junwei Chen
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Kunsong Chen
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, 310058, China.
| | - Xian Li
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
6
|
Zhang P, Tang Y, Zhang J, Liu J, Li L, Li H, Huang L, Jiang G, Wang X, Zhang L, Bai Y, Qin P. Multi-omics analysis of the accumulation mechanism of flavonoids in rice caryopsis under blue light. PLANT CELL REPORTS 2025; 44:64. [PMID: 39992423 DOI: 10.1007/s00299-025-03435-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 01/18/2025] [Indexed: 02/25/2025]
Abstract
KEY MESSAGE Blue light influences the MYB gene family, resulting in varying accumulations of different flavonoids in rice caryopsis at distinct developmental stages, with a higher concentration observed in the initial stage. The regulatory effect of blue light on plant flavonoids has been extensively documented; however, its influence on the development of rice caryopsis morphology remains unreported. Through the analysis of transcriptomes, proteomes, and metabolites, combined with Weighted Gene Co-expression Network Analysis (WGCNA), the accumulation of flavonoids in rice caryopsis under blue light at various developmental stages was thoroughly examined. Furthermore, four MYB family transcription factors (TFs) that significantly influence the structural genes involved in flavonoid biosynthesis were identified. The results indicate that the accumulation of flavonoids primarily occurs during the early stages of caryopsis development. Key structural genes, including PAL, 4CL, CHS, CHI, F3H, and FLS, are upregulated in both gene and protein expression when exposed to blue light. Moreover, the WGCNA analysis identified several TFs that may influence these genes, including Os08t0144000-01 and Os01t0695900-01, as well as the proteins Q7F3D6, Q2QM89, A0A0P0W9C3, and Q6ZDM0, all of which belong to the MYB family. The research has enhanced our understanding of flavonoid accumulation in rice caryopsis when exposed to blue light. It also establishes a framework for the synthesis of secondary metabolites induced by blue light, thereby creating more opportunities to enhance the quality of horticultural plants.
Collapse
Affiliation(s)
- Ping Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, People's Republic of China
| | - Yongsheng Tang
- Qujing Academy of Agricultural Science, Qujing, 655000, People's Republic of China
| | - Juxiang Zhang
- Qujing Academy of Agricultural Science, Qujing, 655000, People's Republic of China
| | - Junna Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, People's Republic of China
| | - Li Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, People's Republic of China
| | - Hanxue Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, People's Republic of China
| | - Liubin Huang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, People's Republic of China
| | - Guofei Jiang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, People's Republic of China
| | - Xuqin Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, People's Republic of China
| | - Lingyuan Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, People's Republic of China
| | - Yutao Bai
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, People's Republic of China
| | - Peng Qin
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, People's Republic of China.
| |
Collapse
|
7
|
Day Briggs S, Anderson JT. The effect of global change on the expression and evolution of floral traits. ANNALS OF BOTANY 2025; 135:9-24. [PMID: 38606950 PMCID: PMC11805946 DOI: 10.1093/aob/mcae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/09/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Pollinators impose strong selection on floral traits, but other abiotic and biotic agents also drive the evolution of floral traits and influence plant reproduction. Global change is expected to have widespread effects on biotic and abiotic systems, resulting in novel selection on floral traits in future conditions. SCOPE Global change has depressed pollinator abundance and altered abiotic conditions, thereby exposing flowering plant species to novel suites of selective pressures. Here, we consider how biotic and abiotic factors interact to shape the expression and evolution of floral characteristics (the targets of selection), including floral size, colour, physiology, reward quantity and quality, and longevity, amongst other traits. We examine cases in which selection imposed by climatic factors conflicts with pollinator-mediated selection. Additionally, we explore how floral traits respond to environmental changes through phenotypic plasticity and how that can alter plant fecundity. Throughout this review, we evaluate how global change might shift the expression and evolution of floral phenotypes. CONCLUSIONS Floral traits evolve in response to multiple interacting agents of selection. Different agents can sometimes exert conflicting selection. For example, pollinators often prefer large flowers, but drought stress can favour the evolution of smaller flowers, and the size of floral organs can evolve as a trade-off between selection mediated by these opposing actors. Nevertheless, few studies have manipulated abiotic and biotic agents of selection factorially to disentangle their relative strengths and directions of selection. The literature has more often evaluated plastic responses of floral traits to stressors than it has considered how abiotic factors alter selection on these traits. Global change will likely alter the selective landscape through changes in the abundance and community composition of mutualists and antagonists and novel abiotic conditions. We encourage future work to consider the effects of abiotic and biotic agents of selection on floral evolution, which will enable more robust predictions about floral evolution and plant reproduction as global change progresses.
Collapse
Affiliation(s)
| | - Jill T Anderson
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
8
|
Bulanov AN, Andreeva EA, Tsvetkova NV, Zykin PA. Regulation of Flavonoid Biosynthesis by the MYB-bHLH-WDR (MBW) Complex in Plants and Its Specific Features in Cereals. Int J Mol Sci 2025; 26:734. [PMID: 39859449 PMCID: PMC11765516 DOI: 10.3390/ijms26020734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/04/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Flavonoids are a large group of secondary metabolites, which are responsible for pigmentation, signaling, protection from unfavorable environmental conditions, and other important functions, as well as providing numerous benefits for human health. Various stages of flavonoid biosynthesis are subject to complex regulation by three groups of transcription regulators-MYC-like bHLH, R2R3-MYB and WDR which form the MBW regulatory complex. We attempt to cover the main aspects of this intriguing regulatory system in plants, as well as to summarize information on their distinctive features in cereals. Published data revealed the following perspectives for further research: (1) In cereals, a large number of paralogs of MYC and MYB transcription factors are present, and their diversification has led to spatial and biochemical specialization, providing an opportunity to fine-tune the distribution and composition of flavonoid compounds; (2) Regulatory systems formed by MBW proteins in cereals possess distinctive features that are not yet fully understood and require further investigation; (3) Non-classical MB-EMSY-like complexes, WDR-independent MB complexes, and solely acting R2R3-MYB transcription factors are of particular interest for studying unique regulatory mechanisms in plants. More comprehensive understanding of flavonoid biosynthesis regulation will allow us to develop cereal varieties with the required flavonoid content and spatial distribution.
Collapse
Affiliation(s)
- Andrey N. Bulanov
- Department of Genetics and Biotechnology, Saint Petersburg State University, 7/9 Universitetskaya Embankment, 199034 Saint Petersburg, Russia; (A.N.B.); (N.V.T.)
- Laboratory of Plant Genetics and Biotechnology, N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
| | - Elena A. Andreeva
- Department of Genetics and Biotechnology, Saint Petersburg State University, 7/9 Universitetskaya Embankment, 199034 Saint Petersburg, Russia; (A.N.B.); (N.V.T.)
- Laboratory of Plant Genetics and Biotechnology, N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
| | - Natalia V. Tsvetkova
- Department of Genetics and Biotechnology, Saint Petersburg State University, 7/9 Universitetskaya Embankment, 199034 Saint Petersburg, Russia; (A.N.B.); (N.V.T.)
| | - Pavel A. Zykin
- Department of Cytology and Histology, Saint Petersburg State University, 7/9 Universitetskaya Embankment, 199034 Saint Petersburg, Russia;
| |
Collapse
|
9
|
Su L, Lv A, Wen W, Fan N, You X, Gao L, Zhou P, Shi F, An Y. MsMYB206-MsMYB450-MsHY5 complex regulates alfalfa tolerance to salt stress via regulating flavonoid biosynthesis during the day and night cycles. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17216. [PMID: 39706170 DOI: 10.1111/tpj.17216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/21/2024] [Accepted: 11/28/2024] [Indexed: 12/23/2024]
Abstract
Flavonoids are the major secondary metabolites participating in many biological processes of plants. Although flavonoid biosynthesis has been extensively studied, its regulatory mechanisms during the day and night cycles remain poorly understood. In this study, three proteins, MsMYB206, MsMYB450, and MsHY5, were found to interact with each other, in which MsMYB206 directly transactivated two flavonoid biosynthetic genes, MsFLS and MsF3'H. The expression patterns of MsMYB206, MsMYB450, MsFLS, and MsF3'H were fully consistent at regular intervals across day/night cycles that were higher at night than in the daytime. On the contrary, both gene expression levels and protein contents of MsHY5 increased in the daytime but decreased at night, and the lower expression of MsHY5 at night led to strengthened interaction between MsMYB206 and MsMYB450. The MsMYB206-overexpression plants were more salt-tolerant and their flavonoid contents were higher than the WT during the day/night cycles. This study revealed one mechanism interpreting the fluctuating flavonoid contents during day/night cycles regulated by the MsMYB206/MsMYB450/MsHY5-MsFLS/MsF3'H module that also contributed to salt tolerance in alfalfa.
Collapse
Affiliation(s)
- Liantai Su
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Aimin Lv
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| | - Wuwu Wen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Nana Fan
- College of life science, Yulin University, Yulin, China
| | - Xiangkai You
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Li Gao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Peng Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Fengling Shi
- College of Grassland and Resources and Environment, Inner Mongolia Agricultural University, Inner Mongolia Hohhot, China
| | - Yuan An
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
| |
Collapse
|
10
|
Duan S, Kim JH, Kim CK, Eom SH. Role of Methyl Jasmonate on Flavonoid Pathway of UV-B-Irradiated Apple Fruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27139-27149. [PMID: 39591435 DOI: 10.1021/acs.jafc.4c05717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
Methyl jasmonate (MeJA) is a growth regulator that is involved in plant defense and development. Studies have demonstrated its role in pigmentation, particularly in synergy with UV-B in plant tissues. However, its role in pigment metabolism remains incompletely understood. To explore the metabolic synergistic effects, we evaluated pigments and gene expression in mature green apples. MeJA alone had no effect on pigment accumulation, while UV-B increased flavonols up to S2 stage and anthocyanins up to S3 stage. With UV-B > 2 W m-2, MeJA doubled anthocyanin accumulation compared to UV-B alone but had no synergistic effect on flavonols. MeJA selectively upregulated structural genes and transcription factors involved in the late biosynthetic pathway, transport, and the MYB-bHLH-WD40 complex, inducing anthocyanin hyperaccumulation without affecting early flavonoid biosynthetic genes or MdFLS, which controls flavonol biosynthesis. These results suggest that MeJA relates to downstream gene expression in flavonoid biosynthesis with alternative regulation of the anthocyanin pathway in UV-B-irradiated apples.
Collapse
|
11
|
Cheng Y, Cao W, Guo R, Chen R, Li X, Qian D, Xu J. A comparative study of the quality differences and seasonal dynamics of flavonoids between the aerial parts and roots of Scutellaria barbata. FRONTIERS IN PLANT SCIENCE 2024; 15:1497664. [PMID: 39687312 PMCID: PMC11648313 DOI: 10.3389/fpls.2024.1497664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/13/2024] [Indexed: 12/18/2024]
Abstract
Introduction Scutellaria barbata D. Don is a widely cultivated Chinese herbal medicine known for its medicinal properties. However, differences in the spatial distribution of metabolites, accumulation patterns of flavonoids, and pharmacological activities between the aerial parts and roots of S. barbata still remain unclear, posing challenges for its standardized cultivation and quality control. This study aimed to elucidate the quality differences between these plant parts and clarify their seasonal variations. Methods The chemical profiles were qualitatively analyzed by UPLC-QTOF-MS/MS. The accumulation patterns of total flavonoids, scutellarin and baicalin in different parts of S. barbata were quantitatively analyzed by UV and HPLC respectively. The differences of pharmacological efficacy were evaluated by antioxidant assays and CCK-8 assay. Results In this research, there were 46 compounds identified in S. barbata that included 44 flavonoids. The aerial parts primarily accumulate flavonoids with 4'-hydroxyl group, while the root mainly accumulate flavonoids without this group. Additionally, the accumulation and variation of flavonoid components were seasonally dependent, with the aerial parts reaching peak content in spring during vigorous vegetative growth and the roots accumulating most flavonoids in autumn. The extracts from both parts exhibited antioxidant activity and inhibitory effects on cancer cell proliferation, with notable differences between them. Discussion This study provides valuable insights into the quality differences and seasonal dynamics of the different parts of S. barbata, offering a reference for standardized harvesting and quality control.
Collapse
Affiliation(s)
- Yijie Cheng
- Pharmacy Department, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People’s Hospital, Changshu, China
- Central Laboratory, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People’s Hospital, Changshu, China
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| | - Wenxin Cao
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| | - Ru Guo
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| | - Ruihuan Chen
- Pharmacy Department, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People’s Hospital, Changshu, China
| | - Xiaofan Li
- Suzhou Qifan Agricultural Technology Co., Ltd, Changshu, China
| | - Da Qian
- Central Laboratory, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People’s Hospital, Changshu, China
| | - Jingyuan Xu
- Central Laboratory, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People’s Hospital, Changshu, China
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| |
Collapse
|
12
|
Liang L, Zhu J, Huang D, Ai S, Xue L, Yin X, Lin-Wang K, Allan A, Chen K, Xu C. Molecular mechanisms underlying natural deficient and ultraviolet-induced accumulation of anthocyanin in the peel of 'Jinxiu' peach. PLANT, CELL & ENVIRONMENT 2024; 47:4833-4848. [PMID: 39101482 DOI: 10.1111/pce.15064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 08/06/2024]
Abstract
Peach varieties that differ in red coloration due to varied anthocyanin accumulation result from transcriptional regulation by PpMYB10s, a group of specific R2R3 MYBs. Here we investigated the mechanisms driving a lack of anthocyanin in yellow-skinned 'Jinxiu' peach peel, as well as accumulation induced by UV irradiance. It was found that PpMYB10.1, PpMYB10.2 and PpMYB10.3 were positive regulators of anthocyanin accumulation, but the stimulation by PpMYB10.2 was weak. Low expression of PpMYB10.1 causes natural anthocyanin deficiency in 'Jinxiu' peel. However, the promoter sequences of PpMYB10.1 were identical in 'Jinxiu' and a naturally red-coloured peach 'Hujingmilu'. Therefore, potential negative regulator(s) upstream of PpMYB10.1 were explored. A novel R2R3-MYB repressor termed PpMYB80 was identified through comparative transcriptomic analysis and then functionally confirmed via transiently overexpressing and silencing in peach fruit, as well as transformation in tobacco. PpMYB80 directly binds to the promoter of PpMYB10.1 and inhibits its expression, but does not affect PpMYB10.3. In UV-exposed 'Jinxiu' fruit, expression of PpMYB10.3 was upregulated, while PpMYB10.1 remained low and PpMYB80 enhanced, which results in accumulation of anthocyanin in peel. This study revealed a transcriptional cascade involving PpMYB activators and repressors in regulating basal and UV-induced anthocyanin accumulation in peach peel.
Collapse
Affiliation(s)
- Ling Liang
- College of Agriculture & Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Jiazhen Zhu
- New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Dan Huang
- College of Agriculture & Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Shaojie Ai
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Lei Xue
- College of Agriculture & Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Xueren Yin
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Kui Lin-Wang
- New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Andrew Allan
- New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Kunsong Chen
- College of Agriculture & Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zijingang Campus, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Crop Growth and Development, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Changjie Xu
- College of Agriculture & Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zijingang Campus, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Crop Growth and Development, Zijingang Campus, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Li Q, Wang S, Wang J, Chen L, Liu W, Li Z, Xu J, Deng Z, Zhou Y. Mechanism of Phloretin Accumulation in Malus hupehensis Grown at High Altitudes: Evidence from Quantitative 4D Proteomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19526-19536. [PMID: 39166542 DOI: 10.1021/acs.jafc.4c04487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Phloretin is a natural dihydrochalcone (DHC) that exhibits various pharmacological and therapeutic activities. Malus hupehensis Rehd. (M. hupehensis) is widely planted in the middle of China and its leaves contain an extremely high content of phloridzin, a glycosylated derivative of phloretin. In the present study, we observed a significant increase in phloretin content in the leaves of M. hupehensis planted at high altitudes. To investigate the mechanisms of phloretin accumulation, we explored changes in the proteome profiles of M. hupehensis plants grown at various altitudes. The results showed that at high altitudes, photosynthesis- and DHC biosynthesis-related proteins were downregulated and upregulated, respectively, leading to reduced chlorophyll content and DHC accumulation in the leaves. Moreover, we identified a novel phloridzin-catalyzing glucosidase whose expression level was significantly increased in high-altitude-cultivated plants. This work provided a better understanding of the mechanism of phloretin accumulation and effective and economic strategies for phloretin production.
Collapse
Affiliation(s)
- Qing Li
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, China
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Shanshan Wang
- Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Junzhi Wang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Lijun Chen
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Wenrui Liu
- Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ziyan Li
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, China
| | - Jingyuan Xu
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, China
| | - Zhangshuang Deng
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Yiqing Zhou
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, China
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
- Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
14
|
Zhu X, Chen Y, Jiao J, Zhao S, Yan Y, Ma F, Yao JL, Li P. Four glycosyltransferase genes are responsible for synthesis and accumulation of different flavonol glycosides in apple tissues. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1937-1952. [PMID: 38923617 DOI: 10.1111/tpj.16898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/21/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Flavonols are widely synthesized throughout the plant kingdom, playing essential roles in plant physiology and providing unique health benefits for humans. Their glycosylation plays significant role in improving their stability and solubility, thus their accumulation and function. However, the genes encoding the enzymes catalyze this glycosylation remain largely unknown in apple. This study utilized a combination of methods to identify genes encoding such enzymes. Initially, candidate genes were selected based on their potential to encode UDP-dependent glycosyltransferases (UGTs) and their expression patterns in response to light induction. Subsequently, through testing the in vitro enzyme activity of the proteins produced in Escherichia coli cells, four candidates were confirmed to encode a flavonol 3-O-galactosyltransferase (UGT78T6), flavonol 3-O-glucosyltransferase (UGT78S1), flavonol 3-O-xylosyltransferase/arabinosyltransferase (UGT78T5), and flavonol 3-O-rhamnosyltransferase (UGT76AE22), respectively. Further validation of these genes' functions was conducted by modulating their expression levels in stably transformed apple plants. As anticipated, a positive correlation was observed between the expression levels of these genes and the content of specific flavonol glycosides corresponding to each gene. Moreover, overexpression of a flavonol synthase gene, MdFLS, resulted in increased flavonol glycoside content in apple roots and leaves. These findings provide valuable insights for breeding programs aimed at enriching apple flesh with flavonols and for identifying flavonol 3-O-glycosyltransferases of other plant species.
Collapse
Affiliation(s)
- Xiaoping Zhu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ying Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ju Jiao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shanshan Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yanfang Yan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jia-Long Yao
- The New Zealand Institute for Plant and Food Research Ltd., Auckland, 1142, New Zealand
| | - Pengmin Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
15
|
Xie Y, Miao T, Lyu S, Huang Y, Shu M, Li S, Xiong T. Arabidopsis ERD15 regulated by BBX24 plays a positive role in UV-B signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 343:112077. [PMID: 38552846 DOI: 10.1016/j.plantsci.2024.112077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/01/2024]
Abstract
Ultraviolet-B (UV-B, 280-315 nm) is a minor component of solar radiation, but it has a major regulatory impact on plant growth and development. Solar UV-B regulates numerous aspects of plant metabolism, morphology and physiology through altering the expression of hundreds of genes. EARLY RESPONSIVE TO DEHYDRATION 15 (ERD15) is a drought-induced rapid response gene, formerly known as a negative regulator of the abscisic acid (ABA) signaling pathway. It is unclear whether ERD15 is involved in UV-B-induced photomorphogenesis. Previously, we reported that the BBX24 transcriptional factor negatively regulated UV-B signaling. In the present study, we identified that ERD15 is involved in UV-B photomorphogenesis as a positive regulator at phenotypic, physiological and molecular levels. Our results indicated that ERD15 expression is suppressed by UV-B, inhibited the elongation of Arabidopsis hypocotyls in a UV-B-dependent manner, promoted the expression of related UV-B signaling genes and increased the total antioxidant capacity of Arabidopsis under UV-B. Genetic hybridization results show that ERD15 acts downstream of BBX24, and BBX24 protein mediated the expression of ERD15 by binding to its promoter. Thus, ERD15 is a novel positive regulator of the UV-B signaling pathway, which is downstream of BBX24 and regulated by BBX24 protein to participate in UV-B photomorphogenesis.
Collapse
Affiliation(s)
- Yuxin Xie
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Tingting Miao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Suihua Lyu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yuewei Huang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Man Shu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Shaoshan Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Tiantian Xiong
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
16
|
Zhang L, Wang X, Zu Y, He Y, Li Z, Li Y. Effects of UV-B Radiation Exposure on Transgenerational Plasticity in Grain Morphology and Proanthocyanidin Content in Yuanyang Red Rice. Int J Mol Sci 2024; 25:4766. [PMID: 38731985 PMCID: PMC11084601 DOI: 10.3390/ijms25094766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
The effect of UV-B radiation exposure on transgenerational plasticity, the phenomenon whereby the parental environment influences both the parent's and the offspring's phenotype, is poorly understood. To investigate the impact of exposing successive generations of rice plants to UV-B radiation on seed morphology and proanthocyanidin content, the local traditional rice variety 'Baijiaolaojing' was planted on terraces in Yuanyang county and subjected to enhanced UV-B radiation treatments. The radiation intensity that caused the maximum phenotypic plasticity (7.5 kJ·m-2) was selected for further study, and the rice crops were cultivated for four successive generations. The results show that in the same generation, enhanced UV-B radiation resulted in significant decreases in grain length, grain width, spike weight, and thousand-grain weight, as well as significant increases in empty grain percentage and proanthocyanidin content, compared with crops grown under natural light conditions. Proanthocyanidin content increased as the number of generations of rice exposed to radiation increased, but in generation G3, it decreased, along with the empty grain ratio. At the same time, biomass, tiller number, and thousand-grain weight increased, and rice growth returned to control levels. When the offspring's radiation memory and growth environment did not match, rice growth was negatively affected, and seed proanthocyanidin content was increased to maintain seed activity. The correlation analysis results show that phenylalanine ammonialyase (PAL), cinnamate-4-hydroxylase (C4H), dihydroflavonol 4-reductase (DFR), and 4-coumarate:CoA ligase (4CL) enzyme activity positively influenced proanthocyanidin content. Overall, UV-B radiation affected transgenerational plasticity in seed morphology and proanthocyanidin content, showing that rice was able to adapt to this stressor if previous generations had been continuously exposed to treatment.
Collapse
Affiliation(s)
- Lin Zhang
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Xiupin Wang
- College of Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yanqun Zu
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Yongmei He
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Zuran Li
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China
| | - Yuan Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
17
|
Shan B, Mo J, Yang J, Qin X, Yu H. Cloning and functional characterization of a cinnamate 4-hydroxylase gene from the hornwort Anthoceros angustus. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 341:111989. [PMID: 38232819 DOI: 10.1016/j.plantsci.2024.111989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/31/2023] [Accepted: 01/11/2024] [Indexed: 01/19/2024]
Abstract
Hornworts, as the sister group to liverworts and mosses, comprise bryophytes, which are critical in understanding the evolution of key land plant traits. Cinnamate 4-hydroxylase (C4H) catalyzes the second step of the phenylpropanoid pathway to synthesize the precursor of numerous phenolic compounds, such as lignin and flavonoids. However, C4H in the hornwort Anthoceros angustus has not yet been cloned and functionally characterized. In this work, we screened the transcriptome database of A. angustus and identified one C4H gene, AnanC4H. AnanC4H maintained conserved cytochrome P450 domains with other typical plant C4Hs. Ultraviolet B irradiation and exogenous application of methyl jasmonate (MeJA) induced the expression of AnanC4H to varying degrees. The coding sequence of AnanC4H was expressed in yeast, and the recombinant proteins were isolated. The recombinant proteins of AnanC4H catalyzed the conversion of trans-cinnamic acid to p-coumaric acid and catalyzed the conversion of 3-hydroxycinnamic acid to caffeic acid. AnanC4H showed higher affinity for trans-cinnamic acid than for 3-hydroxycinnamic acid, but there was no significant difference in the catalytic efficiency of AnanC4H for the two substrates in vitro. Moreover, the expression of AnanC4H in Arabidopsis thaliana led to an increase in both the lignin content and the number of lignified cells in stems. However, there was no significant change in flavonoid content in transgenic Arabidopsis plants.
Collapse
Affiliation(s)
- Baoyun Shan
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong, China
| | - Jian Mo
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong, China
| | - Jiayi Yang
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong, China
| | - Xiaochun Qin
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong, China.
| | - Haina Yu
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong, China.
| |
Collapse
|
18
|
Cao Y, Mei Y, Zhang R, Zhong Z, Yang X, Xu C, Chen K, Li X. Transcriptional regulation of flavonol biosynthesis in plants. HORTICULTURE RESEARCH 2024; 11:uhae043. [PMID: 38623072 PMCID: PMC11017525 DOI: 10.1093/hr/uhae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 02/02/2024] [Indexed: 04/17/2024]
Abstract
Flavonols are a class of flavonoids that play a crucial role in regulating plant growth and promoting stress resistance. They are also important dietary components in horticultural crops due to their benefits for human health. In past decades, research on the transcriptional regulation of flavonol biosynthesis in plants has increased rapidly. This review summarizes recent progress in flavonol-specific transcriptional regulation in plants, encompassing characterization of different categories of transcription factors (TFs) and microRNAs as well as elucidation of different transcriptional mechanisms, including direct and cascade transcriptional regulation. Direct transcriptional regulation involves TFs, such as MYB, AP2/ERF, and WRKY, which can directly target the key flavonol synthase gene or other early genes in flavonoid biosynthesis. In addition, different regulation modules in cascade transcriptional regulation involve microRNAs targeting TFs, regulation between activators, interaction between activators and repressors, and degradation of activators or repressors induced by UV-B light or plant hormones. Such sophisticated regulation of the flavonol biosynthetic pathway in response to UV-B radiation or hormones may allow plants to fine-tune flavonol homeostasis, thereby balancing plant growth and stress responses in a timely manner. Based on orchestrated regulation, molecular design strategies will be applied to breed horticultural crops with excellent health-promoting effects and high resistance.
Collapse
Affiliation(s)
- Yunlin Cao
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Hangzhou, 310058, China
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, 276000, China
| | - Yuyang Mei
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Hangzhou, 310058, China
| | - Ruining Zhang
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Hangzhou, 310058, China
| | - Zelong Zhong
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, 276000, China
| | - Changjie Xu
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Hangzhou, 310058, China
| | - Kunsong Chen
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Hangzhou, 310058, China
| | - Xian Li
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Hangzhou, 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, 276000, China
| |
Collapse
|
19
|
Manan S, Bilal S. Editorial: Molecular regulation of seed development and storage reserve metabolism in crops. FRONTIERS IN PLANT SCIENCE 2024; 14:1348252. [PMID: 38269135 PMCID: PMC10807039 DOI: 10.3389/fpls.2023.1348252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 12/29/2023] [Indexed: 01/26/2024]
Affiliation(s)
- Sehrish Manan
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Saqib Bilal
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| |
Collapse
|
20
|
Cui L, Li M, Zhang X, Guo Z, Li K, Shi Y, Wang Q, Guo H. Enhanced UV-B Radiation in Potato Stems and Leaves Promotes the Accumulation of Anthocyanins in Tubers. Curr Issues Mol Biol 2023; 45:9943-9960. [PMID: 38132467 PMCID: PMC10742819 DOI: 10.3390/cimb45120621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Enhanced ultraviolet-B (UV-B) radiation promotes anthocyanin biosynthesis in leaves, flowers and fruits of plants. However, the effects and underlying mechanisms of enhanced UV-B radiation on the accumulation of anthocyanins in the tubers of potatoes (Solanum tuberosum L.) remain unclear. Herein, reciprocal grafting experiments were first conducted using colored and uncolored potatoes, demonstrating that the anthocyanins in potato tubers were synthesized in situ, and not transported from the leaves to the tubers. Furthermore, the enhanced UV-B radiation (2.5 kJ·m-2·d-1) on potato stems and leaves significantly increased the contents of total anthocyanin and monomeric pelargonidin and peonidin in the red-fleshed potato '21-1' tubers, compared to the untreated control. A comparative transcriptomic analysis showed that there were 2139 differentially expressed genes (DEGs) under UV-B treatment in comparison to the control, including 1724 up-regulated and 415 down-regulated genes. The anthocyanin-related enzymatic genes in the tubers such as PAL, C4H, 4CL, CHS, CHI, F3H, F3'5'H, ANS, UFGTs, and GSTs were up-regulated under UV-B treatment, except for a down-regulated F3'H. A known anthocyanin-related transcription factor StbHLH1 also showed a significantly higher expression level under UV-B treatment. Moreover, six differentially expressed MYB transcription factors were remarkably correlated to almost all anthocyanin-related enzymatic genes. Additionally, a DEGs enrichment analysis suggested that jasmonic acid might be a potential UV-B signaling molecule involved in the UV-B-induced tuber biosynthesis of anthocyanin. These results indicated that enhanced UV-B radiation in potato stems and leaves induced anthocyanin accumulation in the tubers by regulating the enzymatic genes and transcription factors involved in anthocyanin biosynthesis. This study provides novel insights into the mechanisms of enhanced UV-B radiation that regulate the anthocyanin biosynthesis in potato tubers.
Collapse
Affiliation(s)
- Lingyan Cui
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (L.C.); (M.L.); (X.Z.); (K.L.); (Y.S.)
- Yunnan Engineering Research Center of Tuber and Root Crop Bio-Breeding and Healthy Seed Propagation, Yunnan Agricultural University, Kunming 650201, China
- Tuber and Root Crops Research Institute, Yunnan Agricultural University, Kunming 650201, China;
| | - Maoxing Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (L.C.); (M.L.); (X.Z.); (K.L.); (Y.S.)
- Yunnan Engineering Research Center of Tuber and Root Crop Bio-Breeding and Healthy Seed Propagation, Yunnan Agricultural University, Kunming 650201, China
- Tuber and Root Crops Research Institute, Yunnan Agricultural University, Kunming 650201, China;
| | - Xing Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (L.C.); (M.L.); (X.Z.); (K.L.); (Y.S.)
- Yunnan Engineering Research Center of Tuber and Root Crop Bio-Breeding and Healthy Seed Propagation, Yunnan Agricultural University, Kunming 650201, China
- Tuber and Root Crops Research Institute, Yunnan Agricultural University, Kunming 650201, China;
| | - Zongming Guo
- Tuber and Root Crops Research Institute, Yunnan Agricultural University, Kunming 650201, China;
| | - Kaifeng Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (L.C.); (M.L.); (X.Z.); (K.L.); (Y.S.)
- Yunnan Engineering Research Center of Tuber and Root Crop Bio-Breeding and Healthy Seed Propagation, Yunnan Agricultural University, Kunming 650201, China
- Tuber and Root Crops Research Institute, Yunnan Agricultural University, Kunming 650201, China;
| | - Yuhan Shi
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (L.C.); (M.L.); (X.Z.); (K.L.); (Y.S.)
| | - Qiong Wang
- Tuber and Root Crops Research Institute, Yunnan Agricultural University, Kunming 650201, China;
| | - Huachun Guo
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (L.C.); (M.L.); (X.Z.); (K.L.); (Y.S.)
- Yunnan Engineering Research Center of Tuber and Root Crop Bio-Breeding and Healthy Seed Propagation, Yunnan Agricultural University, Kunming 650201, China
- Tuber and Root Crops Research Institute, Yunnan Agricultural University, Kunming 650201, China;
| |
Collapse
|
21
|
Espley RV, Jaakola L. The role of environmental stress in fruit pigmentation. PLANT, CELL & ENVIRONMENT 2023; 46:3663-3679. [PMID: 37555620 DOI: 10.1111/pce.14684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/10/2023]
Abstract
For many fruit crops, the colour of the fruit outwardly defines its eating quality. Fruit pigments provide reproductive advantage for the plant as well as providing protection against unfavourable environmental conditions and pathogens. For consumers these colours are considered attractive and provide many of the dietary benefits derived from fruits. In the majority of species, the main pigments are either carotenoids and/or anthocyanins. They are produced in the fruit as part of the ripening process, orchestrated by phytohormones and an ensuing transcriptional cascade, culminating in pigment biosynthesis. Whilst this is a controlled developmental process, the production of pigments is also attuned to environmental conditions such as light quantity and quality, availability of water and ambient temperature. If these factors intensify to stress levels, fruit tissues respond by increasing (or ceasing) pigment production. In many cases, if the stress is not severe, this can have a positive outcome for fruit quality. Here, we focus on the principal environmental factors (light, temperature and water) that can influence fruit colour.
Collapse
Affiliation(s)
- Richard V Espley
- Department of New Cultivar Innovation, The New Zealand Institute for Plant and Food Research Ltd, Auckland, New Zealand
| | - Laura Jaakola
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
- Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| |
Collapse
|
22
|
Xiao Z, Wang J, Jiang N, Fan C, Xiang X, Liu W. An LcMYB111-LcHY5 Module Differentially Activates an LcFLS Promoter in Different Litchi Cultivars. Int J Mol Sci 2023; 24:16817. [PMID: 38069137 PMCID: PMC10706726 DOI: 10.3390/ijms242316817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Flavonol synthase (FLS) is the crucial enzyme of the flavonol biosynthetic pathways, and its expression is tightly regulated in plants. In our previous study, two alleles of LcFLS,LcFLS-A and LcFLS-B, have been identified in litchi, with extremely early-maturing (EEM) cultivars only harboring LcFLS-A, while middle-to-late-maturing (MLM) cultivars only harbor LcFLS-B. Here, we overexpressed both LcFLS alleles in tobacco, and transgenic tobacco produced lighter-pink flowers and showed increased flavonol levels while it decreased anthocyanin levels compared to WT. Two allelic promoters of LcFLS were identified, with EEM cultivars only harboring proLcFLS-A, while MLM cultivars only harbor proLcFLS-B. One positive and three negative R2R3-MYB transcription regulators of LcFLS expression were identified, among which only positive regulator LcMYB111 showed a consistent expression pattern with LcFLS, which both have higher expression in EEM than that of MLM cultivars. LcMYB111 were further confirmed to specifically activate proLcFLS-A with MYB-binding element (MBE) while being unable to activate proLcFLS-B with mutated MBE (MBEm). LcHY5 were also identified and can interact with LcMYB111 to promote LcFLS expression. Our study elucidates the function of LcFLS and its differential regulation in different litchi cultivars for the first time.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Liu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China; (Z.X.); (J.W.); (N.J.); (C.F.); (X.X.)
| |
Collapse
|
23
|
Ren C, Xi Z, Xian B, Chen C, Huang X, Jiang H, Chen J, Peng C, Pei J. Identification and Characterization of CtUGT3 as the Key Player of Astragalin Biosynthesis in Carthamus tinctorius L. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16221-16232. [PMID: 37870279 PMCID: PMC10623559 DOI: 10.1021/acs.jafc.3c05117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
Safflower (Carthamus tinctorius L.) is a multipurpose economic crop that is distributed worldwide. Flavonoid glycosides are the main bioactive components in safflower, but only a few UDP-glycosyltransferases (UGT) have been identified. Three differentially expressed UGT genes related with the accumulation of 9 flavonoid O-glycosides were screened from metabolomics and transcriptome analysis. Safflower corolla protoplasts were used to confirm the glycosylation ability of UGT candidates in vivo for the first time. The astragalin content was significantly increased only when CtUGT3 was overexpressed. CtUGT3 also showed flavonoid 3-OH and 7-OH glycosylation activities in vitro. Molecular modeling and site-directed mutagenesis revealed that G15, T136, S276, and E384 were critical catalytic residues for the glycosylation ability of CtUGT3. These results demonstrate that CtUGT3 has a flavonoid 3-OH glycosylation function and is involved in the biosynthesis of astragalin in safflower. This study provides a reference for flavonoid biosynthesis genes research in nonmodel plants.
Collapse
Affiliation(s)
- Chaoxiang Ren
- State Key Laboratory
of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- The State Bank of Chinese
Drug Germplasm Resources, Chengdu University
of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ziqing Xi
- State Key Laboratory
of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Bin Xian
- State Key Laboratory
of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chao Chen
- State Key Laboratory
of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xulong Huang
- State Key Laboratory
of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Huajuan Jiang
- State Key Laboratory
of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiang Chen
- State Key Laboratory
of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- The State Bank of Chinese
Drug Germplasm Resources, Chengdu University
of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory
of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- The State Bank of Chinese
Drug Germplasm Resources, Chengdu University
of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jin Pei
- State Key Laboratory
of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- The State Bank of Chinese
Drug Germplasm Resources, Chengdu University
of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
24
|
Su X, Zhang X, Bai C, Liu H, Cao X, Yao L. Asymmetric distribution of mineral nutrients aggravates uneven fruit pigmentation driven by sunlight exposure in litchi. PLANTA 2023; 258:96. [PMID: 37819558 DOI: 10.1007/s00425-023-04250-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/24/2023] [Indexed: 10/13/2023]
Abstract
MAIN CONCLUSION Sunlight boosts anthocyanin synthesis/accumulation in sunny pericarp of litchi fruit, directly leading to uneven pigmentation. Distribution discrepancy of mineral element aggravates uneven coloration by modulating synthesis/accumulation of anthocyanin and sugar. Uneven coloration, characterized by red pericarp on sunny side and green pericarp on shady side, impacts fruit quality of 'Feizixiao' (cv.) litchi. The mechanisms of this phenomenon were explored by investigating the distribution of chlorophyll, flavonoids, sugars, and mineral elements in both types of pericarp. Transcriptome analysis in pericarp was conducted as well. Sunny pericarp contained higher anthocyanins in an order of magnitude and higher fructose, glucose, co-pigments (flavanols, flavonols, ferulic acid), and mineral elements like Ca, Mg and Mn, along with lower N, P, K, S, Cu, Zn and B (P < 0.01), compared to shady pericarp. Sunlight regulated the expression of genes involved in synthesis/accumulation of flavonoids and sugars and genes functioning in nutrient uptake and transport, leading to asymmetric distribution of these substances. Anthocyanins conferred red color on sunny pericarp, sugars, Ca and Mg promoted synthesis/accumulation of anthocyanins, and co-pigments enhanced color display of anthocyanins. The insufficiencies of anthocyanins, sugars and co-pigments, and inhibition effect of excess K, S, N and P on synthesis/accumulation of anthocyanins and sugars, jointly contributed to green color of shady pericarp. These findings highlight the role of asymmetric distribution of substances, mineral elements in particular, on uneven pigmentation in litchi, and provide insights into coloration improvement via precise fertilization.
Collapse
Affiliation(s)
- Xuexia Su
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Xiaotong Zhang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Cuihua Bai
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
- Guangdong Provincial Key Laboratory of Agricultural and Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| | - Huilin Liu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Xiaoying Cao
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Lixian Yao
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
- Guangdong Provincial Key Laboratory of Agricultural and Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
25
|
Zhou P, Li J, Jiang H, Jin Q, Wang Y, Xu Y. Analysis of bZIP gene family in lotus (Nelumbo) and functional study of NnbZIP36 in regulating anthocyanin synthesis. BMC PLANT BIOLOGY 2023; 23:429. [PMID: 37710161 PMCID: PMC10503039 DOI: 10.1186/s12870-023-04425-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND The basic leucine zipper (bZIP) family is a predominant group of transcription factors in plants, involved in regulating plant growth, development, and response to stressors. Additionally, the bZIP gene family has a key role in anthocyanin production. Despite the significant role of bZIP genes in plants, their potential contribution in lotus remains understudied. RESULTS A total of 124 bZIP genes (59 NnbZIPs and 65 NlbZIPs) were identified from genomes of two lotus species. These genes were classified into 13 groups according to the grouping principle of the Arabidopsis bZIP gene family. Analysis of promoter cis-acting elements indicated that most bZIP gene family members in lotus are associated with response to abiotic stresses. The promoters of some bZIP genes contain MYB binding sites that regulate anthocyanin synthesis. We examined the anthocyanin content of the petals from three different colored lotus, combined with transcriptome data analysis and qRT-PCR results, showing that the expression trends of NnbZIP36 and the homologous gene NlbZIP38 were significantly correlated with the anthocyanin content in lotus petals. Furthermore, we found that overexpression of NnbZIP36 in Arabidopsis promoted anthocyanin accumulation by upregulating the expression of genes (4CL, CHI, CHS, F3H, F3'H, DFR, ANS and UF3GT) related to anthocyanin synthesis. CONCLUSIONS Our study enhances the understanding of the bZIP gene family in lotus and provides evidence for the role of NnbZIP36 in regulating anthocyanin synthesis. This study also sets the stage for future investigations into the mechanism by which the bZIP gene family regulates anthocyanin biosynthesis in lotus.
Collapse
Affiliation(s)
- Ping Zhou
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jingwen Li
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Huiyan Jiang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Qijiang Jin
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yanjie Wang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yingchun Xu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
26
|
Wang Y, Chen G, Wang D, Zhang J, You C, Wang X, Liu H. Post-Harvest Application of Nanoparticles of Titanium Dioxide (NPs-TiO 2) and Ethylene to Improve the Coloration of Detached Apple Fruit. Foods 2023; 12:3137. [PMID: 37628136 PMCID: PMC10453011 DOI: 10.3390/foods12163137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
In this study, we analyzed the effects of treatments with titanium dioxide nanoparticles (NPs-TiO2) and ethylene on anthocyanin biosynthesis and reactive oxygen species (ROS) metabolism during light exposure in ripe 'red delicious' apples. Both treatments led to improved anthocyanins biosynthesis in detached mature apples, while the NPs-TiO2 had less impact on the fruit firmness, TSS, TA, and TSS/TA ratio. Furthermore, the effects of both treatments on the expression of anthocyanin-related enzymes and transcription factors in the apple peel were evaluated at the gene level. The differentially expressed genes induced by the two treatments were highly enriched in the photosynthesis and flavonoid biosynthesis pathways. The expression of structural genes involved in anthocyanin biosynthesis and ethylene biosynthesis was more significantly upregulated in the ethylene treatment group than in the NPs-TiO2 treatment group, and the opposite pattern was observed for the expression of genes encoding transcription factors involved in plant photomorphogenesis pathways. In addition, the ROS levels and antioxidant capacity were higher and the membrane lipid peroxidation level was lower in fruit in the NPs-TiO2 treatment group than in the ethylene treatment group. The results of this study reveal differences in the coloration mechanisms induced by NPs-TiO2 and ethylene in apples, providing new insights into improving the color and quality of fruits.
Collapse
Affiliation(s)
- Yongxu Wang
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China;
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China (D.W.); (J.Z.); (C.Y.); (X.W.)
| | - Guolin Chen
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China (D.W.); (J.Z.); (C.Y.); (X.W.)
| | - Daru Wang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China (D.W.); (J.Z.); (C.Y.); (X.W.)
| | - Jing Zhang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China (D.W.); (J.Z.); (C.Y.); (X.W.)
| | - Chunxiang You
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China (D.W.); (J.Z.); (C.Y.); (X.W.)
| | - Xiaofei Wang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China (D.W.); (J.Z.); (C.Y.); (X.W.)
| | - Huaifeng Liu
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China;
| |
Collapse
|
27
|
Liu Y, Li Y, Liu Z, Wang L, Bi Z, Sun C, Yao P, Zhang J, Bai J, Zeng Y. Integrated transcriptomic and metabolomic analysis revealed altitude-related regulatory mechanisms on flavonoid accumulation in potato tubers. Food Res Int 2023; 170:112997. [PMID: 37316022 DOI: 10.1016/j.foodres.2023.112997] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 06/16/2023]
Abstract
Not least because it is adaptable to a variety of geographies and climates, potato (Solanum tuberosum L.) is grown across much of the world. Pigmented potato tubers have been found to contain large quantities of flavonoids, which have various functional roles and act as antioxidants in the human diet. However, the effect of altitude on the biosynthesis and accumulation of flavonoids in potato tubers is poorly characterized. Here we carried out an integrated metabolomic and transcriptomic study in order to evaluate how cultivation at low (800 m), moderate (1800 m), and high (3600 m) altitude affects flavonoid biosynthesis in pigmented potato tubers. Both red and purple potato tubers grown at a high altitude contained the highest flavonoid content, and the most highly pigmented flesh, followed by those grown at a low altitude. Co-expression network analysis revealed three modules containing genes which were positively correlated with altitude-responsive flavonoid accumulation. The anthocyanin repressors StMYBATV and StMYB3 exhibited a significant positive relationship with altitude-responsive flavonoid accumulation. The repressive function of StMYB3 was further verified in tobacco flowers and potato tubers. The results presented here add to the growing body of knowledge regarding the response of flavonoid biosynthesis to environmental conditions, and should aid in efforts to develop novel varieties of pigmented potatoes for use across different geographies.
Collapse
Affiliation(s)
- Yuhui Liu
- State Key Laboratory of Aridland Crop Science/Agronomy College, Gansu Agricultural University, Lanzhou 730070, China.
| | - Yuanming Li
- State Key Laboratory of Aridland Crop Science/Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhen Liu
- State Key Laboratory of Aridland Crop Science/Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| | - Lei Wang
- Potato Research Center, Hebei North University, Zhangjiakou 075000, China
| | - Zhenzhen Bi
- State Key Laboratory of Aridland Crop Science/Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| | - Chao Sun
- State Key Laboratory of Aridland Crop Science/Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| | - Panfeng Yao
- State Key Laboratory of Aridland Crop Science/Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| | - Junlian Zhang
- State Key Laboratory of Aridland Crop Science/Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiangping Bai
- State Key Laboratory of Aridland Crop Science/Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuting Zeng
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lasa 850000, China
| |
Collapse
|
28
|
Liu S, Gu X, Jiang Y, Wang L, Xiao N, Chen Y, Jin B, Wang L, Li W. UV-B promotes flavonoid biosynthesis in Ginkgo biloba by inducing the GbHY5- GbMYB1- GbFLS module. HORTICULTURE RESEARCH 2023; 10:uhad118. [PMID: 37547729 PMCID: PMC10402656 DOI: 10.1093/hr/uhad118] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/23/2023] [Indexed: 08/08/2023]
Abstract
Ginkgo biloba (ginkgo) leaves have medicinal value due to their high levels of secondary metabolites, such as flavonoids. We found that the flavonoid content in ginkgo leaves increases significantly at high altitudes (Qinghai-Tibet Plateau). Considering that high UV-B radiation is among the key environmental characteristics of the Qinghai-Tibet Plateau, we carried out simulated UV-B treatments on ginkgo seedlings and found that the flavonoid content of the leaves increased significantly following the treatments. Combined with results from our previous studies, we determined that the transcription factor GbHY5 may play a key role in responses to UV-B radiation. Overexpression of GbHY5 significantly promoted the accumulation of flavonoids in both ginkgo callus and Arabidopsis thaliana. Furthermore, yeast two-hybrid and real-time quantitative PCR showed that GbHY5 promoted the expression of GbMYB1 by interacting with GbMYB1 protein. Overexpression of GbMYB1 in ginkgo callus and A. thaliana also significantly promoted flavonoid biosynthesis. GbFLS encodes a key enzyme in flavonoid biosynthesis, and its promoter has binding elements of GbHY5 and GbMYB1. A dual-luciferase reporter assay indicated that while GbHY5 and GbMYB1 activated the expression of GbFLS individually, their co-expression achieved greater activation. Our analyses reveal the molecular mechanisms by which the UV-B-induced GbHY5-GbMYB1-GbFLS module promotes flavonoid biosynthesis in ginkgo, and they provide insight into the use of UV-B radiation to enhance the flavonoid content of ginkgo leaves.
Collapse
Affiliation(s)
- Sian Liu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyin Gu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Yanbing Jiang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Lu Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Nan Xiao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Yadi Chen
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Biao Jin
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | | | | |
Collapse
|
29
|
Lu R, Song M, Wang Z, Zhai Y, Hu C, Perl A, Ma H. Independent flavonoid and anthocyanin biosynthesis in the flesh of a red-fleshed table grape revealed by metabolome and transcriptome co-analysis. BMC PLANT BIOLOGY 2023; 23:361. [PMID: 37454071 DOI: 10.1186/s12870-023-04368-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Red flesh is a desired fruit trait, but the regulation of red flesh formation in grape is not well understood. 'Mio Red' is a seedless table grape variety with light-red flesh and blue-purple skin. The skin color develops at veraison whereas the flesh color develops at a later stage of berry development. The flesh and skin flavonoid metabolomes and transcriptomes were analyzed. RESULTS A total of 161 flavonoids were identified, including 16 anthocyanins. A total of 66 flavonoids were found at significantly different levels in the flesh and skin (fold change ≥ 2 or ≤ 0.5, variable importance in projection (VIP) ≥ 1). The main anthocyanins in the flesh were pelargonidin and peonidin, and in the skin were peonidin, delphinidin, and petunidin. Transcriptome comparison revealed 57 differentially expressed structural genes of the flavonoid-metabolism pathway (log2fold change ≥ 1, FDR < 0.05, FPKM ≥ 1). Two differentially expressed anthocyanin synthase (ANS) genes were annotated, ANS2 (Vitvi02g00435) with high expression in flesh and ANS1 (Vitvi11g00565) in skin, respectively. One dihydro flavonol 4-reductase (DFR, Vitvi18g00988) gene was differentially expressed although high in both skin and flesh. Screened and correlation analysis of 12 ERF, 9 MYB and 3 bHLH genes. The Y1H and dual luciferase assays showed that MYBA1 highly activates the ANS2 promoter in flesh and that ERFCBF6 was an inhibitory, EFR23 and bHLH93 may activate the DFR gene. These genes may be involved in the regulation of berry flesh color. CONCLUSIONS Our study revealed that anthocyanin biosynthesis in grape flesh is independent of that in the skin. Differentially expressed ANS, MYB and ERF transcription factors provide new clues for the future breeding of table grapes that will provide the health benefits as red wine.
Collapse
Affiliation(s)
- Renxiang Lu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Miaoyu Song
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhe Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yanlei Zhai
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Chaoyang Hu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Avihai Perl
- Department of Fruit Tree Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Huiqin Ma
- College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
30
|
Yu ZC, Lin W, He W, Yan GZ, Zheng XT, Luo YN, Zhu H, Peng CL. Dynamic changes of the contents of photoprotective substances and photosynthetic maturation during leaf development of evergreen tree species in subtropical forests. TREE PHYSIOLOGY 2023; 43:965-978. [PMID: 36864631 PMCID: PMC10785039 DOI: 10.1093/treephys/tpad026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/22/2023] [Indexed: 06/11/2023]
Abstract
Many studies have investigated the photoprotective and photosynthetic capacity of plant leaves, but few have simultaneously evaluated the dynamic changes of photoprotective capacity and photosynthetic maturation of leaves at different developmental stages. As a result, the process between the decline of photoprotective substances and the onset of photosynthetic maturation during plant leaf development are still poorly understood, and the relationship between them has not been quantitatively described. In this study, the contents of photoprotective substances, photosynthetic pigment content and photosynthetic capacity of leaves at different developmental stages from young leaves to mature leaves were determined by spatio-temporal replacement in eight dominant tree species in subtropical evergreen broadleaved forests. The correlation analysis found that the data sets of anthocyanins, flavonoids, total phenolics and total antioxidant capacity were mainly distributed on one side of the symmetry axis (y = x), while the data sets of flavonoids, total phenolics and total antioxidant capacity were mainly distributed on both sides of the symmetry axis (y = x). In addition, the content of photoprotective substances in plant leaves was significantly negatively correlated with photosynthetic pigment content and photosynthetic capacity but was significantly positively correlated with dark respiration rate (Rd). When chlorophyll accumulated to ~50% of the final value, the photoprotective substance content and Rd of plant leaves reached the lowest level, and anthocyanins disappeared completely; in contrast, the photosynthetic capacity reached the highest level. Our results suggest that anthocyanins mainly play a light-shielding role in the young leaves of most plants in subtropical forests. In addition, 50% chlorophyll accumulation in most plant leaves was the basis for judging leaf photosynthetic maturity. We also believe that 50% chlorophyll accumulation is a critical period in the transition of plant leaves from high photoprotective capacity (high metabolic capacity, low photosynthetic capacity) to low photoprotective capacity (low metabolic capacity, high photosynthetic capacity).
Collapse
Affiliation(s)
- Zheng-Chao Yu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
- School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou 521041, China
| | - Wei Lin
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Wei He
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Guan-Zhao Yan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiao-Ting Zheng
- School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou 521041, China
| | - Yan-Na Luo
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Hui Zhu
- School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou 521041, China
| | - Chang-Lian Peng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
31
|
Zhao T, Huang C, Li S, Jia M, Wang L, Tang Y, Zhang C, Li Y. VviKFB07 F-box E3 ubiquitin ligase promotes stilbene accumulation by ubiquitinating and degrading VviCHSs protein in grape. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 331:111687. [PMID: 36958599 DOI: 10.1016/j.plantsci.2023.111687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/15/2023] [Accepted: 03/19/2023] [Indexed: 06/18/2023]
Abstract
Stilbene and flavonoid are phytochemicals in plants and play an important role in plant disease resistance and human health. The regulation of stilbene and flavonoid synthesis in plants has been extensively studied at the transcriptional level, but translational and post-translational controls of stilbene and flavonoid biosynthesis are still poorly understood. In this study, a grape F-box E3 ubiquitin ligase VviKFB07 associated with the metabolism of stilbene and flavonoid was screened out with transcriptome. Overexpression of VviKFB07 in the Nicotiana tabacum resulted in a decrease in flavonol and anthocyanin content in corolla, and stable overexpression assays of VviKFB07 in grape callus promoted the accumulation of resveratrol. Subsequently, Yeast two-hybrid and bimolecular fluorescence complementation assays identified the physical interaction between VviKFB07 and VviCHSs proteins. In vivo experiments verified that VviKFB07 was involved in the ubiquitination and degradation of VviCHSs protein. Taken together, our findings clarify the role of ubiquitin ligase VviKFB07 in the synthesis of stilbene and flavonoid in grapes.
Collapse
Affiliation(s)
- Ting Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Congbo Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Shengzhi Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Mengqiong Jia
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China; College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ling Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Yujin Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Chaohong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| | - Yan Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China; College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
32
|
Fang S, Qiu S, Chen K, Lv Z, Chen W. The transcription factors SbMYB45 and SbMYB86.1 regulate flavone biosynthesis in Scutellaria baicalensis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 200:107794. [PMID: 37257409 DOI: 10.1016/j.plaphy.2023.107794] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
Scutellaria baicalensis Georgi is an important Chinese medicinal plant that is rich in the flavones baicalin, wogonoside, and wogonin, providing it with anti-cancer, anti-inflammatory, and antibacterial properties. However, although the biosynthetic pathways of baicalin and its derivates have been elucidated, the regulation of flavone biosynthesis in S. baicalensis is poorly understood. Here, we found that the contents of baicalin and its derivates increased and that baicalin biosynthetic pathway genes were induced in response to light, and baicalin and baicalein are not exclusively produced in the roots of S. baicalensis. Based on the fact that MYB transcription factors are known to play important roles in flavone biosynthesis, we identified SbMYB45 and SbMYB86.1 in S. baicalensis and determined that they bind to the promoter of the flavone biosynthesis gene SbCHI to enhance its transcription. Moreover, overexpressing SbMYB45 and SbMYB86.1 enhanced the accumulation of baicalin in S. baicalensis leaves. We demonstrate that SbMYB45 and SbMYB86.1 bind to the cis-acting element MBSII in the promoter of CHI to redundantly induce its expression upon light exposure. These findings indicate that SbMYB45 and SbMYB86.1 transcriptionally activate SbCHI in response to light and enhance flavone contents in S. baicalensis.
Collapse
Affiliation(s)
- Shiyuan Fang
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shi Qiu
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Kaixian Chen
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Zongyou Lv
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Wansheng Chen
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China.
| |
Collapse
|
33
|
Athanasiadis V, Chatzimitakos T, Bozinou E, Kotsou K, Palaiogiannis D, Lalas SI. Optimization of Extraction Parameters for Enhanced Recovery of Bioactive Compounds from Quince Peels Using Response Surface Methodology. Foods 2023; 12:foods12112099. [PMID: 37297343 DOI: 10.3390/foods12112099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Quinces are well known for their multiple health benefits, including antioxidant, hypoglycemic, antimicrobial, anti-inflammatory, anticarcinogenic, etc., properties. Despite the widespread utilization of various plant parts, the peel has been largely ignored in the industry. In this study, we explored the effects of different extraction parameters, such as temperature, time, and composition of the extraction solvent, and techniques such as ultrasound (US) and a pulsed electric field (PEF), either alone or in combination, and optimized these parameters using a response surface methodology (RSM) to enhance the extraction of bioactive compounds such as chlorogenic acid, total polyphenols, flavonoids, and ascorbic acid from waste quince peels. From our results, it was apparent that quince peels are a great source of many bioactive compounds with high antioxidant activity. More specifically, after principal component analysis (PCA) and partial least squares (PLS) analysis, quince peels contain high levels of total polyphenols (43.99 mg gallic acid equivalents/g dw), total flavonoids (3.86 mg rutin equivalents/g dw), chlorogenic acid (2.12 mg/g dw), and ascorbic acid (543.93 mg/100 g dw), as well as antioxidant activity of 627.73 μmol AAE/g and 699.61 μmol DPPH/g as evidenced by FRAP and DPPH assays, respectively. These results emphasize the potential of utilizing quince peels as an eco-friendly and cost-effective source of bioactive compounds with various applications in the food and pharmaceutical industries for the prepared extracts.
Collapse
Affiliation(s)
- Vassilis Athanasiadis
- Department of Food Science & Nutrition, University of Thessaly, Terma N. Temponera Str., 43100 Karditsa, Greece
| | - Theodoros Chatzimitakos
- Department of Food Science & Nutrition, University of Thessaly, Terma N. Temponera Str., 43100 Karditsa, Greece
| | - Eleni Bozinou
- Department of Food Science & Nutrition, University of Thessaly, Terma N. Temponera Str., 43100 Karditsa, Greece
| | - Konstantina Kotsou
- Department of Food Science & Nutrition, University of Thessaly, Terma N. Temponera Str., 43100 Karditsa, Greece
| | - Dimitrios Palaiogiannis
- Department of Food Science & Nutrition, University of Thessaly, Terma N. Temponera Str., 43100 Karditsa, Greece
| | - Stavros I Lalas
- Department of Food Science & Nutrition, University of Thessaly, Terma N. Temponera Str., 43100 Karditsa, Greece
| |
Collapse
|
34
|
Lai J, Li C, Zhang Y, Wu Z, Li W, Zhang Z, Ye W, Guo H, Wang C, Long T, Wang S, Yang J. Integrated Transcriptomic and Metabolomic Analyses Reveal the Molecular and Metabolic Basis of Flavonoids in Areca catechu L. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4851-4862. [PMID: 36940468 DOI: 10.1021/acs.jafc.2c08864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Areca catechu L., of the Arecaceae family, is widely distributed in tropical Asia. In A. catechu, the extracts and compounds, including flavonoids, have various pharmacological activities. Although there are many studies of flavonoids, the molecular mechanism of their biosynthesis and regulation remains unclear in A. catechu. In this study, 331 metabolites were identified from the root, stem, and leaf of A. catechu using untargeted metabolomics, including 107 flavonoids, 71 lipids, 44 amino acids and derivatives, and 33 alkaloids. The transcriptome analysis identified 6119 differentially expressed genes, and some were enriched in the flavonoid pathway. To analyze the biosynthetic mechanism of the metabolic differences in A. catechu tissues, 36 genes were identified through combined transcriptomic and metabolomic analysis, in which glycosyltransferase genes Acat_15g017010 and Acat_16g013670 were annotated as being involved in the glycosylation of kaempferol and chrysin by their expression and in vitro activities. Flavonoid biosynthesis could be regulated by the transcription factors, AcMYB5 and AcMYB194. This study laid a foundation for further research on the flavonoid biosynthetic pathway of A. catechu.
Collapse
Affiliation(s)
- Jun Lai
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 572208, China
| | - Chun Li
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 572208, China
| | - Yueran Zhang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 572208, China
| | - Zeyong Wu
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 572208, China
| | - Weiguan Li
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 572208, China
| | - Zhonghui Zhang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 572208, China
| | - Weizhen Ye
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 572208, China
| | - Hao Guo
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 572208, China
| | - Chao Wang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 572208, China
| | - Tuan Long
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 572208, China
| | - Shouchuang Wang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 572208, China
| | - Jun Yang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 572208, China
| |
Collapse
|
35
|
Zhang Y, Duan J, Wang Q, Zhang M, Zhi H, Bai Z, Zhang Y, Luo J. The Paeonia qiui R2R3-MYB Transcription Factor PqMYBF1 Positively Regulates Flavonol Accumulation. PLANTS (BASEL, SWITZERLAND) 2023; 12:1427. [PMID: 37050052 PMCID: PMC10096829 DOI: 10.3390/plants12071427] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/11/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Tree peony is a "spring colored-leaf" plant which has red leaves in early spring, and the red color of the leaves usually fades in late spring. Flavonols are one subgroup of flavonoids, and they affect the plant organs' color as co-pigments of anthocyanins. To investigate the color variation mechanism of leaves in tree peony, PqMYBF1, one flavonol biosynthesis-related MYB gene was isolated from Paeonia qiui and characterized. PqMYBF1 contained the SG7 and SG7-2 motifs which are unique in flavonol-specific MYB regulators. Subcellular localization and transactivation assay showed that PqMYBF1 localized to the nucleus and acted as a transcriptional activator. The ectopic expression of PqMYBF1 in transgenic tobacco caused an observable increase in flavonol level and the anthocyanin accumulation was decreased significantly, resulting in pale pink flowers. Dual-luciferase reporter assays showed that PqMYBF1 could activate the promoters of PqCHS, PqF3H, and PqFLS. These results suggested that PqMYBF1 could promote flavonol biosynthesis by activating PqCHS, PqF3H, and PqFLS expression, which leads metabolic flux from anthocyanin to flavonol pathway, resulting in more flavonol accumulation. These findings provide a new train of thought for the molecular mechanism of leaf color variation in tree peony in spring, which will be helpful for the molecular breeding of tree peony with colored foliage.
Collapse
Affiliation(s)
- Yue Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
- National Engineering Research Center for Oil Peony, Yangling 712100, China
| | - Jingjing Duan
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
- National Engineering Research Center for Oil Peony, Yangling 712100, China
| | - Qiaoyun Wang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
- National Engineering Research Center for Oil Peony, Yangling 712100, China
| | - Min Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
- National Engineering Research Center for Oil Peony, Yangling 712100, China
| | - Hui Zhi
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
- National Engineering Research Center for Oil Peony, Yangling 712100, China
| | - Zhangzhen Bai
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
- National Engineering Research Center for Oil Peony, Yangling 712100, China
| | - Yanlong Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
- National Engineering Research Center for Oil Peony, Yangling 712100, China
| | - Jianrang Luo
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
- National Engineering Research Center for Oil Peony, Yangling 712100, China
| |
Collapse
|
36
|
Zhu W, Wu H, Yang C, Shi B, Zheng B, Ma X, Zhou K, Qian M. Postharvest light-induced flavonoids accumulation in mango ( Mangifera indica L.) peel is associated with the up-regulation of flavonoids-related and light signal pathway genes. FRONTIERS IN PLANT SCIENCE 2023; 14:1136281. [PMID: 36993851 PMCID: PMC10040657 DOI: 10.3389/fpls.2023.1136281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
INTRODUCTION Flavonoids are important secondary metabolites in plants and light is a crucial environmental factor regulating flavonoids biosynthesis. However, effect of light on the different flavonoids compositions accumulation in mango and the relevant molecular mechanism still need to be clarified. METHODS In this study, green-mature fruits of red mango cultivar 'Zill' were subjected to postharvest light treatment, and fruit peel color, total soluble solids content, total organic acid, and firmness of flesh were measured. The flavonoids metabolites profile, and the expression of flavonoids-related genes and light signal pathway genes were also analyzed. RESULTS Results showed that light treatment promoted the red coloration of fruit peel and increased the total soluble solids content and firmness of flesh. The concentration of flavonols, proanthocyanidins and anthocyanins, and expression of key flavonoids biosynthetic genes including MiF3H, MiFLS, MiLAR, MiANS, MiUFGT1, and MiUFGT3 were significantly induced by light. The MYBs regulating flavonols and proanthocyanidins, i.e. MiMYB22 and MiMYB12, as well as the key light signal pathway transcription factors (TFs) MiHY5 and MiHYH, were identified in mango. The transcription of MiMYB1, MiMYB12, MiMYB22, MiHY5 and MiHYH was up-regulated by light. DISCUSSION Our results provide a postharvest technology to improve mango fruit appearance quality, and are helpful to reveal the molecular mechanism of light-induced flavonoids biosynthesis in mango.
Collapse
Affiliation(s)
- Wencan Zhu
- Sanya Nanfan Research Institute & Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Hongxia Wu
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Chengkun Yang
- Sanya Nanfan Research Institute & Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Bin Shi
- Sanya Nanfan Research Institute & Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Bin Zheng
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Xiaowei Ma
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Kaibing Zhou
- Sanya Nanfan Research Institute & Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Minjie Qian
- Sanya Nanfan Research Institute & Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, School of Horticulture, Hainan University, Haikou, China
| |
Collapse
|
37
|
Li S, Shen Y, Zheng S, Zhu Q, Cai L, Wang Y, Zhao X. ZjFAS2 is involved in the fruit coloration in Ziziphus jujuba Mill. by regulating anthocyanin accumulation. FRONTIERS IN PLANT SCIENCE 2023; 14:1142757. [PMID: 36968382 PMCID: PMC10036858 DOI: 10.3389/fpls.2023.1142757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Fruit color is one of the most important traits of jujube (Ziziphus jujuba Mill.). However, the differences in the pigments of different varieties of Jujube are not well studied. In addition, the genes responsible for fruit color and their underlying molecular mechanisms remain unclear. In this study, two jujube varieties, namely "Fengmiguan" (FMG) and "Tailihong" (TLH), were considered. The metabolites from jujube fruits were investigated using ultra-high-performance liquid chromatography/tandem mass spectrometry. Transcriptome was used to screen anthocyanin regulatory genes. The gene function was confirmed by overexpression and transient expression experiments. The gene expression was analyzed by quantitative reverse transcription polymerase chain reaction analyses and subcellular localization. Yeast-two-hybrid and bimolecular fluorescence complementation were used to screen and identify the interacting protein. These cultivars differed in color owing to their respective anthocyanin accumulation patterns. Three and seven types of anthocyanins were found in FMG and TLH, respectively, which played a key role in the process of fruit coloration. ZjFAS2 positively regulates anthocyanin accumulation. The expression profile of ZjFAS2 exhibited its different expression trends in different tissues and varieties. Subcellular localization experiments showed that ZjFAS2 was localized to the nucleus and membrane. A total of 36 interacting proteins were identified, and the possibility of ZjFAS2 interacting with ZjSHV3 to regulate jujube fruit coloration was studied. Herein, we investigated the role of anthocyanins in the different coloring patterns of the jujube fruits and provided a foundation for elucidating the molecular mechanism underlying jujube fruit coloration.
Collapse
|
38
|
Wu X, Chen B, Xiao J, Guo H. Different doses of UV-B radiation affect pigmented potatoes' growth and quality during the whole growth period. FRONTIERS IN PLANT SCIENCE 2023; 14:1101172. [PMID: 36818873 PMCID: PMC9929570 DOI: 10.3389/fpls.2023.1101172] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION UltraViolet- Biological (UV-B) plays an important role in plant growth and the formation of nutrients, especially secondary metabolites. METHODS To investigate the phenotypic changes, physiological responses, and internal genes expression of potatoes under enhanced UV-B radiation, two Yunnan native pigmented potatoes varieties named "Huaxinyangyu" and "Jianchuanhong" were exposed to different UV-B doses during whole growth duration. RESULTS Pearson correlation analysis and principal component analysis showed that the agronomic characters (i.e. plant height, pitch, stem diameter, and root shoot ratio) of plants treated with low dose ultraviolet (T1) did not change significantly compared with the absence of ultraviolet radiation (CK), even unit yield increased slightly; Similarly, under low UV-B radiation, photosynthetic and physiological parameters (photosynthetic rate, stomatal conductance, respiration rate, and transpiration rate) of leaves were significantly increased. In addition, low-dose UV-B treatment promoted the synthesis of tuber nutrients (e.g. phenols, chlorogenic acids, flavonoids, vitamin C, anthocyanins) and increased the expression of structural genes for anthocyanin synthesis. The number of nutrients and gene expression in tubers raised by the "Huaxinyangyu" was the highest at 84 days, and "Jianchuanhong" was the highest at 72 days. However, the higher dose of UV-B radiation (T2) will cause greater damage to the pigmented potatoes plants, making the plants reduce the yield, and significantly reduce the tuber nutrients. DISCUSSION This study showed that proper ultraviolet radiation will not harm pigmented potatoes, but also improve their oxidative stress tolerance, increase the structure genes expression of anthocyanins and continuously synthesize beneficial substances to improve the yield and quality of potato tubers.
Collapse
|
39
|
Song Y, Ma B, Guo Q, Zhou L, Zhou X, Ming Z, You H, Zhang C. MYB pathways that regulate UV-B-induced anthocyanin biosynthesis in blueberry ( Vaccinium corymbosum). FRONTIERS IN PLANT SCIENCE 2023; 14:1125382. [PMID: 36794225 PMCID: PMC9923047 DOI: 10.3389/fpls.2023.1125382] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/16/2023] [Indexed: 05/27/2023]
Abstract
Ultraviolet-B (UV-B) promotes anthocyanin accumulation and improves fruit quality in plants. To explore the underlying network of MYB transcription factors that regulates UV-B-induced anthocyanin biosynthesis in blueberry (Vaccinium corymbosum), we analyzed the response of MYB transcription factor genes to UV-B treatment. Transcriptome sequencing analysis revealed that VcMYBA2 and VcMYB114 expression were upregulated and were positively correlated with the expression of anthocyanin structural genes under UV-B radiation according to weighted gene co-expression network analysis (WGCNA) data. The VcUVR8-VcCOP1-VcHY5 pathway perceives UV-B signals and promotes the expression of anthocyanin structural genes by upregulating VcMYBA2 and VcMYB114 or by regulating the VcBBXs-VcMYB pathway, ultimately promoting anthocyanin accumulation. By contrast, VcMYB4a and VcUSP1 were downregulated under UV-B treatment, and VcMYB4a expression was negatively correlated with that of anthocyanin biosynthesis genes in response to UV-B. Analysis of VcMYB4a-overexpressing and wild-type blueberry calli exposed to UV-B radiation revealed that VcMYB4a represses UV-B-induced anthocyanin accumulation. Yeast one-hybrid and dual luciferase assays showed that the universal stress protein VcUSP1 directly bound to the promoter of VcMYB4a. These results suggest that the VcUSP1-VcMYB4a pathway negatively regulates UV-B-induced anthocyanin biosynthesis and provide insight into UV-B-induced anthocyanin biosynthesis.
Collapse
|
40
|
Self-Emulsifying Micellization of Crude Extracts from Apple (Malus domestica cv. Anna), Plum ( Prunus domestica cv. Satsuma), and Guava ( Psidium guajava L.) Fruits. Molecules 2023; 28:molecules28031297. [PMID: 36770962 PMCID: PMC9921913 DOI: 10.3390/molecules28031297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
Micellar microemulsions are thermodynamically stable self-emulsifying systems that have been used to successfully improve the low oral bioavailability of several bioactive phytochemicals, such as antioxidant polyphenols. However, most studies have reported the micellization of single-compounds or purified chemical fractions; thus, the stability, phytochemical-loading efficiency, and bioactivity of complex crude extracts remain largely unexplored. In this study, we evaluated the effects of micellar emulsification of tropical apple (Malus domestica cv. Anna), plum (Prunus domestica cv. Satsuma), and guava (Psidium guajava L.) extracts regarding particle size and stability, polyphenol-loading efficiency, antioxidant capacity, and cytotoxic activity in human and murine cells. Simple food-grade extraction protocols were implemented to obtain apple, plum, and guava extracts. Total polyphenols, flavonoids, and antioxidant activity (DPPH) were determined in the fruit extracts, and their polyphenol profile was further characterized by liquid chromatography (HPLC-DAD). The dried extracts were mixed into a food-grade, self-emulsifying system, and their cytotoxicity in human and murine cell lines was compared. Our research showed that complex fruit matrixes were successfully emulsified into thermodynamically stable polysorbate-based nanometric micelles with uniform size distribution and consistent pH stability, with potential applications in food and biomedical industries.
Collapse
|
41
|
Qian M, Wu H, Yang C, Zhu W, Shi B, Zheng B, Wang S, Zhou K, Gao A. RNA-Seq reveals the key pathways and genes involved in the light-regulated flavonoids biosynthesis in mango ( Mangifera indica L.) peel. FRONTIERS IN PLANT SCIENCE 2023; 13:1119384. [PMID: 36743534 PMCID: PMC9890063 DOI: 10.3389/fpls.2022.1119384] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/30/2022] [Indexed: 05/20/2023]
Abstract
Introduction Flavonoids are important water soluble secondary metabolites in plants, and light is one of the most essential environmental factors regulating flavonoids biosynthesis. In the previous study, we found bagging treatment significantly inhibited the accumulation of flavonols and anthocyanins but promoted the proanthocyanidins accumulation in the fruit peel of mango (Mangifera indica L.) cultivar 'Sensation', while the relevant molecular mechanism is still unknown. Methods In this study, RNA-seq was conducted to identify the key pathways and genes involved in the light-regulated flavonoids biosynthesis in mango peel. Results By weighted gene co-expression network analysis (WGCNA), 16 flavonoids biosynthetic genes were crucial for different flavonoids compositions biosynthesis under bagging treatment in mango. The higher expression level of LAR (mango026327) in bagged samples might be the reason why light inhibits proanthocyanidins accumulation in mango peel. The reported MYB positively regulating anthocyanins biosynthesis in mango, MiMYB1, has also been identified by WGCNA in this study. Apart from MYB and bHLH, ERF, WRKY and bZIP were the three most important transcription factors (TFs) involved in the light-regulated flavonoids biosynthesis in mango, with both activators and repressors. Surprisingly, two HY5 transcripts, which are usually induced by light, showed higher expression level in bagged samples. Discussion Our results provide new insights of the regulatory effect of light on the flavonoids biosynthesis in mango fruit peel.
Collapse
Affiliation(s)
- Minjie Qian
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Hongxia Wu
- Ministry of Agriculture Key Laboratory of Tropical Fruit Biology, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Chengkun Yang
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
- Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Wencan Zhu
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
- Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Bin Shi
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
- Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Bin Zheng
- Ministry of Agriculture Key Laboratory of Tropical Fruit Biology, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Songbiao Wang
- Ministry of Agriculture Key Laboratory of Tropical Fruit Biology, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Kaibing Zhou
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
- Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Aiping Gao
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences & Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Haikou, China
| |
Collapse
|
42
|
Calvo-Castro LA, Lobo-Vázquez M, Gómez-González JC, Arnáez-Serrano E, Zamora-Fallas G, Sánchez-Zúñiga K, Centeno-Cerdas C. Bioactive potential of tropical highland apple (Malus domestica cv. Anna) crude extract: opportunities for food waste revalorization. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-022-00447-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abstract
Background
The third most produced fruit crop in the world, apples (Malus domestica Borkh) are one of the most accessible and widely consumed fruits, with known benefits for human health. Although they are a temperate crop, apple cultivation has been successfully implemented in lower latitudes. Tropical highland Costa Rican apples (cv. Anna) have shown high total polyphenol content, and cytotoxic effects against human cancer cell lines. However, most reports originate from purified fractions, obtained using methods which are not easily translatable for commercial applications. In this study, we prepared a polyphenol-rich bioactive extract from Costa Rican Anna apples, using food-grade solvents and simple techniques, aiming towards easy translation of the extraction protocols to small local producers.
Results
The whole apple crude extract (AE) was investigated for its total polyphenol content, general phytochemical profile, cytotoxicity against human breast and lung cancer cells, and regenerative potential in murine skin fibroblast monolayers. The AE showed total polyphenol amounts comparable to that obtained using more refined extractions in previous studies, and exhibited cytotoxic activity against human breast (MCF7) and lung (NCI-H460) cancer cells, and inhibition of cell proliferation in the scratch-wound-healing assay.
Conclusions
Food-grade simple protocols were successful for obtaining a polyphenol-rich bioactive extract from Costa Rican Anna apples. The easy-to-implement extraction protocols and biochemical tests could provide a source of bioactive phytochemicals to be used in circular production systems.
Collapse
|
43
|
Zhao S, Blum JA, Ma F, Wang Y, Borejsza-Wysocka E, Ma F, Cheng L, Li P. Anthocyanin Accumulation Provides Protection against High Light Stress While Reducing Photosynthesis in Apple Leaves. Int J Mol Sci 2022; 23:ijms232012616. [PMID: 36293472 PMCID: PMC9604341 DOI: 10.3390/ijms232012616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 11/24/2022] Open
Abstract
The photoprotective role of anthocyanin remains controversial. In this study, we explored the effects of anthocyanin on photosynthesis and photoprotection using transgenic ‘Galaxy Gala’ apple plants overexpressing MdMYB10 under high light stress. The overexpression of MdMYB10 dramatically enhanced leaf anthocyanin accumulation, allowing more visible light to be absorbed, particularly in the green region. However, through post-transcriptional regulation, anthocyanin accumulation lowered leaf photosynthesis in both photochemical reaction and CO2 fixation capacities. Anthocyanin accumulation also led to a decreased de-epoxidation state of the xanthophyll cycle and antioxidant capacities, but this is most likely a response to the light-shielding effect of anthocyanin, as indicated by a higher chlorophyll concentration and lower chlorophyll a/b ratio. Under laboratory conditions when detached leaves lost carbon fixation capacity due to the limitation of CO2 supply, the photoinhibition of detached transgenic red leaves was less severe under strong white, green, or blue light, but it became more severe in response to strong red light compared with that of the wild type. In field conditions when photosynthesis was performed normally in both green and transgenic red leaves, the degree of photoinhibition was comparable between transgenic red leaves and wild type leaves, but it was less severe in transgenic young shoot bark compared with the wild type. Taken together, these data show that anthocyanin protects plants from high light stress by absorbing excessive visible light despite reducing photosynthesis.
Collapse
Affiliation(s)
- Shanshan Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Xianyang 712100, China
| | - Jeremie A. Blum
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Fangfang Ma
- Donald Danforth Plant Science Center and Agricultural Research Service, US Department of Agriculture, St. Louis, MO 63132, USA
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Yuzhu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Xianyang 712100, China
| | - Ewa Borejsza-Wysocka
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Xianyang 712100, China
| | - Lailiang Cheng
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Correspondence: (L.C.); (P.L.)
| | - Pengmin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Xianyang 712100, China
- Correspondence: (L.C.); (P.L.)
| |
Collapse
|
44
|
Ren C, Cao Y, Xing M, Guo Y, Li J, Xue L, Sun C, Xu C, Chen K, Li X. Genome-wide analysis of UDP-glycosyltransferase gene family and identification of members involved in flavonoid glucosylation in Chinese bayberry ( Morella rubra). FRONTIERS IN PLANT SCIENCE 2022; 13:998985. [PMID: 36226286 PMCID: PMC9549340 DOI: 10.3389/fpls.2022.998985] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Glycosylation was catalyzed by UDP-glycosyltransferase (UGT) and was important for enriching diversity of flavonoids. Chinese bayberry (Morella rubra) has significant nutritional and medical values because of diverse natural flavonoid glycosides. However, information of UGT gene family was quite limited in M. rubra. In the present study, a total of 152 MrUGT genes clustered into 13 groups were identified in M. rubra genome. Among them, 139 MrUGT genes were marked on eight chromosomes and 13 members located on unmapped scaffolds. Gene duplication analysis indicated that expansion of MrUGT gene family was mainly forced by tandem and proximal duplication events. Gene expression patterns in different tissues and under UV-B treatment were analyzed by transcriptome. Cyanidin 3-O-glucoside (C3Glc) and quercetin 3-O-glucoside (Q3Glc) were two main flavonoid glucosides accumulated in M. rubra. UV-B treatment significantly induced C3Glc and Q3Glc accumulation in fruit. Based on comprehensively analysis of transcriptomic data and phylogenetic homology together with flavonoid accumulation patterns, MrUFGT (MrUGT78A26) and MrUGT72B67 were identified as UDP-glucosyltransferases. MrUFGT was mainly involved in C3Glc and Q3Glc accumulation in fruit, while MrUGT72B67 was mainly involved in Q3Glc accumulation in leaves and flowers. Gln375 and Gln391 were identified as important amino acids for glucosyl transfer activity of MrUFGT and MrUGT72B67 by site-directed mutagenesis, respectively. Transient expression in Nicotiana benthamiana tested the function of MrUFGT and MrUGT72B67 as glucosyltransferases. The present study provided valuable source for identification of functional UGTs involved in secondary metabolites biosynthesis in M. rubra.
Collapse
Affiliation(s)
- Chuanhong Ren
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Yunlin Cao
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Mengyun Xing
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Yan Guo
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Jiajia Li
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Lei Xue
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Chongde Sun
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Changjie Xu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Kunsong Chen
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Xian Li
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| |
Collapse
|
45
|
Montanari S, Thomson S, Cordiner S, Günther CS, Miller P, Deng CH, McGhie T, Knäbel M, Foster T, Turner J, Chagné D, Espley R. High-density linkage map construction in an autotetraploid blueberry population and detection of quantitative trait loci for anthocyanin content. FRONTIERS IN PLANT SCIENCE 2022; 13:965397. [PMID: 36247546 PMCID: PMC9555082 DOI: 10.3389/fpls.2022.965397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
Highbush blueberry (Vaccinium corymbosum, 2n = 4x = 48) is the most cultivated type of blueberry, both in New Zealand and overseas. Its perceived nutritional value is conferred by phytonutrients, particularly anthocyanins. Identifying the genetic mechanisms that control the biosynthesis of these metabolites would enable faster development of cultivars with improved fruit qualities. Here, we used recently released tools for genetic mapping in autotetraploids to build a high-density linkage map in highbush blueberry and to detect quantitative trait loci (QTLs) for fruit anthocyanin content. Genotyping was performed by target sequencing, with ∼18,000 single nucleotide polymorphism (SNP) markers being mapped into 12 phased linkage groups (LGs). Fruits were harvested when ripe for two seasons and analyzed with high-performance liquid chromatography-mass spectrometry (HPLC-MS): 25 different anthocyanin compounds were identified and quantified. Two major QTLs that were stable across years were discovered, one on LG2 and one on LG4, and the underlying candidate genes were identified. Interestingly, the presence of anthocyanins containing acylated sugars appeared to be under strong genetic control. Information gained in this study will enable the design of molecular markers for marker-assisted selection and will help build a better understanding of the genetic control of anthocyanin biosynthesis in this crop.
Collapse
Affiliation(s)
- Sara Montanari
- The New Zealand Institute for Plant and Food Research Limited, Motueka, New Zealand
| | - Susan Thomson
- The New Zealand Institute for Plant and Food Research Limited, Lincoln, New Zealand
| | - Sarah Cordiner
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Catrin S. Günther
- The New Zealand Institute for Plant and Food Research Limited, Ruakura, New Zealand
| | - Poppy Miller
- The New Zealand Institute for Plant and Food Research Limited, Te Puke, New Zealand
| | - Cecilia H. Deng
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Tony McGhie
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Mareike Knäbel
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Toshi Foster
- The New Zealand Institute for Plant and Food Research Limited, Motueka, New Zealand
| | - Janice Turner
- The New Zealand Institute for Plant and Food Research Limited, Motueka, New Zealand
| | - David Chagné
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Richard Espley
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| |
Collapse
|
46
|
Xia X, Gong R, Zhang C. Integrative analysis of transcriptome and metabolome reveals flavonoid biosynthesis regulation in Rhododendron pulchrum petals. BMC PLANT BIOLOGY 2022; 22:401. [PMID: 35974307 PMCID: PMC9380304 DOI: 10.1186/s12870-022-03762-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/15/2022] [Indexed: 06/02/2023]
Abstract
BACKGROUND Color is the major ornamental feature of the Rhododendron genus, and it is related to the contents of flavonoid in petals. However, the regulatory mechanism of flavonoid biosynthesis in Rhododendron pulchrum remains unknown. The transcriptome and metabolome analysis of Rhododendron pulchrum with white, pink and purple color in this study aimed to reveal the mechanism of flavonoid biosynthesis and to provide insight for improving the petal color. RESULTS Flavonoids and flavonols are the major components of flavonoid metabolites in R.pulchrum, such as laricitrin, apigenin, tricin, luteolin, isoorientin, isoscutellarein, diosmetin and their glycosides derivatives. With transcriptome and metabolome analysis, we found CHS, FLS, F3'H, F3'5'H, DFR, ANS, GT, FNS, IFR and FAOMT genes showed significantly differential expression in cultivar 'Zihe'. FNS and IFR were discovered to be associated with coloration in R.pulchrum for the first time. The FNS gene existed in the form of FNSI. The IFR gene and its related metabolites of medicarpin derivatives were highly expressed in purple petal. In cultivar 'Fenhe', up-regulation of F3'H and F3'5'H and down-regulation of 4CL, DFR, ANS, and GT were associated with pink coloration. With the transcription factor analysis, a subfamily of DREBs was found to be specifically enriched in pink petals. This suggested that the DREB family play an important role in pink coloration. In cultivars 'Baihe', flavonoid biosynthesis was inhibited by low expression of CHS, while pigment accumulation was inhibited by low expression of F3'5'H, DFR, and GT, which led to a white coloration. CONCLUSIONS By analyzing the transcriptome and metabolome of R.pulchrum, principal differential expression genes and metabolites of flavonoid biosynthesis pathway were identified. Many novel metabolites, genes, and transcription factors associated with coloration have been discovered. To reveal the mechanism of the coloration of different petals, a model of the flavonoid biosynthesis pathway of R.pulchrum was constructed. These results provide in depth information regarding the coloration of the petals and the flavonoid metabolism of R.pulcherum. The study of transcriptome and metabolome profiling gains insight for further genetic improvement in Rhododendron.
Collapse
Affiliation(s)
- Xi Xia
- Shanghai Urban Plant Resources Development and Application Engineering Research Center, Shanghai Botanical Garden, Shanghai, China
| | - Rui Gong
- Shanghai Urban Plant Resources Development and Application Engineering Research Center, Shanghai Botanical Garden, Shanghai, China
| | - Chunying Zhang
- Shanghai Urban Plant Resources Development and Application Engineering Research Center, Shanghai Botanical Garden, Shanghai, China.
| |
Collapse
|
47
|
Unterlander N, Mats L, McGary LC, Gordon HOW, Bozzo GG. Kaempferol rhamnoside catabolism in rosette leaves of senescing Arabidopsis and postharvest stored radish. PLANTA 2022; 256:36. [PMID: 35816223 DOI: 10.1007/s00425-022-03949-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Flavonol rhamnosides including kaempferitrin (i.e., kaempferol 3-O-α-rhamnoside-7-O-α-rhamnoside) occur throughout the plant kingdom. Mechanisms governing flavonol rhamnoside biosynthesis are established, whereas degradative processes occurring in plants are relatively unknown. Here, we investigated the catabolic events affecting kaempferitrin status in the rosette leaves of Arabidopsis thaliana L. Heynh. (Arabidopsis) and Raphanus sativus L. (radish), respectively, in response to developmental senescence and postharvest handling. On a per plant basis, losses of several kaempferol rhamnosides including kaempferitrin were apparent in senescing leaves of Arabidopsis during development and postharvest radish stored at 5 °C. Conversely, small pools of kaempferol 7-O-α-rhamnoside (K7R), kaempferol 3-O-α-rhamnoside (K3R), and kaempferol built up in senescing leaves of both species. Evidence is provided for ⍺-rhamnosidase activities targeting the 7-O-α-rhamnoside of kaempferitrin and K7R in rosette leaves of both species. An HPLC analysis of in vitro assays of clarified leaf extracts prepared from developing Arabidopsis and postharvest radish determined that these metabolic shifts were coincident with respective 237% and 645% increases in kaempferitrin 7-O-⍺-rhamnosidase activity. Lower activity rates were apparent when these ⍺-rhamnosidase assays were performed with K7R. A radish ⍺-rhamnosidase containing peak eluting from a DEAE-Sepharose Fast Flow column hydrolyzed various 7-O-rhamnosylated flavonols, as well as kaempferol 3-O-β-glucoside. Together it is apparent that the catabolism of 7-O-α-rhamnosylated kaempferol metabolites in senescing plant leaves is associated with a flavonol 7-O-α-rhamnoside-utilizing α-rhamnosidase.
Collapse
Affiliation(s)
- Nicole Unterlander
- Department of Plant Agriculture, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Lili Mats
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, N1G 5C9, Canada
| | - Laura C McGary
- Department of Plant Agriculture, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Harley O W Gordon
- Department of Plant Agriculture, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Gale G Bozzo
- Department of Plant Agriculture, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
48
|
BBX24 Interacts with DELLA to Regulate UV-B-Induced Photomorphogenesis in Arabidopsis thaliana. Int J Mol Sci 2022; 23:ijms23137386. [PMID: 35806395 PMCID: PMC9266986 DOI: 10.3390/ijms23137386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 02/01/2023] Open
Abstract
UV-B radiation, sensed by the photoreceptor UVR8, induces signal transduction for plant photomorphogenesis. UV-B radiation affects the concentration of the endogenous plant hormone gibberellin (GA), which in turn triggers DELLA protein degradation through the 26S proteasome pathway. DELLA is a negative regulator in GA signaling, partially relieving the inhibition of hypocotyl growth induced by UV-B in Arabidopsis thaliana. However, GAs do usually not work independently but integrate in complex networks linking to other plant hormones and responses to external environmental signals. Until now, our understanding of the regulatory network underlying GA-involved UV-B photomorphogenesis had remained elusive. In the present research, we investigate the crosstalk between the GA and UV-B signaling pathways in UV-B-induced photomorphogenesis of Arabidopsis thaliana. Compared with wild type Landsberg erecta (Ler), the abundance of HY5, CHS, FLS, and UF3GT were found to be down-regulated in rga-24 and gai-t6 mutants under UV-B radiation, indicating that DELLA is a positive regulator in UV-B-induced photomorphogenesis. Our results indicate that BBX24 interacts with RGA (one of the functional DELLA family members). Furthermore, we also found that RGA interacts with HY5 (the master regulator in plant photomorphogenesis). Collectively, our findings suggest that the HY5−BBX24−DELLA module serves as an important signal regulating network, in which GA is involved in UV-B signaling to regulate hypocotyl inhibition.
Collapse
|
49
|
Xie L, Guo Y, Ren C, Cao Y, Li J, Lin J, Grierson D, Zhao X, Zhang B, Sun C, Chen K, Li X. Unravelling the consecutive glycosylation and methylation of flavonols in peach in response to UV-B irradiation. PLANT, CELL & ENVIRONMENT 2022; 45:2158-2175. [PMID: 35357710 DOI: 10.1111/pce.14323] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Flavonol glycosides are bioactive compounds important for plant defence and human nutrition. Glycosylation and methylation play an important role in enriching the diversity of flavonols in response to the environment. Peach flowers and fruit are rich in flavonol diglycosides such as isorhamnetin 3-O-rutinoside (I3Rut), kaempferol 3-O-rutinoside and quercetin 3-O-rutinoside, and flavonol monoglycosides such as I 3-O-glucoside and Q 3-O-galactoside. UV-B irradiation of fruit significantly induced accumulation of all these flavonol glycosides. Candidate biosynthetic genes induced by UV-B were identified by genome homology searches and the in vitro catalytic activities of purified recombinant proteins determined. PpUGT78T3 and PpUGT78A2 were identified as flavonol 3-O-glucosyltransferase and 3-O-galactosyltransferase, respectively. PpUGT91AK6 was identified as flavonol 1,6-rhamnosyl trasferase catalysing the formation of flavonol rutinosides and PpFOMT1 was identified as a flavonol O-methyltransferase that methylated Q at the 3'-OH-OH to form isorhamnetin derivatives. Transient expression in Nicotiana benthamiana confirmed the specificity of PpUGT78T3 as a flavonol 3-O-glucosyltransferase, PpUGT78A2 as a 3-O-galactosyltransferase, PpUGT91AK6 as a 1,6-rhamnosyltrasferase and PpFOMT1 as an O-methyltransferase. This study provides new insights into the mechanisms of glycosylation and methylation of flavonols, especially the formation of flavonol diglycosides such as I3Rut, and will also be useful for future potential metabolic engineering of complex flavonols.
Collapse
Affiliation(s)
- Linfeng Xie
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Yan Guo
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Chuanhong Ren
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Yunlin Cao
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Jiajia Li
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Jing Lin
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Donald Grierson
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Loughborough, UK
| | - Xiaoyong Zhao
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Bo Zhang
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Chongde Sun
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Kunsong Chen
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Xian Li
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| |
Collapse
|
50
|
UVB Irradiation-Induced Transcriptional Changes in Lignin- and Flavonoid Biosynthesis and Indole/Tryptophan-Auxin-Responsive Genes in Rice Seedlings. PLANTS 2022; 11:plants11121618. [PMID: 35736769 PMCID: PMC9229965 DOI: 10.3390/plants11121618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 12/03/2022]
Abstract
Global warming accelerates the destruction of the ozone layer, increasing the amount of UVB reaching the Earth’s surface, which in turn alters plant growth and development. The effects of UVB-induced alterations of plant secondary and cell wall metabolism were previously documented; however, there is little knowledge of its effects on rice seedlings during the developmental phase of leaves. In this study, we examined secondary metabolic responses to UVB stress using a transcriptomic approach, focusing on the biosynthetic pathways for lignin, flavonoid, and indole/tryptophan-auxin responses. As new leaves emerged, they were irradiated with UVB for 5 days (for 3 h/day−1). The genes encoding the enzymes related to lignin (4CL, CAD, and POD) and flavonoid biosynthesis (CHS, CHI, and FLS) were highly expressed on day 1 (younger leaves) and day 5 (older leaves) after UVB irradiation. The expression of the genes encoding the enzymes related to tryptophan biosynthesis (AS, PRT, PRAI, IGPS, and TS) increased on day 3 of UVB irradiation, and the level of tryptophan increased and showed the same temporal pattern of occurrence as the expression of the cognate gene. Interestingly, the genes encoding BBX4 and BBX11, negative regulators of UVB signaling, and SAUR27 and SAUR55, auxin response enzymes, were downregulated on day 3 of UVB irradiation. When these results are taken together, they suggest that secondary metabolic pathways in rice seedlings are influenced by the interaction between UVB irradiation and the leaf developmental stage. Thus, the strategies of protection against, adaptation to, and mitigation of UVB might be delicately regulated, and, in this context, our data provide valuable information to understand UVB-induced secondary metabolism in rice seedlings.
Collapse
|