1
|
Gao Q, Jin N, Shen Z, Guo J, Lu H, Han S, Xiao W, Lu J, Lou Y. Both Jasmonic Acid- and Abscisic Acid-Mediated Signalling Pathways Regulate the Ovicidal Defence of Plants Against Phloem-Feeding Insects. PLANT, CELL & ENVIRONMENT 2025; 48:4475-4491. [PMID: 39996692 DOI: 10.1111/pce.15445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/26/2025]
Abstract
Plants perceive signals associated with herbivore eggs and in response initiate ovicidal defence. However, which phytohormone pathways regulate this defence and which defensive compounds dominate it remains largely unknown. Here, we found that the hatching rate of eggs of white-backed planthopper (WBPH) Sogatella furcifera was significantly lower on a japonica rice variety P81 than an indica rice variety NB44. When infested by WBPH, P81 plants showed higher jasmonic acid (JA) and abscisic acid (ABA) responses than did NB44 plants; moreover, P81 plants produced the ovicidal compound benzyl benzoate and exhibited higher levels of some flavonoids, phenolamides, and volatiles than were found in NB44 plants. Impairing the ABA-signalling pathway, especially the JA-signalling pathway in P81 plants enhanced the survival of WBPH eggs. Decreasing levels of some flavonoids and phenolamides in P81 plants promoted WBPH egg survival. In vitro bioassays revealed that both naringenin and sakuranetin promote the ovicidal effect of benzyl benzoate on WBPH. The results demonstrate that JA- and ABA-signalling pathways jointly regulate the rice ovicidal defence against WBPH, and that benzyl benzoate, as well as some other compounds, such as naringenin and sakuranetin, contribute to the mortality of WBPH eggs.
Collapse
Affiliation(s)
- Qing Gao
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Laboratory of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Nuo Jin
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Laboratory of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Zhifan Shen
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Laboratory of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jingran Guo
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Laboratory of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Haiping Lu
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Laboratory of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shanjie Han
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Laboratory of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Wenhan Xiao
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Laboratory of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jing Lu
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Laboratory of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yonggen Lou
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Laboratory of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Li B, Liu F, He X, Liu Y, Liu X, Lu M. Leaf Beetle Symbiotic Bacteria Degrade Chlorogenic Acid of Poplar Induced by Egg Deposition to Enhance Larval Survival. PLANT, CELL & ENVIRONMENT 2025; 48:4212-4226. [PMID: 39925102 DOI: 10.1111/pce.15427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/11/2025]
Abstract
Insect symbiotic microbiota acting as a third-party force of plant-insect interactions, play a significant role in insect hosts tolerance to phytochemical defences. However, it remains unknown whether insect symbiotic bacteria can assist the host in degrading phytochemical defences induced by egg deposition. Plagiodera versicolora is a worldwide forest pest. Our study showed that P. versicolora egg deposition on Populus davidiana × Populus bolleana induced significant changes in the transcriptome and metabolome of leaves. Combined qRT-PCR and LC-MS quantitative analysis of metabolic pathways showed that the contents of chlorogenic acid and rutin were significantly increased upon egg deposition in poplar. Bioassays indicated that the high concentration of chlorogenic acid induced by egg deposition could significantly reduce the performance of germ-free larvae. Six symbiotic bacterial strains with potential ability to degrade chlorogenic acid were isolated and identified. Their degradation products did not affect larval survival either. In vivo inoculation assays showed that four of those symbiotic bacteria could assist in the degradation of high concentration of chlorogenic acid induced by egg deposition and improve the larval survival. Our study provides clear evidence that the insect symbiotic bacteria can mediate the tolerance of herbivorous insects against plant toxins induced by egg deposition.
Collapse
Affiliation(s)
- Bin Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Fengjie Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Xin He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Yipeng Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Xiaolong Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Min Lu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
3
|
Otto P, Célestin G, Kergunteuil A, Valantin-Morison M, Pashalidou FG. Oviposition-induced plant volatiles prime defences against impending herbivores in neighbouring non-damaged plants. Sci Rep 2025; 15:17461. [PMID: 40394137 DOI: 10.1038/s41598-025-02371-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 05/13/2025] [Indexed: 05/22/2025] Open
Abstract
Plants exploit environmental cues about the risks of encountering insect herbivores, often sensitising defensive responses. While herbivore-induced plant volatiles (HIPVs) are reported to enhance plant defences against incoming herbivores, responses to oviposition-induced plant volatiles (OIPVs) are massively under-explored. We studied whether OIPV emissions from Brassica napus enhance defences in non-damaged neighbouring B. napus when subsequently infested with Pieris brassicae larvae. We collected and analysed the emission rates of plant volatile organic compounds under different treatments and measured P. brassicae larvae biomass as a proxy for defence. We show that oviposition triggers the release of specific volatiles, i.e. α-pinene, dimethyl-trisulfide, and limonene, potentially serving as herbivore early warning cues for neighbouring non-damaged plants. Initially, after three days of herbivory, OIPV-receivers emitted lower levels of volatiles compared to control receivers; however, following seven days of herbivory, both control and OIPV-receivers emitted similar amounts of volatiles. We suggest a potential trade-off between direct and indirect defences, with sensitised plants investing metabolic resources initially towards direct and later enhancing indirect defences. We show that OIPVs mediate plant-plant communication, a natural potential for Brassicaceae crop protection.
Collapse
Affiliation(s)
- Pius Otto
- UMR Agronomie, INRAE, AgroParisTech, Université Paris-Saclay, 91123, Palaiseau Cedex, France
| | - Gerlens Célestin
- UMR Agronomie, INRAE, AgroParisTech, Université Paris-Saclay, 91123, Palaiseau Cedex, France
| | - Alan Kergunteuil
- INRAE, LAE, Université de Lorraine, 54000, Nancy, France
- INRAE, PSH, 84000, Avignon, France
| | - Muriel Valantin-Morison
- UMR Agronomie, INRAE, AgroParisTech, Université Paris-Saclay, 91123, Palaiseau Cedex, France
| | - Foteini G Pashalidou
- UMR Agronomie, INRAE, AgroParisTech, Université Paris-Saclay, 91123, Palaiseau Cedex, France.
- UMR ABSys-Agrosystèmes Biodiversifiés (INRAE), Campus Supagro Montpellier 2 Place Viala, 34060, Montpellier Cedex 2, France.
| |
Collapse
|
4
|
Shi JH, Shao R, Abdelkhalek ST, Zhang S, Wang MQ. The oviposition of cotton bollworms stimulates the defense against its eggs and larvae in tomato plants. PEST MANAGEMENT SCIENCE 2025; 81:1196-1203. [PMID: 39511969 DOI: 10.1002/ps.8521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/08/2024] [Accepted: 10/19/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND Herbivorous insects sustain their populations by oviposition. To reduce the damage caused by herbivores, the host plant triggers a defensive response upon detection of egg deposition. However, the specific impact of the egg deposition time of the cotton bollworm Helicoverpa armigera (Lepidoptera: Noctuidae), on the tomato plant defense remains obscure. RESULTS This study investigated the effects of tomato plant defenses on cotton bollworm eggs and larvae at different time intervals following egg deposition. The study revealed that tomato plant defense triggered by egg deposition did not directly affect the hatchability of the eggs. Nevertheless, it attracted Trichogramma chilonis 48 h after the egg deposition. Gas chromatography-mass spectrometry analysis of the oviposition-induced plant volatiles (OIPVs) revealed a considerable increase in the amount of α-pinene released by tomato plants 48 h after egg deposition. The olfactory results from Y-tube experiments showed that α-pinene exhibited a substantial attraction towards T. chilonis. In addition, it was found that the defense response induced by egg deposition for 24 and 48 h significantly inhibited the growth and development of the larvae. Metabolomics analysis revealed that the egg deposition of cotton bollworm altered the metabolite composition and caused significant modifications in the metabolic pathways of tomato plants. CONCLUSION These findings provide novel insights into pest management by using egg-induced plant defenses to reduce egg hatching, and impede larval growth and development in herbivorous insects. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jin-Hua Shi
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Rui Shao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Sara T Abdelkhalek
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Department of Entomology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Shuo Zhang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Man-Qun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
5
|
Song HD, Zhang FB, Ji SX, Wang XQ, Wang JX, Liu YX, Wang XW, Han WH. The SA-WRKY70-PR-Callose Axis Mediates Plant Defense Against Whitefly Eggs. Int J Mol Sci 2024; 25:12076. [PMID: 39596145 PMCID: PMC11593482 DOI: 10.3390/ijms252212076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
The molecular mechanisms of plant responses to phytophagous insect eggs are poorly understood, despite their importance in insect-plant interactions. This study investigates the plant defense mechanisms triggered by the eggs of whitefly Bemisia tabaci, a globally significant agricultural pest. A transcriptome comparison of tobacco plants with and without eggs revealed that whitefly eggs may activate the response of defense-related genes, including those involved in the salicylic acid (SA) signaling pathway. SA levels are induced by eggs, resulting in a reduction in egg hatching, which suggests that SA plays a key role in plant resistance to whitefly eggs. Employing Agrobacterium-mediated transient expression, virus-induced gene silencing assays, DNA-protein interaction studies, and bioassays, we elucidate the regulatory mechanisms involved. Pathogenesis-related proteins NtPR1-L1 and NtPR5-L2, downstream of the SA pathway, also affect whitefly egg hatching. The SA-regulated transcription factor NtWRKY70a directly binds to the NtPR1-L1 promoter, enhancing its expression. Moreover, NtPR1-L1 promotes callose deposition, which may impede the eggs' access to water and nutrients. This study establishes the SA-WRKY70-PR-callose axis as a key mechanism linking plant responses and defenses against whitefly eggs, providing new insights into the molecular interactions between plants and insect eggs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wen-Hao Han
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (H.-D.S.); (F.-B.Z.); (S.-X.J.); (X.-Q.W.); (J.-X.W.); (Y.-X.L.); (X.-W.W.)
| |
Collapse
|
6
|
Wei B, Cao S, Zhang G, Wang H, Cao Z, Chen Q, Niu C. Citrus Fruits Produce Direct Defense Responses against Oviposition by Bactrocera minax (Diptera: Tephritidae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23736-23746. [PMID: 39257316 DOI: 10.1021/acs.jafc.4c05871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Plants perceive and orchestrate defense responses when herbivorous insects are ovipositing. Fruits, as a crucial reproductive organ in plants, have rarely been researched on the responses to insect eggs. Here, we found that oviposition by the specialist insect Bactrocera minax in navel oranges activated the lignin synthesis pathway and cell division, causing mechanical pressure that crushed the eggs. Transcriptome and metabolome analyses revealed an enrichment of oviposition-induced genes and metabolites within the lignin synthesis pathway, which was confirmed by histochemical staining. Furthermore, hydrogen peroxide (H2O2) accumulation was observed at the oviposition sites. Plant defense-related hormones jasmonic acid (JA) and salicylic acid (SA) exhibited rapid induction after oviposition, while indole-3-acetic acid (IAA) activation occurred in the later stages of oviposition. Additionally, secondary metabolites induced by prior egg deposition were found to influence larval performance. Our studies provide molecular evidence that host fruits have evolved defense mechanisms against insect eggs and pave the way for future development of insect-resistant citrus varieties.
Collapse
Affiliation(s)
- Bingbing Wei
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuai Cao
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guijian Zhang
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Haoran Wang
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhen Cao
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoran Chen
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Changying Niu
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
7
|
Chen Y, Wang Y, Fu H, Zeng W, Wang P, Zheng X, Yang F. A new Bowman-Birk type protease inhibitor regulated by MeJA pathway in maize exhibits anti-feedant activity against the Ostrinia furnacalis. PLANT MOLECULAR BIOLOGY 2024; 114:110. [PMID: 39361185 DOI: 10.1007/s11103-024-01506-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/06/2024] [Indexed: 10/15/2024]
Abstract
Jasmonic acid (JA), an important plant hormone, plays a crucial role in defending against herbivorous insects. In this study, we have identified a new Bowman-Birk type protease inhibitor (BBTI) protein in maize that is regulated by the JA pathway and exhibits significant antifeedant activity, which is notably induced by exogenous Methyl Jasmonate and Ostrinia furnacalis feeding treatments. Bioinformatics analysis revealed significant differences in the BBTI protein among different maize inbred lines, except for the conserved domain. Prokaryotic and eukaryotic expression systems were constructed and expressed, and combined with bioassays, it was demonstrated that the antifeedant activity of BBTI is determined by protein modifications and conserved domains. Through RT-qPCR detection of BBTI and JA regulatory pathway-related genes' temporal expression in different maize inbred lines, we identified the regulatory mechanism of BBTI synthesis under the JA pathway. This study successfully cloned and identified the MeJA-induced anti-feedant activity gene BBTI and conducted functional validation in different maize inbred lines, providing valuable insights into the response mechanism of insect resistance induced by the plant JA pathway. The increased expression of the anti-feedant activity gene BBTI through exogenous MeJA induction may offer a potential new strategy for mediating plant defense against Lepidoptan insects.
Collapse
Affiliation(s)
- Yuanlong Chen
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Yanbo Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Haiyan Fu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Wei Zeng
- School of Economies and Management, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Pan Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Xu Zheng
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Fengshan Yang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China.
| |
Collapse
|
8
|
Huve MAP, Bittner N, Kunze R, Hilker M, Remus-Emsermann MNP, Paniagua Voirol LR, Lortzing V. Butterfly eggs prime anti-herbivore defense in an annual but not perennial Arabidopsis species. PLANTA 2024; 260:112. [PMID: 39361039 PMCID: PMC11450040 DOI: 10.1007/s00425-024-04541-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024]
Abstract
MAIN CONCLUSION Unlike Arabidopsis thaliana, defenses of Arabidopsis lyrata against Pieris brassicae larval feeding are not primable by P. brassicae eggs. Thus, egg primability of plant anti-herbivore defenses is not phylogenetically conserved in the genus Arabidopsis. While plant anti-herbivore defenses of the annual species Arabidopsis thaliana were shown to be primable by Pieris brassicae eggs, the primability of the phylogenetically closely related perennial Arabidopsis lyrata has not yet been investigated. Previous studies revealed that closely related wild Brassicaceae plant species, the annual Brassica nigra and the perennial B. oleracea, exhibit an egg-primable defense trait, even though they have different life spans. Here, we tested whether P. brassicae eggs prime anti-herbivore defenses of the perennial A. lyrata. We exposed A. lyrata to P. brassicae eggs and larval feeding and assessed their primability by (i) determining the biomass of P. brassicae larvae after feeding on plants with and without prior P. brassicae egg deposition and (ii) investigating the plant transcriptomic response after egg deposition and/or larval feeding. For comparison, these studies were also conducted with A. thaliana. Consistent with previous findings, A. thaliana's response to prior P. brassicae egg deposition negatively affected conspecific larvae feeding upon A. thaliana. However, this was not observed in A. lyrata. Arabidopsis thaliana responded to P. brassicae eggs with strong transcriptional reprogramming, whereas A. lyrata responses to eggs were negligible. In response to larval feeding, A. lyrata exhibited a greater transcriptome change compared to A. thaliana. Among the strongly feeding-induced A. lyrata genes were those that are egg-primed in feeding-induced A. thaliana, i.e., CAX3, PR1, PR5, and PDF1.4. These results suggest that A. lyrata has evolved a robust feeding response that is independent from prior egg exposure.
Collapse
Affiliation(s)
- Maryse A P Huve
- Microbiology, Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Königin-Luise-Str. 12-16, 14195, Berlin, Germany
| | - Norbert Bittner
- Applied Genetics, Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195, Berlin, Germany
| | - Reinhard Kunze
- Applied Genetics, Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195, Berlin, Germany
| | - Monika Hilker
- Applied Zoology/Animal Ecology, Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Haderslebener Str. 9, 12163, Berlin, Germany
| | - Mitja N P Remus-Emsermann
- Microbiology, Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Königin-Luise-Str. 12-16, 14195, Berlin, Germany
| | - Luis R Paniagua Voirol
- Microbiology, Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Königin-Luise-Str. 12-16, 14195, Berlin, Germany.
| | - Vivien Lortzing
- Applied Zoology/Animal Ecology, Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Haderslebener Str. 9, 12163, Berlin, Germany.
| |
Collapse
|
9
|
Chen Y, Yang S, Zeng W, Zheng X, Wang P, Fu H, Yang F. Salicylic acid inducing the expression of maize anti-insect gene SPI: a potential control strategy for Ostrinia furnacalis. BMC PLANT BIOLOGY 2024; 24:152. [PMID: 38418954 PMCID: PMC10902998 DOI: 10.1186/s12870-024-04855-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Due to being rooted in the ground, maize (Zea mays L.) is unable to actively escape the attacks of herbivorous insects such as the Asian corn borer (Ostrinia furnacalis). In contrast to the passive damage, plants have evolved defense mechanisms to protect themselves from herbivores. Salicylic acid, a widely present endogenous hormone in plants, has been found to play an important role in inducing plant resistance to insects. In this study, we screened and identified the insect resistance gene SPI, which is simultaneously induced by SA and O. furnacalis feeding, through preliminary transcriptome data analysis. The functional validation of SPI was carried out using bioinformatics, RT-qPCR, and heterologous expression protein feeding assays. RESULTS Both SA and O. furnacalis treatment increased the expression abundance of SA-synthesis pathway genes and SPI in three maize strains, and the upregulation of SPI was observed strongly at 6 hours post-treatment. The expression of SPI showed a temporal relationship with SA pathway genes, indicating that SPI is a downstream defense gene regulated by SA. Protein feeding assays using two different expression vectors demonstrated that the variation in SPI protein activity among different strains is mainly due to protein modifications. CONCLUSIONS Our research results indicate that SPI, as a downstream defense gene regulated by SA, is induced by SA and participates in maize's insect resistance. The differential expression levels of SPI gene and protein modifications among different maize strains are one of the reasons for the variation in insect resistance. This study provides new insights into ecological pest control in maize and valuable insights into plant responses to SA-induced insect resistance.
Collapse
Affiliation(s)
- Yuanlong Chen
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Siyuan Yang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Wei Zeng
- School of economies and management, Beijing University of chemical technology, Beijing, 100029, China
| | - Xu Zheng
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Pan Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Haiyan Fu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China.
| | - Fengshan Yang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China.
| |
Collapse
|
10
|
Montesinos Á, Sacristán S, Del Prado-Polonio P, Arnaiz A, Díaz-González S, Diaz I, Santamaria ME. Contrasting plant transcriptome responses between a pierce-sucking and a chewing herbivore go beyond the infestation site. BMC PLANT BIOLOGY 2024; 24:120. [PMID: 38369495 PMCID: PMC10875829 DOI: 10.1186/s12870-024-04806-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND Plants have acquired a repertoire of mechanisms to combat biotic stressors, which may vary depending on the feeding strategies of herbivores and the plant species. Hormonal regulation crucially modulates this malleable defense response. Jasmonic acid (JA) and salicylic acid (SA) stand out as pivotal regulators of defense, while other hormones like abscisic acid (ABA), ethylene (ET), gibberellic acid (GA) or auxin also play a role in modulating plant-pest interactions. The plant defense response has been described to elicit effects in distal tissues, whereby aboveground herbivory can influence belowground response, and vice versa. This impact on distal tissues may be contingent upon the feeding guild, even affecting both the recovery of infested tissues and those that have not suffered active infestation. RESULTS To study how phytophagous with distinct feeding strategies may differently trigger the plant defense response during and after infestation in both infested and distal tissues, Arabidopsis thaliana L. rosettes were infested separately with the chewing herbivore Pieris brassicae L. and the piercing-sucker Tetranychus urticae Koch. Moderate infestation conditions were selected for both pests, though no quantitative control of damage levels was carried out. Feeding mode did distinctly influence the transcriptomic response of the plant under these conditions. Though overall affected processes were similar under either infestation, their magnitude differed significantly. Plants infested with P. brassicae exhibited a short-term response, involving stress-related genes, JA and ABA regulation and suppressing growth-related genes. In contrast, T. urticae elicited a longer transcriptomic response in plants, albeit with a lower degree of differential expression, in particular influencing SA regulation. These distinct defense responses transcended beyond infestation and through the roots, where hormonal response, flavonoid regulation or cell wall reorganization were differentially affected. CONCLUSION These outcomes confirm that the existent divergent transcriptomic responses elicited by herbivores employing distinct feeding strategies possess the capacity to extend beyond infestation and even affect tissues that have not been directly infested. This remarks the importance of considering the entire plant's response to localized biotic stresses.
Collapse
Affiliation(s)
- Álvaro Montesinos
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
- Universidad de Zaragoza, Calle Pedro Cerbuna, 12, Zaragoza, 50009, Spain
| | - Soledad Sacristán
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Palmira Del Prado-Polonio
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Ana Arnaiz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos s/n, Burgos, 09001, Spain
| | - Sandra Díaz-González
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Isabel Diaz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - M Estrella Santamaria
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain.
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain.
| |
Collapse
|
11
|
Hundacker J, Linda T, Hilker M, Lortzing V, Bittner N. The impact of insect egg deposition on Pinus sylvestris transcriptomic and phytohormonal responses to larval herbivory. TREE PHYSIOLOGY 2024; 44:tpae008. [PMID: 38227779 PMCID: PMC10878248 DOI: 10.1093/treephys/tpae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/10/2024] [Indexed: 01/18/2024]
Abstract
Plants can improve their resistance to feeding damage by insects if they have perceived insect egg deposition prior to larval feeding. Molecular analyses of these egg-mediated defence mechanisms have until now focused on angiosperm species. It is unknown how the transcriptome of a gymnosperm species responds to insect eggs and subsequent larval feeding. Scots pine (Pinus sylvestris L.) is known to improve its defences against larvae of the herbivorous sawfly Diprion pini L. if it has previously received sawfly eggs. Here, we analysed the transcriptomic and phytohormonal responses of Scots pine needles to D. pini eggs (E-pine), larval feeding (F-pine) and to both eggs and larval feeding (EF-pine). Pine showed strong transcriptomic responses to sawfly eggs and-as expected-to larval feeding. Many egg-responsive genes were also differentially expressed in response to feeding damage, and these genes play an important role in biological processes related to cell wall modification, cell death and jasmonic acid signalling. EF-pine showed fewer transcriptomic changes than F-pine, whereas EF-treated angiosperm species studied so far showed more transcriptional changes to the initial phase of larval feeding than only feeding-damaged F-angiosperms. However, as with responses of EF-angiosperms, EF-pine showed higher salicylic acid concentrations than F-pine. Based on the considerable overlap of the transcriptomes of E- and F-pine, we suggest that the weaker transcriptomic response of EF-pine than F-pine to larval feeding damage is compensated by the strong, egg-induced response, which might result in maintained pine defences against larval feeding.
Collapse
Affiliation(s)
- Janik Hundacker
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universität Berlin, Haderslebener Straße 9, Berlin 12163, Germany
| | - Tom Linda
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universität Berlin, Haderslebener Straße 9, Berlin 12163, Germany
| | - Monika Hilker
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universität Berlin, Haderslebener Straße 9, Berlin 12163, Germany
| | - Vivien Lortzing
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universität Berlin, Haderslebener Straße 9, Berlin 12163, Germany
| | - Norbert Bittner
- Applied Genetics, Institute of Biology, Freie Universität Berlin, Albrecht-Thaer-Weg 6, Berlin 14195, Germany
| |
Collapse
|
12
|
Lortzing V, Valsamakis G, Jantzen F, Hundacker J, Paniagua Voirol LR, Schumacher F, Kleuser B, Hilker M. Plant defensive responses to insect eggs are inducible by general egg-associated elicitors. Sci Rep 2024; 14:1076. [PMID: 38212511 PMCID: PMC10784483 DOI: 10.1038/s41598-024-51565-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/06/2024] [Indexed: 01/13/2024] Open
Abstract
Egg deposition by herbivorous insects is well known to elicit defensive plant responses. Our study aimed to elucidate the insect and plant species specificity of these responses. To study the insect species specificity, we treated Arabidopsis thaliana with egg extracts and egg-associated secretions of a sawfly (Diprion pini), a beetle (Xanthogaleruca luteola) and a butterfly (Pieris brassicae). All egg extracts elicited salicylic acid (SA) accumulation in the plant, and all secretions induced expression of plant genes known to be responsive to the butterfly eggs, among them Pathogenesis-Related (PR) genes. All secretions contained phosphatidylcholine derivatives, known elicitors of SA accumulation and PR gene expression in Arabidopsis. The sawfly egg extract did not induce plant camalexin levels, while the other extracts did. Our studies on the plant species specificity revealed that Solanum dulcamara and Ulmus minor responded with SA accumulation and cell death to P. brassicae eggs, i.e. responses also known for A. thaliana. However, the butterfly eggs induced neoplasms only in S. dulcamara. Our results provide evidence for general, phosphatidylcholine-based, egg-associated elicitors of plant responses and for conserved plant core responses to eggs, but also point to plant and insect species-specific traits in plant-insect egg interactions.
Collapse
Affiliation(s)
- Vivien Lortzing
- Applied Zoology/Animal Ecology, Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Haderslebener Str. 9, 12163, Berlin, Germany
| | - Georgios Valsamakis
- Applied Zoology/Animal Ecology, Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Haderslebener Str. 9, 12163, Berlin, Germany
| | - Friederike Jantzen
- Applied Zoology/Animal Ecology, Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Haderslebener Str. 9, 12163, Berlin, Germany
| | - Janik Hundacker
- Applied Zoology/Animal Ecology, Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Haderslebener Str. 9, 12163, Berlin, Germany
| | - Luis R Paniagua Voirol
- Applied Zoology/Animal Ecology, Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Haderslebener Str. 9, 12163, Berlin, Germany
- Microbiology, Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Königin-Luise-Str. 12-16, 14195, Berlin, Germany
| | - Fabian Schumacher
- Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2-4, 14195, Berlin, Germany
- Core-Facility BioSupraMol, PharmaMS Subunit, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2-4, 14195, Berlin, Germany
| | - Burkhard Kleuser
- Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2-4, 14195, Berlin, Germany
| | - Monika Hilker
- Applied Zoology/Animal Ecology, Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Haderslebener Str. 9, 12163, Berlin, Germany.
| |
Collapse
|
13
|
Liu F, Li B, Liu C, Liu Y, Liu X, Lu M. Oviposition by Plagiodera versicolora on Salix matsudana cv. 'Zhuliu' alters the leaf transcriptome and impairs larval performance. FRONTIERS IN PLANT SCIENCE 2023; 14:1226641. [PMID: 37538058 PMCID: PMC10394651 DOI: 10.3389/fpls.2023.1226641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/26/2023] [Indexed: 08/05/2023]
Abstract
Insect egg deposition can induce plant defenses against their larvae. Previous studies have primarily focused on herbaceous plant defenses; however, little is known about how the Salicaceae respond to insect egg deposition and defend themselves against herbivores. By combining plant defense gene studies and bioassays, we investigated the effect of the coleoptera Plagiodera versicolora egg deposition on willow (Salix matsudana cv. 'Zhuliu') and examined the interactions at the plant resistance and transcriptome levels. RNA-seq data were utilized to analyze changes in the leaf transcriptome with and without oviposition, and also the changes in the leaf transcriptome of feeding-damaged leaves with and without prior oviposition. P. versicolora oviposition on willow leaves resulted in altered expression levels of transcripts associated with plant stress and metabolic responses. Compared with leaves with no oviposition, leaves with egg deposition showed a slight increase in phenylpropanoid biosynthesis and phytohormone signaling genes after larval feeding. The RNA-seq analysis revealed alterations in willow transcripts in response to leaf beetle infestations. Bioassays indicated that oviposition by P. versicolora on willows reduced subsequent larvae performance, suggesting that prior oviposition by P. versicolora could increase willows' resistance to larvae. This study advances our knowledge of how oviposition by coleoptera insects induces changes in the resistance of leaves to herbivory in the Salicaceae family.
Collapse
|
14
|
Schott J, Jantzen F, Hilker M. Elm tree defences against a specialist herbivore are moderately primed by an infestation in the previous season. TREE PHYSIOLOGY 2023; 43:1218-1232. [PMID: 37010106 PMCID: PMC10335851 DOI: 10.1093/treephys/tpad038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 03/06/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
The studies of the long-term effects of insect infestations on plant anti-herbivore defences tend to focus on feeding-induced damage. Infestations by an entire insect generation, including egg depositions as well as the feeding insects, are often neglected. Whilst there is increasing evidence that the presence of insect eggs can intensify plants' anti-herbivore defences against hatching larvae in the short term, little is known about how insect infestations, including insect egg depositions, affect plant defences in the long term. We addressed this knowledge gap by investigating long-term effects of insect infestation on elm's (Ulmus minor Mill. cv. 'Dahlem') defences against subsequent infestation. In greenhouse experiments, elms were exposed to elm leaf beetle (ELB, Xanthogaleruca luteola) infestation (adults, eggs and larvae). Thereafter, the trees cast their leaves under simulated winter conditions and were re-infested with ELB after the regrowth of their leaves under simulated summer conditions. Elm leaf beetles performed moderately worse on previously infested elms with respect to several developmental parameters. The concentrations of the phenylpropanoids kaempferol and quercetin, which are involved in egg-mediated, short-term effects on elm defences, were slightly higher in the ELB-challenged leaves of previously infested trees than in the challenged leaves of naïve trees. The expression of several genes involved in the phenylpropanoid pathway, jasmonic acid signalling, and DNA and histone modifications appeared to be affected by ELB infestation; however, prior infestation did not alter the expression intensities of these genes. The concentrations of several phytohormones were similarly affected in the currently challenged leaves of previously infested trees and naïve trees. Our study shows that prior infestation of elms by a specialised insect leads to moderately improved defences against subsequent infestation in the following growing season. Prior infestation adds a long-term effect to the short-term enhancer effect that plants show in response to egg depositions when defending against hatching larvae.
Collapse
Affiliation(s)
- Johanna Schott
- Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Haderslebener Str. 9, 12163 Berlin, Germany
| | - Friederike Jantzen
- Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Haderslebener Str. 9, 12163 Berlin, Germany
| | - Monika Hilker
- Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Haderslebener Str. 9, 12163 Berlin, Germany
| |
Collapse
|
15
|
Kundu P, Grover S, Perez A, Raya Vaca JD, Kariyat R, Louis J. Sorghum defense responses to sequential attack by insect herbivores of different feeding guilds. PLANTA 2023; 258:35. [PMID: 37389680 DOI: 10.1007/s00425-023-04195-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
MAIN CONCLUSION Insect herbivores of different feeding guilds induced sorghum defenses through differential mechanisms, regardless of the order of herbivore arrival on sorghum plants. Sorghum, one of the world's most important cereal crops, suffers severe yield losses due to attack by insects of different feeding guilds. In most instances, the emergence of these pests are not secluded incidents and are followed by another or can also co-infest host plants. Sugarcane aphid (SCA) and fall armyworm (FAW) are the two most important destructive pests of sorghum, which belongs to sap-sucking and chewing feeding guilds, respectively. While the order of the herbivore arriving on the plants has been found to alter the defense response to subsequent herbivores, this is seldom studied with herbivores from different feeding guilds. In this study, we investigated the effects of sequential herbivory of FAW and SCA on sorghum defense responses and their underlying mechanism(s). Sequential feeding on the sorghum RTx430 genotype by either FAW primed-SCA or SCA primed-FAW were monitored to unravel the mechanisms underlying defense priming, and its mode of action. Regardless of the order of herbivore arrival on sorghum RTx430 plants, significant defense induction was observed in the primed state compared to the non-primed condition, irrespective of their feeding guild. Additionally, gene expression and secondary metabolite analysis revealed differential modulation of the phenylpropanoid pathway upon insect attack by different feeding guilds. Our findings suggest that priming in sorghum plants upon sequential herbivory induces defense by the accumulation of the total flavonoids and lignin/salicylic acid in FAW primed-SCA and SCA primed-FAW interaction, respectively.
Collapse
Affiliation(s)
- Pritha Kundu
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Sajjan Grover
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Adryenna Perez
- Department of Biology, University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | - Juan D Raya Vaca
- Department of Biology, University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | - Rupesh Kariyat
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Joe Louis
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
| |
Collapse
|
16
|
Li H, Li Z, Zhao Z. Egg-Associated Germs Induce Salicylate Defenses but Not Render Plant Against a Global Invasive Fruit Fly Effectively. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37021960 DOI: 10.1021/acs.jafc.3c00427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Germs associated with insect eggs can profoundly mediate interactions between host plants and herbivores, with the potential to coordinate plant physiological reactions with cascading effects on insect fitness. An experimental system was established including the oriental fruit fly (OFF, Bactrocera dorsalis) and tomato to examine the functions of egg-associated germs in mediating plant-herbivore interactions. OFF feeding resulted in significantly increased tannins, flavonoids, amino acids, and salicylic acid in the host tomato. These defensive responses of tomato were induced by the egg-associated germs, including Lactococcus sp., Brevundimonas sp., and Vagococcus sp. Tannins and flavonoids had no significant feedback effects on the pupal weight of OFF, while pupal biomass was significantly decreased by tannins and flavonoids in the germ-free treatment. Metabolome analysis showed that OFF mainly induced metabolic changes in carboxylic acid derivatives. Phenylalanine significantly induced downstream metabolic changes associated with phenylpropanoid accumulation. Finally, we conclude that the effects of egg-associated germs played an important role in facilitating OFF population adaptation and growth by mediating plant defenses, which provides a new paradigm for exploring the interaction of plant-pest and implementing effective pest biocontrol.
Collapse
Affiliation(s)
- Hao Li
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Zhihong Li
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Zihua Zhao
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
17
|
Khallaf MA, Sadek MM, Anderson P. Predator efficacy and attraction to herbivore-induced volatiles determine insect pest selection of inferior host plant. iScience 2023; 26:106077. [PMID: 36818286 PMCID: PMC9929603 DOI: 10.1016/j.isci.2023.106077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/27/2022] [Accepted: 01/24/2023] [Indexed: 01/30/2023] Open
Abstract
Unlike mammals, most invertebrates provide no direct parental care for their progeny, which makes a well-selected oviposition site crucial. However, little is known about the female evaluation of opportunities and threats during host selection. Leveraging the wide range of host plants used by the polyphagous pest, Spodoptera littoralis, we investigate oviposition choice between two plants of different nutritional quality. Females prefer to lay their eggs on the host plant, which has inferior larval development and more natural enemies but provides lower predation rates. On the superior host plant, a major predator shows more successful search behavior and is more attracted to herbivore-induced volatiles. Our findings show that predator efficacy and odor-guided attraction, rather than predator abundance, determine enemy free space. We postulate that predators' behaviors contribute to the weak correlation between preference and performance during host plant selection in S. littoralis and in polyphagous insects in general.
Collapse
Affiliation(s)
- Mohammed A. Khallaf
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden,Department of Zoology and Entomology, Faculty of Science, Assiut University, Assiut, Egypt,Corresponding author
| | - Medhat M. Sadek
- Department of Zoology and Entomology, Faculty of Science, Assiut University, Assiut, Egypt,Corresponding author
| | - Peter Anderson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden,Corresponding author
| |
Collapse
|
18
|
Dávila C, Fiorenza JE, Gershenzon J, Reichelt M, Zavala JA, Fernández PC. Sawfly egg deposition extends the insect life cycle and alters hormone and volatile emission profiles. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1084063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
IntroductionInsect oviposition can enhance plant defenses and decrease plant quality in response to future feeding damage by hatched larvae. Induced resistance triggered by egg deposition and its negative effect on insect herbivore performance is known for several annual plants but has been much less studied in woody perennials, such as species of the Salicaceae. Here we studied the response of the willow Salix babylonica to oviposition by the specialist willow sawfly Nematus oligospilus and its impact on insect performance.MethodsWe measured the effect of oviposition on larval feeding and pupa formation and evaluated its influence on plant phytohormones and volatile emission profile.ResultsWe showed that oviposition reduced neonate larval growth and increased the proportion of prepupae that delayed their transition to pupae, thus extending the length of the sawfly cocoon phase. Oviposited willows increased jasmonic acid levels and changed their volatile profile through enhanced concentrations of the terpenoids, (E/E)-α-farnesene, (Z)- and (E)-β-ocimene. Volatile profiles were characteristic for each type of insect damage (oviposition vs. feeding), but no priming effect was found.DiscussionWe demonstrated that willows could perceive sawfly oviposition per se as a primary factor activating defense signaling via the jasmonic acid pathway. This induced response ultimately determined changes in pupation dynamics that may affect the whole insect population cycle.
Collapse
|
19
|
Wang J, Li Y, Wang X, Cao K, Zhu G, Fang W, Chen C, Wu J, Guo J, Xu Q, Wang L. Betulin, Synthesized by PpCYP716A1, Is a Key Endogenous Defensive Metabolite of Peach against Aphids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12865-12877. [PMID: 36173088 DOI: 10.1021/acs.jafc.2c04422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Wild pest-resistant germplasms employ secondary metabolites to withstand insect attacks. A close wild relative of the cultivated peach, Prunus davidiana, displays strong resistance to green peach aphids by utilizing metabolites to cope with aphid infestation; however, the underlying mechanism of aphid resistance remains mostly unknown. Here, metabolomic analysis was performed to explore the changes in metabolite levels in P. davidiana after aphid infestation. The data revealed that betulin is a key defensive metabolite in peaches that protects against aphids and possesses potent aphidicidal activity. Further toxicity tests demonstrated that betulin was toxic to pests but not to beneficial insects. Additionally, transcriptomic and phylogenetic analyses revealed that the cytochrome P450 gene PpCYP716A1 was responsible for betulin synthesis─this finding was confirmed by the heterologous expression of this gene. This study revealed a strategy whereby plants harness defense metabolites to develop resistance to pests. These findings may facilitate controlling such pests.
Collapse
Affiliation(s)
- Junxiu Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yong Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Xinwei Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Ke Cao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Gengrui Zhu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Weichao Fang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Changwen Chen
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Jinlong Wu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Jian Guo
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Qiang Xu
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Lirong Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| |
Collapse
|
20
|
Valsamakis G, Bittner N, Kunze R, Hilker M, Lortzing V. Priming of Arabidopsis resistance to herbivory by insect egg deposition depends on the plant's developmental stage. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4996-5015. [PMID: 35522985 PMCID: PMC9366327 DOI: 10.1093/jxb/erac199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/05/2022] [Indexed: 06/14/2023]
Abstract
While traits of plant resistance to herbivory often change during ontogeny, it is unknown whether the primability of this resistance depends on the plant's developmental stage. Resistance in non-flowering Arabidopsis thaliana against Pieris brassicae larvae is known to be primable by prior egg deposition on leaves. We investigated whether this priming effect is maintained in plants at the flowering stage. Larval performance assays revealed that flowering plants' resistance to herbivory was not primable by egg deposition. Accordingly, transcriptomes of flowering plants showed almost no response to eggs. In contrast, egg deposition on non-flowering plants enhanced the expression of genes induced by subsequent larval feeding. Strikingly, flowering plants showed constitutively high expression levels of these genes. Larvae performed generally worse on flowering than on non-flowering plants, indicating that flowering plants constitutively resist herbivory. Furthermore, we determined the seed weight in regrown plants that had been exposed to eggs and larvae during the non-flowering or flowering stage. Non-flowering plants benefitted from egg priming with a smaller loss in seed yield. The seed yield of flowering plants was unaffected by the treatments, indicating tolerance towards the larvae. Our results show that the primability of anti-herbivore defences in Arabidopsis depends on the plant's developmental stage.
Collapse
Affiliation(s)
| | | | - Reinhard Kunze
- Applied Genetics, Institute of Biology, Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany
| | - Monika Hilker
- Applied Zoology/ Animal Ecology, Institute of Biology, Freie Universität Berlin, Haderslebener Str. 9, 12163 Berlin, Germany
| | | |
Collapse
|
21
|
Hundacker J, Bittner N, Weise C, Bröhan G, Varama M, Hilker M. Pine defense against eggs of an herbivorous sawfly is elicited by an annexin-like protein present in egg-associated secretion. PLANT, CELL & ENVIRONMENT 2022; 45:1033-1048. [PMID: 34713898 DOI: 10.1111/pce.14211] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Known elicitors of plant defenses against eggs of herbivorous insects are low-molecular-weight organic compounds associated with the eggs. However, previous studies provided evidence that also proteinaceous compounds present in secretion associated with eggs of the herbivorous sawfly Diprion pini can elicit defensive responses in Pinus sylvestris. Pine responses induced by the proteinaceous secretion are known to result in enhanced emission of (E)-β-farnesene, which attracts egg parasitoids killing the eggs. Here, we aimed to identify the defense-eliciting protein and elucidate its function. After isolating the defense-eliciting protein from D. pini egg-associated secretion by ultrafiltration and gel electrophoresis, we identified it by MALDI-TOF mass spectrometry as an annexin-like protein, which we named 'diprionin'. Further GC-MS analyses showed that pine needles treated with heterologously expressed diprionin released enhanced quantities of (E)-β-farnesene. Our bioassays confirmed attractiveness of diprionin-treated pine to egg parasitoids. Expression of several pine candidate genes involved in terpene biosynthesis and regulation of ROS homeostasis was similarly affected by diprionin and natural sawfly egg deposition. However, the two treatments had different effects on expression of pathogenesis-related genes (PR1, PR5). Diprionin is the first egg-associated proteinaceous elicitor of indirect plant defense against insect eggs described so far.
Collapse
Affiliation(s)
- Janik Hundacker
- Department of Applied Zoology and Animal Ecology, Freie Universität Berlin, Dahlem Centre of Plant Sciences, Institute of Biology, Berlin, Germany
| | - Norbert Bittner
- Department of Applied Zoology and Animal Ecology, Freie Universität Berlin, Dahlem Centre of Plant Sciences, Institute of Biology, Berlin, Germany
| | - Christoph Weise
- Department of Biochemistry, Freie Universität Berlin, Institute of Chemistry and Biochemistry, Berlin, Germany
| | - Gunnar Bröhan
- Department of Applied Zoology and Animal Ecology, Freie Universität Berlin, Dahlem Centre of Plant Sciences, Institute of Biology, Berlin, Germany
| | - Martti Varama
- Natural Resources Institute Finland, Helsinki, Finland
| | - Monika Hilker
- Department of Applied Zoology and Animal Ecology, Freie Universität Berlin, Dahlem Centre of Plant Sciences, Institute of Biology, Berlin, Germany
| |
Collapse
|
22
|
Bassetti N, Caarls L, Bukovinszkine'Kiss G, El-Soda M, van Veen J, Bouwmeester K, Zwaan BJ, Schranz ME, Bonnema G, Fatouros NE. Genetic analysis reveals three novel QTLs underpinning a butterfly egg-induced hypersensitive response-like cell death in Brassica rapa. BMC PLANT BIOLOGY 2022; 22:140. [PMID: 35331150 PMCID: PMC8944062 DOI: 10.1186/s12870-022-03522-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Cabbage white butterflies (Pieris spp.) can be severe pests of Brassica crops such as Chinese cabbage, Pak choi (Brassica rapa) or cabbages (B. oleracea). Eggs of Pieris spp. can induce a hypersensitive response-like (HR-like) cell death which reduces egg survival in the wild black mustard (B. nigra). Unravelling the genetic basis of this egg-killing trait in Brassica crops could improve crop resistance to herbivory, reducing major crop losses and pesticides use. Here we investigated the genetic architecture of a HR-like cell death induced by P. brassicae eggs in B. rapa. RESULTS A germplasm screening of 56 B. rapa accessions, representing the genetic and geographical diversity of a B. rapa core collection, showed phenotypic variation for cell death. An image-based phenotyping protocol was developed to accurately measure size of HR-like cell death and was then used to identify two accessions that consistently showed weak (R-o-18) or strong cell death response (L58). Screening of 160 RILs derived from these two accessions resulted in three novel QTLs for Pieris brassicae-induced cell death on chromosomes A02 (Pbc1), A03 (Pbc2), and A06 (Pbc3). The three QTLs Pbc1-3 contain cell surface receptors, intracellular receptors and other genes involved in plant immunity processes, such as ROS accumulation and cell death formation. Synteny analysis with A. thaliana suggested that Pbc1 and Pbc2 are novel QTLs associated with this trait, while Pbc3 also contains an ortholog of LecRK-I.1, a gene of A. thaliana previously associated with cell death induced by a P. brassicae egg extract. CONCLUSIONS This study provides the first genomic regions associated with the Pieris egg-induced HR-like cell death in a Brassica crop species. It is a step closer towards unravelling the genetic basis of an egg-killing crop resistance trait, paving the way for breeders to further fine-map and validate candidate genes.
Collapse
Affiliation(s)
- Niccolò Bassetti
- Biosystematics Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Lotte Caarls
- Biosystematics Group, Wageningen University & Research, Wageningen, The Netherlands
- Laboratory of Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Gabriella Bukovinszkine'Kiss
- Biosystematics Group, Wageningen University & Research, Wageningen, The Netherlands
- Laboratory of Genetics, Wageningen University & Research, Wageningen, The Netherlands
| | - Mohamed El-Soda
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Jeroen van Veen
- Biosystematics Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Klaas Bouwmeester
- Biosystematics Group, Wageningen University & Research, Wageningen, The Netherlands
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
| | - Bas J Zwaan
- Laboratory of Genetics, Wageningen University & Research, Wageningen, The Netherlands
| | - M Eric Schranz
- Biosystematics Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Guusje Bonnema
- Laboratory of Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Nina E Fatouros
- Biosystematics Group, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
23
|
The Resistance of Seven Host Plants to Tetranychus merganser Boudreaux (Acari: Tetranychidae). INSECTS 2022; 13:insects13020167. [PMID: 35206740 PMCID: PMC8878337 DOI: 10.3390/insects13020167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 12/11/2022]
Abstract
Simple Summary The red spider mite, Tetranychus merganser is one of the most economically important pests in papaya and prickle pear cactus cultivars, causing major damage to fruit and defoliation. In recent years, T. merganser has increased the number of its host plants. The mechanisms of resistance of a plant to herbivorous arthropod include antixenosis and antibiosis. Antixenosis refers to the plant mechanism to affect feeding and oviposition of arthropods; antibiosis refers to the plant capacity to affect the biology of the arthropod. The aim of this research is to assess antibiosis and antixenosis as resistance mechanisms in seven host plants (Thevetia ahouai, Carica papaya, Phaseolus vulgaris, Moringa oleifera, Pittosporum tobira, Helietta parvifolia, Capsicum annuum var. glabriusculum) to red spider mites. Oviposition and damage by feeding of T. merganser were greater on C. papaya than on the other host plants. The population growth of the spider mite was lower in P. tobira and T. ahouai than in the other host plants. Results based on the analysis of demographic parameters, food intake, survival and oviposition of T. merganser females suggest that P. tobira and T. ahouai were the most resistant to red spider mites, whereas C. papaya was the most susceptible of the seven host plants. The resistant plants can be studied as alternatives in the management of red spider mites. Abstract Red spider mites, Tetranychus merganser Boudreaux (Acari: Tetranychidae), is an agricultural pest that causes economic losses in papaya and nopal crops in Mexico. The aim of this research was to assess antibiosis and antixenosis as resistance mechanisms in seven host plants (Thevetia ahouai, Carica papaya, Phaseolus vulgaris, Moringa oleifera, Pittosporum tobira, Helietta parvifolia, Capsicum annuum var. glabriusculum) to red spider mites. Antixenosis was evaluated by non-preference for oviposition and feeding, antibiosis by infinitesimal rate of increase, finite rate of increase and doubling time, and the percentage of spider mites mortality. Oviposition and damage by feeding of T. merganser were significantly greater on C. papaya than on the other host plants. The growth rate of the spider mite was significantly lower in P. tobira and T. ahouai than in the other host plants. The percentage of hatched eggs of T. merganser was significantly higher in P. vulgaris than in the other plant species. Based on the demographic parameters, survival, food intake, and oviposition, these results indicated that compared with C. papaya, P. tobira and T. ahouai were more resistant. These results may be due to the fact that they were plants species of different families. The resistant plants can be studied as alternatives in the management of T. merganser.
Collapse
|
24
|
Ojeda-Martinez D, Diaz I, Santamaria ME. Transcriptomic Landscape of Herbivore Oviposition in Arabidopsis: A Systematic Review. FRONTIERS IN PLANT SCIENCE 2022; 12:772492. [PMID: 35126411 PMCID: PMC8815302 DOI: 10.3389/fpls.2021.772492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Herbivore oviposition produces all sorts of responses in plants, involving wide and complex genetic rearrangements. Many transcriptomic studies have been performed to understand this interaction, producing a bulk of transcriptomic data. However, the use of many transcriptomic techniques across the years, the lack of comparable transcriptomic context at the time of publication, and the use of outdated databases are limitations to understand this biological process. The current analysis intends to retrieve oviposition studies and process them with up-to-date techniques and updated databases. To reduce heterogeneities, the same processing techniques were applied, and Arabidopsis was selected to avoid divergencies on plant taxa stress response strategies. By doing so, we intended to understand the major mechanisms and regulatory processes linked to oviposition response. Differentially expressed gene (DEG) identification and co-expression network-based analyses were the main tools to achieve this goal. Two microarray studies and three RNA-seq analyses passed the screening criteria. The collected data pertained to the lepidopteran Pieris brassicae and the mite Tetranychus urticae, and covered a timeline from 3 to 144 h. Among the 18, 221 DEGs found, 15, 406 were exclusive of P. brassicae (72 h) and 801 were exclusive for the rest of the experiments. Excluding P. brassicae (72 h), shared genes on the rest of the experiments were twice the unique genes, indicating common response mechanisms were predominant. Enrichment analyses indicated that shared processes were circumscribed to earlier time points, and after 24 h, the divergences escalated. The response was characterized by patterns of time-dependent waves of unique processes. P. brassicae oviposition induced a rich response that shared functions across time points, while T. urticae eggs triggered less but more diverse time-dependent functions. The main processes altered were associated with hormonal cascades [e.g., salicilic acid (SA) and jasmonic acid (JA)], defense [reactive oxygen species (ROS) and glucosinolates], cell wall rearrangements, abiotic stress responses, and energy metabolism. Key gene drivers of the identified processes were also identified and presented. The current results enrich and clarify the information regarding the molecular behavior of the plant in response to oviposition by herbivores. This information is valuable for multiple stress response engineering tools, among other applications.
Collapse
Affiliation(s)
- Dairon Ojeda-Martinez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentación, Madrid, Spain
| | - Isabel Diaz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentación, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - M. Estrella Santamaria
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentación, Madrid, Spain
| |
Collapse
|
25
|
Schott J, Fuchs B, Böttcher C, Hilker M. Responses to larval herbivory in the phenylpropanoid pathway of Ulmus minor are boosted by prior insect egg deposition. PLANTA 2021; 255:16. [PMID: 34878607 PMCID: PMC8654711 DOI: 10.1007/s00425-021-03803-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/23/2021] [Indexed: 06/10/2023]
Abstract
Elms, which have received insect eggs as a 'warning' of larval herbivory, enhance their anti-herbivore defences by accumulating salicylic acid and amplifying phenylpropanoid-related transcriptional and metabolic responses to hatching larvae. Plant responses to insect eggs can result in intensified defences against hatching larvae. In annual plants, this egg-mediated effect is known to be associated with changes in leaf phenylpropanoid levels. However, little is known about how trees-long-living, perennial plants-improve their egg-mediated, anti-herbivore defences. The role of phytohormones and the phenylpropanoid pathway in egg-primed anti-herbivore defences of a tree species has until now been left unexplored. Using targeted and untargeted metabolome analyses we studied how the phenylpropanoid pathway of Ulmus minor responds to egg-laying by the elm leaf beetle and subsequent larval feeding. We found that when compared to untreated leaves, kaempferol and quercetin concentrations increased in feeding-damaged leaves with prior egg deposition, but not in feeding-damaged leaves without eggs. PCR analyses revealed that prior insect egg deposition intensified feeding-induced expression of phenylalanine ammonia lyase (PAL), encoding the gateway enzyme of the phenylpropanoid pathway. Salicylic acid (SA) concentrations were higher in egg-treated, feeding-damaged leaves than in egg-free, feeding-damaged leaves, but SA levels did not increase in response to egg deposition alone-in contrast to observations made of Arabidopsis thaliana. Our results indicate that prior egg deposition induces a SA-mediated response in elms to feeding damage. Furthermore, egg deposition boosts phenylpropanoid biosynthesis in subsequently feeding-damaged leaves by enhanced PAL expression, which results in the accumulation of phenylpropanoid derivatives. As such, the elm tree shows similar, yet distinct, responses to insect eggs and larval feeding as the annual model plant A. thaliana.
Collapse
Affiliation(s)
- Johanna Schott
- Department of Applied Zoology/Animal Ecology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Haderslebener Str. 9, 12163, Berlin, Germany
| | - Benjamin Fuchs
- Department of Applied Zoology/Animal Ecology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Haderslebener Str. 9, 12163, Berlin, Germany
- Biodiversity Unit, University of Turku, 20014, Turku, Finland
| | - Christoph Böttcher
- Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Königin-Luise-Str. 19, 14195, Berlin, Germany
| | - Monika Hilker
- Department of Applied Zoology/Animal Ecology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Haderslebener Str. 9, 12163, Berlin, Germany.
| |
Collapse
|
26
|
Alfonso E, Stahl E, Glauser G, Bellani E, Raaymakers TM, Van den Ackerveken G, Zeier J, Reymond P. Insect eggs trigger systemic acquired resistance against a fungal and an oomycete pathogen. THE NEW PHYTOLOGIST 2021; 232:2491-2505. [PMID: 34510462 PMCID: PMC9292583 DOI: 10.1111/nph.17732] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/05/2021] [Indexed: 05/27/2023]
Abstract
Plants are able to detect insect eggs deposited on leaves. In Arabidopsis, eggs of the butterfly species Pieris brassicae (common name large white) induce plant defenses and activate the salicylic acid (SA) pathway. We previously discovered that oviposition triggers a systemic acquired resistance (SAR) against the bacterial hemibiotroph pathogen Pseudomonas syringae. Here, we show that insect eggs or treatment with egg extract (EE) induce SAR against the fungal necrotroph Botrytis cinerea BMM and the oomycete pathogen Hyaloperonospora arabidopsidis Noco2. This response is abolished in ics1, ald1 and fmo1, indicating that the SA pathway and the N-hydroxypipecolic acid (NHP) pathway are involved. Establishment of EE-induced SAR in distal leaves potentially involves tryptophan-derived metabolites, including camalexin. Indeed, SAR is abolished in the biosynthesis mutants cyp79B2 cyp79B3, cyp71a12 cyp71a13 and pad3-1, and camalexin is toxic to B. cinerea in vitro. This study reveals an interesting mechanism by which lepidopteran eggs interfere with plant-pathogen interactions.
Collapse
Affiliation(s)
- Esteban Alfonso
- Department of Plant Molecular BiologyUniversity of LausanneLausanne1015Switzerland
| | - Elia Stahl
- Department of Plant Molecular BiologyUniversity of LausanneLausanne1015Switzerland
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical ChemistryUniversity of NeuchâtelNeuchâtel2000Switzerland
| | - Etienne Bellani
- Department of Plant Molecular BiologyUniversity of LausanneLausanne1015Switzerland
| | - Tom M. Raaymakers
- Plant–Microbe InteractionsDepartment of BiologyUtrecht UniversityUtrecht3584 CHthe Netherlands
| | | | - Jürgen Zeier
- Department of BiologyHeinrich Heine UniversityUniversitätsstrasse 1DüsseldorfD‐40225Germany
| | - Philippe Reymond
- Department of Plant Molecular BiologyUniversity of LausanneLausanne1015Switzerland
| |
Collapse
|
27
|
Ojeda-Martinez D, Martinez M, Diaz I, Estrella Santamaria M. Spider mite egg extract modifies Arabidopsis response to future infestations. Sci Rep 2021; 11:17692. [PMID: 34489518 PMCID: PMC8421376 DOI: 10.1038/s41598-021-97245-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
Transcriptional plant responses are an important aspect of herbivore oviposition studies. However, most of our current knowledge is derived from studies using Lepidopteran models, where egg-laying and feeding are separate events in time. Little is known regarding plant response to pests where females feed and oviposit simultaneously. The present study characterized oviposition-induced transcriptomic response of Arabidopsis to Tetranychus urticae egg extracts. Transcriptional evidence indicates that early events in plant response to the egg extract involve responses typical to biotic stresses, which include the alteration in the levels of Ca2+ and ROS, the modification of pathways regulated by the phytohormones jasmonic acid and ethylene, and the production of volatiles and glucosinolates as defence mechanisms. These molecular changes affect female fertility, which was significantly reduced when mites fed on plants pre-exposed to the egg extract. However, longer periods of plant exposure to egg extract cause changes in the transcriptional response of the plant reveal a trend to a decrease in the activation of the defensive response. This alteration correlated with a shift at 72 h of exposition in the effect of the mite feeding. At that point, plants become more susceptible and suffer higher damage when challenged by the mite.
Collapse
Affiliation(s)
- Dairon Ojeda-Martinez
- grid.419190.40000 0001 2300 669XCentro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Manuel Martinez
- grid.419190.40000 0001 2300 669XCentro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain ,grid.5690.a0000 0001 2151 2978Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Isabel Diaz
- grid.419190.40000 0001 2300 669XCentro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain ,grid.5690.a0000 0001 2151 2978Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - M. Estrella Santamaria
- grid.419190.40000 0001 2300 669XCentro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| |
Collapse
|
28
|
Arimura GI. Making Sense of the Way Plants Sense Herbivores. TRENDS IN PLANT SCIENCE 2021; 26:288-298. [PMID: 33277185 DOI: 10.1016/j.tplants.2020.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 09/21/2020] [Accepted: 11/02/2020] [Indexed: 06/12/2023]
Abstract
Plants are constantly threatened by herbivore attacks and must devise survival strategies. Some plants sense and respond to elicitors including specific molecules secreted by herbivores and molecules that are innate to plants. Elicitors activate diverse arrays of plant defense mechanisms that confer resistance to the predator. Recent new insights into the cellular pathways by which plants sense elicitors and elicit defense responses against herbivores are opening doors to a myriad of agricultural applications. This review focuses on the machinery of herbivory-sensing and on cellular and systemic/airborne signaling via elicitors, exemplified by the model case of interactions between Arabidopsis hosts and moths of the genus Spodoptera.
Collapse
Affiliation(s)
- Gen-Ichiro Arimura
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan.
| |
Collapse
|
29
|
Das D, Baruah IK, Panda D, Paswan RR, Acharjee S, Sarmah BK. Bruchid beetle ovipositioning mediated defense responses in black gram pods. BMC PLANT BIOLOGY 2021; 21:38. [PMID: 33430784 PMCID: PMC7802178 DOI: 10.1186/s12870-020-02796-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 12/14/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Black gram [Vigna mungo (L)] seeds are a rich source of digestible protein and dietary fibre, both for human and animal consumption. However, the quality and quantity of the Vigna seeds are severely affected by bruchid beetles during storage. Therefore, analyses of the expression of the bruchid induced transcript dynamics in black gram pods would be helpful to understand the underlying defense mechanism against bruchid oviposition. RESULTS We used the RNAseq approach to survey the changes in transcript profile in the developing seeds of a moderately resistant cultivar IC-8219 against bruchid oviposition using a susceptible cultivar T-9 as a control. A total of 96,084,600 and 99,532,488 clean reads were generated from eight (4 each) samples of IC-8219 and T-9 cultivar, respectively. Based on the BLASTX search against the NR database, 32,584 CDSs were generated of which 31,817 CDSs were significantly similar to Vigna radiata, a close relative of Vigna mungo. The IC-8219 cultivar had 630 significantly differentially expressed genes (DEGs) of which 304 and 326 genes up and down-regulated, respectively. However, in the T-9 cultivar, only 168 DEGs were identified of which 142 and 26 genes up and down-regulated, respectively. The expression analyses of 10 DEGs by qPCR confirmed the accuracy of the RNA-Seq data. Gene Ontology and KEGG pathway analyses helped us to better understand the role of these DEGs in oviposition mediated defense response of black gram. In both the cultivars, the most significant transcriptomic changes in response to the oviposition were related to the induction of defense response genes, transcription factors, secondary metabolites, enzyme inhibitors, and signal transduction pathways. It appears that the bruchid ovipositioning mediated defense response in black gram is induced by SA signaling pathways and defense genes such as defensin, genes for secondary metabolites, and enzyme inhibitors could be potential candidates for resistance to bruchids. CONCLUSION We generated a transcript profile of immature black gram pods upon bruchid ovipositioning by de novo assembly and studied the underlying defense mechanism of a moderately resistant cultivar.
Collapse
Affiliation(s)
- Debajit Das
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Indrani K Baruah
- Office of the ICAR-National Professor (Norman Borlaug Chair) and DBT-AAU Centre, Assam Agricultural University, Jorhat, 785013, India
| | - Debashis Panda
- Distributed Information Centre, Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Ricky Raj Paswan
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Sumita Acharjee
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India.
- Office of the ICAR-National Professor (Norman Borlaug Chair) and DBT-AAU Centre, Assam Agricultural University, Jorhat, 785013, India.
| | - Bidyut Kumar Sarmah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India.
- Office of the ICAR-National Professor (Norman Borlaug Chair) and DBT-AAU Centre, Assam Agricultural University, Jorhat, 785013, India.
| |
Collapse
|
30
|
Valsamakis G, Bittner N, Fatouros NE, Kunze R, Hilker M, Lortzing V. Priming by Timing: Arabidopsis thaliana Adjusts Its Priming Response to Lepidoptera Eggs to the Time of Larval Hatching. FRONTIERS IN PLANT SCIENCE 2020; 11:619589. [PMID: 33362842 PMCID: PMC7755604 DOI: 10.3389/fpls.2020.619589] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/18/2020] [Indexed: 05/20/2023]
Abstract
Plants can respond to eggs laid by herbivorous insects on their leaves by preparing (priming) their defense against the hatching larvae. Egg-mediated priming of defense is known for several plant species, including Brassicaceae. However, it is unknown yet for how long the eggs need to remain on a plant until a primed defense state is reached, which is ecologically manifested by reduced performance of the hatching larvae. To address this question, we used Arabidopsis thaliana, which carried eggs of the butterfly Pieris brassicae for 1-6 days prior to exposure to larval feeding. Our results show that larvae gained less biomass the longer the eggs had previously been on the plant. The strongest priming effect was obtained when eggs had been on the plant for 5 or 6 days, i.e., for (almost) the entire development time of the Pieris embryo inside the egg until larval hatching. Transcript levels of priming-responsive genes, levels of jasmonic acid-isoleucine (JA-Ile), and of the egg-inducible phytoalexin camalexin increased with the egg exposure time. Larval performance studies on mutant plants revealed that camalexin is dispensable for anti-herbivore defense against P. brassicae larvae, whereas JA-Ile - in concert with egg-induced salicylic acid (SA) - seems to be important for signaling egg-mediated primed defense. Thus, A. thaliana adjusts the kinetics of its egg-primed response to the time point of larval hatching. Hence, the plant is optimally prepared just in time prior to larval hatching.
Collapse
Affiliation(s)
- Georgios Valsamakis
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Norbert Bittner
- Applied Genetics, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Nina E. Fatouros
- Biosystematics Group, Wageningen University, Wageningen, Netherlands
| | - Reinhard Kunze
- Applied Genetics, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Monika Hilker
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Vivien Lortzing
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
31
|
Orlovskis Z, Reymond P. Pieris brassicae eggs trigger interplant systemic acquired resistance against a foliar pathogen in Arabidopsis. THE NEW PHYTOLOGIST 2020; 228:1652-1661. [PMID: 32619278 DOI: 10.1111/nph.16788] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/26/2020] [Indexed: 05/11/2023]
Abstract
Recognition of plant pathogens or herbivores activate a broad-spectrum plant defense priming in distal leaves against potential future attacks, leading to systemic acquired resistance (SAR). Additionally, attacked plants can release aerial or below-ground signals that trigger defense responses, such as SAR, in neighboring plants lacking initial exposure to pathogen or pest elicitors. However, the molecular mechanisms involved in interplant defense signal generation in sender plants and decoding in neighboring plants are not fully understood. We previously reported that Pieris brassicae eggs induce intraplant SAR against the foliar pathogen Pseudomonas syringae in Arabidopsis thaliana. Here we extend this effect to neighboring plants by discovering an egg-induced interplant SAR via mobile root-derived signal(s). The generation of an egg-induced interplant SAR signal requires pipecolic acid (Pip) pathway genes ALD1 and FMO1 but occurs independently of salicylic acid (SA) accumulation in sender plants. Furthermore, reception of the signal leads to accumulation of SA in the recipient plants. In response to insect eggs, plants may induce interplant SAR to prepare for potential pathogen invasion following feeding-induced wounding or to keep neighboring plants healthy for hatching larvae. Our results highlight a previously uncharacterized below-ground plant-to-plant signaling mechanism and reveals genetic components required for its generation.
Collapse
Affiliation(s)
- Zigmunds Orlovskis
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, 1015, Switzerland
| | - Philippe Reymond
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, 1015, Switzerland
| |
Collapse
|
32
|
Lortzing T, Kunze R, Steppuhn A, Hilker M, Lortzing V. Arabidopsis, tobacco, nightshade and elm take insect eggs as herbivore alarm and show similar transcriptomic alarm responses. Sci Rep 2020; 10:16281. [PMID: 33004864 PMCID: PMC7530724 DOI: 10.1038/s41598-020-72955-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
Plants respond to insect eggs with transcriptional changes, resulting in enhanced defence against hatching larvae. However, it is unknown whether phylogenetically distant plant species show conserved transcriptomic responses to insect eggs and subsequent larval feeding. We used Generally Applicable Gene set Enrichment (GAGE) on gene ontology terms to answer this question and analysed transcriptome data from Arabidopsis thaliana, wild tobacco (Nicotiana attenuata), bittersweet nightshade (Solanum dulcamara) and elm trees (Ulmus minor) infested by different insect species. The different plant-insect species combinations showed considerable overlap in their transcriptomic responses to both eggs and larval feeding. Within these conformable responses across the plant-insect combinations, the responses to eggs and feeding were largely analogous, and about one-fifth of these analogous responses were further enhanced when egg deposition preceded larval feeding. This conserved transcriptomic response to eggs and larval feeding comprised gene sets related to several phytohormones and to the phenylpropanoid biosynthesis pathway, of which specific branches were activated in different plant-insect combinations. Since insect eggs and larval feeding activate conserved sets of biological processes in different plant species, we conclude that plants with different lifestyles share common transcriptomic alarm responses to insect eggs, which likely enhance their defence against hatching larvae.
Collapse
Affiliation(s)
- Tobias Lortzing
- Molecular Ecology, Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Molecular Botany, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Reinhard Kunze
- Applied Genetics, Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Anke Steppuhn
- Molecular Ecology, Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Molecular Botany, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Monika Hilker
- Applied Zoology/Animal Ecology, Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Vivien Lortzing
- Applied Zoology/Animal Ecology, Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
33
|
Paniagua Voirol LR, Valsamakis G, Lortzing V, Weinhold A, Johnston PR, Fatouros NE, Kunze R, Hilker M. Plant responses to insect eggs are not induced by egg-associated microbes, but by a secretion attached to the eggs. PLANT, CELL & ENVIRONMENT 2020; 43:1815-1826. [PMID: 32096568 DOI: 10.1111/pce.13746] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/16/2019] [Accepted: 02/15/2020] [Indexed: 05/11/2023]
Abstract
Plants can enhance their defence against herbivorous insects by responding to insect egg depositions preceding larval feeding. The similarity of plant responses to insect eggs with those to phytopathogens gave rise to the hypothesis that egg-associated microbes might act as elicitors. We tested this hypothesis by investigating first if elimination of microbes in the butterfly Pieris brassicae changes the responses of Brassica nigra and Arabidopsis thaliana to eggs and larvae of this insect species. An antibiotic treatment of butterflies mitigated the plant transcriptional response to the eggs and the egg-mediated enhancement of the plant's defence against larvae. However, application of cultivated microbial isolates from the eggs onto Arabidopsis thaliana did not enhance the plant's anti-herbivore defence. Instead, application of an egg-associated glandular secretion, which is attaching the eggs to the leaves, elicited the enhancing effect on the plant's defence against larvae. However, this effect was only achieved when the secretion was applied in similar quantities as released by control butterflies, but not when applied in the reduced quantity as released by antibiotic-treated butterflies. We conclude that glandular secretions rather than egg-associated microbes act in a dose-dependent manner as elicitor of the egg-mediated enhancement of the plant's defence against insect larvae.
Collapse
Affiliation(s)
- Luis R Paniagua Voirol
- Institute of Biology, Applied Zoology/Animal Ecology, Freie Universität Berlin, Berlin, Germany
| | - Georgios Valsamakis
- Institute of Biology, Applied Zoology/Animal Ecology, Freie Universität Berlin, Berlin, Germany
| | - Vivien Lortzing
- Institute of Biology, Applied Zoology/Animal Ecology, Freie Universität Berlin, Berlin, Germany
| | - Arne Weinhold
- Institute of Biology, Applied Zoology/Animal Ecology, Freie Universität Berlin, Berlin, Germany
| | - Paul R Johnston
- Institute of Biology, Evolutionary Biology, Freie Universität Berlin, Berlin, Germany
- Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Berlin, Germany
| | - Nina E Fatouros
- Biosystematics Group, Wageningen University, Wageningen, The Netherlands
| | - Reinhard Kunze
- Institute of Biology, Applied Genetics, Freie Universität Berlin, Berlin, Germany
| | - Monika Hilker
- Institute of Biology, Applied Zoology/Animal Ecology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
34
|
Pashalidou FG, Eyman L, Sims J, Buckley J, Fatouros NE, De Moraes CM, Mescher MC. Plant volatiles induced by herbivore eggs prime defences and mediate shifts in the reproductive strategy of receiving plants. Ecol Lett 2020; 23:1097-1106. [PMID: 32314512 DOI: 10.1111/ele.13509] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 02/22/2020] [Accepted: 03/10/2020] [Indexed: 12/24/2022]
Abstract
Plants can detect cues associated with the risk of future herbivory and modify defence phenotypes accordingly; however, our current understanding is limited both with respect to the range of early warning cues to which plants respond and the nature of the responses. Here we report that exposure to volatile emissions from plant tissues infested with herbivore eggs promotes stronger defence responses to subsequent herbivory in two Brassica species. Furthermore, exposure to these volatile cues elicited an apparent shift from growth to reproduction in Brassica nigra, with exposed plants exhibiting increased flower and seed production, but reduced leaf production, relative to unexposed controls. Our results thus document plant defence priming in response to a novel environmental cue, oviposition-induced plant volatiles, while also showing that plant responses to early warning cues can include changes in both defence and life-history traits.
Collapse
Affiliation(s)
- Foteini G Pashalidou
- Department of Environmental Systems Science, ETH Zürich, 8092, Zürich, Switzerland.,UMR Agronomie, INRAE, AgroParisTech, Universite Paris-Saclay, 78850, Thiverval-Grignon, France
| | - Lisa Eyman
- Department of Environmental Systems Science, ETH Zürich, 8092, Zürich, Switzerland
| | - James Sims
- Department of Environmental Systems Science, ETH Zürich, 8092, Zürich, Switzerland
| | - James Buckley
- Department of Environmental Systems Science, ETH Zürich, 8092, Zürich, Switzerland
| | - Nina E Fatouros
- Biosystematics Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, Netherlands
| | - Consuelo M De Moraes
- Department of Environmental Systems Science, ETH Zürich, 8092, Zürich, Switzerland
| | - Mark C Mescher
- Department of Environmental Systems Science, ETH Zürich, 8092, Zürich, Switzerland
| |
Collapse
|
35
|
Bertea CM, Casacci LP, Bonelli S, Zampollo A, Barbero F. Chemical, Physiological and Molecular Responses of Host Plants to Lepidopteran Egg-Laying. FRONTIERS IN PLANT SCIENCE 2020; 10:1768. [PMID: 32082339 PMCID: PMC7002387 DOI: 10.3389/fpls.2019.01768] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
Plant-lepidopteran interactions involve complex processes encompassing molecules and regulators to counteract defense responses they develop against each other. Lepidoptera identify plants for oviposition and exploit them as larval food sources to complete their development. In turn, plants adopt different strategies to overcome and limit herbivorous damages. The insect egg deposition on leaves can already induce a number of defense responses in several plant species. This minireview deals with the main features involved in the interaction between plants and lepidopteran egg-laying, focusing on responses from both insect and plant side. We discuss different aspects of direct and indirect plant responses triggered by lepidopteran oviposition. In particular, we focus our attention on the mechanisms underlying egg-induced plant defenses that can i) directly damage the eggs such as localized hypersensitive response (HR)-like necrosis, neoplasm formation, production of ovicidal compounds and ii) indirect defenses, such as production of oviposition-induced plant volatiles (OIPVs) used to attract natural enemies (parasitoids) able to kill the eggs or hatching larvae. We provide an overview of chemical, physiological, and molecular egg-mediated plant responses induced by both specialist and generalist lepidopteran species, also dealing with effectors, elicitors, and chemical signals involved in the process. Egg-associated microorganisms are also discussed, although little is known about this third partner participating in plant-lepidopteran interactions.
Collapse
Affiliation(s)
- Cinzia Margherita Bertea
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, Turin University, Turin, Italy
| | - Luca Pietro Casacci
- Zoolab, Department of Life Sciences and Systems Biology, Turin University, Turin, Italy
- Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland
| | - Simona Bonelli
- Zoolab, Department of Life Sciences and Systems Biology, Turin University, Turin, Italy
| | - Arianna Zampollo
- Zoolab, Department of Life Sciences and Systems Biology, Turin University, Turin, Italy
| | - Francesca Barbero
- Zoolab, Department of Life Sciences and Systems Biology, Turin University, Turin, Italy
| |
Collapse
|
36
|
Bittner N, Hundacker J, Achotegui-Castells A, Anderbrant O, Hilker M. Defense of Scots pine against sawfly eggs ( Diprion pini) is primed by exposure to sawfly sex pheromones. Proc Natl Acad Sci U S A 2019; 116:24668-24675. [PMID: 31748269 PMCID: PMC6900732 DOI: 10.1073/pnas.1910991116] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Plants respond to insect infestation with defenses targeting insect eggs on their leaves and the feeding insects. Upon perceiving cues indicating imminent herbivory, such as damage-induced leaf odors emitted by neighboring plants, they are able to prime their defenses against feeding insects. Yet it remains unknown whether plants can amplify their defenses against insect eggs by responding to cues indicating imminent egg deposition. Here, we tested the hypothesis that a plant strengthens its defenses against insect eggs by responding to insect sex pheromones. Our study shows that preexposure of Pinus sylvestris to pine sawfly sex pheromones reduces the survival rate of subsequently laid sawfly eggs. Exposure to pheromones does not significantly affect the pine needle water content, but results in increased needle hydrogen peroxide concentrations and increased expression of defense-related pine genes such as SOD (superoxide dismutase), LOX (lipoxygenase), PAL (phenylalanine ammonia lyase), and PR-1 (pathogenesis related protein 1) after egg deposition. These results support our hypothesis that plant responses to sex pheromones emitted by an herbivorous insect can boost plant defensive responses to insect egg deposition, thus highlighting the ability of a plant to mobilize its defenses very early against an initial phase of insect attack, the egg deposition.
Collapse
Affiliation(s)
- Norbert Bittner
- Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, 12163 Berlin, Germany
| | - Janik Hundacker
- Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, 12163 Berlin, Germany
| | - Ander Achotegui-Castells
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), Barcelona, 08193 Catalonia, Spain
- Global Ecology Unit, CREAF-Consejo Superior de Investigaciones Científicas, Universitat Autònoma de Barcelona, Barcelona, 08193 Catalonia, Spain
| | | | - Monika Hilker
- Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, 12163 Berlin, Germany;
| |
Collapse
|
37
|
Filgueiras CC, Martins AD, Pereira RV, Willett DS. The Ecology of Salicylic Acid Signaling: Primary, Secondary and Tertiary Effects with Applications in Agriculture. Int J Mol Sci 2019; 20:E5851. [PMID: 31766518 PMCID: PMC6928651 DOI: 10.3390/ijms20235851] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 12/19/2022] Open
Abstract
The salicylic acid pathway is one of the primary plant defense pathways, is ubiquitous in vascular plants, and plays a role in rapid adaptions to dynamic abiotic and biotic stress. Its prominence and ubiquity make it uniquely suited for understanding how biochemistry within plants can mediate ecological consequences. Induction of the salicylic acid pathway has primary effects on the plant in which it is induced resulting in genetic, metabolomic, and physiologic changes as the plant adapts to challenges. These primary effects can in turn have secondary consequences for herbivores and pathogens attacking the plant. These secondary effects can both directly influence plant attackers and mediate indirect interactions between herbivores and pathogens. Additionally, stimulation of salicylic acid related defenses can affect natural enemies, predators and parasitoids, which can recruit to plant signals with consequences for herbivore populations and plant herbivory aboveground and belowground. These primary, secondary, and tertiary ecological consequences of salicylic acid signaling hold great promise for application in agricultural systems in developing sustainable high-yielding management practices that adapt to changing abiotic and biotic environments.
Collapse
|
38
|
Oberländer J, Lortzing V, Hilker M, Kunze R. The differential response of cold-experienced Arabidopsis thaliana to larval herbivory benefits an insect generalist, but not a specialist. BMC PLANT BIOLOGY 2019; 19:338. [PMID: 31375063 PMCID: PMC6679549 DOI: 10.1186/s12870-019-1943-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND In native environments plants frequently experience simultaneous or sequential unfavourable abiotic and biotic stresses. The plant's response to combined stresses is usually not the sum of the individual responses. Here we investigated the impact of cold on plant defense against subsequent herbivory by a generalist and specialist insect. RESULTS We determined transcriptional responses of Arabidopsis thaliana to low temperature stress (4 °C) and subsequent larval feeding damage by the lepidopteran herbivores Mamestra brassicae (generalist), Pieris brassicae (specialist) or artificial wounding. Furthermore, we compared the performance of larvae feeding upon cold-experienced or untreated plants. Prior experience of cold strongly affected the plant's transcriptional anti-herbivore and wounding response. Feeding by P. brassicae, M. brassicae and artificial wounding induced transcriptional changes of 1975, 1695, and 2239 genes, respectively. Of these, 125, 360, and 681 genes were differentially regulated when cold preceded the tissue damage. Overall, prior experience of cold mostly reduced the transcriptional response of genes to damage. The percentage of damage-responsive genes, which showed attenuated transcriptional regulation when cold preceded the tissue damage, was highest in M. brassicae damaged plants (98%), intermediate in artificially damaged plants (89%), and lowest in P. brassicae damaged plants (69%). Consistently, the generalist M. brassicae performed better on cold-treated than on untreated plants, whereas the performance of the specialist P. brassicae did not differ. CONCLUSIONS The transcriptional defense response of Arabidopsis leaves to feeding by herbivorous insects and artificial wounding is attenuated by a prior exposure of the plant to cold. This attenuation correlates with improved performance of the generalist herbivore M. brassicae, but not the specialist P. brassicae, a herbivore of the same feeding guild.
Collapse
Affiliation(s)
- Jana Oberländer
- Freie Universität Berlin, Institute of Biology - Applied Genetics, Dahlem Centre of Plant Sciences, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany
- Present address: University of Bern, Molecular Plant Physiology, Altenbergrain 21, CH-3013 Bern, Switzerland
| | - Vivien Lortzing
- Freie Universität Berlin, Institute of Biology - Applied Zoology / Animal Ecology, Dahlem Centre of Plant Sciences, Haderslebener Str. 9, 12163 Berlin, Germany
| | - Monika Hilker
- Freie Universität Berlin, Institute of Biology - Applied Zoology / Animal Ecology, Dahlem Centre of Plant Sciences, Haderslebener Str. 9, 12163 Berlin, Germany
| | - Reinhard Kunze
- Freie Universität Berlin, Institute of Biology - Applied Genetics, Dahlem Centre of Plant Sciences, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany
| |
Collapse
|
39
|
Hilker M, Schmülling T. Stress priming, memory, and signalling in plants. PLANT, CELL & ENVIRONMENT 2019; 42:753-761. [PMID: 30779228 DOI: 10.1111/pce.13526] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plants need to cope with changing environmental conditions, be it variable light or temperature, different availability of water or nutrients, or attack by pathogens or insects. Some of these changing conditions can become stressful and require strong countermeasures to ensure plant survival. Plants have evolved numerous distinct sensing and signalling mechanisms to perceive and respond appropriately to a variety of stresses. Because of the unpredictable nature of numerous stresses, resource-saving stress response mechanisms are inducible and become activated only upon a stress experience. Furthermore, plants have evolved mechanisms by which they can remember past stress events and prime their responses in order to react more rapidly or more strongly to recurrent stress. Research over the last decade has revealed mechanisms of this information storage and retrieval, which include epigenetic regulation, transcriptional priming, primed conformation of proteins, or specific hormonal or metabolic signatures. There is also increasing understanding of the ecological constraints and relevance of stress priming and memory. This special issue presents research articles and reviews addressing various aspects of this exciting and growing field of research. Here, we introduce the topic by referring to the articles published in this issue, and we outline open questions and future directions of research.
Collapse
Affiliation(s)
- Monika Hilker
- Dahlem Centre of Plant Sciences (DCPS), Institute of Biology/Applied Zoology & Ecology, Freie Universität Berlin, D-14163, Berlin, Germany
| | - Thomas Schmülling
- Dahlem Centre of Plant Sciences (DCPS), Institute of Biology/Applied Genetics, Freie Universität Berlin, D-14195, Berlin, Germany
| |
Collapse
|
40
|
Gouhier-Darimont C, Stahl E, Glauser G, Reymond P. The Arabidopsis Lectin Receptor Kinase LecRK-I.8 Is Involved in Insect Egg Perception. FRONTIERS IN PLANT SCIENCE 2019; 10:623. [PMID: 31134123 PMCID: PMC6524003 DOI: 10.3389/fpls.2019.00623] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/26/2019] [Indexed: 05/16/2023]
Abstract
Plants induce defense responses after insect egg deposition, but very little is known about the perception mechanisms. In Arabidopsis thaliana, eggs of the specialist insect Pieris brassicae trigger accumulation of reactive oxygen species (ROS) and salicylic acid (SA), followed by induction of defense genes and localized necrosis. Here, the involvement of the clade I L-type lectin receptor kinase LecRK-I.8 in these responses was studied. Expression of LecRK-I.8 was upregulated at the site of P. brassicae oviposition and egg extract (EE) treatment. ROS, SA, cell death, and expression of PR1 were substantially reduced in the Arabidopsis knock-out mutant lecrk-I.8 after EE treatment. In addition, EE-induced systemic resistance against Pseudomonas syringae was abolished in lecrk-I.8. Expression of ten clade I homologs of LecRK-I.8 was also induced by EE treatment, but single mutants displayed only weak alteration of EE-induced PR1 expression. These results demonstrate that LecRK-I.8 is an early component of egg perception.
Collapse
Affiliation(s)
| | - Elia Stahl
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Gaetan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, Switzerland
| | - Philippe Reymond
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
- *Correspondence: Philippe Reymond,
| |
Collapse
|
41
|
Geuss D, Lortzing T, Schwachtje J, Kopka J, Steppuhn A. Oviposition by Spodoptera exigua on Solanum dulcamara Alters the Plant's Response to Herbivory and Impairs Larval Performance. Int J Mol Sci 2018; 19:ijms19124008. [PMID: 30545097 PMCID: PMC6321313 DOI: 10.3390/ijms19124008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/10/2018] [Accepted: 12/10/2018] [Indexed: 11/23/2022] Open
Abstract
Plant resistance traits against insect herbivores are extremely plastic. Plants respond not only to the herbivory itself, but also to oviposition by herbivorous insects. How prior oviposition affects plant responses to larval herbivory is largely unknown. Combining bioassays and defense protein activity assays with microarray analyses and metabolite profiling, we investigated the impact of preceding oviposition on the interaction of Solanum dulcamara with the generalist lepidopteran herbivore Spodoptera exigua at the levels of the plant’s resistance, transcriptome and metabolome. We found that oviposition increased plant resistance to the subsequent feeding larvae. While constitutive and feeding-induced levels of defensive protease inhibitor activity remained unaffected, pre-exposure to eggs altered S. dulcamara’s transcriptional and metabolic response to larval feeding in leaves local and systemic to oviposition. In particular, genes involved in phenylpropanoid metabolism were more strongly expressed in previously oviposited plants, which was reflected by reciprocal changes of primary metabolites upstream and within these pathways. Our data highlight that plants integrate signals from non-threatening life stages of their natural enemies to optimize their response when they become actually attacked. The observed transcriptional and metabolic reshaping of S. dulcamara’s response to S. exigua herbivory suggests a role of phenylpropanoids in oviposition-primed plant resistance.
Collapse
Affiliation(s)
- Daniel Geuss
- Molecular Ecology, Dahlem Centre of Plant Sciences, Institute of Biology/Freie Universität Berlin, Albrecht-Thaer Weg 6, 14195, Berlin, Germany.
| | - Tobias Lortzing
- Molecular Ecology, Dahlem Centre of Plant Sciences, Institute of Biology/Freie Universität Berlin, Albrecht-Thaer Weg 6, 14195, Berlin, Germany.
| | - Jens Schwachtje
- Applied Metabolome Analysis, Max-Planck-Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| | - Joachim Kopka
- Applied Metabolome Analysis, Max-Planck-Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| | - Anke Steppuhn
- Molecular Ecology, Dahlem Centre of Plant Sciences, Institute of Biology/Freie Universität Berlin, Albrecht-Thaer Weg 6, 14195, Berlin, Germany.
| |
Collapse
|
42
|
Altmann S, Muino JM, Lortzing V, Brandt R, Himmelbach A, Altschmied L, Hilker M. Transcriptomic basis for reinforcement of elm antiherbivore defence mediated by insect egg deposition. Mol Ecol 2018; 27:4901-4915. [PMID: 30329187 DOI: 10.1111/mec.14900] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 12/27/2022]
Abstract
Plant responses to insect egg depositions are known to shape subsequent defensive responses to larvae hatching from the eggs. Elm (Ulmus minor) leaves, on which elm leaf beetles laid their eggs, mount a more efficient defence against larvae hatching from the eggs. However, the molecular mechanisms of this egg-mediated, improved defence are insufficiently understood and have so far only been studied in annual plants. We analysed the dynamics of transcriptomic changes in larval feeding-damaged elm leaves with and without prior egg deposition using de novo assembled RNA-seq data. Compared to egg-free leaves, egg deposition-treated leaves showed earlier and/or faster transcriptional regulations, as well as slightly enhanced differential transcriptional regulation after the onset of larval feeding. These early responding transcripts were overrepresented in gene ontology terms associated with post-translational protein modification, signalling and stress (defence) responses. We found evidence of transcriptional memory in initially egg deposition-induced transcripts whose differential expression was reset prior to larval hatching, but was more rapidly induced again by subsequent larval feeding. This potential memory effect of prior egg deposition, as well as the earlier/faster and enhanced feeding-induced differential regulation of transcripts in egg deposition-treated leaves, may contribute to the egg-mediated reinforcing effect on the elm's defence against larvae. Hence, our study shows that a plant's experience of a stress-indicating environmental cue (here: insect eggs) can push the dynamics of the plant's transcriptomic response to subsequent stress (here: larval feeding). Such experience-mediated acceleration of a stress-induced plant response may result in improved stress resistance.
Collapse
Affiliation(s)
- Simone Altmann
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Jose M Muino
- Institute of Biology, Humboldt University Berlin, Berlin, Germany
| | - Vivien Lortzing
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Ronny Brandt
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Lothar Altschmied
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Monika Hilker
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|