1
|
Zhang YL, Gessler A, Lehmann MM, Schaub M, Saurer M, Rigling A, Li MH. Exogenous sugar addition can exacerbate root carbon limitation in trees. THE NEW PHYTOLOGIST 2025. [PMID: 40400220 DOI: 10.1111/nph.70231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 04/22/2025] [Indexed: 05/23/2025]
Abstract
In most tree species, roots serve as major carbon (C) sinks, where C is depleted first when C assimilation is limited. Recent methodological advancements in sugar infusion allow for a better understanding of physiological processes alleviating root C limitation. We conducted a glasshouse experiment with maple (Acer pseudoplatanus L.) and pine (Pinus sylvestris L.) saplings that underwent defoliation followed by either slow, fast, or no 13C-labeled glucose infusion. We measured photosynthetic parameters, nonstructural carbohydrate (NSC) concentrations, and δ13C in cellulose of leaves, twigs, and fine roots, as well as the isotopic composition of dark-respired CO2. Sugar infusion induced photosynthetic downregulation and leaf senescence in maple but not in pine. Leaf photosynthesis was negatively correlated with leaf NSC concentration in maple. These responses exacerbated root C limitation in maple. Conversely, pine maintained stable photosynthetic rates and needle NSC concentrations across treatments, showing the potential of sugar infusion to mitigate root C limitation. Our study suggests that exogenous sugar supply reduces the root C availability when it impairs a plant's photosynthetic performance. Species-specific differences influence infused sugar transport and overall source-sink responses. Alleviating C limitation in roots via exogenous sugar addition is feasible only if photosynthesis is not impeded.
Collapse
Affiliation(s)
- Yan-Li Zhang
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903, Birmensdorf, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, CH-8092, Zürich, Switzerland
| | - Arthur Gessler
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903, Birmensdorf, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, CH-8092, Zürich, Switzerland
| | - Marco M Lehmann
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903, Birmensdorf, Switzerland
| | - Marcus Schaub
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903, Birmensdorf, Switzerland
| | - Matthias Saurer
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903, Birmensdorf, Switzerland
| | - Andreas Rigling
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903, Birmensdorf, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, CH-8092, Zürich, Switzerland
| | - Mai-He Li
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903, Birmensdorf, Switzerland
| |
Collapse
|
2
|
Singh A, Mathan J, Dwivedi A, Rani R, Ranjan A. Integration of metabolite and transcriptome profiles of cultivated and wild rice to unveil gene regulatory networks and key genes determining rice source and sink strength. Funct Integr Genomics 2025; 25:97. [PMID: 40310586 DOI: 10.1007/s10142-025-01606-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/13/2025] [Accepted: 04/24/2025] [Indexed: 05/02/2025]
Abstract
Targeting source and sink strength for crop yield increase requires a comprehensive genetic and metabolic understanding of desirable source and sink features. We performed comprehensive metabolite and transcriptomic comparisons of the photosynthetic flag leaves and milky-stage developing grains of two cultivated rice varieties (Oryza sativa L. ssp. Indica cv. IR64 and Oryza sativa L. ssp. Japonica cv. Nipponbare) and two wild rice accessions (Oryza rufipogon and Oryza australiensis). The selected wild rice accessions had stronger source strength as evidenced by a higher photosynthesis rate and more abundance of primary metabolites in the photosynthetic leaves than the cultivated varieties. In contrast, cultivated varieties had efficient sink as grains were bigger and accumulated more sugars, amino acids, and fatty acids than the selected wild rice. Transcriptomic analyses identified 9,309 genes for efficient source in wild rice, enriched for biological pathways related to photosynthesis, carbohydrate metabolism, and sucrose transport. 7,062 genes, enriched for starch biosynthesis and lipid metabolism, were associated with the efficient sink strength in the cultivated varieties. Gene co-expression networks showed 267 hub genes for source strength in wild rice that included important genes for photosynthetic reactions and sucrose metabolism. 196 hub genes for sink strength in cultivated rice included genes involved in sucrose, amino acid, and fatty acid metabolism. Gene co-expression modules further identified the candidate transcription regulators, such as zinc finger proteins and NAC for source strength and MYB55/80 and MADS64 for sink strength. Moreover, our analyses suggested a complex interplay of phytohormones regulating rice source and sink strength.
Collapse
Affiliation(s)
- Anuradha Singh
- National Institute of Plant Genome Research, New Delhi, 110067, India
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Jyotirmaya Mathan
- National Institute of Plant Genome Research, New Delhi, 110067, India
- Sashi Bhusan Rath Government Autonomous Women's College, Brahmapur, 760001, India
| | - Aditi Dwivedi
- National Institute of Plant Genome Research, New Delhi, 110067, India
- Department of Plant Biology, University of California, Davis, CA, 95616, USA
| | - Ruchi Rani
- National Institute of Plant Genome Research, New Delhi, 110067, India
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, 7701, South Africa
| | - Aashish Ranjan
- National Institute of Plant Genome Research, New Delhi, 110067, India.
| |
Collapse
|
3
|
Nikolić B, Jovanović V, Knežević B, Nikolić Z, Babović-Đorđević M. Mode of Action of Brassinosteroids: Seed Germination and Seedling Growth and Development-One Hypothesis. Int J Mol Sci 2025; 26:2559. [PMID: 40141203 PMCID: PMC11942388 DOI: 10.3390/ijms26062559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Brassinosteroids, as unique plant steroid hormones that bear structural similarity to animal steroids, play a crucial role in modulating plant growth and development. These hormones have a positive impact on plant resistance and, under stressful conditions, stimulate photosynthesis and antioxidative systems (enzymatic and non-enzymatic), leading to a reduced impact of environmental cues on plant metabolism and growth. Although these plant hormones have been studied for several decades, most studies analyze the primary site of action of the brassinosteroid phytohormone, with a special emphasis on the activation of various genes (mainly nuclear) through different signaling processes that influence plant metabolism, growth, and development. This review explores another issue, the secondary influence (the so-called mode of action) of brassinosteroids on changes in growth, development, and chemical composition, as well as thermodynamic and energetic changes, mainly during the early growth of corn seedlings. The interactions of brassinosteroids with other phytohormones and physiologically active substances and the influence of these interactions on the mode of action of brassinosteroid phytohormones were also discussed. Seen from a cybernetic point of view, the approach can be labeled as "black box" or "gray box". "Black box" and "gray box" are terms for cybernetic systems, for which we know the inputs and outputs (in an energetic, biochemical, kinetic, informational, or some other sense), but whose internal structure and/or organization are completely or partially unknown to us. The findings of many researchers have indicated an important role of reactive species, such as oxygen and nitrogen reactive species, in these processes. This ultimately results in the redistribution of matter and energy from source organs to sink organs, with a decrease in Gibbs free energy from the source to sink organs. This quantitative evidence speaks of the exothermic nature and spontaneity of early (corn) seedling development and growth under the influence of 24-epibrassinolide. Based on these findings and a review of the literature on the mode of action of brassinosteroids, a hypothesis was put forward about the secondary effects of BRs on germination and the early growth of plant seedlings.
Collapse
Affiliation(s)
- Bogdan Nikolić
- Institute for Plant Protection And Environment, Teodora Drajzera Str., No. 9, 11040 Belgrade, Serbia
| | - Vladan Jovanović
- Institute for Pesticides and Environmental Protection, Banatska Str., No. 31b, 11080 Belgrade, Serbia;
| | - Branislav Knežević
- Department of Crop and Vegetable Sciences, Faculty of Agriculture, University of Priština in Kosovska Mitrovica, 38219 Lešak, Serbia;
| | - Zoran Nikolić
- Department for Fruit Growing and Viticulture Sciences, Faculty of Agriculture, Univerzity of Priština in Kosovska Mitrovica, 38219 Lešak, Serbia;
| | - Maja Babović-Đorđević
- Department of Plant Protection, Faculty of Agriculture, University of Priština in Kosovska Mitrovica, 38219 Lešak, Serbia;
| |
Collapse
|
4
|
Li Y, Wang M, Chen P, Luo K, Lin P, Fu Z, Pu T, Wang X, Yong T, Yang W. Simulation of Defoliation Effects on Relay Strip Intercropping Soybean: Elucidating Foliar Shedding and Leaf-to-Nodule Growth Plasticity. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39526422 DOI: 10.1111/pce.15251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/10/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024]
Abstract
Extensive foliar shedding in monoculture soybeans post-anthesis negatively impacts yield, whereas relay strip intercropping prolongs leaf area duration, enhancing productivity. However, little is known about the causes of leaf shedding in monoculture and its impact on physiological functions and plasticity of source and sink organs, we conducted a 4-year field experiment and leaf-removal simulations in relay intercropped soybeans. Results revealed that monoculture soybeans experienced severe self-shading and defoliation, while relay intercropping maintained better light conditions, supporting higher leaf area, nodule numbers, and carbon allocation. Increasing leaf removal initially increased leaf area but eventually reduced it. Extensive leaf-removal reduced Rubisco and sucrose phosphate synthase (SPS) activity, as well as sucrose, malate, ATP, and energy charge (EC) in nodules, revealing a trade-off between leaf growth and nodule development. Moderate leaf-removal (L30), however, balanced compensation and consumption, increasing total non-structural carbohydrates (TNC) in roots and N and ureide in leaves and pods. Network analysis showed that L30 improved the synergies of functional traits in leaves and nodules, ultimately benefiting overall plant growth and nutrient accumulation in pods. This study elucidates a mechanism of foliar shedding and highlights how relay strip intercropping optimizes source-sink coordination to enhance photosynthesis and nitrogen fixation.
Collapse
Affiliation(s)
- Yiling Li
- Institute of Ecological Agriculture, College of Agronomy, Sichuan Agricultural University/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs/Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, Sichuan, China
| | - Mingyue Wang
- Department of Genetics, College of Life Sciences, Wuhan University/State Key Laboratory of Hybrid Rice/Key Laboratory for Research and Utilization of Heterosis in Indica Rice, The Ministry of Agriculture, Wuhan, Hubei, China
| | - Ping Chen
- Institute of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Kai Luo
- Institute of Ecological Agriculture, College of Agronomy, Sichuan Agricultural University/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs/Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, Sichuan, China
| | - Ping Lin
- Institute of Ecological Agriculture, College of Agronomy, Sichuan Agricultural University/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs/Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, Sichuan, China
| | - Zhidan Fu
- Institute of Ecological Agriculture, College of Agronomy, Sichuan Agricultural University/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs/Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, Sichuan, China
| | - Tian Pu
- Institute of Ecological Agriculture, College of Agronomy, Sichuan Agricultural University/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs/Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, Sichuan, China
| | - Xiaochun Wang
- Institute of Ecological Agriculture, College of Agronomy, Sichuan Agricultural University/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs/Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, Sichuan, China
| | - Taiwen Yong
- Institute of Ecological Agriculture, College of Agronomy, Sichuan Agricultural University/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs/Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, Sichuan, China
| | - Wenyu Yang
- Institute of Ecological Agriculture, College of Agronomy, Sichuan Agricultural University/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs/Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Serra P, Aramburu SR, Petrich J, Campos-Bermudez VA, Ferreyra MLF, Casati P. A maize enzyme from the 2-oxoglutarate-dependent oxygenase family with unique kinetic properties, mediates resistance against pathogens and regulates senescence. PLANT, CELL & ENVIRONMENT 2024; 47:3111-3131. [PMID: 38686847 DOI: 10.1111/pce.14929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 03/20/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
In plants, salicylic acid (SA) hydroxylation regulates SA homoeostasis, playing an essential role during plant development and response to pathogens. This reaction is catalysed by SA hydroxylase enzymes, which hydroxylate SA producing 2,3-dihydroxybenzoic acid (2,3-DHBA) and/or 2,5-dihydroxybenzoic acid (2,5-DHBA). Several SA hydroxylases have recently been identified and characterised from different plant species, but no such activity has yet been reported in maize. In this work, we describe the identification and characterisation of a new SA hydroxylase in maize plants. This enzyme, with high sequence similarity to previously described SA hydroxylases from Arabidopsis and rice, converts SA into 2,5-DHBA; however, it has different kinetic properties to those of previously characterised enzymes, and it also catalysers the conversion of the flavonoid dihydroquercetin into quercetin in in vitro activity assays, suggesting that the maize enzyme may have different roles in vivo to those previously reported from other species. Despite this, ZmS5H can complement the pathogen resistance and the early senescence phenotypes of Arabidopsis s3h mutant plants. Finally, we characterised a maize mutant in the S5H gene (s5hMu) that has altered growth, senescence and increased resistance against Colletotrichum graminicola infection, showing not only alterations in SA and 2,5-DHBA but also in flavonol levels. Together, the results presented here provide evidence that SA hydroxylases in different plant species have evolved to show differences in catalytic properties that may be important to fine tune SA levels and other phenolic compounds such as flavonols, to regulate different aspects of plant development and pathogen defence.
Collapse
Affiliation(s)
- Paloma Serra
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Rosario, Argentina
| | - Silvana Righini Aramburu
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Rosario, Argentina
| | - Julieta Petrich
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Rosario, Argentina
| | | | | | - Paula Casati
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
6
|
Zhang Y, Cao M, Li Q, Yu F. Genome-wide identification and expression analysis of TPP gene family under salt stress in peanut (Arachis hypogaea L.). PLoS One 2024; 19:e0305730. [PMID: 39024233 PMCID: PMC11257338 DOI: 10.1371/journal.pone.0305730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/04/2024] [Indexed: 07/20/2024] Open
Abstract
Trehalose-6-phosphate phosphatase (TPP), a key enzyme for trehalose biosynthesis in plants, plays a pivotal role in the growth and development of higher plants, as well as their adaptations to various abiotic stresses. Employing bioinformatics techniques, 45 TPP genes distributed across 17 chromosomes were identified with conserved Trehalose-PPase domains in the peanut genome, aiming to screen those involved in salt tolerance. Collinearity analysis showed that 22 TPP genes from peanut formed homologous gene pairs with 9 TPP genes from Arabidopsis and 31 TPP genes from soybean, respectively. Analysis of cis-acting elements in the promoters revealed the presence of multiple hormone- and abiotic stress-responsive elements in the promoter regions of AhTPPs. Expression pattern analysis showed that members of the TPP gene family in peanut responded significantly to various abiotic stresses, including low temperature, drought, and nitrogen deficiency, and exhibited certain tissue specificity. Salt stress significantly upregulated AhTPPs, with a higher number of responsive genes observed at the seedling stage compared to the podding stage. The intuitive physiological effect was reflected in the significantly higher accumulation of trehalose content in the leaves of plants under salt stress compared to the control. These findings indicate that the TPP gene family plays a crucial role in peanut's response to abiotic stresses, laying the foundation for further functional studies and utilization of these genes.
Collapse
Affiliation(s)
- Yanfeng Zhang
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Minxuan Cao
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiuzhi Li
- Liaocheng Academy of Agricultural Sciences, Liaocheng, Shandong, China
| | - Fagang Yu
- Liaocheng Academy of Agricultural Sciences, Liaocheng, Shandong, China
| |
Collapse
|
7
|
Asad MAU, Yan Z, Zhou L, Guan X, Cheng F. How abiotic stresses trigger sugar signaling to modulate leaf senescence? PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108650. [PMID: 38653095 DOI: 10.1016/j.plaphy.2024.108650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/05/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Plants have evolved the adaptive capacity to mitigate the negative effect of external adversities at chemical, molecular, cellular, and physiological levels. This capacity is conferred by triggering the coordinated action of internal regulatory factors, in which sugars play an essential role in the regulating chloroplast degradation and leaf senescence under various stresses. In this review, we summarize the recent findings on the senescent-associated changes in carbohydrate metabolism and its relation to chlorophyl degradation, oxidative damage, photosynthesis inhibition, programmed cell death (PCD), and sink-source relation as affected by abiotic stresses. The action of sugar signaling in regulating the initiation and progression of leaf senescence under abiotic stresses involves interactions with various plant hormones, reactive oxygen species (ROS) burst, and protein kinases. This discussion aims to elucidate the complex regulatory network and molecular mechanisms that underline sugar-induced leaf senescence in response to various abiotic stresses. The imperative role of sugar signaling in regulating plant stress responses potentially enables the production of crop plants with modified sugar metabolism. This, in turn, may facilitate the engineering of plants with improved stress responses, optimal life span and higher yield achievement.
Collapse
Affiliation(s)
- Muhmmad Asad Ullah Asad
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zhang Yan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Lujian Zhou
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xianyue Guan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fangmin Cheng
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China; Collaborative Innovation Centre for Modern Crop Production Co-sponsored by Province and Ministry, Nanjing, China.
| |
Collapse
|
8
|
Zhang Q, Chen C, Guo R, Zhu X, Tao X, He M, Li Z, Shen L, Li Q, Ren D, Hu J, Zhu L, Zhang G, Qian Q. Plasma membrane-localized hexose transporter OsSWEET1b, affects sugar metabolism and leaf senescence. PLANT CELL REPORTS 2024; 43:29. [PMID: 38183427 DOI: 10.1007/s00299-023-03125-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/04/2023] [Indexed: 01/08/2024]
Abstract
KEY MESSAGE OsSWEET1b is a hexose transporter protein, which localized in cell membranes and interacting with itself to form homodimer and knockout of OsSWEET1b resulted in reduced leaves sugar content and accelerating leaf senescence. In the rice genome, the SWEET gene family contains 21 homologous members, but the role of some of them in rice growth and development is still unknown. The function of the sugar transporter OsSWEET1b protein in rice was identified in this research. Expression analysis showed that the expression levels of OsSWEET1b in leaves were higher than that in other tissues. The hexose transport experiment confirmed that OsSWEET1b has glucose and galactose transporter activity in yeast. Subcellular localization indicates that OsSWEET1b protein was targeted to the plasma membrane and BiFC analysis showed that OsSWEET1b interacts with itself to form homodimers. Functional analysis demonstrated that the ossweet1b mutant plants were have reduced the sucrose, glucose, fructose, starch and galactose contents, and induced carbon starvation-related gene expression, which might lead to carbon starvation in leaves at filling stage. The ossweet1b knockout plants showed decreased chlorophyll content and antioxidant enzyme activity, and increased ROS accumulation in leaves, leading to leaf cell death and premature senescence phenotype at filling stage. In ossweet1b mutants, the leaf senescence-related gene expression levels were increased and the abundance of photosynthesis-related proteins was decreased. Loss of OsSWEET1b were affected the starch, sucrose metabolism and carbon fixation in photosynthetic organelles pathway by RNA-seq analysis. The destruction of OsSWEET1b function will cause sugar starvation, decreased photosynthesis and leaf senescence, which leading to reduced rice yield. Collectively, our results suggest that the OsSWEET1b plays a key role in rice leaves carbohydrate metabolism and leaf senescence.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572000, China
| | - Changzhao Chen
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Rui Guo
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Xiaofang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing, 210008, China
| | - Xinyu Tao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310006, Zhejiang, China
| | - Mengxing He
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China
| | - Zhiwen Li
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing, 210008, China
| | - Lan Shen
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Qing Li
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Deyong Ren
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Jiang Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Li Zhu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Guangheng Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Qian Qian
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China.
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572000, China.
| |
Collapse
|
9
|
Kumar R, Brar MS, Kunduru B, Ackerman AJ, Yang Y, Luo F, Saski CA, Bridges WC, de Leon N, McMahan C, Kaeppler SM, Sekhon RS. Genetic architecture of source-sink-regulated senescence in maize. PLANT PHYSIOLOGY 2023; 193:2459-2479. [PMID: 37595026 DOI: 10.1093/plphys/kiad460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/12/2023] [Accepted: 07/21/2023] [Indexed: 08/20/2023]
Abstract
Source and sink interactions play a critical but mechanistically poorly understood role in the regulation of senescence. To disentangle the genetic and molecular mechanisms underlying source-sink-regulated senescence (SSRS), we performed a phenotypic, transcriptomic, and systems genetics analysis of senescence induced by the lack of a strong sink in maize (Zea mays). Comparative analysis of genotypes with contrasting SSRS phenotypes revealed that feedback inhibition of photosynthesis, a surge in reactive oxygen species, and the resulting endoplasmic reticulum (ER) stress were the earliest outcomes of weakened sink demand. Multienvironmental evaluation of a biparental population and a diversity panel identified 12 quantitative trait loci and 24 candidate genes, respectively, underlying SSRS. Combining the natural diversity and coexpression networks analyses identified 7 high-confidence candidate genes involved in proteolysis, photosynthesis, stress response, and protein folding. The role of a cathepsin B like protease 4 (ccp4), a candidate gene supported by systems genetic analysis, was validated by analysis of natural alleles in maize and heterologous analyses in Arabidopsis (Arabidopsis thaliana). Analysis of natural alleles suggested that a 700-bp polymorphic promoter region harboring multiple ABA-responsive elements is responsible for differential transcriptional regulation of ccp4 by ABA and the resulting variation in SSRS phenotype. We propose a model for SSRS wherein feedback inhibition of photosynthesis, ABA signaling, and oxidative stress converge to induce ER stress manifested as programed cell death and senescence. These findings provide a deeper understanding of signals emerging from loss of sink strength and offer opportunities to modify these signals to alter senescence program and enhance crop productivity.
Collapse
Affiliation(s)
- Rohit Kumar
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Manwinder S Brar
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Bharath Kunduru
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Arlyn J Ackerman
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Yuan Yang
- School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC 29634, USA
| | - Feng Luo
- School of Computing, Clemson University, Clemson, SC 29634, USA
| | - Christopher A Saski
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA
| | - William C Bridges
- School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC 29634, USA
| | - Natalia de Leon
- Department of Agronomy, University of Wisconsin, Madison, WI 53706, USA
| | - Christopher McMahan
- School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC 29634, USA
| | - Shawn M Kaeppler
- Department of Agronomy, University of Wisconsin, Madison, WI 53706, USA
| | - Rajandeep S Sekhon
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
10
|
Marino G, Guzmán-Delgado P, Santos E, Adaskaveg JA, Blanco-Ulate B, Ferguson L, Zwieniecki MA, Fernández-Suela E. Interactive effect of branch source-sink ratio and leaf aging on photosynthesis in pistachio. FRONTIERS IN PLANT SCIENCE 2023; 14:1194177. [PMID: 37600173 PMCID: PMC10436215 DOI: 10.3389/fpls.2023.1194177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 06/27/2023] [Indexed: 08/22/2023]
Abstract
Tree source-sink ratio has a predominant and complex impact on tree performance and can affect multiple physiological processes including vegetative and reproductive growth, water and nutrient use, photosynthesis, and productivity. In this study, we manipulated the branch level source-sink ratio by reduction of photosynthetic activity (partial branch defoliation) or thinning branch fruit load early in the growing season (after fruit set) in pistachio (Pistacia vera) trees. We then characterized the leaf photosynthetic light response curves through leaf aging. In addition, we determined changes in leaf non-structural carbohydrates (NSC) and nitrogen (N) concentrations. In leaves with high source-sink ratios, there was a gradual decrease in maximum net photosynthetic rate (ANmax) over the growing season, while in branches with low source-sink ratios, there was a sharp decline in ANmax in the first two weeks of August. Branches with high-sink showed an up-regulation (increase) in photosynthesis toward the end of July (at 1,500 growing degree days) during the period of rapid kernel growth rate and increased sink strength, with ANmax being about 7 μmol m-1 s-1 higher than in branches with low-sink. In August, low source-sink ratios precipitated leaf senescence, resulting in a drastic ANmax decline, from 25 to 8 μmol m-1 s-1 (70% drop in two weeks). This reduction was associated with the accumulation of NSC in the leaves from 20 to 30 mg g-1. The mechanisms of ANmax reduction differ between the two treatments. Lower photosynthetic rates of 8-10 μmol m-1 s-1 late in the season were associated with lower N levels in high-sink branches, suggesting N remobilization to the kernels. Lower photosynthesis late in the season was associated with lower respiration rates in low-source branches, indicating prioritization of assimilates to storage. These results can facilitate the adaptation of management practices to tree crop load changes in alternate bearing species.
Collapse
Affiliation(s)
- Giulia Marino
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Paula Guzmán-Delgado
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Emily Santos
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Jaclyn A. Adaskaveg
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Bárbara Blanco-Ulate
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Louise Ferguson
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Maciej A. Zwieniecki
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Eduardo Fernández-Suela
- Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario, Madrid, Spain
| |
Collapse
|
11
|
Yang L, Dai L, Zhang H, Sun F, Tang X, Feng W, Yu H, Zhang J. Molecular and Functional Analysis of Trehalose-6-Phosphate Synthase Genes Enhancing Salt Tolerance in Anoectochilus roxburghii (Wall.) Lindl. Molecules 2023; 28:5139. [PMID: 37446801 DOI: 10.3390/molecules28135139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Trehalose is a reducing disaccharide, acting as a protectant against various environmental stresses in numerous organisms. In plants, trehalose-6-phosphate synthase (TPS) plays a crucial role in trehalose biosynthesis. Anoectochilus roxburghii (Wall.) Lindl. is a prominent species of the Anoectochilus genus, widely utilized as a health food. However, the functional analysis of TPS in this species has been limited. In this study, TPS genes were cloned from A. roxburghii. The ArTPS gene, with an open reading frame spanning 2850 bp, encodes 950 amino acids. Comparative and bioinformatics analysis revealed that the homology was presented between the ArTPS protein and TPSs from other plant species. The ORF sequence was utilized to construct a prokaryotic expression vector, Pet28a-ArTPS, which was then transformed into Escherichia coli. The resulting transformants displayed a significant increase in salt tolerance under the stress conditions of 300 mmol/L NaCl. Quantitative RT-PCR analysis demonstrated that the expression of ArTPS genes responded to NaCl stress. The accumulation of G6P was upregulated, whereas the content of T6P exhibited an opposite expression trend. The glycometabolism products, including trehalose, exhibited notable changes under NaCl stress, although their variations may differ in response to stimulation. The content of kinsenoside, a characteristic product of A. roxburghii, was significantly upregulated under NaCl stress. These results suggest that the ArTPS genes function in response to NaCl stimulation and play a key role in polysaccharide and glycoside metabolism in Anoectochilus. This study provides new insights into the engineering modification of the health food A. roxburghii to enhance the medicinal activity of its ingredients.
Collapse
Affiliation(s)
- Lin Yang
- Medical Plant Exploitation and Utilization Engineering Research Center, Sanming University, Sanming 365004, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Luwei Dai
- Medical Plant Exploitation and Utilization Engineering Research Center, Sanming University, Sanming 365004, China
| | - Hangying Zhang
- Medical Plant Exploitation and Utilization Engineering Research Center, Sanming University, Sanming 365004, China
| | - Fuai Sun
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuchong Tang
- Bayecao Biotechnology (Sanming) Co., Ltd., Sanming 365004, China
| | - Wenqi Feng
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Haoqiang Yu
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Juncheng Zhang
- Medical Plant Exploitation and Utilization Engineering Research Center, Sanming University, Sanming 365004, China
| |
Collapse
|
12
|
Wu X, Tong L, Kang S, Du T, Ding R, Li S, Chen Y. Combination of suitable planting density and nitrogen rate for high yield maize and their source-sink relationship in Northwest China. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 37016583 DOI: 10.1002/jsfa.12602] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Increasing crop yield per unit area by increasing planting density is essential to ensure food security. However, the optimal combination of planting density and nitrogen (N) application for high-yielding maize and its source-sink characteristics need to be more clearly understood. RESULTS A 2-year field experiment was conducted combining three planting densities (D1: 70 000 plants ha-1 ; D2: 100 000 plants ha-1 ; D3: 130 000 plants ha-1 ) and three nitrogen rates (N1: 150 kg hm-2 ; N2: 350 kg hm-2 ; N3: 450 kg hm-2 ). The results showed that increasing planting density significantly increased leaf area index and grain yield but negatively affected ear traits. The Richards model was used to fit the dynamic changes of dry matter accumulation of maize under different treatments, and the fitting results were good. Increasing planting density increased population yield while limiting the development of individual plants, bringing the period of rapid dry matter accumulation to an early end and accelerating leaf senescence. An appropriate nitrogen rate could prolong the period of rapid accumulation of dry matter in maize, and increase the 100-kernel weight. Increasing planting density enhanced post-silking dry matter accumulation to a lesser extent, and the source-sink relationship of the maize population gradually developed from sink limitation to source limitation with increasing planting density. CONCLUSION The decrease in yield due to the insufficient source strength to meet the sink demand at too high densities was the reason that limited further improvement of the optimal planting density. An appropriate nitrogen rate facilitated the realization of yield potential at high density. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xuanyi Wu
- Center for Agricultural Water Research in China, College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei, China
| | - Ling Tong
- Center for Agricultural Water Research in China, College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei, China
| | - Shaozhong Kang
- Center for Agricultural Water Research in China, College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei, China
| | - Taisheng Du
- Center for Agricultural Water Research in China, College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei, China
| | - Risheng Ding
- Center for Agricultural Water Research in China, College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei, China
| | - Sien Li
- Center for Agricultural Water Research in China, College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei, China
| | - Yang Chen
- Center for Agricultural Water Research in China, College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei, China
| |
Collapse
|
13
|
Maschler J, Bialic‐Murphy L, Wan J, Andresen LC, Zohner CM, Reich PB, Lüscher A, Schneider MK, Müller C, Moser G, Dukes JS, Schmidt IK, Bilton MC, Zhu K, Crowther TW. Links across ecological scales: Plant biomass responses to elevated CO 2. GLOBAL CHANGE BIOLOGY 2022; 28:6115-6134. [PMID: 36069191 PMCID: PMC9825951 DOI: 10.1111/gcb.16351] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/06/2022] [Indexed: 06/04/2023]
Abstract
The degree to which elevated CO2 concentrations (e[CO2 ]) increase the amount of carbon (C) assimilated by vegetation plays a key role in climate change. However, due to the short-term nature of CO2 enrichment experiments and the lack of reconciliation between different ecological scales, the effect of e[CO2 ] on plant biomass stocks remains a major uncertainty in future climate projections. Here, we review the effect of e[CO2 ] on plant biomass across multiple levels of ecological organization, scaling from physiological responses to changes in population-, community-, ecosystem-, and global-scale dynamics. We find that evidence for a sustained biomass response to e[CO2 ] varies across ecological scales, leading to diverging conclusions about the responses of individuals, populations, communities, and ecosystems. While the distinct focus of every scale reveals new mechanisms driving biomass accumulation under e[CO2 ], none of them provides a full picture of all relevant processes. For example, while physiological evidence suggests a possible long-term basis for increased biomass accumulation under e[CO2 ] through sustained photosynthetic stimulation, population-scale evidence indicates that a possible e[CO2 ]-induced increase in mortality rates might potentially outweigh the effect of increases in plant growth rates on biomass levels. Evidence at the global scale may indicate that e[CO2 ] has contributed to increased biomass cover over recent decades, but due to the difficulty to disentangle the effect of e[CO2 ] from a variety of climatic and land-use-related drivers of plant biomass stocks, it remains unclear whether nutrient limitations or other ecological mechanisms operating at finer scales will dampen the e[CO2 ] effect over time. By exploring these discrepancies, we identify key research gaps in our understanding of the effect of e[CO2 ] on plant biomass and highlight the need to integrate knowledge across scales of ecological organization so that large-scale modeling can represent the finer-scale mechanisms needed to constrain our understanding of future terrestrial C storage.
Collapse
Affiliation(s)
- Julia Maschler
- Institute of Integrative BiologyETH Zurich (Swiss Federal Institute of Technology)ZurichSwitzerland
| | - Lalasia Bialic‐Murphy
- Institute of Integrative BiologyETH Zurich (Swiss Federal Institute of Technology)ZurichSwitzerland
| | - Joe Wan
- Institute of Integrative BiologyETH Zurich (Swiss Federal Institute of Technology)ZurichSwitzerland
| | | | - Constantin M. Zohner
- Institute of Integrative BiologyETH Zurich (Swiss Federal Institute of Technology)ZurichSwitzerland
| | - Peter B. Reich
- Department of Forest ResourcesUniversity of MinnesotaSt. PaulMinnesotaUSA
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNew South WalesAustralia
- Institute for Global Change Biology, and School for the Environment and SustainabilityUniversity of MichiganAnn ArborMichiganUSA
| | - Andreas Lüscher
- ETH ZurichInstitute of Agricultural ScienceZurichSwitzerland
- Agroscope, Forage Production and Grassland SystemsZurichSwitzerland
| | - Manuel K. Schneider
- ETH ZurichInstitute of Agricultural ScienceZurichSwitzerland
- Agroscope, Forage Production and Grassland SystemsZurichSwitzerland
| | - Christoph Müller
- Institute of Plant EcologyJustus Liebig UniversityGiessenGermany
- School of Biology and Environmental Science and Earth InstituteUniversity College DublinDublinIreland
| | - Gerald Moser
- Institute of Plant EcologyJustus Liebig UniversityGiessenGermany
| | - Jeffrey S. Dukes
- Department of Forestry and Natural ResourcesPurdue UniversityWest LafayetteIndianaUSA
- Department of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
- Department of Global EcologyCarnegie Institution for ScienceStanfordCaliforniaUSA
| | - Inger Kappel Schmidt
- Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagenDenmark
| | - Mark C. Bilton
- Department of Agriculture and Natural Resources SciencesNamibia University of Science and Technology (NUST)WindhoekNamibia
| | - Kai Zhu
- Department of Environmental StudiesUniversity of CaliforniaSanta CruzCaliforniaUSA
| | - Thomas W. Crowther
- Institute of Integrative BiologyETH Zurich (Swiss Federal Institute of Technology)ZurichSwitzerland
| |
Collapse
|
14
|
Liu K, Zhou Y. Genome-wide identification of the trehalose-6-phosphate synthase gene family in sweet orange ( Citrus sinensis) and expression analysis in response to phytohormones and abiotic stresses. PeerJ 2022; 10:e13934. [PMID: 36105645 PMCID: PMC9466596 DOI: 10.7717/peerj.13934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/01/2022] [Indexed: 01/19/2023] Open
Abstract
Background Trehalose-6-phosphate synthase (TPS) is an essential enzyme for synthesizing trehalose and is a significant regulator of plant development and stress response. Sweet orange (Citrus sinensis) is an economically important fruit tree crop and a common transgenic material. At present, little information is available about the TPS gene family in sweet orange. Methods The TPS gene family were identified from sweet orange genome by bioinformatics analysis. Additionally, the expression of CisTPS genes was analyzed under phytohormones and abiotic stresses by quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR). Results Here, eight TPS genes were identified and were found to be randomly distributed in five sweet orange chromosomes. TPS and trehalose-6-phosphate phosphatase (TPP) domains were observed in all CisTPS proteins. The phylogenetic tree showed that CisTPS genes were divided into two subfamilies, and genes in each subfamily had conserved intron structures and motif compositions. The cis-acting elements of CisTPS genes suggested their roles in phytohormone and stress responses. All CisTPS genes were ubiquitously expressed in roots, leaves, and stems, and six members were highly expressed in roots. Expression profiles showed that CisTPS genes exhibited tissue specificity and were differentially expressed in response to phytohormones and abiotic stresses. This study lays a foundation for revealing the functions of the TPS gene family in trehalose regulation in sweet orange, and provides a valuable reference for this gene family in other plants.
Collapse
Affiliation(s)
- Kehong Liu
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China
| | - Yan Zhou
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China
| |
Collapse
|
15
|
Gong J, Zhang Z, Wang B, Shi J, Zhang W, Dong Q, Song L, Li Y, Liu Y. N addition rebalances the carbon and nitrogen metabolisms of Leymus chinensis through leaf N investment. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 185:221-232. [PMID: 35714430 DOI: 10.1016/j.plaphy.2022.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/26/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Intensifying nitrogen (N) deposition disturbs the growth of grassland plants due to an imbalance between their carbon (C) and N metabolism. However, it's unclear how plant physiological strategies restore balance. We investigated the effects of multiple N addition levels (0-25 g N m-2 yr-1) on the coordination of C and N metabolism in a dominant grass (Leymus chinensis) in a semiarid grassland in northern China. To do so, we evaluated photosynthetic parameters, leaf N allocation, C- and N-based metabolites, and metabolic enzymes. We found that a moderate N level (10 g N m-2 yr-1) promoted carboxylation and electron transport by allocating more N to the photosynthetic apparatus and increasing ribulose bisphosphate carboxylase/oxygenase activity, thereby increasing photosynthetic capacity. The highest N level (25 g N m-2 yr-1) promoted N investment in nonphotosynthetic pathways and increased the free amino acids in the leaves. N addition stimulated the accumulation of C and N compounds across organs by activating sucrose phosphate synthase, nitrate reductase, and glutamine synthetase. This enhancement triggered a transformation of primary metabolites (nonstructural carbohydrates, proteins, amino acids) to secondary metabolites (flavonoids, phenols, and alkaloids) for temporary storage or as defense compounds. Citric acid, as the C skeleton for enhanced N metabolism, decreased significantly, and malic acid increased by catalysis of phosphoenolpyruvate carboxylase. Our findings show the adaptability of L. chinensis to different N-addition levels by adjusting its allocations of C and N metabolic compounds and confirm the roles of C and N coordination by grassland plants in these adaptations.
Collapse
Affiliation(s)
- Jirui Gong
- State Key Laboratory of Earth Surface Processes and Resource Ecology, School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China.
| | - Zihe Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China.
| | - Biao Wang
- College of Materials Science and Engineering, College of Architecture and Urban Planning, Chongqing Jiaotong University, Chongqing, 400074, China.
| | - Jiayu Shi
- State Key Laboratory of Earth Surface Processes and Resource Ecology, School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China.
| | - Weiyuan Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China.
| | - Qi Dong
- State Key Laboratory of Earth Surface Processes and Resource Ecology, School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China.
| | - Liangyuan Song
- State Key Laboratory of Earth Surface Processes and Resource Ecology, School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China.
| | - Ying Li
- State Key Laboratory of Earth Surface Processes and Resource Ecology, School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China.
| | - Yingying Liu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China.
| |
Collapse
|
16
|
Hui Z, Xu J, Jian Y, Bian C, Duan S, Hu J, Li G, Jin L. Identification of Long-Distance Transport Signal Molecules Associated with Plant Maturity in Tetraploid Cultivated Potatoes (Solanum tuberosum L.). PLANTS 2022; 11:plants11131707. [PMID: 35807658 PMCID: PMC9268856 DOI: 10.3390/plants11131707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 11/16/2022]
Abstract
Maturity is a key trait for breeders to identify potato cultivars suitable to grow in different latitudes. However, the molecular mechanism regulating maturity remains unclear. In this study, we performed a grafting experiment using the early-maturing cultivar Zhongshu 5 (Z5) and the late-maturing cultivar Zhongshu 18 (Z18) and found that abscisic acid (ABA) and salicylic acid (SA) positively regulate the early maturity of potato, while indole-3-acetic acid (IAA) negatively regulated early maturity. A total of 43 long-distance transport mRNAs are observed to be involved in early maturity, and 292 long-distance transport mRNAs involved in late maturity were identified using RNA sequencing. Specifically, StMADS18, StSWEET10C, and StSWEET11 are detected to be candidate genes for their association with potato early maturity. Metabolomic data analysis shows a significant increase in phenolic acid and flavonoid contents increased in the scion of the early-maturing cultivar Z5, but a significant decrease in amino acid, phenolic acid, and alkaloid contents increased in the scion of the late-maturing cultivar Z18. This work reveals a significant association between the maturity of tetraploid cultivated potato and long-distance transport signal molecules and provides useful data for assessing the molecular mechanisms underlying the maturity of potato plants and for breeding early-maturing potato cultivars.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guangcun Li
- Correspondence: (G.L.); (L.J.); Tel.: +86-010-82105955 (G.L.); +86-010-82109543 (L.J.)
| | - Liping Jin
- Correspondence: (G.L.); (L.J.); Tel.: +86-010-82105955 (G.L.); +86-010-82109543 (L.J.)
| |
Collapse
|
17
|
Stubbs CJ, McMahan CS, Tabaracci K, Kunduru B, Sekhon RS, Robertson DJ. Cross-sectional geometry predicts failure location in maize stalks. PLANT METHODS 2022; 18:56. [PMID: 35477510 PMCID: PMC9044803 DOI: 10.1186/s13007-022-00887-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Stalk lodging (breaking of agricultural plant stalks prior to harvest) is a multi-billion dollar a year problem. Stalk lodging occurs when high winds induce bending moments in the stalk which exceed the bending strength of the plant. Previous biomechanical models of plant stalks have investigated the effect of cross-sectional morphology on stalk lodging resistance (e.g., diameter and rind thickness). However, it is unclear if the location of stalk failure along the length of stem is determined by morphological or compositional factors. It is also unclear if the crops are structurally optimized, i.e., if the plants allocate structural biomass to create uniform and minimal bending stresses in the plant tissues. The purpose of this paper is twofold: (1) to investigate the relationship between bending stress and failure location of maize stalks, and (2) to investigate the potential of phenotyping for internode-level bending stresses to assess lodging resistance. RESULTS 868 maize specimens representing 16 maize hybrids were successfully tested in bending to failure. Internode morphology was measured, and bending stresses were calculated. It was found that bending stress is highly and positively associated with failure location. A user-friendly computational tool is presented to help plant breeders in phenotyping for internode-level bending stress. Phenotyping for internode-level bending stresses could potentially be used to breed for more biomechanically optimal stalks that are resistant to stalk lodging. CONCLUSIONS Internode-level bending stress plays a potentially critical role in the structural integrity of plant stems. Equations and tools provided herein enable researchers to account for this phenotype, which has the potential to increase the bending strength of plants without increasing overall structural biomass.
Collapse
Affiliation(s)
- Christopher J Stubbs
- Department of Mechanical Engineering, University of Idaho, Moscow, ID, USA
- School of Computer Sciences and Engineering, Fairleigh Dickinson University, Teaneck, NJ, USA
| | - Christopher S McMahan
- School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC, USA
| | - Kaitlin Tabaracci
- Department of Mechanical Engineering, University of Idaho, Moscow, ID, USA
| | - Bharath Kunduru
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
| | - Rajandeep S Sekhon
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
| | - Daniel J Robertson
- Department of Mechanical Engineering, University of Idaho, Moscow, ID, USA.
| |
Collapse
|
18
|
Osadchuk K, Cheng CL, Irish EE. The integration of leaf-derived signals sets the timing of vegetative phase change in maize, a process coordinated by epigenetic remodeling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 312:111035. [PMID: 34620439 DOI: 10.1016/j.plantsci.2021.111035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/02/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
After germination, the maize shoot proceeds through a series of developmental stages before flowering. The first transition occurs during the vegetative phase where the shoot matures from the juvenile to the adult phase, called vegetative phase change (VPC). In maize, both phases exhibit easily-scored morphological characteristics, facilitating the elucidation of molecular mechanisms directing the characteristic gene expression patterns and resulting physiological features of each phase. miR156 expression is high during the juvenile phase, suppressing expression of squamosa promoter binding proteins/SBP-like transcription factors and miR172. The decline in miR156 and subsequent increase in miR172 expression marks the transition into the adult phase, where miR172 represses transcripts that confer juvenile traits. Leaf-derived signals attenuate miR156 expression and thus the duration of the juvenile phase. As found in other species, VPC in maize utilizes signals that consist of hormones, stress, and sugar to direct epigenetic modifiers. In this review we identify the intersection of leaf-derived signaling with components that contribute to the epigenetic changes which may, in turn, manage the distinct global gene expression patterns of each phase. In maize, published research regarding chromatin remodeling during VPC is minimal. Therefore, we identified epigenetic regulators in the maize genome and, using published gene expression data and research from other plant species, identify VPC candidates.
Collapse
Affiliation(s)
- Krista Osadchuk
- 129 E. Jefferson Street, Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Chi-Lien Cheng
- 129 E. Jefferson Street, Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Erin E Irish
- 129 E. Jefferson Street, Department of Biology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
19
|
Ray DM, Savage JA. Seasonal changes in temperate woody plant phloem anatomy and physiology: implications for long-distance transport. AOB PLANTS 2021; 13:plab028. [PMID: 34234934 PMCID: PMC8255074 DOI: 10.1093/aobpla/plab028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 05/21/2021] [Indexed: 06/13/2023]
Abstract
Seasonal changes in climate are accompanied by shifts in carbon allocation and phenological changes in woody angiosperms, the timing of which can have broad implications for species distributions, interactions and ecosystem processes. During critical transitions from autumn to winter and winter to spring, physiological and anatomical changes within the phloem could impose a physical limit on the ability of woody angiosperms to transport carbon and signals. There is a paucity of the literature that addresses tree (floral or foliar) phenology, seasonal phloem anatomy and seasonal phloem physiology together, so our knowledge of how carbon transport could fluctuate seasonally, especially in temperate climates is limited. We review phloem phenology focussing on how sieve element anatomy and phloem sap flow could affect carbon availability throughout the year with a focus on winter. To investigate whether flow is possible in the winter, we construct a simple model of phloem sap flow and investigate how changes to the sap concentration, pressure gradient and sieve plate pores could influence flow during the winter. Our model suggests that phloem transport in some species could occur year-round, even in winter, but current methods for measuring all the parameters surrounding phloem sap flow make it difficult to test this hypothesis. We highlight outstanding questions that remain about phloem functionality in the winter and emphasize the need for new methods to address gaps in our knowledge about phloem function.
Collapse
Affiliation(s)
- Dustin M Ray
- Department of Biology, University of Minnesota Duluth, Duluth, MN 55811, USA
| | - Jessica A Savage
- Department of Biology, University of Minnesota Duluth, Duluth, MN 55811, USA
| |
Collapse
|
20
|
Sun J, Chen T, Tao J. Single molecule, full-length transcript sequencing provides insight into the TPS gene family in Paeonia ostii. PeerJ 2021; 9:e11808. [PMID: 34316413 PMCID: PMC8286706 DOI: 10.7717/peerj.11808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/27/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The tree peony (Paeonia section Moutan DC), one of the traditional famous flowers with both ornamental and medicinal value, was widely used in China. Surprisingly little is known about the full-length transcriptome sequencing in tree peony, limiting the research on its gene function and molecular mechanism. The trehalose phosphate phosphatase (TPS) family genes has been found to affect plant growth and development and the function of TPS genes in Paeonia ostii is unknown. METHODS In our study, we performed single molecule, full-length transcript sequencing in P. ostii. 10 TPS family members were identified from PacBio sequencing for bioinformatics analysis and transcriptional expression analysis. RESULTS A total of 230,736 reads of insert (ROI) sequences and 114,215 full-Length non-chimeric reads (FLNC) were obtained for further ORFs and transcription factors prediction, SSR analysis and lncRNA identification. NR, Swissprot, GO, COG, KOG, Pfam and KEGG databases were used to obtain annotation information of transcripts. 10 TPS family members were identified with molecular weights between 48.0 to 108.5 kD and isoelectric point between 5.61 to 6.37. Furthermore, we found that TPS family members contain conserved TPP or TPS domain. Based on phylogenetic tree analysis, PoTPS1 protein was highly similar to AtTPS1 protein in Arabidopsis. Finally, we analyzed the expression levels of all TPS genes in P. ostii and found PoTPS5 expressed at the highest level. In conclusion, this study combined the results of the transcriptome to systematically analyze the 10 TPS family members, and sets a framework for further research of this important gene family in development of tree peony.
Collapse
Affiliation(s)
- Jing Sun
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Tian Chen
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Jun Tao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
21
|
Chen Q, Lu X, Guo X, Xu M, Tang Z. A source-sink model explains the difference in the metabolic mechanism of mechanical damage to young and senescing leaves in Catharanthus roseus. BMC PLANT BIOLOGY 2021; 21:154. [PMID: 33771114 PMCID: PMC7995597 DOI: 10.1186/s12870-021-02934-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 03/18/2021] [Indexed: 05/24/2023]
Abstract
BACKGROUND Mechanical damage is an unavoidable threat to the growth and survival of plants. Although a wound to senescing (lower) leaves improves plant vitality, a wound to younger (upper) leaves often causes damage to or death of the whole plant. Source-sink models are often used to explain how plants respond to biotic or abiotic stresses. In this study, a source-sink model was used to explain the difference in the metabolic mechanism of mechanical damage to young and senescing leaves of Catharanthus roseus. RESULTS In our study, GC-MS and LC-QTOF-MS metabolomics techniques were used to explore the differences in source-sink allocation and metabolic regulation in different organs of Catharanthus roseus after mechanical damage to the upper/lower leaves (WUL/WLL). Compared with that of the control group, the energy supplies of the WUL and WLL groups were increased and delivered to the secondary metabolic pathway through the TCA cycle. The two treatment groups adopted different secondary metabolic response strategies. The WLL group increased the input to the defense response after damage by increasing the accumulation of phenolics. A source-sink model was applied to the defensive responses to local (damaged leaves) and systemic (whole plant) damage. In the WUL group, the number of sinks increased due to damage to young leaves, and the tolerance response was emphasized. CONCLUSION The accumulation of primary and secondary metabolites was significantly different between the two mechanical damage treatments. Catharanthus roseus uses different trade-offs between tolerance (repair) and defense to respond to mechanical damage. Repairing damage and chemical defenses are thought to be more energetically expensive than growth development, confirming the trade-offs and allocation of resources seen in this source-sink model.
Collapse
Affiliation(s)
- Qi Chen
- School of Life Sciences Nantong University, Nantong, 226010, P. R. China
| | - Xueyan Lu
- Northeast Forestry University, Harbin, 150040, P. R. China
| | - Xiaorui Guo
- Northeast Forestry University, Harbin, 150040, P. R. China
| | - Mingyuan Xu
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, P. R. China.
| | - Zhonghua Tang
- Northeast Forestry University, Harbin, 150040, P. R. China
| |
Collapse
|
22
|
Convergence and Divergence of Sugar and Cytokinin Signaling in Plant Development. Int J Mol Sci 2021; 22:ijms22031282. [PMID: 33525430 PMCID: PMC7865218 DOI: 10.3390/ijms22031282] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/19/2021] [Accepted: 01/24/2021] [Indexed: 02/06/2023] Open
Abstract
Plants adjust their growth and development through a sophisticated regulatory system integrating endogenous and exogenous cues. Many of them rely on intricate crosstalk between nutrients and hormones, an effective way of coupling nutritional and developmental information and ensuring plant survival. Sugars in their different forms such as sucrose, glucose, fructose and trehalose-6-P and the hormone family of cytokinins (CKs) are major regulators of the shoot and root functioning throughout the plant life cycle. While their individual roles have been extensively investigated, their combined effects have unexpectedly received little attention, resulting in many gaps in current knowledge. The present review provides an overview of the relationship between sugars and CKs signaling in the main developmental transition during the plant lifecycle, including seed development, germination, seedling establishment, root and shoot branching, leaf senescence, and flowering. These new insights highlight the diversity and the complexity of the crosstalk between sugars and CKs and raise several questions that will open onto further investigations of these regulation networks orchestrating plant growth and development.
Collapse
|
23
|
Zani D, Crowther TW, Mo L, Renner SS, Zohner CM. Increased growing-season productivity drives earlier autumn leaf senescence in temperate trees. Science 2021; 370:1066-1071. [PMID: 33243884 DOI: 10.1126/science.abd8911] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 10/06/2020] [Indexed: 01/05/2023]
Abstract
Changes in the growing-season lengths of temperate trees greatly affect biotic interactions and global carbon balance. Yet future growing-season trajectories remain highly uncertain because the environmental drivers of autumn leaf senescence are poorly understood. Using experiments and long-term observations, we show that increases in spring and summer productivity due to elevated carbon dioxide, temperature, or light levels drive earlier senescence. Accounting for this effect improved the accuracy of senescence predictions by 27 to 42% and reversed future predictions from a previously expected 2- to 3-week delay over the rest of the century to an advance of 3 to 6 days. These findings demonstrate the critical role of sink limitation in governing the end of seasonal activity and reveal important constraints on future growing-season lengths and carbon uptake of trees.
Collapse
Affiliation(s)
- Deborah Zani
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Universitätsstrasse 16, 8092 Zurich, Switzerland
| | - Thomas W Crowther
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Universitätsstrasse 16, 8092 Zurich, Switzerland
| | - Lidong Mo
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Universitätsstrasse 16, 8092 Zurich, Switzerland
| | - Susanne S Renner
- Systematic Botany and Mycology, University of Munich (LMU), Menzinger Str. 67, 80638 Munich, Germany
| | - Constantin M Zohner
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Universitätsstrasse 16, 8092 Zurich, Switzerland.
| |
Collapse
|
24
|
Jasinski S, Fabrissin I, Masson A, Marmagne A, Lécureuil A, Bill L, Chardon F. ACCELERATED CELL DEATH 6 Acts on Natural Leaf Senescence and Nitrogen Fluxes in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 11:611170. [PMID: 33488657 PMCID: PMC7817547 DOI: 10.3389/fpls.2020.611170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/23/2020] [Indexed: 05/30/2023]
Abstract
As the last step of leaf development, senescence is a molecular process involving cell death mechanism. Leaf senescence is trigged by both internal age-dependent factors and environmental stresses. It must be tightly regulated for the plant to adopt a proper response to environmental variation and to allow the plant to recycle nutrients stored in senescing organs. However, little is known about factors that regulate both nutrients fluxes and plant senescence. Taking advantage of variation for natural leaf senescence between Arabidopsis thaliana accessions, Col-0 and Ct-1, we did a fine mapping of a quantitative trait loci for leaf senescence and identified ACCELERATED CELL DEATH 6 (ACD6) as the causal gene. Using two near-isogeneic lines, differing solely around the ACD6 locus, we showed that ACD6 regulates rosette growth, leaf chlorophyll content, as well as leaf nitrogen and carbon percentages. To unravel the role of ACD6 in N remobilization, the two isogenic lines and acd6 mutant were grown and labeled with 15N at the vegetative stage in order to determine 15N partitioning between plant organs at harvest. Results showed that N remobilization efficiency was significantly lower in all the genotypes with lower ACD6 activity irrespective of plant growth and productivity. Measurement of N uptake at vegetative and reproductive stages revealed that ACD6 did not modify N uptake efficiency but enhanced nitrogen translocation from root to silique. In this study, we have evidenced a new role of ACD6 in regulating both sequential and monocarpic senescences and disrupting the balance between N remobilization and N uptake that is required for a good seed filling.
Collapse
|
25
|
Paul MJ, Watson A, Griffiths CA. Trehalose 6-phosphate signalling and impact on crop yield. Biochem Soc Trans 2020; 48:2127-2137. [PMID: 33005918 PMCID: PMC7609034 DOI: 10.1042/bst20200286] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 02/08/2023]
Abstract
The domestication and breeding of crops has been a major achievement for mankind enabling the development of stable societies and civilisation. Crops have become more productive per unit area of cultivated land over the course of domestication supporting a current global population of 7.8 billion. Food security crops such as wheat and maize have seen large changes compared with early progenitors. Amongst processes that have been altered in these crops, is the allocation of carbon resources to support larger grain yield (grain number and size). In wheat, reduction in stem height has enabled diversion of resources from stems to ears. This has freed up carbon to support greater grain yield. Green revolution genes responsible for reductions in stem height are known, but a unifying mechanism for the active regulation of carbon resource allocation towards and within sinks has however been lacking. The trehalose 6-phosphate (T6P) signalling system has emerged as a mechanism of resource allocation and has been implicated in several crop traits including assimilate partitioning and improvement of yield in different environments. Understanding the mode of action of T6P through the SnRK1 protein kinase regulatory system is providing a basis for a unifying mechanism controlling whole-plant resource allocation and source-sink interactions in crops. Latest results show it is likely that the T6P/SnRK1 pathway can be harnessed for further improvements such as grain number and grain filling traits and abiotic stress resilience through targeted gene editing, breeding and chemical approaches.
Collapse
Affiliation(s)
- Matthew J. Paul
- Plant Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, U.K
| | - Amy Watson
- Plant Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, U.K
| | - Cara A. Griffiths
- Plant Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, U.K
| |
Collapse
|
26
|
Zhao L, Xie L, Huang J, Su Y, Zhang C. Proper Glyphosate Application at Post-anthesis Lowers Grain Moisture Content at Harvest and Reallocates Non-structural Carbohydrates in Maize. FRONTIERS IN PLANT SCIENCE 2020; 11:580883. [PMID: 33362811 PMCID: PMC7758537 DOI: 10.3389/fpls.2020.580883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/23/2020] [Indexed: 05/03/2023]
Abstract
Glyphosate (GP)-based herbicides have been widely applied to crops for weed control and pre-harvest desiccation. The objective of this research was to evaluate the effects of pre-harvest GP application on maize or how it physiologically alters this crop. Here, we applied four GP treatment (Control, GP150, GP200, and GP250) on maize lines of Z58 and PH6WC belonging to different maturity groups at grain-filling stages form DAP30 to DAP45. GP application significantly decreased the grain moisture content at harvest by 22-35% for Z58 and by 15-41% for PH6WC. However, the responses of grain weight to glyphosate vary with inbred lines and application time. A high concentration of glyphosate (GP250) reduced the grain weight of Z58 and low concentrations (GP150 and GP200) did not affect, while the grain weight of PH6WC significantly decreased under glyphosate treatment. In summary, our results revealed that timely and appropriate GP application lowers grain moisture content without causing seed yield and quality loss. GP application adversely affected photosynthesis by promoting maturation and leaf senescence. Meanwhile, it also enhanced non-structural carbohydrate (soluble sugars and starch) remobilization from the vegetative organs to the grains. Hence, GP treatment coordinates plant senescence and assimilate remobilization. RNA sequencing revealed that glyphosate regulated the transcript levels of sugar signaling-related genes and induced assimilate repartitioning in grains. This work indicates the practical significance of GP application for maize seed production and harvest, which highlights the contributions of source-sink communication to maize yield in response to external stress or pre-harvest desiccant application.
Collapse
|
27
|
Wu J, Lawit SJ, Weers B, Sun J, Mongar N, Van Hemert J, Melo R, Meng X, Rupe M, Clapp J, Haug Collet K, Trecker L, Roesler K, Peddicord L, Thomas J, Hunt J, Zhou W, Hou Z, Wimmer M, Jantes J, Mo H, Liu L, Wang Y, Walker C, Danilevskaya O, Lafitte RH, Schussler JR, Shen B, Habben JE. Overexpression of zmm28 increases maize grain yield in the field. Proc Natl Acad Sci U S A 2019; 116:23850-23858. [PMID: 31685622 PMCID: PMC6876154 DOI: 10.1073/pnas.1902593116] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Increasing maize grain yield has been a major focus of both plant breeding and genetic engineering to meet the global demand for food, feed, and industrial uses. We report that increasing and extending expression of a maize MADS-box transcription factor gene, zmm28, under the control of a moderate-constitutive maize promoter, results in maize plants with increased plant growth, photosynthesis capacity, and nitrogen utilization. Molecular and biochemical characterization of zmm28 transgenic plants demonstrated that their enhanced agronomic traits are associated with elevated plant carbon assimilation, nitrogen utilization, and plant growth. Overall, these positive attributes are associated with a significant increase in grain yield relative to wild-type controls that is consistent across years, environments, and elite germplasm backgrounds.
Collapse
Affiliation(s)
- Jingrui Wu
- Research & Development, Corteva Agriscience, Johnston, IA 50131
| | - Shai J Lawit
- Research & Development, Corteva Agriscience, Johnston, IA 50131
| | - Ben Weers
- Research & Development, Corteva Agriscience, Johnston, IA 50131
| | - Jindong Sun
- Research & Development, Corteva Agriscience, Johnston, IA 50131
| | - Nick Mongar
- Research & Development, Corteva Agriscience, Johnston, IA 50131
| | - John Van Hemert
- Research & Development, Corteva Agriscience, Johnston, IA 50131
| | - Rosana Melo
- Research & Development, Corteva Agriscience, Johnston, IA 50131
| | - Xin Meng
- Research & Development, Corteva Agriscience, Johnston, IA 50131
| | - Mary Rupe
- Research & Development, Corteva Agriscience, Johnston, IA 50131
| | - Joshua Clapp
- Research & Development, Corteva Agriscience, Johnston, IA 50131
| | | | - Libby Trecker
- Research & Development, Corteva Agriscience, Johnston, IA 50131
| | - Keith Roesler
- Research & Development, Corteva Agriscience, Johnston, IA 50131
| | | | - Jill Thomas
- Research & Development, Corteva Agriscience, Johnston, IA 50131
| | - Joanne Hunt
- Research & Development, Corteva Agriscience, Johnston, IA 50131
| | - Wengang Zhou
- Research & Development, Corteva Agriscience, Johnston, IA 50131
| | - Zhenglin Hou
- Research & Development, Corteva Agriscience, Johnston, IA 50131
| | - Matthew Wimmer
- Research & Development, Corteva Agriscience, Johnston, IA 50131
| | - Justin Jantes
- Research & Development, Corteva Agriscience, Johnston, IA 50131
| | - Hua Mo
- Research & Development, Corteva Agriscience, Johnston, IA 50131
| | - Lu Liu
- Research & Development, Corteva Agriscience, Johnston, IA 50131
| | - Yiwei Wang
- Research & Development, Corteva Agriscience, Johnston, IA 50131
| | - Carl Walker
- Research & Development, Corteva Agriscience, Johnston, IA 50131
| | | | - Renee H Lafitte
- Research & Development, Corteva Agriscience, Johnston, IA 50131
| | | | - Bo Shen
- Research & Development, Corteva Agriscience, Johnston, IA 50131
| | | |
Collapse
|
28
|
Chen L, Liu X, Huang X, Luo W, Long Y, Greiner S, Rausch T, Zhao H. Functional Characterization of a Drought-Responsive Invertase Inhibitor from Maize ( Zea mays L.). Int J Mol Sci 2019; 20:E4081. [PMID: 31438536 PMCID: PMC6747265 DOI: 10.3390/ijms20174081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/17/2019] [Accepted: 08/18/2019] [Indexed: 01/01/2023] Open
Abstract
Invertases (INVs) play essential roles in plant growth in response to environmental cues. Previous work showed that plant invertases can be post-translationally regulated by small protein inhibitors (INVINHs). Here, this study characterizes a proteinaceous inhibitor of INVs in maize (Zm-INVINH4). A functional analysis of the recombinant Zm-INVINH4 protein revealed that it inhibited both cell wall and vacuolar invertase activities from maize leaves. A Zm-INVINH4::green fluorescent protein fusion experiment indicated that this protein localized in the apoplast. Transcript analysis showed that Zm-INVINH4 is specifically expressed in maize sink tissues, such as the base part of the leaves and young kernels. Moreover, drought stress perturbation significantly induced Zm-INVINH4 expression, which was accompanied with a decrease of cell wall invertase (CWI) activities and an increase of sucrose accumulation in both base parts of the leaves 2 to 7 days after pollinated kernels. In summary, the results support the hypothesis that INV-related sink growth in response to drought treatment is (partially) caused by a silencing of INV activity via drought-induced induction of Zm-INVINH4 protein.
Collapse
Affiliation(s)
- Lin Chen
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xiaohong Liu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xiaojia Huang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Luo
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yuming Long
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Steffen Greiner
- Centre for Organismal Studies Heidelberg, Department of Plant Molecular Physiology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Thomas Rausch
- Centre for Organismal Studies Heidelberg, Department of Plant Molecular Physiology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Hongbo Zhao
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|