1
|
Guirao A, Martínez-Romero D, Solana-Guilabert A, Agulló V, Díaz-Mula HM, Valverde JM. Influence of Preharvest sorbitol and calcium-sorbitol applications on the ripening process and anthocyanin biosynthesis in blood Orange (Citrus sinensis cv. Sanguinelli). Food Chem 2025; 481:144105. [PMID: 40174378 DOI: 10.1016/j.foodchem.2025.144105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 03/14/2025] [Accepted: 03/27/2025] [Indexed: 04/04/2025]
Abstract
Blood oranges are valued for their color and nutritional properties, thriving in Mediterranean climates where temperature variations enhance anthocyanin (ACN) synthesis. Climate change threatens this process. This study evaluated six foliar applications of sorbitol (2 %, 5 %) and sorbitol-Ca (2 % + 0.7 %) from early fruit development to harvest. All treatments enhanced peel and pulp redness, particularly sorbitol-Ca, as confirmed by lower hue angle and higher color index. Treated fruits had higher total soluble solids (TSS), with 11.07 % in 2 % sorbitol-treated fruits versus 9.63 % in controls. Sorbitol-Ca reduced respiration rates (15.63 vs. 21.57 mg CO₂ kg-1 h-1) and increased firmness (9.72 vs. 8.89 Nmm-1). Phenolic content, antioxidant activity, and bound calcium levels improved fruit quality. ACN content increased over 20 % and 40 % in sorbitol- and sorbitol-Ca-treated fruits, mainly due to Cyanidin derivatives. Sorbitol-based treatments offer a strategy to enhance blood orange resilience to climate change, improving functional and commercial value.
Collapse
Affiliation(s)
- A Guirao
- Institute for Agro-food and Agro-environmental Research and Innovation (CIAGRO) - University Miguel Hernández (UMH), Ctra. Beniel km. 3.2, 03312 Orihuela, Alicante, Spain
| | - D Martínez-Romero
- Institute for Agro-food and Agro-environmental Research and Innovation (CIAGRO) - University Miguel Hernández (UMH), Ctra. Beniel km. 3.2, 03312 Orihuela, Alicante, Spain.
| | - A Solana-Guilabert
- Institute for Agro-food and Agro-environmental Research and Innovation (CIAGRO) - University Miguel Hernández (UMH), Ctra. Beniel km. 3.2, 03312 Orihuela, Alicante, Spain
| | - V Agulló
- Institute for Agro-food and Agro-environmental Research and Innovation (CIAGRO) - University Miguel Hernández (UMH), Ctra. Beniel km. 3.2, 03312 Orihuela, Alicante, Spain
| | - H M Díaz-Mula
- Institute for Agro-food and Agro-environmental Research and Innovation (CIAGRO) - University Miguel Hernández (UMH), Ctra. Beniel km. 3.2, 03312 Orihuela, Alicante, Spain
| | - J M Valverde
- Institute for Agro-food and Agro-environmental Research and Innovation (CIAGRO) - University Miguel Hernández (UMH), Ctra. Beniel km. 3.2, 03312 Orihuela, Alicante, Spain
| |
Collapse
|
2
|
Xiao Y, Wang J. Understanding the Regulation Activities of Transposons in Driving the Variation and Evolution of Polyploid Plant Genome. PLANTS (BASEL, SWITZERLAND) 2025; 14:1160. [PMID: 40284048 PMCID: PMC12030055 DOI: 10.3390/plants14081160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025]
Abstract
Transposon is the main component of the eukaryotic genome, and more and more plant genome data show that transposons are diverse in regulating genome structure, variation, function and evolution, with different transposition mechanisms in the genome. Hybridization and polyploidy play an important role in promoting plant speciation and evolution, and recent studies have shown that polyploidy is usually accompanied by the expansion of transposons, which affect the genome size and structure of polyploid plants. Transposons can insert into genes and intergenic regions, resulting in great differences in the overall genome structure of closely related plant species, and it can also capture gene segments in the genome to increase the copy number of genes. In addition, transposons influence the epigenetic modification state of the genome and regulate the expression of the gene, while plant phenotype, biological and abiotic stress response are also regulated by transposons. Overall, transposons play an important role in the plant genome, especially polyploid plant genome, adaptation and evolution.
Collapse
Affiliation(s)
- Yafang Xiao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| |
Collapse
|
3
|
Li H, Zhang Y, Zhang W, Sun C, Huang L, Dong Y, Yang Y, Li H, Zheng H, Tao J. Unravelling the gene regulatory network linking red leaf and red flesh traits in teinturier grape. JOURNAL OF PLANT PHYSIOLOGY 2025; 308:154488. [PMID: 40158233 DOI: 10.1016/j.jplph.2025.154488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/27/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Despite the extensive research conducted on grape anthocyanins, previous studies have predominantly focused on grape skin colour changes, with limited research on flesh colour and leaf colour. In this study, we utilised the superior line 'Zhongshan 151' strain (red flesh and red leaves) as a target and identified that the primary driving force for the transition of leaf colour from green to red was the accumulation of anthocyanins. The study identified a candidate gene, VvMYBA6, and determined that the encoded protein is located in the nucleus and possesses transcriptional activation activity. Subsequent experiments revealed that VvMYBA6 significantly promoted anthocyanin accumulation in tobacco through its overexpression. Further mechanistic investigations elucidated the interaction of VvMYBA6 with the VvMYC1 protein, which activates the expression of VvUFGT, thereby promoting anthocyanin accumulation. Furthermore, an interaction between VvMYBA1 and VvMYC1 was identified in leaves, which is consistent with the mechanism of flesh colour regulation in red-fleshed grapes and affects anthocyanin accumulation by regulating the expression of VvUFGT. The interaction between VvMYBA1 and VvMYBA6 was further verified by yeast two-hybrid (Y2H) and pull-down experiments. This finding indicates that the interaction between VvMYBA6, VvMYBA1 and VvMYC1 plays a pivotal role in the regulation of anthocyanin synthesis, which may significantly impact the development of fruit colour in teinturier grapes.
Collapse
Affiliation(s)
- Haoran Li
- Sanya Research Institute, Nanjing Agricultural University, Sanya, 572000, China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yi Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wen Zhang
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Chenxu Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liyuan Huang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yang Dong
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yaxin Yang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hui Li
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huan Zheng
- Sanya Research Institute, Nanjing Agricultural University, Sanya, 572000, China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jianmin Tao
- Sanya Research Institute, Nanjing Agricultural University, Sanya, 572000, China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China; Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China.
| |
Collapse
|
4
|
Zhang Z, Wang X, Gao Y, Xian X, Zhang D, Zhao W, Wang X, Wang Y. Orchestrating anthocyanin biosynthesis in fruit of fruit trees: Transcriptional, post-transcriptional, and post-translational regulation. Int J Biol Macromol 2025; 307:141835. [PMID: 40064275 DOI: 10.1016/j.ijbiomac.2025.141835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/17/2025] [Accepted: 03/05/2025] [Indexed: 03/15/2025]
Abstract
Coloration is an important appearance quality that contributes to product value. Anthocyanins, a type of flavonoid, not only impart rich plants color, but also contribute to human health because of their antioxidant properties, such as preventing cardiovascular disease and reducing obesity. This benefit mainly stems from various fruits. Accordingly, based on the consumption demand of beauty and nutrition, the creation of fruit tree products rich in anthocyanin is becoming an important breeding goal. The synthesis of anthocyanin has been investigated in various fruits, which is modulated by a variety of endogenous and exogenous factors, including transcription factors (TFs), plant hormones, and environmental factors (such as light, low temperature, drought). However, the detailed mechanisms in fruits of fruit trees have not been thoroughly elucidated. This review comprehensively examines the regulation of anthocyanin biosynthesis at the transcriptional, post-transcriptional, and post-translational levels, which is important for the application of molecular design strategies to cultivate high-quality fruits. At the transcriptional level, TFs were summarized to directly regulate anthocyanin biosynthesis genes, target non-anthocyanin biosynthesis pathway genes, interact with other proteins to mediate anthocyanin synthesis, and regulate anthocyanin synthesis by environmental factors and plant hormones. At the post-transcriptional level, non-coding RNAs (ncRNAs) were elucidated to mediate anthocyanin synthesis. At the post-translational level, a variety of post-translational modifications, including phosphorylation, ubiquitination, sumoylation, and persulfidation, have been elucidated to exhibit crucial functions in anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Zhongxing Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaoya Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Yanlong Gao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Xulin Xian
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Donghai Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Wenbing Zhao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaofei Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China.
| | - Yanxiu Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
5
|
Liu Q, Wu Z, Qi X, Fang H, Yu X, Li L, Chen Z, Wu J, Gao Y, Kai G, Liang C. TmCOP1-TmHY5 module-mediated blue light signal promotes chicoric acid biosynthesis in Taraxacum mongolicum. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:839-856. [PMID: 39670431 PMCID: PMC11869179 DOI: 10.1111/pbi.14542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/13/2024] [Accepted: 11/21/2024] [Indexed: 12/14/2024]
Abstract
Chicoric acid, a phenolic compound derived from plants, exhibits a range of pharmacological activities. Light significantly influences the chicoric acid biosynthesis in Taraxacum mongolicum; however, the transcriptional regulatory network governing this process remains unclear. A combined analysis of the metabolome and transcriptome revealed that blue light markedly enhances chicoric acid accumulation compared to red light. The blue light-sensitive transcription factor ELONGATED HYPOCOTYL5 (HY5) is closely associated with multiple core proteins, transcription factors and chicoric acid synthase genes involved in light signalling. Both in vivo and in vitro experiments demonstrated that TmHY5 directly regulates several chicoric acid biosynthetic genes, including TmPAL3, Tm4CL1 and TmHQT2. Additionally, TmHY5 promotes the accumulation of luteolin and anthocyanins by increasing the expression of TmCHS2 and TmANS2. The E3 ubiquitin ligase CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) forms a protein complex with TmHY5, significantly inhibiting chicoric acid biosynthesis. Blue light inhibits TmCOP1-TmHY5 complex protein formation while enhancing the expression levels of TmCOP1 through TmHY5. Furthermore, TmHY5 elevates the expression levels of TmbZIP1, which indirectly activates Tm4CL1 expression. In vivo, TmCOP1 directly inhibits the expression of the TmHY5-Tm4CL1 complex. Therefore, we speculate that TmCOP1-TmHY5-mediated blue light signalling effectively activates chicoric acid biosynthesis, providing a foundation for the application of blue light supplementation technology in industrial production.
Collapse
Affiliation(s)
- Qun Liu
- Institute of BotanyJiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat‐Sen)NanjingChina
| | - Zhiqing Wu
- Institute of BotanyJiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat‐Sen)NanjingChina
- College of Traditional Chinese MedicineJilin Agricultural UniversityChangchunChina
| | - Xiwu Qi
- Institute of BotanyJiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat‐Sen)NanjingChina
| | - Hailing Fang
- Institute of BotanyJiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat‐Sen)NanjingChina
| | - Xu Yu
- Institute of BotanyJiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat‐Sen)NanjingChina
| | - Li Li
- Institute of BotanyJiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat‐Sen)NanjingChina
| | - Zequn Chen
- Institute of BotanyJiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat‐Sen)NanjingChina
| | - Jie Wu
- School of Public Health, Shenyang Medical College, Liaoning Medical Functional Food Professional Technology Innovation CenterShenyang Medical CollegeShenyangLiaoningChina
| | - Yugang Gao
- College of Traditional Chinese MedicineJilin Agricultural UniversityChangchunChina
| | - Guoyin Kai
- Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, College of Pharmacy, Jinhua AcademyZhejiang Chinese Medical UniversityHangzhouChina
| | - Chengyuan Liang
- Institute of BotanyJiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat‐Sen)NanjingChina
| |
Collapse
|
6
|
Chen Y, Yang L, Li S, Wang M, Yu J, Bai W, Hong L. New insights into the transcription factor regulatory networks driving peel coloration under hormone induction analyzed by transcriptomics and metabolomics in tangor 'Murcot'. FRONTIERS IN PLANT SCIENCE 2025; 16:1526733. [PMID: 40041021 PMCID: PMC11876184 DOI: 10.3389/fpls.2025.1526733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/27/2025] [Indexed: 03/06/2025]
Abstract
Introduction Fruit color is a crucial quality factor strongly influencing consumer preference for citrus. The coloration of citrus fruit is primarily determined by carotenoids, which produce a range of hues. Gibberellic acid (GA) and ethylene are critical in fruit coloration during the ripening process. Nevertheless, the underlying mechanisms remain poorly understood. Methods The present study utilized transcriptomic and metabolomic analyses to investigate the molecular regulatory mechanisms affecting peel pigment metabolism in tangors (Citrus reticulata Blanco×Citrus sinensis L. Osbeck) following GA and ethephon (ETH) treatments. Results and discussion Collectively, our findings indicated that GA inhibits chlorophyll degradation and the accumulation of numerous carotenoids, including five violaxanthin esters (violaxanthin palmitate, violaxanthin myristate-caprate, violaxanthin myristate-laurate, violaxanthin dilaurate, violaxanthin myristate) and two β-cryptoxanthin derivatives (β-cryptoxanthin laurate, β-cryptoxanthin myristate), while ETH promotes these processes. Furthermore, GA inhibited the downregulation of lutein, the predominant carotenoid in immature fruits. Notably, integrated transcriptomic and metabolomic analyses identified 33 transcription factors associated with pigment metabolism. Of these, two novel transcription factors, the ethylene-responsive transcription factor ABR1 and the HD-Zip transcription factor ATHB7, were uncovered through both transcriptomic analysis and weighted gene co-expression network analysis. These two transcription factors positively regulated the colouration process, as validated by transient overexpression assays in tobacco. Taken together, our findings elucidated the global carotenoid changes and transcriptional alterations in regulating citrus peel color under hormone induction, with significant implications for improving citrus production.
Collapse
Affiliation(s)
- Yang Chen
- Biotechnology Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China
- Chongqing Key Laboratory of Adversity Agriculture Research, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Lei Yang
- Biotechnology Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China
- Key Laboratory of Evaluation and Utilization for Special Crops Germplasm Resource in the Southwest Mountains, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Shuang Li
- Biotechnology Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Min Wang
- Biotechnology Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Jianjun Yu
- Biotechnology Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Wenqin Bai
- Biotechnology Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China
- Chongqing Key Laboratory of Adversity Agriculture Research, Chongqing Academy of Agricultural Sciences, Chongqing, China
- Key Laboratory of Evaluation and Utilization for Special Crops Germplasm Resource in the Southwest Mountains, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Lin Hong
- Biotechnology Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China
- Key Laboratory of Evaluation and Utilization for Special Crops Germplasm Resource in the Southwest Mountains, Ministry of Agriculture and Rural Affairs, Chongqing, China
| |
Collapse
|
7
|
Shen B, Wu H, Xie X, Zhao B, Chen P, Ao D, Pan H, Lin B. Comparative Transcriptomic Analyses of Anthocyanin Biosynthesis Genes in Eggplant Under Low Temperature and Weak Light. PLANTS (BASEL, SWITZERLAND) 2025; 14:478. [PMID: 39943040 PMCID: PMC11819703 DOI: 10.3390/plants14030478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/24/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025]
Abstract
Low temperature, weak light, and the combination of low temperature and weak light can have an impact on the growth, development, and quality of eggplants. The color of the eggplant peel is affected by the anthocyanin content. To better understand the influence of low temperature, weak light, and the combination of low temperature and weak light on the regulation of anthocyanins in the eggplant peel, four treatments were carried out on the eggplants, respectively: low temperature (18/13 °C, 250 μmol/(m2·s)), weak light intensity (WL, 25/20 °C, 120 μmol/(m2·s)), low temperature combined with weak light intensity (LW, 18/13 °C, 120 μmol/(m2·s)), and the control (CK, 25/20 °C, 250 μmol/(m2·s)). The effects of low temperature and weak light on the anthocyanin content in various parts of the eggplant were analyzed, and transcriptome analysis was performed on the eggplant peel under the treatments of low temperature, weak light, and the combination of low temperature and weak light using RNA sequencing. The anthocyanin content in eggplants increased under low temperature and the combination of low temperature and weak light treatments, while it decreased under weak light. KEGG analysis showed that three pathways, namely phenylpropanoid biosynthesis, flavonoid biosynthesis, and anthocyanin biosynthesis, were involved in the anthocyanin biosynthesis of eggplants. Pearson correlation coefficients indicated that the anthocyanin content in the eggplant peel under low temperature and the combination of low-temperature and weak-light treatments was significantly correlated with SmPAL, Sm4CL, SmCYP73A100, SmCHS, SmCHI, F3H, DFR, ANS, and 3GT, and also significantly correlated with MYB, bHLH, and AP2/ERF. Under low-temperature and the combination of low-temperature and weak-light stress, the anthocyanin content increased due to the significant down-regulation of 3GT.
Collapse
Affiliation(s)
- Baoying Shen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.S.)
| | - Hongqi Wu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.S.)
| | - Xinxin Xie
- Fuzhou Institute of Vegetable Sciences, Fuzhou 350002, China;
| | - Bo Zhao
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.S.)
| | - Peiqiang Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.S.)
| | - Deyong Ao
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.S.)
| | - Heli Pan
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.S.)
| | - Biying Lin
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.S.)
| |
Collapse
|
8
|
Zhou J, Li K, Li M, Li Y, Guo H. The inhibition effect of high temperature stress on potato tuber skin coloring mainly occurred in the belowground part of the plant. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109407. [PMID: 39700915 DOI: 10.1016/j.plaphy.2024.109407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 10/15/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
High temperature stress leads to a dramatic reduction of both the anthocyanin concentration and the appearance quality of colored potatoes. However, it remains uncertain if the high temperature impacts potato tuber skin coloring through only the aerial or belowground parts of the plant, or through their interaction; and it's underlying reason is still unclear. In this study, the red-skin cultivar Qingshu9 (Qs9) was exposed to the high-temperature (30 °C) treatment on the belowground part alone (BH), aerial part alone (AH) and entire plant (EH), and the normal-temperature treatment on entire plant (EN) as control. The results indicated that the total anthocyanin content in tuber skin of the BH treatment was significantly lower than the EN and AH treatment, and there was no accumulation of cyanidin and pelargonidin in BH treatment, only peonidin. Compared with the EN treatment, the decrease rate of total anthocyanin content of the AH treatment was much smaller than the BH treatment, and the composition of anthocyanin did not change. Transcriptome analysis showed the downregulated DEGs of BH vs EN, BH vs AH and AH vs EN were significantly associated with the anthocyanin synthesis and metabolism pathway. High temperature inhibited anthocyanin synthesis by reducing the expression of key genes (StPAL, StF3H, StF3'H, StF3'5'H, StDFR and StANS) in the anthocyanin synthesis pathway. In summary, high temperature inhibits anthocyanin synthesis in tuber skin by downregulating key genes, and this inhibitory effect mainly occurs through the belowground part of the plant.
Collapse
Affiliation(s)
- Jinhua Zhou
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China; Industrial Crop Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, Yunnan, China
| | - Kaifeng Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Maoxing Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Youhan Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Huachun Guo
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| |
Collapse
|
9
|
Huang Y, Makkumrai W, Fu J, Deng C, Wu Q, Wang S, Wang L, Wu X, Gao J, Chen C, Guo L, Chen P, Wu F, Deng X, Wang X, Xu Q. Genomic analysis provides insights into the origin and divergence of fruit flavor and flesh color of pummelo. THE NEW PHYTOLOGIST 2025; 245:378-391. [PMID: 39526460 DOI: 10.1111/nph.20223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
Pummelo (Citrus maxima) is one of the most important citrus crops and have genetically contributed sweet orange, lemon and most citrus cultivars. It has been cultivated for c. 4000 years in China and is also distributed in many Southeast Asian countries. Nevertheless, the origin and dispersal of pummelo remain elusive. We conducted whole-genome sequencing for 290 pummelo accessions from China and Southeast Asia (SEA). Our findings indicated that pummelo was originated in Yunnan province. The divergence of the China-SEA accessions occurred c. 2000 years ago and the divergence was likely facilitated through the Maritime Silk Road. We detected the divergence of genomic regions associated with fruit flavor and color, indicating different selection by human activities in different regions. A gene encoding lycopene cyclase 2 (LCYB2) exhibited a high degree of divergence in expression and sequence between red-flesh and white-flesh pummelos. A SNP in the coding region of LCYB2 resulted in a reduction in lycopene β-cyclizing enzyme activity, leading to the accumulation of lycopene and the development of the red-flesh trait. This study reveals the origin and evolutionary history of pummelo and provides insights into the genomic basis for the divergence of fruit flavor and color.
Collapse
Affiliation(s)
- Yue Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Warangkana Makkumrai
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Agriculture, Horticultural Research Institute, Ladyao, Chatuchak, Bangkok, 10900, Thailand
| | - Jialing Fu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chongling Deng
- Guangxi Key Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guangxi Academy of Specialty Crops, Guilin, 541004, China
| | - Qingjiang Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shaohua Wang
- Tropical and Subtropical Cash Crops Research Institute, Yunnan Academy of Agricultural Sciences, Baoshan, 678000, China
| | - Lun Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoxiao Wu
- Guangxi Key Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guangxi Academy of Specialty Crops, Guilin, 541004, China
| | - Junyan Gao
- Tropical and Subtropical Cash Crops Research Institute, Yunnan Academy of Agricultural Sciences, Baoshan, 678000, China
| | - Chuanwu Chen
- Guangxi Key Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guangxi Academy of Specialty Crops, Guilin, 541004, China
| | - Lina Guo
- Tropical and Subtropical Cash Crops Research Institute, Yunnan Academy of Agricultural Sciences, Baoshan, 678000, China
| | - Peng Chen
- Institute of Horticultural Research, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Fangfang Wu
- Science and Technology Innovation Research Center of Majia Pummelo, Guangfeng, Shangrao, 334000, China
| | - Xiuxin Deng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xia Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
10
|
Lai C, Zhang J, Lai G, He L, Xu H, Li S, Che J, Wang Q, Guan X, Huang J, Lai P, Chen G. Targeted regulation of 5-aminolevulinic acid enhances flavonoids, anthocyanins and proanthocyanidins accumulation in Vitis davidii callus. BMC PLANT BIOLOGY 2024; 24:944. [PMID: 39385100 PMCID: PMC11465859 DOI: 10.1186/s12870-024-05667-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND Spine grape (Vitis davidii) is a promising source of high-quality anthocyanins, with vast potential for application in food, pharmaceutical, and cosmetic industries. However, their availability is limited by resource constraints. Plant cell culture has emerged as a valuable approach for anthocyanin production and serves as an ideal model to investigate the regulation of anthocyanin biosynthesis. Elicitors are employed to achieve targeted enhancement of anthocyanin biosynthesis. The present study investigated the impact of 5-aminolevulinic acid (ALA) as an elicitor on the accumulation of anthocyanins and flavonoids during spine grape callus growth. Specifically, we examined the effects of ALA on anthocyanin and its component accumulation in callus, and biosynthetic anthocyanin gene expression. RESULTS ALA at 25 µg/L increased the biomass of spine grape callus. ALA induction enhanced the levels of flavonoids, anthocyanins and proanthocyanidins in callus, with maximum values reaching 911.11 mg/100 g DW, 604.60 mg/100 g DW, and 5357.00 mg/100 g DW, respectively, after callus culture for 45 days. Notably, those levels were 1.47-, 1.93- and 1.83-fold higher than controls. ALA induction modulated the flavonoid profile, and among 97 differential flavonoid metabolites differing from controls, 77 were upregulated and 20 were downregulated. Six kinds of anthocyanins, namely cyanidin (8), delphinidin (6), peonidin (5), malvidin (4), petunidin (3) and pelargonidin (3), were detected in callus, with peonidin most abundant. Compared with controls, anthocyanin components were increased in ALA-treated callus. The key genes PAL1, PAL2, PAL4, CHI, CHS3, F3'H, F3H, FLS, DFR, UFGT, MYBA1, LDOX, OMT3, GT1 and ACT involved in anthocyanin biosynthesis were upregulated following ALA treatment, resulting in anthocyanin accumulation. CONCLUSION This study revealed a novel mode of ALA-mediated promotion of plant anthocyanin biosynthesis and accumulation at the cellular level, and a strategy for enhancing anthocyanin content in spine grape callus. The findings advance commercial-scale production of anthocyanins via spine grape callus culture. we also explored the accumulation patterns of flavonoids and anthocyanins under ALA treatment. Augmentation of anthocyanins coincided with elevated expression levels of most genes involved in anthocyanin biosynthesis within spine grape callus following ALA treatment.
Collapse
Affiliation(s)
- Chengchun Lai
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Wusi Road 247, Fuzhou, Fujian, 350003, P.R. China.
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian, 350003, China.
- Fujian Key Laboratory of Agricultural Product (Food) Processing, Fuzhou, Fujian, 350003, China.
| | - Jing Zhang
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Wusi Road 247, Fuzhou, Fujian, 350003, P.R. China
- College of Horticulture, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian, 350002, P.R. China
| | - Gongti Lai
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Wusi Road 247, Fuzhou, Fujian, 350003, P.R. China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian, 350003, China
- Fujian Key Laboratory of Agricultural Product (Food) Processing, Fuzhou, Fujian, 350003, China
| | - Liyuan He
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Wusi Road 247, Fuzhou, Fujian, 350003, P.R. China
- College of Horticulture, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian, 350002, P.R. China
| | - Heng Xu
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Wusi Road 247, Fuzhou, Fujian, 350003, P.R. China
- College of Horticulture, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian, 350002, P.R. China
| | - Siyu Li
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Wusi Road 247, Fuzhou, Fujian, 350003, P.R. China
- College of Horticulture, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian, 350002, P.R. China
| | - Jianmei Che
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences Fuzhou, Wusi Road 247, Fuzhou, Fujian, 350003, P.R. China
| | - Qi Wang
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Wusi Road 247, Fuzhou, Fujian, 350003, P.R. China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian, 350003, China
- Fujian Key Laboratory of Agricultural Product (Food) Processing, Fuzhou, Fujian, 350003, China
| | - Xuefang Guan
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Wusi Road 247, Fuzhou, Fujian, 350003, P.R. China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian, 350003, China
- Fujian Key Laboratory of Agricultural Product (Food) Processing, Fuzhou, Fujian, 350003, China
| | - Juqing Huang
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Wusi Road 247, Fuzhou, Fujian, 350003, P.R. China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian, 350003, China
- Fujian Key Laboratory of Agricultural Product (Food) Processing, Fuzhou, Fujian, 350003, China
| | - Pufu Lai
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Wusi Road 247, Fuzhou, Fujian, 350003, P.R. China.
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian, 350003, China.
| | - Guixin Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian, 350002, P.R. China
| |
Collapse
|
11
|
Sun S, Qi X, Zhang Z, Sun L, Wang R, Li Y, Chen J, Gu H, Fang J, Lin M. A structural variation in the promoter of the leucoanthocyanidin reductase gene AaLAR1 enhances freezing tolerance by modulating proanthocyanidin accumulation in kiwifruit (Actinidia arguta). PLANT, CELL & ENVIRONMENT 2024; 47:4048-4066. [PMID: 38884345 DOI: 10.1111/pce.15003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/05/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024]
Abstract
Proanthocyanidins (PAs) are important metabolites that enhance freezing tolerance of plants. Actinidia arguta, especially freezing-tolerant germplasms, accumulate abundant PAs in dormant shoots and thereby enhance freezing tolerance, but the underlying mechanism is unknown. In this study, we used two A. arguta with contrasting cold-resistant phenotypes, KL and RB, to explore the mechanisms in response to cold tolerance. We determined that a leucoanthocyanidin reductase gene (AaLAR1) was more highly expressed in freezing-tolerant KL than in freezing-sensitive RB. Moreover, overexpressing AaLAR1 in kiwifruit promoted PAs biosynthesis and enhanced cold tolerance. The AaLAR1 promoters of various A. arguta germplasms differ due to the presence of a 60-bp deletion in cold-tolerant genotypes that forms a functional binding site for MYC-type transcription factor. Yeast one-hybrid and two-hybrid, dual-luciferase reporter, bimolecular fluorescence complementation and coimmunoprecipitation assays indicated that the AaMYC2a binds to the MYC-core cis-element in the AaLAR1 promoter with the assistance of AaMYB5a, thereby promoting PAs accumulation in the shoots of cold-tolerant kiwifruit. We conclude that the variation in the AaLAR1 promoter and the AaMYC2a-AaMYB5a-AaLAR1 module shape freezing tolerance in A. arguta. The identification of a key structural variation in the AaLAR1 promoter offers a new target for resistance breeding of kiwifruit.
Collapse
Affiliation(s)
- Shihang Sun
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, China
| | - Xiujuan Qi
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, China
| | - Zhenzhen Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Leiming Sun
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Ran Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Yukuo Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, China
| | - Jinyong Chen
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, China
| | - Hong Gu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Jinbao Fang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, China
| | - Miaomiao Lin
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, China
| |
Collapse
|
12
|
Liu J, Li H, Hong C, Lu W, Zhang W, Gao H. Quantitative RUBY reporter assay for gene regulation analysis. PLANT, CELL & ENVIRONMENT 2024; 47:3701-3711. [PMID: 38757792 DOI: 10.1111/pce.14947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/21/2024] [Accepted: 04/28/2024] [Indexed: 05/18/2024]
Abstract
Various reporter genes have been developed to study gene expression pattern and gene regulation. The RUBY reporter gene was recently developed and widely used, because of its visible and noninvasive advantages. However, quantitative analysis of RUBY gene expression levels was lacking. In this study, we introduce a novel betalain quantification method in combination with the tobacco transient expression system. The betalain produced in tobacco leaves was extracted and purified, and its concentration was quantitatively measured. We successfully applied this approach in studying the transcriptional regulation of ARC5 gene by transcription factors CPD25 and CPD45. Furthermore, with this method, we showed that the gene expression of RCA and Rbcs1A gene were regulated by light, transcription factors HY5 and PIFs through G-box and I-box elements. The development of this betalain quantification approach with the tobacco transient expression system offers a cost-effective and intuitive strategy for studying the regulatory mechanism of gene expression.
Collapse
Affiliation(s)
- Jia Liu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Hao Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Conghao Hong
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Wanqing Lu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Wei Zhang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Hongbo Gao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
13
|
Lu Z, He J, Fu J, Huang Y, Wang X. WRKY75 regulates anthocyanin accumulation in juvenile citrus tissues. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:52. [PMID: 39130615 PMCID: PMC11315850 DOI: 10.1007/s11032-024-01490-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024]
Abstract
The anthocyanin accumulation in juvenile tissues can enhance the ornamental value, attract pollinators, and help improve abiotic stress. Although transcriptional regulation studies of anthocyanin have been relatively extensive, there are few reports on the mechanism of anthocyanin accumulation in young tissues. This study reveals that many juvenile citrus tissues (flowers, leaves, and pericarp) undergo transient accumulation of anthocyanins, exhibiting a red coloration. Using weighted gene co-expression network analysis (WGCNA) identified CitWRKY75 as a candidate gene. After detecting the expression levels of CitWRKY75 in various citrus juvenile tissues, the expression trend of CitWRKY75 was highly consistent with the red exhibiting and fading. Overexpression of CitWRKY75 in tobacco significantly increased the anthocyanin content. LUC and yeast one-hybrid assay demonstrated that CitWRKY75 could bind to the promoter of CitRuby1(encoding the key transcription factor promoting anthocyanin accumulation) and promote its expression. Finally, comparing the expression levels of CitWRKY75 and CitRuby1 in the late development stage of blood orange found that CitWRKY75 was not the main regulatory factor for anthocyanin accumulation in the later stage. This study used reverse genetics to identify a transcription factor, CitWRKY75, upstream of CitRuby1, which promotes anthocyanin accumulation in citrus juvenile tissues. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01490-9.
Collapse
Affiliation(s)
- Zhihao Lu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
| | - Jiaxian He
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130 Sichuan Province China
| | - Jialing Fu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
| | - Yuping Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
| | - Xia Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| |
Collapse
|
14
|
Fu J, Liao L, Jin J, Lu Z, Sun J, Song L, Huang Y, Liu S, Huang D, Xu Y, He J, Hu B, Zhu Y, Wu F, Wang X, Deng X, Xu Q. A transcriptional cascade involving BBX22 and HY5 finely regulates both plant height and fruit pigmentation in citrus. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1752-1768. [PMID: 38961693 DOI: 10.1111/jipb.13719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/13/2024] [Indexed: 07/05/2024]
Abstract
Dwarfing is a pivotal agronomic trait affecting both yield and quality. Citrus species exhibit substantial variation in plant height, among which internode length is a core element. However, the molecular mechanism governing internode elongation remains unclear. Here, we unveiled that the transcriptional cascade consisting of B-BOX DOMAIN PROTEIN 22 (BBX22) and ELONGATED HYPOCOTYL 5 (HY5) finely tunes plant height and internode elongation in citrus. Loss-of-function mutations of BBX22 in an early-flowering citrus (Citrus hindsii "SJG") promoted internode elongation and reduced pigment accumulation, whereas ectopic expression of BBX22 in SJG, sweet orange (C. sinensis), pomelo (C. maxima) or heterologous expression of BBX22 in tomato (Solanum lycopersicum) significantly decreased internode length. Furthermore, exogenous application of gibberellin A3 (GA3) rescued the shortened internode and dwarf phenotype caused by BBX22 overexpression. Additional experiments revealed that BBX22 played a dual role in regulation internode elongation and pigmentation in citrus. On the one hand, it directly bound to and activated the expression of HY5, GA metabolism gene (GA2 OXIDASE 8, GA2ox8), carotenoid biosynthesis gene (PHYTOENE SYNTHASE 1, PSY1) and anthocyanin regulatory gene (Ruby1, a MYB DOMAIN PROTEIN). On the other hand, it acted as a cofactor of HY5, enhancing the ability of HY5 to regulate target genes expression. Together, our results reveal the critical role of the transcriptional cascade consisting of BBX22 and HY5 in controlling internode elongation and pigment accumulation in citrus. Unraveling the crosstalk regulatory mechanism between internode elongation and fruit pigmentation provides key genes for breeding of novel types with both dwarf and health-beneficial fortification in citrus.
Collapse
Affiliation(s)
- Jialing Fu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Li Liao
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Jiajing Jin
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhihao Lu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Juan Sun
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lizhi Song
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yue Huang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shengjun Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ding Huang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuantao Xu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiaxian He
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bin Hu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yiqun Zhu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fangfang Wu
- Science and Technology Innovation Research Center of Majia Pomelo, Shangrao, 334000, China
| | - Xia Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xiuxin Deng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
15
|
Wang Y, Li S, Shi Y, Lv S, Zhu C, Xu C, Zhang B, Allan AC, Grierson D, Chen K. The R2R3 MYB Ruby1 is activated by two cold responsive ethylene response factors, via the retrotransposon in its promoter, to positively regulate anthocyanin biosynthesis in citrus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 38922743 DOI: 10.1111/tpj.16866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/07/2024] [Accepted: 04/08/2024] [Indexed: 06/28/2024]
Abstract
Anthocyanins are natural pigments and dietary antioxidants that play multiple biological roles in plants and are important in animal and human nutrition. Low temperature (LT) promotes anthocyanin biosynthesis in many species including blood orange. A retrotransposon in the promoter of Ruby1, which encodes an R2R3 MYB transcription factor, controls cold-induced anthocyanin accumulation in blood orange flesh. However, the specific mechanism remains unclear. In this study, we characterized two LT-induced ETHYLENE RESPONSE FACTORS (CsERF054 and CsERF061). Both CsERF054 and CsERF061 can activate the expression of CsRuby1 by directly binding to a DRE/CRT cis-element within the retrotransposon in the promoter of CsRuby1, thereby positively regulating anthocyanin biosynthesis. Further investigation indicated that CsERF061 also forms a protein complex with CsRuby1 to co-activate the expression of anthocyanin biosynthetic genes, providing a dual mechanism for the upregulation of the anthocyanin pathway. These results provide insights into how LT mediates anthocyanin biosynthesis and increase the understanding of the regulatory network of anthocyanin biosynthesis in blood orange.
Collapse
Affiliation(s)
- Yuxin Wang
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Shaojia Li
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Yanna Shi
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Shouzheng Lv
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Changqing Zhu
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Changjie Xu
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Bo Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Andrew C Allan
- New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Donald Grierson
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Nottingham, UK
| | - Kunsong Chen
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| |
Collapse
|
16
|
Pei Z, Huang Y, Ni J, Liu Y, Yang Q. For a Colorful Life: Recent Advances in Anthocyanin Biosynthesis during Leaf Senescence. BIOLOGY 2024; 13:329. [PMID: 38785811 PMCID: PMC11117936 DOI: 10.3390/biology13050329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Leaf senescence is the last stage of leaf development, and it is accompanied by a leaf color change. In some species, anthocyanins are accumulated during leaf senescence, which are vital indicators for both ornamental and commercial value. Therefore, it is essential to understand the molecular mechanism of anthocyanin accumulation during leaf senescence, which would provide new insight into autumn coloration and molecular breeding for more colorful plants. Anthocyanin accumulation is a surprisingly complex process, and significant advances have been made in the past decades. In this review, we focused on leaf coloration during senescence. We emphatically discussed several networks linked to genetic, hormonal, environmental, and nutritional factors in regulating anthocyanin accumulation during leaf senescence. This paper aims to provide a regulatory model for leaf coloration and to put forward some prospects for future development.
Collapse
Affiliation(s)
- Ziqi Pei
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; (Z.P.); (Y.H.); (Y.L.)
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing 100083, China
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Yifei Huang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; (Z.P.); (Y.H.); (Y.L.)
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing 100083, China
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Junbei Ni
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Yong Liu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; (Z.P.); (Y.H.); (Y.L.)
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing 100083, China
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Qinsong Yang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; (Z.P.); (Y.H.); (Y.L.)
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing 100083, China
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
17
|
Li H, Yang Y, Zhang W, Zheng H, Xu X, Li H, Sun C, Hu H, Zhao W, Ma R, Tao J. Promoter replication of grape MYB transcription factor is associated with a new red flesh phenotype. PLANT CELL REPORTS 2024; 43:136. [PMID: 38709311 DOI: 10.1007/s00299-024-03225-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
KEY MESSAGE In our study, we discovered a fragment duplication autoregulation mechanism in 'ZS-HY', which may be the reason for the phenotype of red foliage and red flesh in grapes. In grapes, MYBA1 and MYBA2 are the main genetic factors responsible for skin coloration which are located at the color loci on chromosome 2, but the exact genes responsible for color have not been identified in the flesh. We used a new teinturier grape germplasm 'ZhongShan-HongYu' (ZS-HY) which accumulate anthocyanin both in skin and flesh as experimental materials. All tissues of 'ZS-HY' contained cyanidin 3-O-(6″-p-coumaroyl glucoside), and pelargonidins were detected in skin, flesh, and tendril. Through gene expression analysis at different stage of flesh, significant differences in the expression levels of VvMYBA1 were found. Gene amplification analysis showed that the VvMYBA1 promoter is composed of two alleles, VvMYBA1a and 'VvMYBA1c-like'. An insertion of a 408 bp repetitive fragment was detected in the allele 'VvMYBA1c-like'. In this process, we found the 408 bp repetitive fragment was co-segregated with red flesh and foliage phenotype. Our results revealed that the 408 bp fragment replication insertion in promoter of 'VvMYBA1c-like' was the target of its protein, and the number of repeat fragments was related to the increase of trans-activation of VvMYBA1 protein. The activation of promoter by VvMYBA1 was enhanced by the addition of VvMYC1. In addition, VvMYBA1 interacted with VvMYC1 to promote the expression of VvGT1 and VvGST4 genes in 'ZS-HY'. The discovery of this mutation event provides new insights into the regulation of VvMYBA1 on anthocyanin accumulation in red-fleshed grape, which is of great significance for molecular breeding of red-fleshed table grapes.
Collapse
Affiliation(s)
- Hui Li
- College of Horticulture, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, 261061, China
| | - Yaxin Yang
- College of Horticulture, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wen Zhang
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Science, Urumqi, 830001, Xinjiang, China
| | - Huan Zheng
- College of Horticulture, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xianbin Xu
- College of Horticulture, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haoran Li
- College of Horticulture, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chenxu Sun
- College of Horticulture, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haipeng Hu
- College of Horticulture, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wanli Zhao
- College of Horticulture, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruiyang Ma
- College of Horticulture, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianmin Tao
- College of Horticulture, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China.
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Science, Urumqi, 830001, Xinjiang, China.
| |
Collapse
|
18
|
Tang Q, Wang X, Ma S, Fan S, Chi F, Song Y. Molecular mechanism of abscisic acid signaling response factor VcbZIP55 to promote anthocyanin biosynthesis in blueberry (Vaccinium corymbosum). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108611. [PMID: 38615439 DOI: 10.1016/j.plaphy.2024.108611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/16/2024]
Abstract
A high content of anthocyanin in blueberry (Vaccinium corymbosum) is an important indicator to evaluate fruit quality. Abscisic acid (ABA) can promote anthocyanin biosynthesis, but since the molecular mechanism is unclear, clarifying the mechanism will improve for blueberry breeding and cultivation regulation. VcbZIP55 regulating anthocyanin synthesis in blueberry were screened and mined using the published Isoform-sequencing, RNA-Seq and qRT-PCR at different fruit developmental stages. Blueberry genetic transformation and transgenic experiments confirmed that VcbZIP55 could promote anthocyanin biosynthesis in blueberry adventitious buds, tobacco leaves, blueberry leaves and blueberry fruit. VcbZIP55 responded to ABA signals and its expression was upregulated in blueberry fruit. In addition, using VcbZIP55 for Yeast one hybrid assay (Y1H) and transient expression in tobacco leaves demonstrated an interaction between VcbZIP55 and a G-Box motif on the VcMYB1 promoter to activate the expression of VcMYB1. This study will lay the theoretical foundation for the molecular mechanisms of phytohormone regulation responsible for anthocyanin synthesis and provide theoretical support for blueberry quality improvement.
Collapse
Affiliation(s)
- Qi Tang
- Research Institute of Pomology of CAAS, Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Xingcheng, Liaoning, 125100, China.
| | - Xuan Wang
- Research Institute of Pomology of CAAS, Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Xingcheng, Liaoning, 125100, China.
| | - Shurui Ma
- Research Institute of Pomology of CAAS, Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Xingcheng, Liaoning, 125100, China.
| | - Shutian Fan
- Institute of Special Animal and Plant Sciences CAAS, Jilin Changchun, 130122, China.
| | - Fumei Chi
- Research Institute of Pomology of CAAS, Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Xingcheng, Liaoning, 125100, China.
| | - Yang Song
- Research Institute of Pomology of CAAS, Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Xingcheng, Liaoning, 125100, China.
| |
Collapse
|
19
|
Wang J, Cao K, Li Y, Wu J, Li W, Wang Q, Zhu G, Fang W, Chen C, Wang X, Dong W, Liu W, Wang L. Genome variation and LTR-RT analyses of an ancient peach landrace reveal mechanism of blood-flesh fruit color formation and fruit maturity date advancement. HORTICULTURE RESEARCH 2024; 11:uhad265. [PMID: 38298900 PMCID: PMC10828781 DOI: 10.1093/hr/uhad265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 12/01/2023] [Indexed: 02/02/2024]
Abstract
Peach (Prunus persica) landrace has typical regional characteristics, strong environmental adaptability, and contains many valuable genes that provide the foundation for breeding excellent varieties. Therefore, it is necessary to assemble the genomes of specific landraces to facilitate the localization and utilization of these genes. Here, we de novo assembled a high-quality genome from an ancient blood-fleshed Chinese landrace Tianjin ShuiMi (TJSM) that originated from the China North Plain. The assembled genome size was 243.5 Mb with a contig N50 of 23.7 Mb and a scaffold N50 of 28.6 Mb. Compared with the reported peach genomes, our assembled TJSM genome had the largest number of specific structural variants (SVs) and long terminal repeat-retrotransposons (LTR-RTs). Among the LTR-RTs with the potential to regulate their host genes, we identified a 6688 bp LTR-RT (named it blood TE) in the promoter of NAC transcription factor-encoding PpBL, a gene regulating peach blood-flesh formation. The blood TE was not only co-separated with the blood-flesh phenotype but also associated with fruit maturity date advancement and different intensities of blood-flesh color formation. Our findings provide new insights into the mechanism underlying the development of the blood-flesh color and determination of fruit maturity date and highlight the potential of the TJSM genome to mine more variations related to agronomic traits in peach fruit.
Collapse
Affiliation(s)
- Jiao Wang
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit TreeBreeding Technology), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Ke Cao
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit TreeBreeding Technology), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Yong Li
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit TreeBreeding Technology), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Jinlong Wu
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit TreeBreeding Technology), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Wenqing Li
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit TreeBreeding Technology), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Qi Wang
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit TreeBreeding Technology), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Gengrui Zhu
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit TreeBreeding Technology), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Weichao Fang
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit TreeBreeding Technology), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Changwen Chen
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit TreeBreeding Technology), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Xinwei Wang
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit TreeBreeding Technology), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Wenxuan Dong
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Weisheng Liu
- Liaoning Institute of Pomology, Yingkou 115009, Liaoning, China
| | - Lirong Wang
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit TreeBreeding Technology), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| |
Collapse
|
20
|
Liu Y, Singh SK, Pattanaik S, Wang H, Yuan L. Light regulation of the biosynthesis of phenolics, terpenoids, and alkaloids in plants. Commun Biol 2023; 6:1055. [PMID: 37853112 PMCID: PMC10584869 DOI: 10.1038/s42003-023-05435-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/09/2023] [Indexed: 10/20/2023] Open
Abstract
Biosynthesis of specialized metabolites (SM), including phenolics, terpenoids, and alkaloids, is stimulated by many environmental factors including light. In recent years, significant progress has been made in understanding the regulatory mechanisms involved in light-stimulated SM biosynthesis at the transcriptional, posttranscriptional, and posttranslational levels of regulation. While several excellent recent reviews have primarily focused on the impacts of general environmental factors, including light, on biosynthesis of an individual class of SM, here we highlight the regulation of three major SM biosynthesis pathways by light-responsive gene expression, microRNA regulation, and posttranslational modification of regulatory proteins. In addition, we present our future perspectives on this topic.
Collapse
Affiliation(s)
- Yongliang Liu
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA
| | - Sanjay K Singh
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA
| | - Sitakanta Pattanaik
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA.
| | - Hongxia Wang
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences Chenshan Botanical Garden, 3888 Chenhua Road, 201602, Songjiang, Shanghai, China.
| | - Ling Yuan
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
21
|
Su W, Zhu C, Fan Z, Huang M, Lin H, Chen X, Deng C, Chen Y, Kou Y, Tong Z, Zhang Y, Xu C, Zheng S, Jiang J. Comprehensive metabolome and transcriptome analyses demonstrate divergent anthocyanin and carotenoid accumulation in fruits of wild and cultivated loquats. FRONTIERS IN PLANT SCIENCE 2023; 14:1285456. [PMID: 37900735 PMCID: PMC10611460 DOI: 10.3389/fpls.2023.1285456] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023]
Abstract
Eriobotrya is an evergreen fruit tree native to South-West China and adjacent countries. There are more than 26 loquat species known in this genus, while E. japonica is the only species yet domesticated to produce fresh fruits from late spring to early summer. Fruits of cultivated loquat are usually orange colored, in contrast to the red color of fruits of wild E. henryi (EH). However, the mechanisms of fruit pigment formation during loquat evolution are yet to be elucidated. To understand these, targeted carotenoid and anthocyanin metabolomics as well as transcriptomics analyses were carried out in this study. The results showed that β-carotene, violaxanthin palmitate and rubixanthin laurate, totally accounted for over 60% of the colored carotenoids, were the major carotenoids in peel of the orange colored 'Jiefangzhong' (JFZ) fruits. Total carotenoids content in JFZ is about 10 times to that of EH, and the expression levels of PSY, ZDS and ZEP in JFZ were 10.69 to 23.26 folds to that in EH at ripen stage. Cyanidin-3-O-galactoside and pelargonidin-3-O-galactoside were the predominant anthocyanins enriched in EH peel. On the contrary, both of them were almost undetectable in JFZ, and the transcript levels of F3H, F3'H, ANS, CHS and CHI in EH were 4.39 to 73.12 folds higher than that in JFZ during fruit pigmentation. In summary, abundant carotenoid deposition in JFZ peel is well correlated with the strong expression of PSY, ZDS and ZEP, while the accumulation of anthocyanin metabolites in EH peel is tightly associated with the notably upregulated expressions of F3H, F3'H, ANS, CHS and CHI. This study was the first to demonstrate the metabolic background of how fruit pigmentations evolved from wild to cultivated loquat species, and provided gene targets for further breeding of more colorful loquat fruits via manipulation of carotenoids and anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Wenbing Su
- Fruit Research Institute, Fujian Academy of Agricultural Science, Fuzhou, China
| | - Changqing Zhu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/State Agriculture Ministry Laboratory of Horticultural Plant Crop Growth and Development, Zhejiang University, Hangzhou, China
| | - Zhongqi Fan
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Mingkun Huang
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
| | - Han Lin
- Fruit Research Institute, Fujian Academy of Agricultural Science, Fuzhou, China
| | - Xiuping Chen
- Fruit Research Institute, Fujian Academy of Agricultural Science, Fuzhou, China
| | - Chaojun Deng
- Fruit Research Institute, Fujian Academy of Agricultural Science, Fuzhou, China
| | - Yongping Chen
- Fruit Research Institute, Fujian Academy of Agricultural Science, Fuzhou, China
| | - Yidan Kou
- Fruit Research Institute, Fujian Academy of Agricultural Science, Fuzhou, China
| | - Zhihong Tong
- Fruit Research Institute, Fujian Academy of Agricultural Science, Fuzhou, China
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yaling Zhang
- Fruit Research Institute, Fujian Academy of Agricultural Science, Fuzhou, China
| | - Changjie Xu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/State Agriculture Ministry Laboratory of Horticultural Plant Crop Growth and Development, Zhejiang University, Hangzhou, China
| | - Shaoquan Zheng
- Fruit Research Institute, Fujian Academy of Agricultural Science, Fuzhou, China
| | - Jimou Jiang
- Fruit Research Institute, Fujian Academy of Agricultural Science, Fuzhou, China
| |
Collapse
|
22
|
Wang J, Xu R, Qiu S, Wang W, Zheng F. CsTT8 regulates anthocyanin accumulation in blood orange through alternative splicing transcription. HORTICULTURE RESEARCH 2023; 10:uhad190. [PMID: 37927409 PMCID: PMC10623405 DOI: 10.1093/hr/uhad190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/12/2023] [Indexed: 11/07/2023]
Abstract
A homologous gene of basic-helix-loop-helix AtTT8 in Arabidopsis thaliana was identified in juice sac cells of pulp tissues from blood orange (Citrus sinensis cv 'Tarocco'), which was designated as CsTT8 in this study. Additionally, the mRNA levels of TT8 with the full-length open reading frame were significantly higher in 'Tarocco' than in mutant fruit lacking pigment in pulp or peel tissues. However, an alternative splicing transcript, Δ15-TT8, with the fourth exon skipped, was also identified from transcripts different in length from that in 'Tarocco'. The mRNA levels of Δ15-TT8 were higher in mutant fruit lacking pigment in pulp or peel tissues than in the wild type. Therefore, the TT8/Δ15-TT8 mRNA level ratio was found to be crucial for sufficient pigment in either pulp or peel tissues. TT8 from blood orange fruit demonstrated the capacity for nucleus localization and binding to other proteins. In contrast, Δ15-TT8, lacking the fourth exon, lost its ability to interact with RUBY1 and to localize at the nucleus. Using a dual luciferase reporter assay and transient overexpression in tobacco, we proved that two regulatory complexes formed by a functional TT8 with different MYB(v-myb avian myeloblastosis viral oncogene homolog)-type partners significantly promoted expression of an anthocyanin biosynthetic gene and a proton pumping gene, leading to anthocyanin and citrate production. Our findings suggest that TT8, rather than dysfunctional Δ15-TT8, is possibly involved in modulating anthocyanin biosynthesis and its transport into vacuoles by proton gradients. However, increased mRNA levels of the dysfunctional alternative splicing transcript may act as a negative feedback to downregulate TT8 expression and limit anthocyanin accumulation in blood oranges.
Collapse
Affiliation(s)
- Jianhui Wang
- Department of Food Science and Engineering, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Zhang Lan Honors College, Chengdu University, Chengdu 610106, China
| | - Rui Xu
- Department of Food Science and Engineering, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Shuangping Qiu
- Department of Food Science and Engineering, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Weichun Wang
- Department of Food Science and Engineering, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Fan Zheng
- Department of Food Science and Engineering, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Zhang Lan Honors College, Chengdu University, Chengdu 610106, China
| |
Collapse
|
23
|
Yan Y, Zhao J, Lin S, Li M, Liu J, Raymond O, Vergne P, Kong W, Wu Q, Zhang X, Bao M, Bendahmane M, Fu X. Light-mediated anthocyanin biosynthesis in rose petals involves a balanced regulatory module comprising transcription factors RhHY5, RhMYB114a, and RhMYB3b. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5783-5804. [PMID: 37392434 DOI: 10.1093/jxb/erad253] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
Roses are significant botanical species with both ornamental and economic value, displaying diverse floral traits, particularly an extensive array of petal colors. The red pigmentation of rose petals is predominantly attributed to anthocyanin accumulation. However, the underlying regulatory mechanism of anthocyanin biosynthesis in roses remains elusive. This study presents a novel light-responsive regulatory module governing anthocyanin biosynthesis in rose petals, which involves the transcription factors RhHY5, RhMYB114a, and RhMYB3b. Under light conditions (1000-1500 μmol m-2 s-1), RhHY5 represses RhMYB3b expression and induces RhMYB114a expression, positively regulating anthocyanin biosynthesis in rose petals. Notably, activation of anthocyanin structural genes probably involves an interaction and synergy between RhHY5 and the MYB114a-bHLH3-WD40 complex. Additionally, RhMYB3b is activated by RhMYB114a to prevent excessive accumulation of anthocyanin. Conversely, under low light conditions (<10 μmol m-2 s-1), the degradation of RhHY5 leads to down-regulation of RhMYB114a and up-regulation of RhMYB3b, which in turn inhibits the expression of both RhMYB114a and anthocyanin structural genes. Additionally, RhMYB3b competes with RhMYB114a for binding to RhbHLH3 and the promoters of anthocyanin-related structural genes. Overall, our study uncovers a complex light-mediated regulatory network that governs anthocyanin biosynthesis in rose petals, providing new insights into the molecular mechanisms underlying petal color formation in rose.
Collapse
Affiliation(s)
- Yuhang Yan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Jiaxing Zhao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Shengnan Lin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Mouliang Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Jiayi Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Olivier Raymond
- Laboratoire Reproduction et Development des Plantes, INRA-CNRS-Lyon1-ENS, Ecole Normale Superieure de Lyon, Lyon, France
| | - Philippe Vergne
- Laboratoire Reproduction et Development des Plantes, INRA-CNRS-Lyon1-ENS, Ecole Normale Superieure de Lyon, Lyon, France
| | - Weilong Kong
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Quanshu Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Xiaoni Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Manzhu Bao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Mohammed Bendahmane
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
- Laboratoire Reproduction et Development des Plantes, INRA-CNRS-Lyon1-ENS, Ecole Normale Superieure de Lyon, Lyon, France
| | - Xiaopeng Fu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
24
|
Sun L, Huo J, Liu J, Yu J, Zhou J, Sun C, Wang Y, Leng F. Anthocyanins distribution, transcriptional regulation, epigenetic and post-translational modification in fruits. Food Chem 2023; 411:135540. [PMID: 36701918 DOI: 10.1016/j.foodchem.2023.135540] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/04/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
Anthocyanins have indispensable functions in plant resistance, human health, and fruit coloring, which arouse people's favorite. It has been reported that anthocyanins are widely found in fruits, and can be affected by numerous factors. In this review, we systematically summarize anthocyanin functions, classifications, distributions, biosynthesis, decoration, transportation, transcriptional regulation, DNA methylation, and post-translational regulation in fruits.
Collapse
Affiliation(s)
- Liping Sun
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| | - Jingtian Huo
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| | - Jieya Liu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| | - Jiayi Yu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| | - Jialing Zhou
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| | - Chongde Sun
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China.
| | - Yue Wang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China.
| | - Feng Leng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
25
|
Zhu W, Wu H, Yang C, Shi B, Zheng B, Ma X, Zhou K, Qian M. Postharvest light-induced flavonoids accumulation in mango ( Mangifera indica L.) peel is associated with the up-regulation of flavonoids-related and light signal pathway genes. FRONTIERS IN PLANT SCIENCE 2023; 14:1136281. [PMID: 36993851 PMCID: PMC10040657 DOI: 10.3389/fpls.2023.1136281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
INTRODUCTION Flavonoids are important secondary metabolites in plants and light is a crucial environmental factor regulating flavonoids biosynthesis. However, effect of light on the different flavonoids compositions accumulation in mango and the relevant molecular mechanism still need to be clarified. METHODS In this study, green-mature fruits of red mango cultivar 'Zill' were subjected to postharvest light treatment, and fruit peel color, total soluble solids content, total organic acid, and firmness of flesh were measured. The flavonoids metabolites profile, and the expression of flavonoids-related genes and light signal pathway genes were also analyzed. RESULTS Results showed that light treatment promoted the red coloration of fruit peel and increased the total soluble solids content and firmness of flesh. The concentration of flavonols, proanthocyanidins and anthocyanins, and expression of key flavonoids biosynthetic genes including MiF3H, MiFLS, MiLAR, MiANS, MiUFGT1, and MiUFGT3 were significantly induced by light. The MYBs regulating flavonols and proanthocyanidins, i.e. MiMYB22 and MiMYB12, as well as the key light signal pathway transcription factors (TFs) MiHY5 and MiHYH, were identified in mango. The transcription of MiMYB1, MiMYB12, MiMYB22, MiHY5 and MiHYH was up-regulated by light. DISCUSSION Our results provide a postharvest technology to improve mango fruit appearance quality, and are helpful to reveal the molecular mechanism of light-induced flavonoids biosynthesis in mango.
Collapse
Affiliation(s)
- Wencan Zhu
- Sanya Nanfan Research Institute & Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Hongxia Wu
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Chengkun Yang
- Sanya Nanfan Research Institute & Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Bin Shi
- Sanya Nanfan Research Institute & Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Bin Zheng
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Xiaowei Ma
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Kaibing Zhou
- Sanya Nanfan Research Institute & Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Minjie Qian
- Sanya Nanfan Research Institute & Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, School of Horticulture, Hainan University, Haikou, China
| |
Collapse
|
26
|
Targeting ripening regulators to develop fruit with high quality and extended shelf life. Curr Opin Biotechnol 2023; 79:102872. [PMID: 36621222 DOI: 10.1016/j.copbio.2022.102872] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/26/2022] [Accepted: 11/04/2022] [Indexed: 01/07/2023]
Abstract
Fruit quality directly impacts fruit marketability and consumer acceptance. Breeders have focused on fruit quality traits to extend shelf life, primarily through fruit texture, but, in some cases, have neglected other qualities such as flavor and nutrition. In recent years, integrative biotechnology and consumer-minded approaches have surfaced, aiding in the development of flavorful, long-lasting fruit. Here, we discussed how specific transcription factors and hormones involved in fruit ripening can be targeted to generate high-quality fruit through traditional breeding and bioengineering. We highlight regulators that can be used to generate novel-colored fruit or biofortify fresh produce with health-promoting nutrients, such as vitamin C. Overall, we argue that addressing grower and industry needs must be balanced with consumer-based traits.
Collapse
|
27
|
Salonia F, Ciacciulli A, Pappalardo HD, Poles L, Pindo M, Larger S, Caruso P, Caruso M, Licciardello C. A dual sgRNA-directed CRISPR/Cas9 construct for editing the fruit-specific β-cyclase 2 gene in pigmented citrus fruits. FRONTIERS IN PLANT SCIENCE 2022; 13:975917. [PMID: 36582639 PMCID: PMC9792771 DOI: 10.3389/fpls.2022.975917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/13/2022] [Indexed: 06/17/2023]
Abstract
CRISPR/Cas9 genome editing is a modern biotechnological approach used to improve plant varieties, modifying only one or a few traits of a specific variety. However, this technology cannot be easily used to improve fruit quality traits in citrus, due to the lack of knowledge of key genes, long juvenile stage, and the difficulty regenerating whole plants of specific varieties. Here, we introduce a genome editing approach with the aim of producing citrus plantlets whose fruits contain both lycopene and anthocyanins. Our method employs a dual single guide RNA (sgRNA)-directed genome editing approach to knockout the fruit-specific β-cyclase 2 gene, responsible for the conversion of lycopene to beta-carotene. The gene is targeted by two sgRNAs simultaneously to create a large deletion, as well as to induce point mutations in both sgRNA targets. The EHA105 strain of Agrobacterium tumefaciens was used to transform five different anthocyanin-pigmented sweet oranges, belonging to the Tarocco and Sanguigno varietal groups, and 'Carrizo' citrange, a citrus rootstock as a model for citrus transformation. Among 58 plantlets sequenced in the target region, 86% of them were successfully edited. The most frequent mutations were deletions (from -1 to -74 nucleotides) and insertions (+1 nucleotide). Moreover, a novel event was identified in six plantlets, consisting of the inversion of the region between the two sgRNAs. For 20 plantlets in which a single mutation occurred, we excluded chimeric events. Plantlets did not show an altered phenotype in vegetative tissues. To the best of our knowledge, this work represents the first example of the use of a genome editing approach to potentially improve qualitative traits of citrus fruit.
Collapse
Affiliation(s)
- Fabrizio Salonia
- Council for Agricultural Research and Economics (CREA) - Research Centre for Olive, Fruit and Citrus Crops, Acireale, Italy
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
| | - Angelo Ciacciulli
- Council for Agricultural Research and Economics (CREA) - Research Centre for Olive, Fruit and Citrus Crops, Acireale, Italy
| | - Helena Domenica Pappalardo
- Council for Agricultural Research and Economics (CREA) - Research Centre for Olive, Fruit and Citrus Crops, Acireale, Italy
| | - Lara Poles
- Council for Agricultural Research and Economics (CREA) - Research Centre for Olive, Fruit and Citrus Crops, Acireale, Italy
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
| | - Massimo Pindo
- Research and Innovation Centre, Trento with S. Michele all’ Adige, Trento, Italy
| | - Simone Larger
- Research and Innovation Centre, Trento with S. Michele all’ Adige, Trento, Italy
| | - Paola Caruso
- Council for Agricultural Research and Economics (CREA) - Research Centre for Olive, Fruit and Citrus Crops, Acireale, Italy
| | - Marco Caruso
- Council for Agricultural Research and Economics (CREA) - Research Centre for Olive, Fruit and Citrus Crops, Acireale, Italy
| | - Concetta Licciardello
- Council for Agricultural Research and Economics (CREA) - Research Centre for Olive, Fruit and Citrus Crops, Acireale, Italy
| |
Collapse
|
28
|
Chen J, Liu F, Wu RA, Chen J, Wang W, Ye X, Liu D, Cheng H. An up-to-date review: differential biosynthesis mechanisms and enrichment methods for health-promoting anthocyanins of citrus fruits during processing and storage. Crit Rev Food Sci Nutr 2022; 64:3989-4015. [PMID: 36322523 DOI: 10.1080/10408398.2022.2137778] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Anthocyanins, naturally found in citrus, play key roles in improving the qualities of citrus fruits and products. Dietary consumption of fruit-derived anthocyanins is concerned increasingly owing to health-promoting properties. However, anthocyanins are vulnerable to many physical and chemical factors during processing and storage, affecting fruit qualities and consumer acceptance. Thus, the aim of this review is to focus on main advances in chemical structures, differential biosynthesis mechanisms, enrichment methods, and bioactivities of anthocyanins in pigmented and unpigmented citrus fruits. In this review, anthocyanin species and concentrations display tissue specificity in citrus, and the chemical structures and contents of main anthocyanins are summarized. For differential biosynthesis mechanisms, the reasons why most citrus fruits lose the ability of anthocyanin biosynthesis compared with pigmented fruits, and the molecular differences of biosynthesis mechanisms in pigmented citrus fruits are both discussed in detail. Furthermore, anthocyanins' enrichment methods (low-temperature stimulus, light irradiation, xenobiotics inductions, and ripeness influence) during processing and storage have been summarized, which achieve quality improvement by promoting structural gene expression, reducing anthocyanin-degrading enzyme activities, or altering DNA methylation status. Meantime, the health benefits of extract from pigmented citrus and their waste are mentioned, which provides a new approach for citrus waste recycling. HIGHLIGHTSChemical structures of individual anthocyanins in citrus are reviewed.Differential anthocyanin biosynthesis in citrus depends on mutations of Ruby genes.Anthocyanins are enriched in response to exogenous stimulus during storage.Health benefits of extract in blood oranges and their waste are summarized.
Collapse
Affiliation(s)
- Jin Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Feifei Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China
| | - Ricardo Antonio Wu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Jianle Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Ningbo Innovation Center, Zhejiang University, Ningbo, China
- Zhongyuan Institute, Zhejiang University, Zhengzhou, Ningbo, China
| | - Wenjun Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China
- Ningbo Innovation Center, Zhejiang University, Ningbo, China
- Zhongyuan Institute, Zhejiang University, Zhengzhou, Ningbo, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China
- Ningbo Innovation Center, Zhejiang University, Ningbo, China
- Zhongyuan Institute, Zhejiang University, Zhengzhou, Ningbo, China
| | - Huan Cheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China
- Ningbo Innovation Center, Zhejiang University, Ningbo, China
- Zhongyuan Institute, Zhejiang University, Zhengzhou, Ningbo, China
| |
Collapse
|
29
|
Huang D, Xu S, Qin Y, Li Y, Ming R, Huang R, Wang J, Tan Y. Comparative transcriptomic analysis identifies KcMYB1 as a R2R3-MYB anthocyanin activator in Kadsura coccinea. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111458. [PMID: 36084765 DOI: 10.1016/j.plantsci.2022.111458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Fruit color, as an important appearance attribute, is crucial for attracting consumers. However, the underlying mechanism regulating mature fruit color formation in Kadsura coccinea remains unclear. Here, a comprehensive metabolomics and transcriptomics analysis was performed to investigate the molecular mechanisms of anthocyanin accumulation between two K. coccinea cultivars with different mature fruit colors-'Dahong No. 1' (red) and 'Jinhu' (yellow). Targeted metabolomic analysis revealed high anthocyanin levels, most of which were cyanidin and delphinidin derivatives, in 'Dahong No. 1' mature fruit peel. The SNP analysis indicated that the two different cultivars had similar genetic background. Moreover, comparative transcriptomic analysis demonstrated that differentially expressed genes (DEGs) were related to flavonoid biosynthesis and metabolic process in the two K. coccinea cultivars. Gene expression profiling data showed that the structural and regulatory genes associated with anthocyanin biosynthesis were significantly upregulated in 'Dahong No. 1' mature fruit peel, which was verified by quantitative real-time polymerase chain reaction (qRT-PCR). Notably, the key anthocyanin activator KcMYB1 was identified, which was significantly upregulated in 'Dahong No. 1' compared with 'Jinhu'. We further confirmed that KcMYB1 actively regulated the accumulation of anthocyanin by ectopic expression in vivo. Furthermore, allelic constitution of KcMYB1 in K. coccinea were investigated. The present study can provide insights for understanding the regulatory mechanisms of anthocyanin differential accumulation in the mature fruits of K. coccinea.
Collapse
Affiliation(s)
- Ding Huang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Shiqiang Xu
- Guangdong Provincial Key Laboratory of Crops Genetics & Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yanhong Qin
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yingjie Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Ruhong Ming
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Rongshao Huang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Jihua Wang
- Guangdong Provincial Key Laboratory of Crops Genetics & Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yong Tan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China.
| |
Collapse
|
30
|
Effects of different cooking treatments on the sensory qualities and pigmented phytochemicals of carrots. Food Chem 2022; 405:135015. [DOI: 10.1016/j.foodchem.2022.135015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/12/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022]
|
31
|
Sharma S, Kumar A, Singh D, Kumari A, Kapoor P, Kaur S, Shreon B, Garg M. Integrated transcriptional and metabolomics signature pattern of pigmented wheat to insight the seed pigmentation and other associated features. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 189:59-70. [PMID: 36055054 DOI: 10.1016/j.plaphy.2022.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Anthocyanin biosynthesis in plants is complex, especially in a polyploid monocot wheat plant. Using whole-genome sequencing, transcriptomics, and LC-MS/MS, we investigated anthocyanin pigmentation patterns in (black, blue, and purple) colored wheat seeds. According to differential gene expression profiling, 2AS-MYC, 7DL-MYB, and WD40 regulatory genes control purple pericarp coloration, 4DL-MYC, 2AS-MYC, 7DL-MYB, WD40 control blue aleurone coloration, and 4DL-MYC, 7DL-MYB, WD40 controls black aleurone color. We hypothesized that at least one MYC and MYB isoform is sufficient to regulate the anthocyanin synthesis in pericarp or aleurone. Transcriptomics and metabolomics revealed that the purple pericarp trait is associated with acylated anthocyanins compared to blue aleurone. Based upon the reduced expressions of the genes belonging to the 4D, SSR molecular marker mapping, variant calling using genome sequencing, and IGV browser gene structure visualization, it was inferred that the advanced black and blue wheat lines were substitution lines (4E{4D}), with very small recombinations. Pericarp anthocyanin pigmentation is controlled by a mutation in chromosome 2AS of purple wheat, and environmental variations influence pigmented pericarp trait. The expression patterns of anthocyanin structural and other genes varied in different colored wheat, corroborating differences in agronomical metrics. Ovate seed shape trait in black and blue wheat dragged with 4E chromosome.
Collapse
Affiliation(s)
- Saloni Sharma
- National Agri-Food Biotechnology Institute, Mohali, Punjab, 140306, India
| | - Ashish Kumar
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Dalwinder Singh
- National Agri-Food Biotechnology Institute, Mohali, Punjab, 140306, India
| | - Anita Kumari
- National Agri-Food Biotechnology Institute, Mohali, Punjab, 140306, India
| | - Payal Kapoor
- National Agri-Food Biotechnology Institute, Mohali, Punjab, 140306, India
| | - Satveer Kaur
- National Agri-Food Biotechnology Institute, Mohali, Punjab, 140306, India; Department of Biotechnology, Panjab University, Chandigarh, Punjab, India
| | - Bhawna Shreon
- National Agri-Food Biotechnology Institute, Mohali, Punjab, 140306, India; Regional Centre of Biotechnology, Faridabad, Haryana, India
| | - Monika Garg
- National Agri-Food Biotechnology Institute, Mohali, Punjab, 140306, India.
| |
Collapse
|
32
|
Wang Y, Song Y, Wang D. Transcriptomic and Metabolomic Analyses Providing Insights into the Coloring Mechanism of Docynia delavayi. Foods 2022; 11:foods11182899. [PMID: 36141027 PMCID: PMC9498648 DOI: 10.3390/foods11182899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/23/2022] [Accepted: 09/15/2022] [Indexed: 11/22/2022] Open
Abstract
The metabolome and transcriptome profiles of three different variations of mature Docynia delavayi fruit were synthesized to reveal their fruit color formation mechanism. A total of 787 secondary metabolites containing 149 flavonoid metabolites, most of which were flavonoids and flavonols, were identified in the three variations using ultra performance liquid chromatography- tandem mass spectrometry (UPLC-MS/MS), and we found that the secondary metabolites cyanidin-3-O-galactoside and cyanidin-3-O-glucoside were the major coloring substances in D. delavayi. This was associated with the significant upregulation of the structural genes F3H and F3′H in the anthocyanin synthesis pathway and the control genes WRKY, MYB, bZIP, bHLH, and NAC in RP. F3′H expression may play a significant role in the selection of components for anthocyanin synthesis. Our results contribute to breeding and nutritional research in D. delavayi and provide insight into metabolite studies of the anthocyanin biosynthetic pathway.
Collapse
Affiliation(s)
- Yuchang Wang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Yuyang Song
- Department of Forestry, Agricultural College, Xinjiang Shihezi University, Shihezi 832003, China
- Correspondence: (Y.S.); (D.W.); Tel.: +86-135-7967-9010 (Y.S.); +86-138-8891-5161 (D.W.)
| | - Dawei Wang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China
- Correspondence: (Y.S.); (D.W.); Tel.: +86-135-7967-9010 (Y.S.); +86-138-8891-5161 (D.W.)
| |
Collapse
|
33
|
Bian Y, Chu L, Lin H, Qi Y, Fang Z, Xu D. PIFs- and COP1-HY5-mediated temperature signaling in higher plants. STRESS BIOLOGY 2022; 2:35. [PMID: 37676326 PMCID: PMC10441884 DOI: 10.1007/s44154-022-00059-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/16/2022] [Indexed: 09/08/2023]
Abstract
Plants have to cope with the surrounding changing environmental stimuli to optimize their physiological and developmental response throughout their entire life cycle. Light and temperature are two critical environmental cues that fluctuate greatly during day-night cycles and seasonal changes. These two external signals coordinately control the plant growth and development. Distinct spectrum of light signals are perceived by a group of wavelength-specific photoreceptors in plants. PIFs and COP1-HY5 are two predominant signaling hubs that control the expression of a large number of light-responsive genes and subsequent light-mediated development in plants. In parallel, plants also transmit low or warm temperature signals to these two regulatory modules that precisely modulate the responsiveness of low or warm temperatures. The core component of circadian clock ELF3 integrates signals from light and warm temperatures to regulate physiological and developmental processes in plants. In this review, we summarize and discuss recent advances and progresses on PIFs-, COP1-HY5- and ELF3-mediated light, low or warm temperature signaling, and highlight emerging insights regarding the interactions between light and low or warm temperature signal transduction pathways in the control of plant growth.
Collapse
Affiliation(s)
- Yeting Bian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Li Chu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huan Lin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yaoyao Qi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zheng Fang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dongqing Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
34
|
Wang WQ, Moss SMA, Zeng L, Espley RV, Wang T, Lin-Wang K, Fu BL, Schwinn KE, Allan AC, Yin XR. The red flesh of kiwifruit is differentially controlled by specific activation-repression systems. THE NEW PHYTOLOGIST 2022; 235:630-645. [PMID: 35348217 DOI: 10.1111/nph.18122] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Anthocyanins are visual cues for pollination and seed dispersal. Fruit containing anthocyanins also appeals to consumers due to its appearance and health benefits. In kiwifruit (Actinidia spp.) studies have identified at least two MYB activators of anthocyanin, but their functions in fruit and the mechanisms by which they act are not fully understood. Here, transcriptome and small RNA high-throughput sequencing were used to comprehensively identify contributors to anthocyanin accumulation in kiwifruit. Stable overexpression in vines showed that both 35S::MYB10 and MYB110 can upregulate anthocyanin biosynthesis in Actinidia chinensis fruit, and that MYB10 overexpression resulted in anthocyanin accumulation which was limited to the inner pericarp, suggesting that repressive mechanisms underlie anthocyanin biosynthesis in this species. Furthermore, motifs in the C-terminal region of MYB10/110 were shown to be responsible for the strength of activation of the anthocyanic response. Transient assays showed that both MYB10 and MYB110 were not directly cleaved by miRNAs, but that miR828 and its phased small RNA AcTAS4-D4(-) efficiently targeted MYB110. Other miRNAs were identified, which were differentially expressed between the inner and outer pericarp, and cleavage of SPL13, ARF16, SCL6 and F-box1, all of which are repressors of MYB10, was observed. We conclude that it is the differential expression and subsequent repression of MYB activators that is responsible for variation in anthocyanin accumulation in kiwifruit species.
Collapse
Affiliation(s)
- Wen-Qiu Wang
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Horticulture Department, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Sarah M A Moss
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Palmerston North, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Lihui Zeng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Richard V Espley
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
| | - Tianchi Wang
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
| | - Kui Lin-Wang
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
| | - Bei-Ling Fu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Horticulture Department, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Kathy E Schwinn
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Palmerston North, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Andrew C Allan
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Xue-Ren Yin
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Horticulture Department, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| |
Collapse
|
35
|
He J, Xu Y, Huang D, Fu J, Liu Z, Wang L, Zhang Y, Xu R, Li L, Deng X, Xu Q. TRIPTYCHON-LIKE regulates aspects of both fruit flavor and color in citrus. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3610-3624. [PMID: 35263759 DOI: 10.1093/jxb/erac069] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/18/2022] [Indexed: 05/24/2023]
Abstract
Deciphering the genetic basis of organoleptic traits is critical for improving the quality of fruits, which greatly shapes their appeal to consumers. Here, we characterize the citrus R3-MYB transcription factor TRIPTYCHON-LIKE (CitTRL), which is closely associated with the levels of citric acid, proanthocyanidins (PAs), and anthocyanins. Overexpression of CitTRL lowered acidity levels and PA contents in citrus calli as well as anthocyanin and PA contents in Arabidopsis leaves and seeds. CitTRL interacts with the two basic helix-loop-helix (bHLH) proteins CitbHLH1 and ANTHOCYANIN 1 (CitAN1) to regulate fruit quality. We show that CitTRL competes with the R2R3-MYB CitRuby1 for binding to CitbHLH1 or CitAN1, thereby repressing their activation of anthocyanin structural genes. CitTRL also competes with a second R2R3-MYB, CitPH4, for binding to CitAN1, thus altering the expression of the vacuolar proton-pump gene PH5 and Leucoanthocyanidin reductase, responsible for vacuolar acidification and proanthocyanidins biosynthesis, respectively. Moreover, CitPH4 activates CitTRL transcription, thus forming an activator-repressor loop to prevent the overaccumulation of citric acid and PAs. Overall, this study demonstrates that CitTRL acts as a repressor of the accumulation of citric acid, PAs, and anthocyanins by a cross-regulation mechanism. Our results provide an opportunity to simultaneously manipulate these key traits as a means to produce citrus fruits that are both visually and organoleptically appealing.
Collapse
Affiliation(s)
- Jiaxian He
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Yuantao Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Ding Huang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Jialing Fu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Ziang Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Lun Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Yin Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Rangwei Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Li Li
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY 14853, USA
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
36
|
Zhang M, Zhu Y, Yang H, Li X, Xu R, Zhu F, Cheng Y. CsNIP5;1 acts as a multifunctional regulator to confer water loss tolerance in citrus fruit. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 316:111150. [PMID: 35151435 DOI: 10.1016/j.plantsci.2021.111150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Plant aquaporins facilitate the transport of water across the inner membranes and play an important role in the response to water loss stress. A citrus NOD26-like intrinsic protein, CsNIP5;1, has been investigated to participate in the regulation of water permeability. In the present study, the expression profile indicated that CsNIP5;1 showed high transcription abundance in conducting tissues. Function analysis revealed that CsNIP5;1 reduced water loss of Arabidopsis rosette leaf, as well as promoted the seed germination under hyperosmotic stress. Besides, overexpression of CsNIP5;1 contributed to the alleviation of water loss in citrus fruit and citrus callus during storage. Further metabolomic profiling and RNA-seq analysis of transgenic citrus callus revealed that CsNIP5;1 may modulate the water loss by inducing the accumulation of osmotic adjustment substances and repressing the expression of other AQPs. Moreover, CsWRKY4 and CsWRKY28 were found to directly bind to the promoter and acted as opposite regulators of CsNIP5;1 during the postharvest period. These findings provide new insights into the regulatory mechanism of aquaporins in response to the water loss stress of citrus fruit during postharvest storage.
Collapse
Affiliation(s)
- Mingfei Zhang
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Yanfei Zhu
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Hongbin Yang
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Xin Li
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Rangwei Xu
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Feng Zhu
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Yunjiang Cheng
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
37
|
Zhou J, Meng J, Zhang S, Chi R, Wang C, Wang D, Li H. The UV-B-Induced Transcription Factor HY5 Regulated Anthocyanin Biosynthesis in Zanthoxylum bungeanum. Int J Mol Sci 2022; 23:2651. [PMID: 35269793 PMCID: PMC8910586 DOI: 10.3390/ijms23052651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/16/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
Pericarp color is an important economic characteristic of Zanthoxylum bungeanum. Anthocyanins are the main reason for the pericarp's red appearance in Z. bungeanum. In this study, through the combined analysis of the metabolome and transcriptome, HY5, whose expression is highly correlated to changes in the anthocyanin content, was screened and identified. Under natural ripening conditions, the Z. bungeanum fruit gradually changed in color from green to red, while bagging resulted in the fruit maintaining its green color. After unbagging, the fruit gradually turned red, and the ZbHY5 expression and anthocyanin content increased. In addition, the leaves changed from green to red after exposure to UV-B radiation, and the ZbHY5 expression and anthocyanin content increased. The transient overexpression of ZbHY5 deepened the redness of the Z. bungeanum leaves and promoted the expression of ZbHY5 and ZbMYB113 as well as anthocyanin accumulation. Bimolecular fluorescence complementation (BIFC) showed that there was an interaction between ZbHY5 and ZbMYB113. These results revealed that under UV-B irradiation, ZbHY5 might regulate the expression levels of the structural genes related to anthocyanin biosynthesis through combination with ZbMYB113, thereby affecting anthocyanin accumulation. This finding provides useful insights for further studies focusing on UV-B-induced anthocyanin accumulation in Z. bungeanum.
Collapse
Affiliation(s)
- Jing Zhou
- College of Landscape Architecture Sand Art, Northwest A&F University, Xianyang 712100, China; (J.Z.); (J.M.); (S.Z.); (R.C.)
| | - Jiaxin Meng
- College of Landscape Architecture Sand Art, Northwest A&F University, Xianyang 712100, China; (J.Z.); (J.M.); (S.Z.); (R.C.)
| | - Shuangyu Zhang
- College of Landscape Architecture Sand Art, Northwest A&F University, Xianyang 712100, China; (J.Z.); (J.M.); (S.Z.); (R.C.)
| | - Rufei Chi
- College of Landscape Architecture Sand Art, Northwest A&F University, Xianyang 712100, China; (J.Z.); (J.M.); (S.Z.); (R.C.)
| | - Cheng Wang
- College of Forestry, Northwest A&F University, Xianyang 712100, China;
| | - Dongmei Wang
- College of Forestry, Northwest A&F University, Xianyang 712100, China;
| | - Houhua Li
- College of Landscape Architecture Sand Art, Northwest A&F University, Xianyang 712100, China; (J.Z.); (J.M.); (S.Z.); (R.C.)
| |
Collapse
|
38
|
Xiao Y, Chu L, Zhang Y, Bian Y, Xiao J, Xu D. HY5: A Pivotal Regulator of Light-Dependent Development in Higher Plants. FRONTIERS IN PLANT SCIENCE 2022; 12:800989. [PMID: 35111179 PMCID: PMC8801436 DOI: 10.3389/fpls.2021.800989] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/17/2021] [Indexed: 05/10/2023]
Abstract
ELONGATED HYPOCOTYL5 (HY5), a bZIP-type transcription factor, acts as a master regulator that regulates various physiological and biological processes in plants such as photomorphogenesis, root growth, flavonoid biosynthesis and accumulation, nutrient acquisition, and response to abiotic stresses. HY5 is evolutionally conserved in function among various plant species. HY5 acts as a master regulator of light-mediated transcriptional regulatory hub that directly or indirectly controls the transcription of approximately one-third of genes at the whole genome level. The transcription, protein abundance, and activity of HY5 are tightly modulated by a variety of factors through distinct regulatory mechanisms. This review primarily summarizes recent advances on HY5-mediated molecular and physiological processes and regulatory mechanisms on HY5 in the model plant Arabidopsis as well as in crops.
Collapse
Affiliation(s)
| | | | | | | | | | - Dongqing Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
39
|
Identification, Characterization and Expression Analysis of Anthocyanin Biosynthesis-related bHLH Genes in Blueberry ( Vaccinium corymbosum L.). Int J Mol Sci 2021; 22:ijms222413274. [PMID: 34948071 PMCID: PMC8708680 DOI: 10.3390/ijms222413274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/01/2021] [Accepted: 12/07/2021] [Indexed: 12/21/2022] Open
Abstract
Basic helix-loop-helix proteins (bHLHs) play very important roles in the anthocyanin biosynthesis of many plant species. However, the reports on blueberry anthocyanin biosynthesis-related bHLHs were very limited. In this study, six anthocyanin biosynthesis-related bHLHs were identified from blueberry genome data through homologous protein sequence alignment. Among these blueberry bHLHs, VcAN1, VcbHLH42-1, VcbHLH42-2 and VcbHLH42-3 were clustered into one group, while VcbHLH1-1 and VcbHLH1-2 were clustered into the other group. All these bHLHs were of the bHLH-MYC_N domain, had DNA binding sites and reported conserved amino acids in the bHLH domain, indicating that they were all G-box binding proteins. Protein subcellular location prediction result revealed that all these bHLHs were nucleus-located. Gene structure analysis showed that VcAN1 gDNA contained eight introns, while all the others contained seven introns. Many light-, phytohormone-, stress- and plant growth and development-related cis-acting elements and transcription factor binding sites (TFBSs) were identified in their promoters, but the types and numbers of cis-elements and TFBSs varied greatly between the two bHLH groups. Quantitative real-time PCR results showed that VcAN1 expressed highly in old leaf, stem and blue fruit, and its expression increased as the blueberry fruit ripened. Its expression in purple podetium and old leaf was respectively significantly higher than in green podetium and young leaf, indicating that VcAN1 plays roles in anthocyanin biosynthesis regulation not only in fruit but also in podetium and leaf. VcbHLH1-1 expressed the highest in young leaf and stem, and the lowest in green fruit. The expression of VcbHLH1-1 also increased as the fruit ripened, and its expression in blue fruit was significantly higher than in green fruit. VcbHLH1-2 showed high expression in stem but low expression in fruit, especially in red fruit. Our study indicated that the anthocyanin biosynthesis regulatory functions of these bHLHs showed certain spatiotemporal specificity. Additionally, VcAN1 might be a key gene controlling the anthocyanin biosynthesis in blueberry, whose function is worth exploring further for its potential applications in plant high anthocyanin breeding.
Collapse
|
40
|
Conti G, Xoconostle-Cázares B, Marcelino-Pérez G, Hopp HE, Reyes CA. Citrus Genetic Transformation: An Overview of the Current Strategies and Insights on the New Emerging Technologies. FRONTIERS IN PLANT SCIENCE 2021; 12:768197. [PMID: 34917104 PMCID: PMC8670418 DOI: 10.3389/fpls.2021.768197] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/14/2021] [Indexed: 05/04/2023]
Abstract
Citrus are among the most prevailing fruit crops produced worldwide. The implementation of effective and reliable breeding programs is essential for coping with the increasing demands of satisfactory yield and quality of the fruit as well as to deal with the negative impact of fast-spreading diseases. Conventional methods are time-consuming and of difficult application because of inherent factors of citrus biology, such as their prolonged juvenile period and a complex reproductive stage, sometimes presenting infertility, self-incompatibility, parthenocarpy, or polyembryony. Moreover, certain desirable traits are absent from cultivated or wild citrus genotypes. All these features are challenging for the incorporation of the desirable traits. In this regard, genetic engineering technologies offer a series of alternative approaches that allow overcoming the difficulties of conventional breeding programs. This review gives a detailed overview of the currently used strategies for the development of genetically modified citrus. We describe different aspects regarding genotype varieties used, including elite cultivars or extensively used scions and rootstocks. Furthermore, we discuss technical aspects of citrus genetic transformation procedures via Agrobacterium, regular physical methods, and magnetofection. Finally, we describe the selection of explants considering young and mature tissues, protoplast isolation, etc. We also address current protocols and novel approaches for improving the in vitro regeneration process, which is an important bottleneck for citrus genetic transformation. This review also explores alternative emerging transformation strategies applied to citrus species such as transient and tissue localized transformation. New breeding technologies, including cisgenesis, intragenesis, and genome editing by clustered regularly interspaced short palindromic repeats (CRISPR), are also discussed. Other relevant aspects comprising new promoters and reporter genes, marker-free systems, and strategies for induction of early flowering, are also addressed. We provided a future perspective on the use of current and new technologies in citrus and its potential impact on regulatory processes.
Collapse
Affiliation(s)
- Gabriela Conti
- Instituto de Agrobiotecnología y Biología Molecular, UEDD INTA-CONICET, Hurlingham, Argentina
- Cátedra de Genética, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Beatriz Xoconostle-Cázares
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Gabriel Marcelino-Pérez
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Horacio Esteban Hopp
- Instituto de Agrobiotecnología y Biología Molecular, UEDD INTA-CONICET, Hurlingham, Argentina
- Laboratorio de Agrobiotecnología, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular (FBMC), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carina A. Reyes
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, Buenos Aires, Argentina
| |
Collapse
|
41
|
Yang N, Zhou Y, Wang Z, Zhang Z, Xi Z, Wang X. Emerging roles of brassinosteroids and light in anthocyanin biosynthesis and ripeness of climacteric and non-climacteric fruits. Crit Rev Food Sci Nutr 2021:1-13. [PMID: 34793267 DOI: 10.1080/10408398.2021.2004579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Anthocyanins are important pigments that contribute to fruit quality. The regulation of anthocyanin biosynthesis by several transcription factors via sophisticated regulatory networks has been studied in various plants. Brassinosteroids (BRs), a new class of plant hormone, are involved in regulating anthocyanin biosynthesis in fruits. Furthermore, light directly affects the synthesis and distribution of anthocyanins. Here, we summarize the recent progress toward understanding the impact of BR and light on anthocyanin biosynthesis in climacteric and non-climacteric fruits. We review the BR and light signaling pathways and highlight the important transcription factors that are associated with the synthesis of anthocyanins, such as BZR1 (brassinazole-resistant 1, BR signaling pathway), HY5 (elongated hypocotyl 5) and COP1 (constitutively photomorphogenic 1, light signal transduction pathway), which bind with the target genes involved in anthocyanin synthesis. In addition, we review the mechanism by which light signals interact with hormonal signals to regulate anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Ni Yang
- College of Enology, Northwest A&F University, Yangling, China
| | - Yali Zhou
- College of Enology, Northwest A&F University, Yangling, China.,College of Biological and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Zhaoxiang Wang
- College of Enology, Northwest A&F University, Yangling, China
| | - Zhenwen Zhang
- College of Enology, Northwest A&F University, Yangling, China.,Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China
| | - Zhumei Xi
- College of Enology, Northwest A&F University, Yangling, China.,Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China
| | - Xuefei Wang
- College of Enology, Northwest A&F University, Yangling, China.,Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China
| |
Collapse
|
42
|
Li L, Kong Z, Huan X, Liu Y, Liu Y, Wang Q, Liu J, Zhang P, Guo Y, Qin P. Transcriptomics Integrated With Widely Targeted Metabolomics Reveals the Mechanism Underlying Grain Color Formation in Wheat at the Grain-Filling Stage. FRONTIERS IN PLANT SCIENCE 2021; 12:757750. [PMID: 34721487 PMCID: PMC8551455 DOI: 10.3389/fpls.2021.757750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/20/2021] [Indexed: 05/26/2023]
Abstract
Colored wheat grains have a unique nutritional value. To elucidate the color formation mechanism in wheat seeds, comprehensive metabolomic and transcriptomic analyses were conducted on purple (Dianmai 20-1), blue (Dianmai 20-8), and white (Dianmai 16) wheat at the grain-filling stage. The results showed that the flavonoid biosynthesis pathway was closely related to grain color formation. Among the 603 metabolites identified in all varieties, there were 98 flavonoids. Forty-six flavonoids were detected in purple and blue wheat, and there were fewer flavonoids in white wheat than in colored wheat. Integrated transcriptomic and metabolomic analyses showed that gene expression modulated the flavonoid composition and content, resulting in different metabolite levels of pelargonidin, cyanidin, and delphinidin, thus affecting the color formation of wheat grains. The present study clarifies the mechanism by which pigmentation develops in wheat grains and provides an empirical reference for colored wheat breeding.
Collapse
Affiliation(s)
- Li Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Zhiyou Kong
- College of Natural Resources and Environment, Baoshan University, Baoshan, China
| | - Xiuju Huan
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Yeju Liu
- Graduate Office, Yunnan Agricultural University, Kunming, China
| | - Yongjiang Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Qianchao Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Junna Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Ping Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Yirui Guo
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Peng Qin
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
43
|
Abstract
Due to climate change, we are forced to face new abiotic stress challenges like cold and heat waves that currently result from global warming. Losses due to frost and low temperatures force us to better understand the physiological, hormonal, and molecular mechanisms of response to such stress to face losses, especially in tropical and subtropical crops like citrus fruit, which are well adapted to certain weather conditions. Many of the responses to cold stress that are found are also conserved in citrus. Hence, this review also intends to show the latest work on citrus. In addition to basic research, there is a great need to employ and cultivate new citrus rootstocks to better adapt to environmental conditions.
Collapse
|
44
|
He J, Halitschke R, Schuman MC, Baldwin IT. Light dominates the diurnal emissions of herbivore-induced volatiles in wild tobacco. BMC PLANT BIOLOGY 2021; 21:401. [PMID: 34461825 PMCID: PMC8404343 DOI: 10.1186/s12870-021-03179-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/09/2021] [Indexed: 05/23/2023]
Abstract
BACKGROUND Timing is everything when it comes to the fitness outcome of a plant's ecological interactions, and accurate timing is particularly relevant for interactions with herbivores or mutualists that are based on ephemeral emissions of volatile organic compounds. Previous studies of the wild tobacco N. attenuata have found associations between the diurnal timing of volatile emissions, and daytime predation of herbivores by their natural enemies. RESULTS Here, we investigated the role of light in regulating two biosynthetic groups of volatiles, terpenoids and green leaf volatiles (GLVs), which dominate the herbivore-induced bouquet of N. attenuata. Light deprivation strongly suppressed terpenoid emissions while enhancing GLV emissions, albeit with a time lag. Silencing the expression of photoreceptor genes did not alter terpenoid emission rhythms, but silencing expression of the phytochrome gene, NaPhyB1, disordered the emission of the GLV (Z)-3-hexenyl acetate. External abscisic acid (ABA) treatments increased stomatal resistance, but did not truncate the emission of terpenoid volatiles (recovered in the headspace). However, ABA treatment enhanced GLV emissions and leaf internal pools (recovered from tissue), and reduced internal linalool pools. In contrast to the pattern of diurnal terpenoid emissions and nocturnal GLV emissions, transcripts of herbivore-induced plant volatile (HIPV) biosynthetic genes peaked during the day. The promotor regions of these genes were populated with various cis-acting regulatory elements involved in light-, stress-, phytohormone- and circadian regulation. CONCLUSIONS This research provides insights into the complexity of the mechanisms involved in the regulation of HIPV bouquets, a mechanistic complexity which rivals the functional complexity of HIPVs, which includes repelling herbivores, calling for body guards, and attracting pollinators.
Collapse
Affiliation(s)
- Jun He
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Xiema Street, Beibei, Chongqing, 400712, People's Republic of China.
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany.
| | - Rayko Halitschke
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Meredith C Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
- Current address: Departments of Geography and Chemistry, University of Zurich, 8057, Zürich, Switzerland
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany.
| |
Collapse
|
45
|
Zhang J, Zhao J, Tan Q, Qiu X, Mei S. Comparative transcriptome analysis reveals key genes associated with pigmentation in radish (Raphanus sativus L.) skin and flesh. Sci Rep 2021; 11:11434. [PMID: 34075070 PMCID: PMC8169917 DOI: 10.1038/s41598-021-90633-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/12/2021] [Indexed: 02/04/2023] Open
Abstract
Radish (Raphanus sativus) is an important vegetable worldwide that exhibits different flesh and skin colors. The anthocyanins responsible for the red and purple coloring in radishes possess nutritional value and pharmaceutical potential. To explore the structural and regulatory networks related to anthocyanin biosynthesis and identify key genes, we performed comparative transcriptome analyses of the skin and flesh of six colored radish accessions. The transcript profiles showed that each accession had a species-specific transcript profile. For radish pigmentation accumulation, the expression levels of anthocyanin biosynthetic genes (RsTT4, RsC4H, RsTT7, RsCCOAMT, RsDFR, and RsLDOX) were significantly upregulated in the red- and purple-colored accessions, but were downregulated or absent in the white and black accessions. The correlation test, combined with metabolome (PCC > 0.95), revealed five structural genes (RsTT4, RsDFR, RsCCOAMT, RsF3H, and RsBG8L) and three transcription factors (RsTT8-1, RsTT8-2, and RsPAR1) to be significantly correlated with flavonoids in the skin of the taproot. Four structural genes (RsBG8L, RsDFR, RsCCOAMT, and RsLDOX) and nine transcription factors (RsTT8-1, RsTT8-2, RsMYB24L, RsbHLH57, RsPAR2L, RsbHLH113L, RsOGR3L, RsMYB24, and RsMYB34L) were found to be significantly correlated with metabolites in the flesh of the taproot. This study provides a foundation for future studies on the gene functions and genetic diversity of radish pigmentation and should aid in the cultivation of new valuable radish varieties.
Collapse
Affiliation(s)
- Jifang Zhang
- grid.464342.3Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, Changsha, China ,Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha, China
| | - Jian Zhao
- grid.410753.4Novogene Bioinformatics Institute, Beijing, China
| | - Qunyun Tan
- grid.464342.3Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, Changsha, China ,Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha, China
| | - Xiaojun Qiu
- grid.464342.3Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, Changsha, China ,Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha, China
| | - Shiyong Mei
- grid.464342.3Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, Changsha, China ,Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha, China
| |
Collapse
|
46
|
Recent Insights into Anthocyanin Pigmentation, Synthesis, Trafficking, and Regulatory Mechanisms in Rice ( Oryza sativa L.) Caryopsis. Biomolecules 2021; 11:biom11030394. [PMID: 33800105 PMCID: PMC8001509 DOI: 10.3390/biom11030394] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/06/2021] [Accepted: 03/01/2021] [Indexed: 01/11/2023] Open
Abstract
Anthocyanins are antioxidants used as natural colorants and are beneficial to human health. Anthocyanins contribute to reactive oxygen species detoxification and sustain plant growth and development under different environmental stresses. They are phenolic compounds that are broadly distributed in nature and are responsible for a wide range of attractive coloration in many plant organs. Anthocyanins are found in various parts of plants such as flowers, leaves, stems, shoots, and grains. Considering their nutritional and health attributes, anthocyanin-enriched rice or pigmented rice cultivars are a possible alternative to reduce malnutrition around the globe. Anthocyanin biosynthesis and storage in rice are complex processes in which several structural and regulatory genes are involved. In recent years, significant progress has been achieved in the molecular and genetic mechanism of anthocyanins, and their synthesis is of great interest to researchers and the scientific community. However, limited studies have reported anthocyanin synthesis, transportation, and environmental conditions that can hinder anthocyanin production in rice. Rice is a staple food around the globe, and further research on anthocyanin in rice warrants more attention. In this review, metabolic and pre-biotic activities, the underlying transportation, and storage mechanisms of anthocyanins in rice are discussed in detail. This review provides potential information for the food industry and clues for rice breeding and genetic engineering of rice.
Collapse
|
47
|
Xia Y, Chen W, Xiang W, Wang D, Xue B, Liu X, Xing L, Wu D, Wang S, Guo Q, Liang G. Integrated metabolic profiling and transcriptome analysis of pigment accumulation in Lonicera japonica flower petals during colour-transition. BMC PLANT BIOLOGY 2021; 21:98. [PMID: 33596836 PMCID: PMC7890969 DOI: 10.1186/s12870-021-02877-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/04/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND Plants have remarkable diversity in petal colour through the biosynthesis and accumulation of various pigments. To better understand the mechanisms regulating petal pigmentation in Lonicera japonica, we used multiple approaches to investigate the changes in carotenoids, anthocyanins, endogenous hormones and gene expression dynamics during petal colour transitions, i.e., green bud petals (GB_Pe), white flower petals (WF_Pe) and yellow flower petals (YF_Pe). RESULTS Metabolome analysis showed that YF_Pe contained a much higher content of carotenoids than GB_Pe and WF_Pe, with α-carotene, zeaxanthin, violaxanthin and γ-carotene identified as the major carotenoid compounds in YF_Pe. Comparative transcriptome analysis revealed that the key differentially expressed genes (DEGs) involved in carotenoid biosynthesis, such as phytoene synthase, phytoene desaturase and ζ-carotene desaturase, were significantly upregulated in YF_Pe. The results indicated that upregulated carotenoid concentrations and carotenoid biosynthesis-related genes predominantly promote colour transition. Meanwhile, two anthocyanins (pelargonidin and cyanidin) were significantly increased in YF_Pe, and the expression level of an anthocyanidin synthase gene was significantly upregulated, suggesting that anthocyanins may contribute to vivid yellow colour in YF_Pe. Furthermore, analyses of changes in indoleacetic acid, zeatin riboside, gibberellic acid, brassinosteroid (BR), methyl jasmonate and abscisic acid (ABA) levels indicated that colour transitions are regulated by endogenous hormones. The DEGs involved in the auxin, cytokinin, gibberellin, BR, jasmonic acid and ABA signalling pathways were enriched and associated with petal colour transitions. CONCLUSION Our results provide global insight into the pigment accumulation and the regulatory mechanisms underlying petal colour transitions during the flower development process in L. japonica.
Collapse
Affiliation(s)
- Yan Xia
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education; College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China
| | - Weiwei Chen
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education; College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Weibo Xiang
- Rare Plant Research Institute of the Yangtze River (Yichang); Institute of Science and Technology, China Three Gorges Corporation, Beijing, 100083, China
| | - Dan Wang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education; College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China
| | - Baogui Xue
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education; College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China
| | - Xinya Liu
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education; College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China
| | - Lehua Xing
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education; College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China
| | - Di Wu
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education; College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China
| | - Shuming Wang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education; College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China
| | - Qigao Guo
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education; College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China.
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China.
| | - Guolu Liang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education; College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China.
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China.
| |
Collapse
|
48
|
Li S, Zuo D, Cheng H, Ali M, Wu C, Ashraf J, Zhang Y, Feng X, Lin Z, Wang Q, Lv L, Song G. Glutathione S-transferases GhGSTF1 and GhGSTF2 involved in the anthocyanin accumulation in Gossypium hirsutum L. Int J Biol Macromol 2020; 165:2565-2575. [PMID: 33736275 DOI: 10.1016/j.ijbiomac.2020.10.101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/10/2020] [Accepted: 10/14/2020] [Indexed: 12/27/2022]
Abstract
The glutathione S-transferases (GSTs) are important enzymes of secondary metabolism in plants. In this study, two putative GSTs, GhGSTF1 and GhGSTF2, were identified as anthocyanin-related GSTs by the transcriptome data of the leaves of Gossypium hirsutum L. TM-1 and T586. The quantitative real-time PCR showed that GhGSTF1 and GhGSTF2 were highly expressed in red leaves and stems of Gossypium hirsutum L. T586. Orthologous genes of GhGSTF2 in two Gossypium barbadense L. 3-79 and Xinhai21 contain bases deletion in N-terminal (GbGSTF2a) and C-terminal (GbGSTF2b) respectively. Among which, GhGSTF1 and GhGSTF2 can restore pigmentation in hypocotyls of Arabidopsis thaliana mutant tt19-7 while GbGSTF2a and GbGSTF2b cannot. Furthermore, in vitro assays showed the recombinant GhGSTF1 and GhGSTF2 had Glutathione S-transferase activities. Fluorescence quenching assays showed that Cya could obviously quench the fluorescence of GhGSTF1, GhGSTF2, GbGSTF2a and GbGSTF2b to lower levels as compared to C3G. Moreover, the transient dual-luciferase assays showed that the promoters of GhGSTF1 and GhGSTF2 could be activated by GhPAP1D at different levels. GUS staining assays showed that their promoters have different activities to light. This study indicated that GhGSTF1 and GhGSTF2 play important roles in anthocyanin accumulation and the regulatory mechanism of anthocyanin accumulation in allotetraploid Gossypium are complicated.
Collapse
Affiliation(s)
- Shuyan Li
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang 455000, Henan, China; Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang 455000, Henan, China; Huazhong Agricultural University, Wuhan 430070, Hubei, China; Anyang Institute of Technology, Anyang 455000, Henan, China
| | - Dongyun Zuo
- Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang 455000, Henan, China
| | - Hailiang Cheng
- Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang 455000, Henan, China
| | - Mushtaque Ali
- Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang 455000, Henan, China
| | - Chaofeng Wu
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang 455000, Henan, China; Anyang Institute of Technology, Anyang 455000, Henan, China
| | - Javaria Ashraf
- Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang 455000, Henan, China
| | - Youping Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang 455000, Henan, China
| | - Xiaoxu Feng
- Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang 455000, Henan, China
| | - Zhongxu Lin
- Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Qiaolian Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang 455000, Henan, China
| | - Limin Lv
- Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang 455000, Henan, China
| | - Guoli Song
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang 455000, Henan, China; Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang 455000, Henan, China.
| |
Collapse
|
49
|
Target-Genes Reveal Species and Genotypic Specificity of Anthocyanin Pigmentation in Citrus and Related Genera. Genes (Basel) 2020; 11:genes11070807. [PMID: 32708660 PMCID: PMC7397085 DOI: 10.3390/genes11070807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 11/23/2022] Open
Abstract
Background: Anthocyanin pigmentation characterizes a number of tissues of Citrus and its relatives. The gain and loss of pigmentation is intriguing and is inherited variously among species. Methods: Citrus germplasm was used to investigate the anthocyanin pigmentation of tissues never before considered, including stamen, style and stigma, and of young leaves, petals, rind and flesh of 28 genotypes belonging to 14 species. Citrus genotypes encompassed citron, lemon, sweet orange, lime, and Citrus relatives included Microcitrus, Murraya, and Severinia. A relative qRT-PCR analysis was carried out on the structural and regulatory genes: phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3′-hydroxylase (F3H), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS), uridine diphosphate glucose flavonoid glucosyl-transferase (UFGT), glutathione S-transferase (GST), Ruby and Noemi. Image analysis and a genomic approach were employed to evaluate how the red pigmentation is inherited among tissues and species. Results: Pigmentation of young leaves and petals is specific to citron and its hybrids. Ruby controls the pigmentation of petals, but not of leaves. The red color of the rind and flesh is a trait that particularly characterizes a diversity of sweet oranges, citron hybrids and Citrus relatives. Color expression depends on external factors and also on developmental stage. The coloration of stamen and style is citron-specific, while a red stigma is exclusive to Moro orange and its hybrids. Conclusion: It is hypothesized that there is a relationship among Citrus species and genes controlling anthocyanin pigmentation.
Collapse
|
50
|
Li Y, Xu P, Chen G, Wu J, Liu Z, Lian H. FvbHLH9 Functions as a Positive Regulator of Anthocyanin Biosynthesis by Forming a HY5-bHLH9 Transcription Complex in Strawberry Fruits. PLANT & CELL PHYSIOLOGY 2020; 61:826-837. [PMID: 32016380 DOI: 10.1093/pcp/pcaa010] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/24/2020] [Indexed: 05/18/2023]
Abstract
Anthocyanin accumulation is transcriptionally regulated by the MYB-bHLH-WD40 complex. Light is indispensable for anthocyanin accumulation, and light-inducible MYB and HY5 were considered to promote anthocyanin accumulation in many fruits. Whether and how light-inducible bHLH transcription factor and HY5 regulate anthocyanin synthesis in strawberry is unknown. In this study, we identified a bHLH transcription factor, FvbHLH9, which was induced by light as well as FvHY5, and found that, similar to FvHY5, the transient overexpression and interference FvbHLH9 in strawberry fruits can promote and decrease anthocyanin accumulation, respectively, indicating FvbHLH9 functions as a positive regulator of anthocyanin biosynthesis. Furthermore, we confirmed that both FvHY5 and FvbHLH9 specifically bind to the promoter region of some key enzyme genes, including FvDFR, and the expression of FvDFR was activated through the heterodimer formation between FvHY5 and FvbHLH9. Finally, we confirmed that FvbHLH9-promoted anthocyanin accumulation is dependent on HY5-bHLH heterodimerisation in Arabidopsis. Our findings provide insights into a mechanism involving the synergistic regulation of light-dependent coloration and anthocyanin biosynthesis via a HY5-bHLH heterodimer formed by the interaction of FvHY5 and FvbHLH9 in strawberry fruits.
Collapse
Affiliation(s)
- Yang Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pengbo Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guanqun Chen
- School of Design, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jun Wu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Hongli Lian
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|