1
|
Medeiros M, de Lima ALA, Silva JRI, de Jesus ALN, Wright CL, de Souza ES, Santos MG. Seasonal Shifts in Tree Water Use and Non-Structural Carbohydrate Storage in a Tropical Dry Forest. PLANT, CELL & ENVIRONMENT 2025; 48:4518-4532. [PMID: 40025860 DOI: 10.1111/pce.15449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/04/2025]
Abstract
Predictions of increased drought frequency and intensity have the potential to threaten to forest globally. The key to trees response to drought is an understanding of tree water use and carbohydrate storage. Our objective was to evaluate sap velocity and dynamics of non-structural carbohydrates (NSC) in native trees of a dry tropical forest, during rainy and drought periods. We evaluated six key species of the Caatinga: three deciduous species with low wood density (WD), two deciduous species with high WD and one evergreen species during the rainy and dry periods. We measured sap velocity, xylem water potential, stomatal conductance, phenology and NSC. We found that the evergreen specie had higher sap velocity and frequent NSC production. While the low deciduous WD species showed low sap velocity, store water and NSC mainly in the stem and roots, and have leaf sprouting and flowering at the end of the dry period. The deciduous high WD also showed low sap velocity, however, with low stored NSC. These results suggest that under longer dry seasons and an irregular rainy seasons, species with low WD that use part of the stored NSC to resprout still during dry season may be the most affected.
Collapse
Affiliation(s)
- Maria Medeiros
- Department of Botany, Bioscience Center, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - André Luiz Alves de Lima
- Serra Talhada Academic Unit, Federal Rural University of Pernambuco, Serra Talhada, Pernambuco, Brazil
| | | | | | - Cynthia L Wright
- Southern Research Station, USDA Forest Service, Knoxville, Tennessee, USA
| | - Eduardo Soares de Souza
- Serra Talhada Academic Unit, Federal Rural University of Pernambuco, Serra Talhada, Pernambuco, Brazil
| | - Mauro Guida Santos
- Department of Botany, Bioscience Center, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
2
|
Yue C, Wang H, Meinzer FC, Dai X, Meng S, Shao H, Kou L, Gao D, Chen F, Fu X. Resource Segmentation: A New Dimension of the Segmentation Hypothesis in Drought Adaptive Strategies and Its Links to Tree Growth Performance. PLANT, CELL & ENVIRONMENT 2025; 48:3875-3889. [PMID: 39831751 DOI: 10.1111/pce.15396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/19/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
The segmentation hypothesis, a framework for understanding plant drought adaptive strategy, has long been based on hydraulic resistance and vulnerability. Storage of water and carbohydrate resources is another critical function and shapes plant drought adaption and fitness together with hydraulic efficiency and vulnerability. However, patterns and implications of the interdependency of stored water and carbohydrate resources in the context of the segmentation hypothesis are poorly understood. We measured resource pools (relative water content [RWC] soluble sugar [SS] and starch [S]) and anatomical features of leaves and supporting twigs for 36 trees in a subtropical population during the dry season when the Budyko's aridity index was 0.362. For each tree, we rank-transformed the RWC (RWCrank), SS (SSrank), and S (Srank) and characterised the resource segmentation within organs using Ln(RWCrank/SSrank) and Ln(RWCrank/Srank). We also assessed the resource segmentation between organs using the difference in resource pools between leaves and twigs (RWCleaf-twig, SSleaf-twig, and Sleaf-twig). Resource segmentation was much more effective than the organ-level resource pool alone in predicting intraspecific variation of tree growth rates. Fast-growing individuals were mainly characterised by lower leaf Ln(RWCrank/SSrank), higher twig Ln(RWCrank/SSrank), and lower SSleaf-twig. The resource segmentation strategy of fast-growing individuals was associated with anatomical attributes that facilitate phloem SS loading and unloading and thus water supply upstream. Our results highlight that resource segmentation is an important dimension of plant drought adaptive strategies and enables better prediction of tree growth vigour than resource pool attributes individually.
Collapse
Affiliation(s)
- Chen Yue
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Huimin Wang
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Frederick C Meinzer
- USDA Forest Service, Pacific Northwest Research Station, Corvallis, Oregon, USA
| | - Xiaoqin Dai
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Shengwang Meng
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Hui Shao
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Liang Kou
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Decai Gao
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Fusheng Chen
- Jiangxi Provincial Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Xiaoli Fu
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Jiangxi Provincial Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
3
|
Sullivan MJP, Phillips OL, Galbraith D, Almeida E, de Oliveira EA, Almeida J, Dávila EÁ, Alves LF, Andrade A, Aragão L, Araujo-Murakami A, Arets E, Arroyo L, Cruz OAM, Baccaro F, Baker TR, Banki O, Baraloto C, Barlow J, Barroso J, Berenguer E, Blanc L, Blundo C, Bonal D, Bongers F, Bordin KM, Brienen RJW, Broggio IS, Burban B, Cabral G, Camargo JL, Cardoso D, Carniello MA, Castro W, de Lima HC, Cavalheiro L, Ribeiro SC, Ramos SCP, Moscoso VC, Chave J, Coelho F, Comiskey JA, Valverde FC, Costa F, Coutinho IAC, da Costa ACL, de Medeiros MB, Del Aguila Pasquel J, Derroire G, Dexter KG, Disney M, do Espírito Santo MM, Domingues TF, Dourdain A, Duque A, Rangel CD, Elias F, Esquivel-Muelbert A, Farfan-Rios W, Fauset S, Feldpausch T, Fernandes GW, Ferreira J, Nunes YRF, Figueiredo JCG, Cabreara KG, Gonzalez R, Hernández L, Herrera R, Honorio Coronado EN, Huasco WH, Iguatemy M, Joly CA, Kalamandeen M, Killeen T, Klipel J, Klitgaard B, Laurance SG, Laurance WF, Levesley A, Lewis SL, Lima Dan M, Lopez-Gonzalez G, Magnusson W, Malhi Y, Malizia L, Malizia A, Manzatto AG, Peña JLM, Marimon BS, Marimon Junior BH, Martínez-Villa JA, Reis SM, Metzker T, Milliken W, Monteagudo-Mendoza A, Moonlight P, Morandi PS, Moser P, Müller SC, et alSullivan MJP, Phillips OL, Galbraith D, Almeida E, de Oliveira EA, Almeida J, Dávila EÁ, Alves LF, Andrade A, Aragão L, Araujo-Murakami A, Arets E, Arroyo L, Cruz OAM, Baccaro F, Baker TR, Banki O, Baraloto C, Barlow J, Barroso J, Berenguer E, Blanc L, Blundo C, Bonal D, Bongers F, Bordin KM, Brienen RJW, Broggio IS, Burban B, Cabral G, Camargo JL, Cardoso D, Carniello MA, Castro W, de Lima HC, Cavalheiro L, Ribeiro SC, Ramos SCP, Moscoso VC, Chave J, Coelho F, Comiskey JA, Valverde FC, Costa F, Coutinho IAC, da Costa ACL, de Medeiros MB, Del Aguila Pasquel J, Derroire G, Dexter KG, Disney M, do Espírito Santo MM, Domingues TF, Dourdain A, Duque A, Rangel CD, Elias F, Esquivel-Muelbert A, Farfan-Rios W, Fauset S, Feldpausch T, Fernandes GW, Ferreira J, Nunes YRF, Figueiredo JCG, Cabreara KG, Gonzalez R, Hernández L, Herrera R, Honorio Coronado EN, Huasco WH, Iguatemy M, Joly CA, Kalamandeen M, Killeen T, Klipel J, Klitgaard B, Laurance SG, Laurance WF, Levesley A, Lewis SL, Lima Dan M, Lopez-Gonzalez G, Magnusson W, Malhi Y, Malizia L, Malizia A, Manzatto AG, Peña JLM, Marimon BS, Marimon Junior BH, Martínez-Villa JA, Reis SM, Metzker T, Milliken W, Monteagudo-Mendoza A, Moonlight P, Morandi PS, Moser P, Müller SC, Nascimento M, Negreiros D, Lima AN, Vargas PN, Oliveira WL, Palacios W, Pallqui Camacho NC, Gutierrez AP, Pardo Molina G, Pedra de Abreu KM, Peña-Claros M, Pena Rodrigues PJF, Pennington RT, Pickavance GC, Pipoly J, Pitman NCA, Playfair M, Pontes-Lopes A, Poorter L, Prestes NCCDS, Ramírez-Angulo H, Réjou-Méchain M, Reynel Rodriguez C, Rivas-Torres G, Rodrigues PMS, de Jesus Rodrigues D, de Sousa TR, Rodrigues Pinto JR, Rodriguez M GM, Roucoux K, Ruokolainen K, Ryan CM, Revilla NS, Salomão R, Santos RM, Sarkinen T, Scabin A, Bergamin RS, Schietti J, de Meira Junior MS, Serrano J, Silman M, Silva RC, Silva CVJ, Silva JO, Silveira M, Simon MF, Soto-Shareva YC, Souza P, Souza R, Sposito T, Talbot J, Ter Steege H, Terborgh J, Thomas R, Toledo M, Torres-Lezama A, Trujillo W, van der Hout P, Veloso MDDM, Vieira SA, Vilanova E, Villalobos Cayo JM, Villela DM, Viscarra LJ, Vos VA, Wortel V, Ishida FY, Zuidema PA, Zwerts JA. Variation in wood density across South American tropical forests. Nat Commun 2025; 16:2351. [PMID: 40064856 PMCID: PMC11893774 DOI: 10.1038/s41467-025-56175-4] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/10/2025] [Indexed: 03/14/2025] Open
Abstract
Wood density is a critical control on tree biomass, so poor understanding of its spatial variation can lead to large and systematic errors in forest biomass estimates and carbon maps. The need to understand how and why wood density varies is especially critical in tropical America where forests have exceptional species diversity and spatial turnover in composition. As tree identity and forest composition are challenging to estimate remotely, ground surveys are essential to know the wood density of trees, whether measured directly or inferred from their identity. Here, we assemble an extensive dataset of variation in wood density across the most forested and tree-diverse continent, examine how it relates to spatial and environmental variables, and use these relationships to predict spatial variation in wood density over tropical and sub-tropical South America. Our analysis refines previously identified east-west Amazon gradients in wood density, improves them by revealing fine-scale variation, and extends predictions into Andean, dry, and Atlantic forests. The results halve biomass prediction errors compared to a naïve scenario with no knowledge of spatial variation in wood density. Our findings will help improve remote sensing-based estimates of aboveground biomass carbon stocks across tropical South America.
Collapse
Affiliation(s)
- Martin J P Sullivan
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK.
- School of Geography, University of Leeds, Leeds, UK.
| | | | | | - Everton Almeida
- Instituto de Biodiversidade e Floresta, Universidade Federal do Oeste do Pará, Santarém, Brazil
| | - Edmar Almeida de Oliveira
- Faculdade de Ciências Agrárias, Biológicas e Sociais Aplicadas, Universidade do Estado de Mato Grosso, Nova Xavantina-MT, Brazil
| | - Jarcilene Almeida
- Departamento de Botânica-CCB, Universidade Federal de Pernambuco, Pernambuco, Brazil
| | - Esteban Álvarez Dávila
- Escuela de Ciencias Agrícolas, Pecuarias y del Medio Ambiente, National Open University and Distance, Bogotá, Colombia
| | - Luciana F Alves
- Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, USA
| | - Ana Andrade
- Projeto Dinâmica Biológica de Fragmentos Florestais, Instituto Nacional de Pesquisas da Amazônia, São José dos Campos, Brazil
| | - Luiz Aragão
- Divisão de Observação da Terra e Geoinformática (DIOTG), Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, Brazil
| | - Alejandro Araujo-Murakami
- Museo de Historia Natural Noel Kempff Mercado, Universidad Autónoma Gabriel René Moreno, Santa Cruz, Bolivia
| | - Eric Arets
- Vegetation, Forest and Landscape Ecology, Wageningen Environmental Research, Wageningen, The Netherlands
| | - Luzmila Arroyo
- Dirección de la Carrera de Biología, Universidad Autónoma Gabriel René Moreno, Santa Cruz, Bolivia
| | | | | | | | - Olaf Banki
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Christopher Baraloto
- International Center for Tropical Botany, Department of Biological Sciences, Florida International University, Miami, FL, USA
| | - Jos Barlow
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Jorcely Barroso
- Centro Multidisciplinar, Universidade Federal do Acre, Rio Branco, AC, Brazil
| | - Erika Berenguer
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Lilian Blanc
- Unit Research Forests & Societies, CIRAD, Montpellier, France
- Unit Research Forests & Societies, Univ Montpellier, Montpellier, France
| | - Cecilia Blundo
- Instituto de Ecología Regional, CONICET, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Damien Bonal
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, Nancy, France
| | - Frans Bongers
- Forest Ecology and Forest Management Group, Wageningen University, Wageningen, The Netherlands
| | - Kauane Maiara Bordin
- Ecology Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Igor S Broggio
- Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Brazil
- Tropical Ecosystems and Environmental Sciences lab (TREES), Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, Brazil
| | - Benoit Burban
- Ecologie des Forêts de Guyane (ECOFOG), INRA, Kourou, French Guiana
| | - George Cabral
- Departamento de Botânica-CCB, Universidade Federal de Pernambuco, Pernambuco, Brazil
| | - José Luís Camargo
- Projeto Dinâmica Biológica de Fragmentos Florestais, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Domingos Cardoso
- Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Biologia, Universidade Federal da Bahia, Salvador, Brazil
| | | | - Wendeson Castro
- Laboratório de Botânica e Ecologia Vegetal, Universidade Federal do Acre, Rio Branco, AC, Brazil
| | | | - Larissa Cavalheiro
- Núcleo de Estudos da Biodiversidade da Amazônia Mato-grossense, Universidade Federal de Mato Grosso, Sinop, MT, Brazil
- Instituto de Ciências Naturais, Humanas e Sociais, Universidade Federal de Mato Grosso, Sinop, MT, Brazil
| | - Sabina Cerruto Ribeiro
- Centro de Ciências Biológicas e da Natureza, Universidade Federal do Acre, Rio Branco, AC, Brazil
| | | | - Victor Chama Moscoso
- Jardín Botanico de Misssouri - Perú, Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
| | - Jerôme Chave
- Laboratoire Evolution et Diversite Biologique, Université Toulouse III - Paul Sabatier, Toulouse, France
| | - Fernanda Coelho
- School of Geography, University of Leeds, Leeds, UK
- BeZero Carbon, London, UK
| | - James A Comiskey
- Inventory & Monitoring Program, National Park Service, Fredericksburg, VA, USA
- Smithsonian Institution, Washington, DC, USA
| | | | - Flávia Costa
- Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Brazil
| | - Italo Antônio Cotta Coutinho
- Universidade Federal do Ceará, Pós-Graduação em Sistemática, Uso e Conservação da Biodiversidade, Fortaleza, Brazil
| | | | | | - Jhon Del Aguila Pasquel
- Instituto de Investigaciones de la Amazonia Peruana, Iquitos, Peru
- Universidad Nacional de la Amazonia Peruana (UNAP), Iquitos, Peru
| | - Géraldine Derroire
- UMR EcoFoG (AgroParistech, CNRS, INRAE, Université des Antilles, Université de la Guyane), CIRAD, Kourou, French Guiana
| | - Kyle G Dexter
- School of GeoSciences, The University of Edinburgh, Edinburgh, UK
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Turin, Italy
- Tropical Diversity Section, Royal Botanic Garden Edinburgh, Edinburgh, United Kingdom
| | - Mat Disney
- Department of Geography, University College London, London, UK
| | | | | | - Aurélie Dourdain
- UMR EcoFoG (AgroParistech, CNRS, INRAE, Université des Antilles, Université de la Guyane), CIRAD, Kourou, French Guiana
| | - Alvaro Duque
- Universidad Nacional de Colombia, Medellin, Colombia
| | | | - Fernando Elias
- Institute of Biological Sciences, Universidade Federal do Pará, Belém, PA, Brazil
- Rede Amazônia Sustentável, Santarém, Brazil
- Universidade Federal Rural da Amazônia, Capitão Poço, Pará, Brazil
| | | | - William Farfan-Rios
- Department of Biology and Sabin Center for Environment and Sustainability, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Sophie Fauset
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, UK
| | - Ted Feldpausch
- School of Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - G Wilson Fernandes
- Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Joice Ferreira
- Embrapa Amazônia Oriental, Brazilian Agricultural Research Corporation (EMBRAPA), Brasília, Brazil
| | | | | | - Karina Garcia Cabreara
- Center for Energy, Environment, and Sustainability, Wake Forest University, Winston-Salem, USA
| | - Roy Gonzalez
- Institutio Alexander von Humboldt, Soledad, Colombia
| | - Lionel Hernández
- Universidad Nacional Experimental de Guayana, Bolívar, Venezuela
| | - Rafael Herrera
- Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | | | - Walter Huaraca Huasco
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Mariana Iguatemy
- International Institute for Sustainability, Rio de Janeiro, Brazil
| | - Carlos A Joly
- Department of Plant Biology, University of Campinas, Campinas, Brazil
| | | | | | - Joice Klipel
- Departamento de Ecologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bente Klitgaard
- Department of Accelerated Taxonomy, Royal Botanic Gardens Kew, Richmond, London, UK
| | - Susan G Laurance
- College of Science and Engineering, James Cook University, Cairns, Australia
- Centre for Tropical Environmental and Sustainability Science, James Cook University, Cairns, Australia
| | - William F Laurance
- College of Science and Engineering, James Cook University, Cairns, Australia
- Centre for Tropical Environmental and Sustainability Science, James Cook University, Cairns, Australia
| | | | - Simon L Lewis
- School of Geography, University of Leeds, Leeds, UK
- Department of Geography, University College London, London, UK
| | - Maurício Lima Dan
- Centro de Pesquisa, Desenvolvimento e Inovação Sul, Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural, Incaper, Cachoeiro de Itapemirim, ES, Brazil
| | | | - William Magnusson
- Coordenação da Biodiversidade, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Brazil
| | - Yadvinder Malhi
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Lucio Malizia
- Facultad de Ciencias Agrarias, Universidad Nacional de Jujuy, San Salvador de Jujuy, Argentina
| | - Augustina Malizia
- Instituto de Ecología Regional, CONICET, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Angelo Gilberto Manzatto
- Laboratório de Biogeoquímica Ambiental Wolfgang C. Pfeiffer, Universidade Federal de Rondônia, Porto Velho, RO, Brazil
- Departamento de Biologia, Universidade Federal de Rondônia, Proto Velho, Brazil
| | | | - Beatriz S Marimon
- Programa de Pós-graduação em Ecologia e Conservação, Universidade do Estado de Mato Grosso, Nova Xavantina, MT, Brazil
| | - Ben Hur Marimon Junior
- Programa de Pós-graduação em Ecologia e Conservação, Universidade do Estado de Mato Grosso, Nova Xavantina, MT, Brazil
| | | | - Simone Matias Reis
- Centro de Ciências Biológicas e da Natureza, Universidade Federal do Acre, Rio Branco, AC, Brazil
- Programa de Pós-graduação em Ecologia e Conservação, Universidade do Estado de Mato Grosso, Nova Xavantina, MT, Brazil
| | - Thiago Metzker
- Department of Natural Sciences, IBAM - Instituto Bem Ambiental / Grupo Myr, Belo Horizonte, Brazil
| | - William Milliken
- Enhanced Partnerships Department, Royal Botanic Gardens Kew, Richmond, London, UK
| | | | - Peter Moonlight
- Botany, School of Natural Science, Trinity College Dublin, Dublin, Ireland
- Royal Botanic Gardens Edinburgh, Edinburgh, UK
| | - Paulo S Morandi
- Faculdade de Ciências Agrárias, Biológicas e Sociais Aplicadas, Universidade do Estado de Mato Grosso, Nova Xavantina-MT, Brazil
| | - Pamela Moser
- Department of Ecology, University of Brasília, Brasília, Brazil
| | - Sandra C Müller
- Departamento de Ecologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marcelo Nascimento
- Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Brazil
| | - Daniel Negreiros
- Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | - Walter Palacios
- Carrera de Ingeniería Forestal, Universidad Tecnica del Norte, Ibarra, Ecuador
| | - Nadir C Pallqui Camacho
- School of Geography, University of Leeds, Leeds, UK
- Jardín Botanico de Misssouri - Perú, Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
| | - Alexander Parada Gutierrez
- Museo de Historia Natural Noel Kempff Mercado, Universidad Autónoma Gabriel René Moreno, Santa Cruz, Bolivia
| | - Guido Pardo Molina
- Facultad de Ciencias Forestales, Universidad Autónoma del Beni José Ballivián, Riberalta, Bolivia
| | | | - Marielos Peña-Claros
- Forest Ecology and Forest Management Group, Wageningen University, Wageningen, The Netherlands
| | | | - R Toby Pennington
- Royal Botanic Gardens Edinburgh, Edinburgh, UK
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | | | - John Pipoly
- Environmental Planning and Management, Broward County Parks and Recreation Division, Oakland Park, FL, USA
- FL Atlantic University, BIo Sciences, Boca Raton, FL, USA
| | - Nigel C A Pitman
- Keller Science Action Center, Field Museum of Natural History, Chicago, IL, USA
| | - Maureen Playfair
- Centre for Agricultural Research in Suriname (CELOS), Paramaribo, Suriname
| | - Aline Pontes-Lopes
- Divisão de Observação da Terra e Geoinformática (DIOTG), Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, Brazil
| | - Lourens Poorter
- Forest Ecology and Forest Management Group, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | | | | - Priscyla M S Rodrigues
- Colegiado de Ecologia, Universidade Federal do Vale do São Francisco, Senhor do Bonfim, Brazil
| | - Domingos de Jesus Rodrigues
- Núcleo de Estudos da Biodiversidade da Amazônia Mato-grossense, Universidade Federal de Mato Grosso, Sinop, MT, Brazil
| | | | | | | | - Katherine Roucoux
- School of Geography and Sustainable Development, University of St Andrews, St Andrews, UK
| | | | | | | | - Rafael Salomão
- Universidade Federal Rural da Amazônia/CAPES, Belém, PA, Brazil
- Museu Paraense Emílio Goeldi, Belém, PA, Brazil
| | - Rubens M Santos
- Departamento de Ciências Florestais, Universidade Federal de Lavras, Lavras, Brazil
| | | | | | | | - Juliana Schietti
- Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Brazil
| | | | - Julio Serrano
- Instituto de Investigación para el Desarrollo Forestal, Universidad de los Andes, Mérida, Venezuela
| | - Miles Silman
- Center for Energy, Environment, and Sustainability, Wake Forest University, Winston-Salem, USA
| | - Richarlly C Silva
- Campus Avançado Baixada do Sol, Instituto Federal de Educação, Ciência e Tecnologia do Acre, Rio Branco, AC, Brazil
| | - Camila V J Silva
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
- BeZero Carbon, London, UK
- Instituto Nacional de Pesquisa Ambiental da Amazônia (IPAM), Brasília, Brazil
| | | | - Marcos Silveira
- Laboratório de Botânica e Ecologia Vegetal, Centro de Ciências Biológicas e da Natureza, Universidade Federal do Acre, Rio Branco, AC, Brazil
| | - Marcelo F Simon
- Embrapa Genetic Resources & Biotechnology, Brazilian Agricultural Research Corporation (EMBRAPA), Brasília, Brazil
| | | | | | - Rodolfo Souza
- Environmental Modeling Program, Texas A&M Transportation Institute, Bryan, TX, USA
- Biological and Agricultural Engineering, Texas A&M University, College Station, TX, USA
| | - Tereza Sposito
- Department of Natural Sciences, IBAM - Instituto Bem Ambiental, Belo Horizonte, Brazil
| | - Joey Talbot
- Institute for Transport Studies, University of Leeds, Leeds, UK
| | - Hans Ter Steege
- Naturalis Biodiversity Center, Leiden, The Netherlands
- Quantitative Biodiversity Dynamics, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - John Terborgh
- Center for Tropical Conservation, Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Raquel Thomas
- Iwokrama International Centre for Rainforest Conservation and Development, Georgetown, Guyana
| | - Marisol Toledo
- Universidad Autónoma Gabriel René Moreno, Santa Cruz de la Sierra, Bolivia
| | | | | | | | | | - Simone A Vieira
- Núcleo de Estudos e Pesquisas Ambientais, Universidade Estadual de Campinas, Campinas, Brazil
| | - Emilio Vilanova
- Forests and Climate change Program, Wildlife Conservation Society (WCS), New York, USA
| | - Jeanneth M Villalobos Cayo
- Herbario del Sur de Bolivia, Universidad de San Francisco Xavier de Chuquisaca, Sucre, Bolivia
- Escuela de Ciencias Forestales, Universidad Mayor de San simón, Cochabamba, Bolivia
| | - Dora M Villela
- Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ, Brazil
| | - Laura Jessica Viscarra
- Museo de Historia Natural Noel Kempff Mercado, Universidad Autónoma Gabriel René Moreno, Santa Cruz, Bolivia
| | - Vincent A Vos
- Instituto de Investigaciones Forestales de la Amazonía, Universidad Autónoma del Beni José Ballivián, Riberalta, Bolivia
| | - Verginia Wortel
- Department of Forest Management, Centre for Agricultural Research in Suriname (CELOS), Paramaribo, Suriname
| | - Francoise Yoko Ishida
- Centre for Tropical Environmental and Sustainability Science, James Cook University, Cairns, Australia
- College of Marine and Environmental Sciences, James Cook University, Carins, Australia
| | - Pieter A Zuidema
- Forest Ecology and Forest Management Group, Wageningen University, Wageningen, The Netherlands
| | - Joeri A Zwerts
- Ecology and Biodiversity, Utrecht University, Utrecht, The Netherlands
- Forestry, Centre for Agricultural Research in Suriname (CELOS), Paramaribo, Suriname
| |
Collapse
|
4
|
Groover A, Holbrook NM, Polle A, Sala A, Medlyn B, Brodersen C, Pittermann J, Gersony J, Sokołowska K, Bogar L, McDowell N, Spicer R, David-Schwartz R, Keller S, Tschaplinski TJ, Preisler Y. Tree drought physiology: critical research questions and strategies for mitigating climate change effects on forests. THE NEW PHYTOLOGIST 2025; 245:1817-1832. [PMID: 39690524 DOI: 10.1111/nph.20326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024]
Abstract
Droughts of increasing severity and frequency are a primary cause of forest mortality associated with climate change. Yet, fundamental knowledge gaps regarding the complex physiology of trees limit the development of more effective management strategies to mitigate drought effects on forests. Here, we highlight some of the basic research needed to better understand tree drought physiology and how new technologies and interdisciplinary approaches can be used to address them. Our discussion focuses on how trees change wood development to mitigate water stress, hormonal responses to drought, genetic variation underlying adaptive drought phenotypes, how trees 'remember' prior stress exposure, and how symbiotic soil microbes affect drought response. Next, we identify opportunities for using research findings to enhance or develop new strategies for managing drought effects on forests, ranging from matching genotypes to environments, to enhancing seedling resilience through nursery treatments, to landscape-scale monitoring and predictions. We conclude with a discussion of the need for co-producing research with land managers and extending research to forests in critical ecological regions beyond the temperate zone.
Collapse
Affiliation(s)
- Andrew Groover
- USDA Forest Service Northern Research Station, Burlington, VT, 05446, USA
- Institute of Forest Genetics, USDA Forest Service Pacific Southwest Research Station, Placerville, CA, 95667, USA
| | - N Michele Holbrook
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Andrea Polle
- Forest Botany and Tree Physiology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany
| | - Anna Sala
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Belinda Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Craig Brodersen
- School of the Environment, Yale University, New Haven, CT, 06511, USA
| | - Jarmila Pittermann
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, 95060, USA
| | - Jessica Gersony
- Department of Biological Sciences, Smith College, Northampton, MA, 01060, USA
| | - Katarzyna Sokołowska
- Department of Plant Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328, Wrocław, Poland
| | - Laura Bogar
- Department of Plant Biology, University of California Davis, Davis, CA, 95616, USA
| | - Nate McDowell
- Atmospheric, Climate, and Earth Sciences, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
- School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Rachel Spicer
- Department of Botany, Connecticut College, New London, CT, 06320, USA
| | - Rakefet David-Schwartz
- Institute of Plant Sciences, Agricultural Research Organization - Volcani Institute, 68 HaMaccabim Road, Rishon Lezion, 7505101, Israel
| | - Stephen Keller
- Department of Plant Biology, University of Vermont, Burlington, VT, 05405, USA
| | | | - Yakir Preisler
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Agriculture Research Organization - Volcani Institute, 68 HaMaccabim Road, Rishon Lezion, 7505101, Israel
| |
Collapse
|
5
|
Zhao H, Huang X, Ma B, Jiang B, Jiang Z, Cai J. Productive Poplar Genotypes Exhibited Temporally Stable Low Stem Embolism Resistance and Hydraulic Resistance Segmentation at the Stem-Leaf Transition. PLANT, CELL & ENVIRONMENT 2025; 48:992-1004. [PMID: 39390757 DOI: 10.1111/pce.15197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024]
Abstract
Breeding tree genotypes that are both productive and drought-resistant is a primary goal in forestry. However, the relationships between plant hydraulics and yield at the genotype level, and their temporal stabilities, remain unclear. We selected six poplar genotypes from I-101 (Populus alba) × 84 K (P. alba × Popolus tremula var. glandulosa) for experiments in the first and fourth years after planting in a common garden. Measurements included stem embolism resistance, shoot hydraulic resistance and its partitioning between stems and leaves, vessel- and pit-level anatomy, leaf carbon acquisition capacity, carbon allocation to leaves, and aboveground biomass (yield proxy). Significant genetic variations in hydraulic properties and yield were found among genotypes in both years. Productive genotypes had wide vessels, large thin pit membranes, small pit apertures, and shallow pit chambers. Hydraulic resistance was negatively correlated with yield, enabling high stomatal conductance and assimilation rates. Productive genotypes allocated less aboveground carbon and hydraulic resistance to leaves. Temporally stable trade-offs between stem embolism resistance and yield, and between hydraulic segmentation and yield, were identified. These findings highlight the tight link between hydraulic function and yield and suggest that stable trade-offs may challenge breeding poplar genotypes that are both productive and drought-resistant.
Collapse
Affiliation(s)
- Han Zhao
- College of Forestry, Northwest A&F University, Yangling, China
| | - Xin Huang
- College of Forestry, Northwest A&F University, Yangling, China
| | - Bolong Ma
- College of Forestry, Northwest A&F University, Yangling, China
| | - Bo Jiang
- School of Information Science & Technology, Northwest University, Xi'an, China
| | - Zaimin Jiang
- College of Life Sciences, Northwest A&F University, Yangling, China
- Qinling National Forest Ecosystem Research Station, Northwest A&F University, Yangling, China
| | - Jing Cai
- College of Forestry, Northwest A&F University, Yangling, China
- Qinling National Forest Ecosystem Research Station, Northwest A&F University, Yangling, China
| |
Collapse
|
6
|
Zhao Q, Chen J, Kang J, Kang S. Trade-Offs Between Hydraulic Efficiency and Safety in Cotton ( Gossypium hirsutum L.) Stems Under Elevated CO 2 and Salt Stress. PLANTS (BASEL, SWITZERLAND) 2025; 14:298. [PMID: 39861651 PMCID: PMC11768702 DOI: 10.3390/plants14020298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
Plants respond to environmental changes by altering the anatomical structure of the xylem and its hydraulic properties. While numerous studies have explored the effects of individual environmental factors on crops, the combined interactions of these factors remain underexplored. As climate change intensifies, the occurrence of salt stress is becoming more frequent, alongside a rise in atmospheric CO2 concentration. This study aims to investigate the effects of elevated CO2 and salt stress on the hydraulic traits and xylem anatomical structures of cotton stems. Potted cotton plants were exposed to different CO2 concentrations (aC: 400 ppm; eC: 800 ppm) and salinity levels (aS: 0‱ soil salinity; eS: 6‱ soil salinity). The study found that under eC and eS conditions, a trade-off exists between hydraulic efficiency and safety in cotton stems, which may be partially attributed to xylem anatomical structures. Specifically, eS significantly reduced stem hydraulic conductivity under aC conditions and decreased vessel diameter but increased the proportion of small-diameter vessels and enhanced implosion resistance ((t/b)2), which strengthened the xylem's resistance to salt-induced embolism. eC altered the response pattern of xylem hydraulic conductivity and embolism resistance to salt stress, with increased vessel diameter enhancing hydraulic conductivity but reducing xylem resistance to embolism. These findings enhance our comprehension of plant hydraulic adaptation under future climatic conditions and provide new insights into the trade-offs between xylem structure and function.
Collapse
Affiliation(s)
- Qing Zhao
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100083, China; (Q.Z.); (J.C.); (J.K.)
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei 733009, China
- Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China
| | - Jinliang Chen
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100083, China; (Q.Z.); (J.C.); (J.K.)
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei 733009, China
- Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China
| | - Jian Kang
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100083, China; (Q.Z.); (J.C.); (J.K.)
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei 733009, China
- Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China
| | - Shaozhong Kang
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100083, China; (Q.Z.); (J.C.); (J.K.)
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei 733009, China
- Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China
| |
Collapse
|
7
|
González‐Melo A, Salgado‐Negret B, Norden N, González‐M R, Benavides JP, Cely JM, Abad Ferrer J, Idárraga Á, Moreno E, Pizano C, Puentes‐Marín J, Pulido N, Rivera K, Rojas‐Bautista F, Solorzano JF, Umaña MN. Linking seedling wood anatomical trade-offs with drought and seedling growth and survival in tropical dry forests. THE NEW PHYTOLOGIST 2025; 245:117-129. [PMID: 39473120 PMCID: PMC11617663 DOI: 10.1111/nph.20222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/02/2024] [Indexed: 12/06/2024]
Abstract
Wood anatomy plays a key role in plants' ability to persist under drought and should therefore predict demography. Plants balance their resource allocation among wood cell types responsible for different functions. However, it remains unclear how these anatomical trade-offs vary with water availability, and the extent to which they influence demographic rates. We investigated how wood anatomical trade-offs were related to drought and demographic rates, for seedling communities in four tropical dry forests differing in their aridity indexes (AIs). We measured wood density, as well as vessel, fiber and parenchyma traits of 65 species, and we monitored growth and survival for a 1-yr period. Two axes defined wood anatomical structure: a fiber-parenchyma axis and a vessel-wood density axis. Seedlings in drier sites had larger fiber but lower parenchyma fractions, while in less dry forests, seedlings had the opposite allocation pattern. The fiber-parenchyma trade-off was unrelated to growth but was positively related to survival, and this later relationship was mediated by the AI. These findings expand our knowledge about the wood anatomical trade-offs that mediate responses to drought conditions and influence demographic rates, in the seedling layer. This information is needed to anticipate future responses of forests to changing drought conditions.
Collapse
Affiliation(s)
- Andrés González‐Melo
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMI48104USA
| | | | - Natalia Norden
- Instituto de Investigación de Recursos Biológicos Alexander von HumboldtBogotá111061Colombia
| | - Roy González‐M
- Departamento de Ciencias ForestalesUniversidad del TolimaIbagué730010Colombia
| | | | - Juan Manuel Cely
- Departamento de BiologíaUniversidad NacionalBogotá111321Colombia
| | - Julio Abad Ferrer
- Dirección Territorial Caribe, Parques Nacionales Naturales de ColombiaSanta Marta110221Colombia
| | - Álvaro Idárraga
- Fundación Jardín Botánico de MedellínHerbario “Joaquín Antonio Uribe” (JAUM)Medellín050010Colombia
| | - Esteban Moreno
- Facultad del Medio Ambiente y Recursos NaturalesUniversidad Distrital Francisco José de CaldasBogotá111611Colombia
| | - Camila Pizano
- Departamento de BiologíaUniversidad IcesiCali760031Colombia
| | | | - Nancy Pulido
- Facultad del Medio Ambiente y Recursos NaturalesUniversidad Distrital Francisco José de CaldasBogotá111611Colombia
| | - Katherine Rivera
- Facultad del Medio Ambiente y Recursos NaturalesUniversidad Distrital Francisco José de CaldasBogotá111611Colombia
| | | | - Juan Felipe Solorzano
- Facultad del Medio Ambiente y Recursos NaturalesUniversidad Distrital Francisco José de CaldasBogotá111611Colombia
| | - María Natalia Umaña
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMI48104USA
| |
Collapse
|
8
|
Zhu LW, Li YQ, Lu LW, Wang JY, Du J, Zhao P. Temporal dynamics of stomatal regulation and carbon- and water-related traits for a native tree species in low subtropical China. TREE PHYSIOLOGY 2024; 44:246-259. [PMID: 38281184 PMCID: PMC11898628 DOI: 10.1093/treephys/tpae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/22/2024] [Accepted: 01/21/2024] [Indexed: 01/30/2024]
Abstract
Stomata are pivotal in modulating water and carbon processes within plants. However, our understanding of the temporal dynamics of water- and carbon-related traits, as influenced by stomatal behavior, remains limited. Here, we explore how stomatal regulation behavior and water- and carbon-related traits vary with changing environments by examining the seasonal variations in these traits of the native tree species Schima superba Gardn. et Champ. in low subtropical China. In February, April and July of 2022, a series of water- and carbon-related traits were measured in the leaves and stems. The results showed that S. superba exhibited isohydric behavior in February when the soil dried out and vapor pressure deficit (VPD) was lower but anisohydric behavior in April and July when the soil was wetter and VPD was higher. In February, nonstructural carbohydrates (NSC) and their components increased, and a relatively large contribution of soluble sugars to the change in NSC was observed. In the branches and phloem, NSC and their components displayed a relatively high monthly variability, suggesting their role in maintaining carbon balance within the trees. Conversely, the NSC in the leaves demonstrated minimal monthly variability. The specific leaf area, as well as the concentration of nitrogen (N) and phosphorus (P) per unit mass in leaves and the cumulative stem water release, exhibited a decrease with a reduction in soil water potential. Interestingly, the hydraulic conductivity remained consistent throughout this process. Furthermore, the relatively low monthly growth rate observed in February could suggest a carbon sink limitation. In conclusion, the increased NSC and decreased water status of S. superba under relatively stressed soil conditions indicated a trade-off between water and carbon storage. Our findings enhance our comprehension of the dynamics and regulation of water and carbon status in forests, thereby advancing the development of plant carbon and water process models under climate change scenarios.
Collapse
Affiliation(s)
- Li-Wei Zhu
- South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, China
- South China National Botanical Garden, Tianyuan Road 1190, Tianhe District, Guangzhou, 510650, China
| | - Yan-Qiong Li
- South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, China
- South China National Botanical Garden, Tianyuan Road 1190, Tianhe District, Guangzhou, 510650, China
| | - Long-Wei Lu
- South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, China
- South China National Botanical Garden, Tianyuan Road 1190, Tianhe District, Guangzhou, 510650, China
| | - Jing-Yi Wang
- South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, China
- South China National Botanical Garden, Tianyuan Road 1190, Tianhe District, Guangzhou, 510650, China
| | - Jie Du
- South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, China
- South China National Botanical Garden, Tianyuan Road 1190, Tianhe District, Guangzhou, 510650, China
| | - Ping Zhao
- South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, China
- South China National Botanical Garden, Tianyuan Road 1190, Tianhe District, Guangzhou, 510650, China
| |
Collapse
|
9
|
Lima AC, da Silva Andrade SC, Gerolamo CS, de Souza DT, Coutinho LL, Rossi M, Angyalossy V. Liana attachment to supports leads to profound changes in xylem anatomy and transcriptional profile of cambium and differentiating xylem. PLANT, CELL & ENVIRONMENT 2024; 47:5172-5188. [PMID: 39169844 DOI: 10.1111/pce.15094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 06/18/2024] [Accepted: 08/03/2024] [Indexed: 08/23/2024]
Abstract
Wood serves crucial functions in plants, yet our understanding of the mechanisms governing the composition, arrangement, and dimensions of its cells remains limited. The abrupt transition from nonlianescent to lianescent xylem in lianas represents an excellent model to address the underlying mechanisms, although consistent triggering factors for this process remain uncertain. In this study we examined how physical support attachment impacts the development of lianescent xylem in Bignonia magnifica (Bignoniaceae), employing a comprehensive approach integrating detailed anatomical analysis with gene expression profiling of cambium and differentiating xylem. Our findings demonstrate that attachment to physical supports triggers the formation of lianescent xylem, leading to increased vessel size, broader vessel distribution, reduced fibre content, and higher potential specific water conductivity than nonlianescent xylem. These shifts in wood anatomy coincide with the downregulation of genes associated with cell division and cell wall biosynthesis, and the upregulation of transcription factors, defense/cell death, and hormone-responsive genes in the lianescent xylem. Our findings provide insights into the regulation of xylem differentiation, driven by response to environmental stimuli. Additionally, they shed light on the mechanisms underlying the adaptation of lianas to climbing.
Collapse
Affiliation(s)
- André Carvalho Lima
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | | | - Caian Souza Gerolamo
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Diego Trindade de Souza
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Luiz Lehmann Coutinho
- Departamento de Zootecnia, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), Piracicaba, Universidade de São Paulo, Brazil
| | - Magdalena Rossi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Veronica Angyalossy
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Chhajed SS, Wright IJ, Perez-Priego O. Theory and tests for coordination among hydraulic and photosynthetic traits in co-occurring woody species. THE NEW PHYTOLOGIST 2024; 244:1760-1774. [PMID: 39044658 DOI: 10.1111/nph.19987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 05/30/2024] [Indexed: 07/25/2024]
Abstract
Co-occurring plants show wide variation in their hydraulic and photosynthetic traits. Here, we extended 'least-cost' optimality theory to derive predictions for how variation in key hydraulic traits potentially affects the cost of acquiring and using water in photosynthesis and how this, in turn, should drive variation in photosynthetic traits. We tested these ideas across 18 woody species at a temperate woodland in eastern Australia, focusing on hydraulic traits representing different aspects of plant water balance, that is storage (sapwood capacitance, CS), demand vs supply (branch leaf : sapwood area ratio, AL : AS and leaf : sapwood mass ratio and ML : MS), access to soil water (proxied by predawn leaf water potential, ΨPD) and physical strength (sapwood density, WD). Species with higher AL : AS had higher ratio of leaf-internal to ambient CO2 concentration during photosynthesis (ci : ca), a trait central to the least-cost theory framework. CS and the daily operating range of tissue water potential (∆Ψ) had an interactive effect on ci : ca. CS, WD and ΨPD were significantly correlated with each other. These results, along with those from multivariate analyses, underscored the pivotal role leaf : sapwood allocation (AL : AS), and water storage (CS) play in coordination between plant hydraulic and photosynthetic systems. This study uniquely explored the role of hydraulic traits in predicting species-specific photosynthetic variation based on optimality theory and highlights important mechanistic links within the plant carbon-water balance.
Collapse
Affiliation(s)
- Shubham S Chhajed
- School of Natural Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
- ARC Centre for Plant Success in Nature & Agriculture, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Ian J Wright
- School of Natural Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
- ARC Centre for Plant Success in Nature & Agriculture, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Oscar Perez-Priego
- Department of Forest Engineering, University of Córdoba, Campus de Rabanales, Crta. N-IV km. 396, C.P. 14071, Córdoba, Spain
| |
Collapse
|
11
|
Towers IR, O'Reilly-Nugent A, Sabot MEB, Vesk PA, Falster DS. Optimising height-growth predicts trait responses to water availability and other environmental drivers. PLANT, CELL & ENVIRONMENT 2024; 47:4849-4869. [PMID: 39101679 DOI: 10.1111/pce.15042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/14/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024]
Abstract
Future changes in climate, together with rising atmosphericCO 2 , may reorganise the functional composition of ecosystems. Without long-term historical data, predicting how traits will respond to environmental conditions-in particular, water availability-remains a challenge. While eco-evolutionary optimality theory (EEO) can provide insight into how plants adapt to their environment, EEO approaches to date have been formulated on the assumption that plants maximise carbon gain, which omits the important role of tissue construction and size in determining growth rates and fitness. Here, we show how an expanded optimisation framework, focussed on individual growth rate, enables us to explain shifts in four key traits: leaf mass per area, sapwood area to leaf area ratio (Huber value), wood density and sapwood-specific conductivity in response to soil moisture, atmospheric aridity,CO 2 and light availability. In particular, we predict that as conditions become increasingly dry, height-growth optimising traits shift from resource-acquisitive strategies to resource-conservative strategies, consistent with empirical responses across current environmental gradients of rainfall. These findings can explain both the shift in traits and turnover of species along existing environmental gradients and changing future conditions and highlight the importance of both carbon assimilation and tissue construction in shaping the functional composition of vegetation across climates.
Collapse
Affiliation(s)
- Isaac R Towers
- Evolution & Ecology Research Centre, The University of New South Wales, Sydney, New South Wales, Australia
| | - Andrew O'Reilly-Nugent
- Evolution & Ecology Research Centre, The University of New South Wales, Sydney, New South Wales, Australia
- Climate Friendly, Sydney, New South Wales, Australia
| | - Manon E B Sabot
- Max Planck Institute for Biogeochemistry, Jena, Germany
- ARC Centre of Excellence for Climate Extremes and Climate Change Research Centre, The University of New South Wales, Sydney, New South Wales, Australia
| | - Peter A Vesk
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Daniel S Falster
- Evolution & Ecology Research Centre, The University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
12
|
Rodríguez-Ramírez EC, Arroyo F, Ames-Martínez FN, Andrés-Hernández AR. Tracking climate vulnerability across spatial distribution and functional traits in Magnolia gentryi in the Peruvian tropical montane cloud forest. AMERICAN JOURNAL OF BOTANY 2024; 111:e16400. [PMID: 39238126 DOI: 10.1002/ajb2.16400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 09/07/2024]
Abstract
PREMISE Understanding the responses of functional traits in tree species to climate variability is essential for predicting the future of tropical montane cloud forest (TMCF) tree species, especially in Andean montane environments where fog pockets act as moisture traps. METHODS We studied the distribution of Magnolia gentryi, measured its spatial arrangement, identified local hotspots, and evaluated the extent to which climate-related factors are associated with its distribution. We then analyzed the variation in 13 functional traits of M. gentryi and the relationship with climate. RESULTS Andean TMCF climatic factors constrain M. gentryi spatial distribution with significant patches or gaps that are associated with high precipitation and mean minimum temperature. The functional traits of M. gentryi are limited by the Andean TMCF climatic factors, resulting in reduced within-species variation in traits associated with water deficit. CONCLUSIONS The association between functional traits and climate oscillation is crucial for understanding the growth conditions of relict-endemic species and is essential for conservation efforts. Forest trait diversity and species composition change because of fluctuations in hydraulic safety-efficiency gradients.
Collapse
Affiliation(s)
| | - Frank Arroyo
- Herbario MOL, Universidad Nacional Agraria La Molina, Av. La Universidad s./n., La Molina, Lima, Peru
| | - Fressia N Ames-Martínez
- Laboratorio de Biotecnología y Biología Molecular, Universidad Continental, Urbanización San Antonio, Huancayo, Peru
- Programa de Investigación en Ecología y Biodiversidad, Asociación ANDINUS, Sicaya, Huancayo, Peru
| | | |
Collapse
|
13
|
Plavcová L, Jandová V, Altman J, Liancourt P, Korznikov K, Doležal J. Variations in wood anatomy in Afrotropical trees with a particular emphasis on radial and axial parenchyma. ANNALS OF BOTANY 2024; 134:151-162. [PMID: 38525918 PMCID: PMC11161563 DOI: 10.1093/aob/mcae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/22/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND AND AIMS Understanding anatomical variations across plant phylogenies and environmental gradients is vital for comprehending plant evolution and adaptation. Previous studies on tropical woody plants have paid limited attention to quantitative differences in major xylem tissues, which serve specific roles in mechanical support (fibres), carbohydrate storage and radial conduction (radial parenchyma, rays), wood capacitance (axial parenchyma) and water transport (vessels). To address this gap, we investigate xylem fractions in 173 tropical tree species spanning 134 genera and 53 families along a 2200-m elevational gradient on Mount Cameroon, West Africa. METHODS We determined how elevation, stem height and wood density affect interspecific differences in vessel, fibre, and specific axial (AP) and radial (RP) parenchyma fractions. We focus on quantifying distinct subcategories of homogeneous or heterogeneous rays and apotracheal, paratracheal and banded axial parenchyma. KEY RESULTS Elevation-related cooling correlated with reduced AP fractions and vessel diameters, while fibre fractions increased. Lower elevations exhibited elevated AP fractions due to abundant paratracheal and wide-banded parenchyma in tall trees from coastal and lowland forests. Vasicentric and aliform AP were predominantly associated with greater tree height and wider vessels, which might help cope with high evaporative demands via elastic wood capacitance. In contrast, montane trees featured a higher fibre proportion, scarce axial parenchyma, smaller vessel diameters and higher vessel densities. The lack of AP in montane trees was often compensated for by extended uniseriate ray sections with upright or squared ray cells or the presence of living fibres. CONCLUSIONS Elevation gradient influenced specific xylem fractions, with lower elevations showing elevated AP due to abundant paratracheal and wide-banded parenchyma, securing greater vessel-to-parenchyma connectivity and lower embolism risk. Montane trees featured a higher fibre proportion and smaller vessel diameters, which may aid survival under greater environmental seasonality and fire risk.
Collapse
Affiliation(s)
- Lenka Plavcová
- Department of Biology, Faculty of Science, University of Hradec Králové, Rokitanského 62, Hradec Králové 500 03, Czech Republic
| | - Veronika Jandová
- Institute of Botany, The Czech Academy of Sciences, Dukelská 135, 37901, Třeboň, Czech Republic
- Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005, České Budějovice, Czech Republic
| | - Jan Altman
- Institute of Botany, The Czech Academy of Sciences, Dukelská 135, 37901, Třeboň, Czech Republic
| | - Pierre Liancourt
- Botany Department, State Museum of Natural History Stuttgart, Stuttgart, Germany
| | - Kirill Korznikov
- Institute of Botany, The Czech Academy of Sciences, Dukelská 135, 37901, Třeboň, Czech Republic
| | - Jiří Doležal
- Institute of Botany, The Czech Academy of Sciences, Dukelská 135, 37901, Třeboň, Czech Republic
- Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005, České Budějovice, Czech Republic
| |
Collapse
|
14
|
Zhang KY, Yang D, Zhang YB, Ai XR, Yao L, Deng ZJ, Zhang JL. Linkages among stem xylem transport, biomechanics, and storage in lianas and trees across three contrasting environments. AMERICAN JOURNAL OF BOTANY 2024; 111:e16290. [PMID: 38380953 DOI: 10.1002/ajb2.16290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 02/22/2024]
Abstract
PREMISE Stem xylem transports water and nutrients, mechanically supports aboveground tissues, and stores water and nonstructural carbohydrates. These three functions are associated with three types of cells-vessel, fiber, and parenchyma, respectively. METHODS We measured stem theoretical hydraulic conductivity (Kt), modulus of elasticity (MOE), tissue water content, starch, soluble sugars, cellulose, and xylem anatomical traits in 15 liana and 16 tree species across three contrasting sites in Southwest China. RESULTS Lianas had higher hydraulic efficiency and tissue water content, but lower MOE and cellulose than trees. Storage traits (starch and soluble sugars) did not significantly differ between lianas and trees, and trait variation was explained mainly by site, highlighting how environment shapes plant storage strategies. Kt was significantly positively correlated with vessel diameter and vessel area fraction in lianas and all species combined. The MOE was significantly positively correlated with fiber area fraction, wood density, and cellulose in lianas and across all species. The tissue water content was significantly associated with parenchyma area fraction in lianas. Support function was strongly linked with transport and storage functions in lianas. In trees, transport and support functions were not correlated, while storage function was tightly linked with transport and support functions. CONCLUSIONS These findings enhance our understanding of the relationship between stem xylem structure and function in lianas and trees, providing valuable insights into how plants adapt to environmental changes and the distinct ecological strategies employed by lianas and by trees to balance the demands of hydraulic transport, mechanical support, and storage.
Collapse
Affiliation(s)
- Ke-Yan Zhang
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi, 445000, Hubei, China
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
| | - Da Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
| | - Yun-Bing Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
| | - Xun-Ru Ai
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi, 445000, Hubei, China
| | - Lan Yao
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi, 445000, Hubei, China
| | - Zhi-Jun Deng
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi, 445000, Hubei, China
| | - Jiao-Lin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
| |
Collapse
|
15
|
Liu YY, Chao L, Li ZG, Ma L, Hu BQ, Zhu SD, Cao KF. Water storage capacity is inversely associated with xylem embolism resistance in tropical karst tree species. TREE PHYSIOLOGY 2024; 44:tpae017. [PMID: 38281245 DOI: 10.1093/treephys/tpae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/21/2024] [Indexed: 01/30/2024]
Abstract
Tropical karst habitats are characterized by limited and patchy soil, large rocky outcrops and porous substrates, resulting in high habitat heterogeneity and soil moisture fluctuations. Xylem hydraulic efficiency and safety can determine the drought adaptation and spatial distribution of woody plants growing in karst environments. In this study, we measured sapwood-specific hydraulic conductivity (Ks), vulnerability to embolism, wood density, saturated water content, and vessel and pit anatomical characteristics in the branch stems of 12 evergreen tree species in a tropical karst seasonal rainforest in southwestern China. We aimed to characterize the effects of structural characteristics on hydraulic efficiency and safety. Our results showed that there was no significant correlation between Ks and hydraulic safety across the tropical karst woody species. Ks was correlated with hydraulic vessel diameter (r = 0.80, P < 0.05) and vessel density (r = -0.60, P < 0.05), while the stem water potential at 50 and 88% loss of hydraulic conductivity (P50 and P88) were both significantly correlated with wood density (P < 0.05) and saturated water content (P = 0.052 and P < 0.05, respectively). High stem water storage capacity was associated with low cavitation resistance possibly because of its buffering the moisture fluctuations in karst environments. However, both Ks and P50/P88 were decoupled from the anatomical traits of pit and pit membranes. This may explain the lack of tradeoff between hydraulic safety and efficiency in tropical karst evergreen tree species. Our results suggest that diverse hydraulic trait combination may facilitate species coexistence in karst environments with high spatial heterogeneity.
Collapse
Affiliation(s)
- Yan-Yan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, Guangxi, China
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning 530001, China
| | - Lin Chao
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning 530001, China
| | - Zhong-Guo Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, Guangxi, China
- Experimental Center of Tropical Forestry, Chinese Academy of Forestry, Pingxiang 532600, Guangxi, China
| | - Lin Ma
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning 530001, China
| | - Bao-Qing Hu
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning 530001, China
| | - Shi-Dan Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, Guangxi, China
| | - Kun-Fang Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, Guangxi, China
| |
Collapse
|
16
|
Wei Y, Chen YJ, Siddiq Z, Zhang JL, Zhang SB, Jansen S, Cao KF. Hydraulic traits and photosynthesis are coordinated with trunk sapwood capacitance in tropical tree species. TREE PHYSIOLOGY 2023; 43:2109-2120. [PMID: 37672225 DOI: 10.1093/treephys/tpad107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 08/28/2023] [Indexed: 09/07/2023]
Abstract
Water stored in trunk sapwood is vital for the canopy to maintain its physiological function under high transpiration demands. Little is known regarding the anatomical properties that contribute to the hydraulic capacitance of tree trunks and whether trunk capacitance is correlated with the hydraulic and gas exchange traits of canopy branches. We examined sapwood capacitance, xylem anatomical characteristics of tree trunks, embolism resistance, the minimal xylem water potential of canopy branches, leaf photosynthesis and stomatal conductance in 22 species from a tropical seasonal rainforest and savanna. The results showed that the mean trunk sapwood capacitance did not differ between the two biomes. Capacitance was closely related to the fiber lumen fraction and fiber wall reinforcement and not to the axial and ray parenchyma fractions. Additionally, it was positively correlated with the theoretical hydraulic conductivity of a trunk and the specific hydraulic conductivity of branches, and showed a trade-off with branch embolism resistance. Species with a high trunk sapwood capacitance maintained less negative canopy water potentials in the dry season, but higher leaf photosynthetic rates and stomatal conductance in the wet season. This study provides a functional link among trunk sapwood capacitance, xylem anatomy, canopy hydraulics and photosynthesis in tropical trees.
Collapse
Affiliation(s)
- Yang Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, NO. 100 Daxuedonglu, Nanning 530004, Guangxi, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, NO. 100 Daxuedonglu, Nanning 530004, Guangxi, China
| | - Ya-Jun Chen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
- Yuanjiang Savanna Ecosystem Research Station, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yuanjiang 653300, Yunnan, China
| | - Zafar Siddiq
- Department of Botany, Government College University, Katchery Road, Lahore 54000, Punjab, Pakistan
| | - Jiao-Lin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
| | - Shu-Bin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
| | - Steven Jansen
- Institute of Botany, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Baden-Wurttemberg, Germany
| | - Kun-Fang Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, NO. 100 Daxuedonglu, Nanning 530004, Guangxi, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, NO. 100 Daxuedonglu, Nanning 530004, Guangxi, China
| |
Collapse
|
17
|
Waite PA, Leuschner C, Delzon S, Triadiati T, Saad A, Schuldt B. Plasticity of wood and leaf traits related to hydraulic efficiency and safety is linked to evaporative demand and not soil moisture in rubber (Hevea brasiliensis). TREE PHYSIOLOGY 2023; 43:2131-2149. [PMID: 37707940 DOI: 10.1093/treephys/tpad113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/15/2023]
Abstract
The predicted increase of drought intensity in South-East Asia has raised concern about the sustainability of rubber (Hevea brasiliensis Müll. Arg.) cultivation. In order to quantify the degree of phenotypic plasticity in this important tree crop species, we analysed a set of wood and leaf traits related to the hydraulic safety and efficiency in PB260 clones from eight small-holder plantations in Jambi province, Indonesia, representing a gradient in local microclimatic and edaphic conditions. Across plots, branch embolism resistance (P50) ranged from -2.14 to -2.58 MPa. The P50 and P88 values declined, and the hydraulic safety margin increased, with an increase in the mean annual vapour pressure deficit (VPD). Among leaf traits, only the changes in specific leaf area were related to the differences in evaporative demand. These variations of hydraulic trait values were not related to soil moisture levels. We did not find a trade-off between hydraulic safety and efficiency, but vessel density (VD) emerged as a major trait associated with both safety and efficiency. The VD, and not vessel diameter, was closely related to P50 and P88 as well as to specific hydraulic conductivity, the lumen-to-sapwood area ratio and the vessel grouping index. In conclusion, our results demonstrate some degree of phenotypic plasticity in wood traits related to hydraulic safety in this tropical tree species, but this is only in response to the local changes in evaporative demand and not soil moisture. Given that VPD may increasingly limit plant growth in a warmer world, our results provide evidence of hydraulic trait changes in response to a rising evaporative demand.
Collapse
Affiliation(s)
- Pierre-André Waite
- Institute of Forest Botany and Forest Zoology, Technical University of Dresden, Pienner Straße 7, Tharandt 01737, Germany
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2, Goettingen 37073, Germany
| | - Christoph Leuschner
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2, Goettingen 37073, Germany
| | - Sylvain Delzon
- Department of Biodiversity, Genes, and Communities (BIOGECO), Institut National de Recherche pour Agriculture, Alimentation et Environnement (INRAE), Université Bordeaux, Bat. 2 Allée Geoffroy St-Hilaire, Pessac 33615, France
| | - Triadiati Triadiati
- Department of Biology, Faculty of Mathematics and Natural Sciences, Bogor IPB University, Darmaga Campus, Bogor 16680, Indonesia
| | - Asmadi Saad
- Department of Soil Science, University of Jambi, Jalan Raya Jambi Muara Bulian KM 15 Mandalo Indah, Jambi, Sumatra 36361, Indonesia
| | - Bernhard Schuldt
- Institute of Forest Botany and Forest Zoology, Technical University of Dresden, Pienner Straße 7, Tharandt 01737, Germany
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2, Goettingen 37073, Germany
| |
Collapse
|
18
|
Kong L, Song Q, Wei H, Wang Y, Lin M, Sun K, Zhang Y, Yang J, Li C, Luo K. The AP2/ERF transcription factor PtoERF15 confers drought tolerance via JA-mediated signaling in Populus. THE NEW PHYTOLOGIST 2023; 240:1848-1867. [PMID: 37691138 DOI: 10.1111/nph.19251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/15/2023] [Indexed: 09/12/2023]
Abstract
Drought stress is one of the major limiting factors for the growth and development of perennial trees. Xylem vessels act as the center of water conduction in woody species, but the underlying mechanism of its development and morphogenesis under water-deficient conditions remains elucidation. Here, we identified and characterized an osmotic stress-induced ETHYLENE RESPONSE FACTOR 15 (PtoERF15) and its target, PtoMYC2b, which was involved in mediating vessel size, density, and cell wall thickness in response to drought in Populus tomentosa. PtoERF15 is preferentially expressed in differentiating xylem of poplar stems. Overexpression of PtoERF15 contributed to stem water potential maintaining, thus promoting drought tolerance. RNA-Seq and biochemical analysis further revealed that PtoERF15 directly regulated PtoMYC2b, encoding a switch of JA signaling pathway. Additionally, our findings verify that three sets of homologous genes from NAC (NAM, ATAF1/2, and CUC2) gene family: PtoSND1-A1/A2, PtoVND7-1/7-2, and PtoNAC118/120, as the targets of PtoMYC2b, are involved in the regulation of vessel morphology in poplar. Collectively, our study provides molecular evidence for the involvement of the PtoERF15-PtoMYC2b transcription cascade in maintaining stem water potential through the regulation of xylem vessel development, ultimately improving drought tolerance in poplar.
Collapse
Affiliation(s)
- Lingfei Kong
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creationin Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Qin Song
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creationin Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Hongbin Wei
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creationin Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yanhong Wang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creationin Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Minghui Lin
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creationin Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Kuan Sun
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creationin Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yuqian Zhang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creationin Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jiarui Yang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creationin Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Chaofeng Li
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creationin Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Maize Research Institute, Southwest University, Chongqing, 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creationin Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
19
|
Alvarado MV, Terrazas T. Tree species differ in plant economic spectrum traits in the tropical dry forest of Mexico. PLoS One 2023; 18:e0293430. [PMID: 37943793 PMCID: PMC10635469 DOI: 10.1371/journal.pone.0293430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023] Open
Abstract
In tropical dry forests, studies on wood anatomical traits have concentrated mainly on variations in vessel diameter and frequency. Recent research suggests that parenchyma and fibers also play an important role in water conduction and in xylem hydraulic safety. However, these relationships are not fully understood, and wood trait variation among different functional profiles as well as their variation under different water availability scenarios have been little studied. In this work, we aim to (1) characterize a set of wood anatomical traits among six selected tree species that represent the economic spectrum of tropical dry forests, (2) assess the variation in these traits under three different rainfall regimes, and (3) determine the relationships between wood anatomical traits and possible functional trade-offs. Differences among species and sites in wood traits were explored. Linear mixed models were fitted, and model comparison was performed. Most variation occurred among species along the economic spectrum. Obligate deciduous, low wood density species were characterized by wood with wide vessels and low frequency, suggesting high water transport capacity but sensitivity to drought. Moreover, high cell fractions of carbon and water storage were also found in these tree species related to the occurrence of abundant parenchyma or septate fibers. Contrary to what most studies show, Cochlospermum vitifolium, a succulent tree species, presented the greatest variation in wood traits. Facultative deciduous, high wood density species were characterized by a sturdy vascular system that may favor resistance to cavitation and low reserve storage. Contrary to our expectations, variation among the rainfall regimes was generally low in all species and was mostly related to vessel traits, while fiber and parenchyma traits presented little variation among species. Strong functional associations between wood anatomical traits and functional trade-offs were found for the six tree species studied along the economic spectrum of tropical dry forests.
Collapse
Affiliation(s)
- Marco V. Alvarado
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Teresa Terrazas
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| |
Collapse
|
20
|
Zhang G, Mao Z, Maillard P, Brancheriau L, Gérard B, Engel J, Fortunel C, Heuret P, Maeght JL, Martínez-Vilalta J, Stokes A. Functional trade-offs are driven by coordinated changes among cell types in the wood of angiosperm trees from different climates. THE NEW PHYTOLOGIST 2023; 240:1162-1176. [PMID: 37485789 DOI: 10.1111/nph.19132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023]
Abstract
Wood performs several functions to ensure tree survival and carbon allocation to a finite stem volume leads to trade-offs among cell types. It is not known to what extent these trade-offs modify functional trade-offs and if they are consistent across climates and evolutionary lineages. Twelve wood traits were measured in stems and coarse roots across 60 adult angiosperm tree species from temperate, Mediterranean and tropical climates. Regardless of climate, clear trade-offs occurred among cellular fractions, but did not translate into specific functional trade-offs. Wood density was negatively related to hydraulic conductivity (Kth ) in stems and roots, but was not linked to nonstructural carbohydrates (NSC), implying a functional trade-off between mechanical integrity and transport but not with storage. NSC storage capacity was positively associated with Kth in stems and negatively in roots, reflecting a potential role for NSC in the maintenance of hydraulic integrity in stems but not in roots. Results of phylogenetic analyses suggest that evolutionary histories cannot explain covariations among traits. Trade-offs occur among cellular fractions, without necessarily modifying trade-offs in function. However, functional trade-offs are driven by coordinated changes among xylem cell types depending on the dominant role of each cell type in stems and roots.
Collapse
Affiliation(s)
- Guangqi Zhang
- AMAP, University of Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, 34000, France
- SILVA, INRAE, Université de Lorraine, Agroparistech, Centre de Recherche Grand-Est Nancy, Champenoux, 54280, France
| | - Zhun Mao
- AMAP, University of Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, 34000, France
| | - Pascale Maillard
- SILVA, INRAE, Université de Lorraine, Agroparistech, Centre de Recherche Grand-Est Nancy, Champenoux, 54280, France
| | - Loïc Brancheriau
- CIRAD, UPR BioWooEB, Montpellier, 34000, France
- BioWooEB, University of Montpellier, CIRAD, Montpellier, 34000, France
| | - Bastien Gérard
- SILVA, INRAE, Université de Lorraine, Agroparistech, Centre de Recherche Grand-Est Nancy, Champenoux, 54280, France
| | - Julien Engel
- AMAP, University of Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, 34000, France
| | - Claire Fortunel
- AMAP, University of Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, 34000, France
| | - Patrick Heuret
- AMAP, University of Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, 34000, France
| | - Jean-Luc Maeght
- AMAP, University of Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, 34000, France
| | - Jordi Martínez-Vilalta
- CREAF, Bellaterra (Cerdanyola del Vallès), Catalonia, E08193, Spain
- Universitat Autònoma Barcelona, Bellaterra (Cerdanyola del Vallès), Catalonia, E08193, Spain
| | - Alexia Stokes
- AMAP, University of Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, 34000, France
| |
Collapse
|
21
|
Li P, Xiao L, Du Q, Quan M, Song Y, He Y, Huang W, Xie J, Lv C, Wang D, Zhou J, Li L, Liu Q, El‐Kassaby YA, Zhang D. Genomic insights into selection for heterozygous alleles and woody traits in Populus tomentosa. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2002-2018. [PMID: 37392407 PMCID: PMC10502748 DOI: 10.1111/pbi.14108] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/03/2023] [Accepted: 06/12/2023] [Indexed: 07/03/2023]
Abstract
Heterozygous alleles are widespread in outcrossing and clonally propagated woody plants. The variation in heterozygosity that underlies population adaptive evolution and phenotypic variation, however, remains largely unknown. Here, we describe a de novo chromosome-level genome assembly of Populus tomentosa, an economic and ecologically important native tree in northern China. By resequencing 302 natural accessions, we determined that the South subpopulation (Pop_S) encompasses the ancestral strains of P. tomentosa, while the Northwest subpopulation (Pop_NW) and Northeast subpopulation (Pop_NE) experienced different selection pressures during population evolution, resulting in significant population differentiation and a decrease in the extent of heterozygosity. Analysis of heterozygous selective sweep regions (HSSR) suggested that selection for lower heterozygosity contributed to the local adaptation of P. tomentosa by dwindling gene expression and genetic load in the Pop_NW and Pop_NE subpopulations. Genome-wide association studies (GWAS) revealed that 88 single nucleotide polymorphisms (SNPs) within 63 genes are associated with nine wood composition traits. Among them, the selection for the homozygous AA allele in PtoARF8 is associated with reductions in cellulose and hemicellulose contents by attenuating PtoARF8 expression, and the increase in lignin content is attributable to the selection for decreases in exon heterozygosity in PtoLOX3 during adaptive evolution of natural populations. This study provides novel insights into allelic variations in heterozygosity associated with adaptive evolution of P. tomentosa in response to the local environment and identifies a series of key genes for wood component traits, thereby facilitating genomic-based breeding of important traits in perennial woody plants.
Collapse
Affiliation(s)
- Peng Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Liang Xiao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Qingzhang Du
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Mingyang Quan
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Yuepeng Song
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Yuling He
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Weixiong Huang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Jianbo Xie
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Chenfei Lv
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Dan Wang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Jiaxuan Zhou
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Lianzheng Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Qing Liu
- CSIRO Agriculture and Food, Black MountainCanberraAustralian Capital TerritoryAustralia
| | - Yousry A. El‐Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, Forest Sciences CentreUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Deqiang Zhang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| |
Collapse
|
22
|
Aritsara ANA, Ni MY, Wang YQ, Yan CL, Zeng WH, Song HQ, Cao KF, Zhu SD. Tree growth is correlated with hydraulic efficiency and safety across 22 tree species in a subtropical karst forest. TREE PHYSIOLOGY 2023; 43:1307-1318. [PMID: 37067918 DOI: 10.1093/treephys/tpad050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 03/16/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
Karst forests are habitats in which access to soil water can be challenging for plants. Therefore, safe and efficient xylem water transport and large internal water storage may benefit tree growth. In this study, we selected 22 tree species from a primary subtropical karst forest in southern China and measured their xylem anatomical traits, saturated water content (SWC), hydraulic conductivity (Ks) and embolism resistance (P50). Additionally, we monitored growth of diameter at breast height (DBH) in 440 individual trees of various sizes over three consecutive years. Our objective was to analyze the relationships between xylem structure, hydraulic efficiency, safety, water storage and growth of karst tree species. The results showed significant differences in structure but not in hydraulic traits between deciduous and evergreen species. Larger vessel diameter, paratracheal parenchyma and higher SWC were correlated with higher Ks. Embolism resistance was not correlated with the studied anatomical traits, and no tradeoff with Ks was observed. In small trees (5-15 cm DBH), diameter growth rate (DGR) was independent of hydraulic traits. In large trees (>15 cm DBH), higher Ks and more negative P50 accounted for higher DGR. From lower to greater embolism resistance, the size-growth relationship shifted from growth deceleration to acceleration with increasing tree size in eight of the 22 species. Our study highlights the vital contributions of xylem hydraulic efficiency and safety to growth rate and dynamics in karst tree species; therefore, we strongly recommend their integration into trait-based forest dynamic models.
Collapse
Affiliation(s)
- Amy N A Aritsara
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, No. 100 Daxuedonglu Road, Nanning 530004, Guangxi, China
- College of Life Sciences and Technology, Guangxi University, No. 100 Daxuedonglu Road, Nanning 530004, Guangxi, China
| | - Ming-Yuan Ni
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, No. 98 Chengxiang Road, Baise 533000, Guangxi, China
| | - Yong-Qiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, No. 100 Daxuedonglu Road, Nanning 530004, Guangxi, China
| | - Chao-Long Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, No. 100 Daxuedonglu Road, Nanning 530004, Guangxi, China
| | - Wen-Hao Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, No. 100 Daxuedonglu Road, Nanning 530004, Guangxi, China
| | - Hui-Qing Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, No. 100 Daxuedonglu Road, Nanning 530004, Guangxi, China
| | - Kun-Fang Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, No. 100 Daxuedonglu Road, Nanning 530004, Guangxi, China
| | - Shi-Dan Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, No. 100 Daxuedonglu Road, Nanning 530004, Guangxi, China
| |
Collapse
|
23
|
Nie W, Dong Y, Liu Y, Tan C, Wang Y, Yuan Y, Ma J, An S, Liu J, Xiao W, Jiang Z, Jia Z, Wang J. Climatic responses and variability in bark anatomical traits of 23 Picea species. FRONTIERS IN PLANT SCIENCE 2023; 14:1201553. [PMID: 37528988 PMCID: PMC10388546 DOI: 10.3389/fpls.2023.1201553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/26/2023] [Indexed: 08/03/2023]
Abstract
In woody plants, bark is an important protective tissue which can participate in photosynthesis, manage water loss, and transport assimilates. Studying the bark anatomical traits can provide insight into plant environmental adaptation strategies. However, a systematic understanding of the variability in bark anatomical traits and their drivers is lacking in woody plants. In this study, the bark anatomical traits of 23 Picea species were determined in a common garden experiment. We analyzed interspecific differences and interpreted the patterns in bark anatomical traits in relation to phylogenetic relationships and climatic factors of each species according to its global distribution. The results showed that there were interspecific differences in bark anatomical traits of Picea species. Phloem thickness was positively correlated with parenchyma cell size, possibly related to the roles of parenchyma cells in the radial transport of assimilates. Sieve cell size was negatively correlated with the radial diameter of resin ducts, and differences in sieve cells were possibly related to the formation and expansion of resin ducts. There were no significant phylogenetic signals for any bark anatomical trait, except the tangential diameter of resin ducts. Phloem thickness and parenchyma cell size were affected by temperature-related factors of their native range, while sieve cell size was influenced by precipitation-related factors. Bark anatomical traits were not significantly different under wet and dry climates. This study makes an important contribution to our understanding of variability in bark anatomical traits among Picea species and their ecological adaptations.
Collapse
Affiliation(s)
- Wen Nie
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Yao Dong
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Yifu Liu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Cancan Tan
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Ya Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yanchao Yuan
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Jianwei Ma
- Research Institute of Forestry of Xiaolong Mountain, Gansu Provincial Key Laboratory of Secondary Forest Cultivation, Tianshui, China
| | - Sanping An
- Research Institute of Forestry of Xiaolong Mountain, Gansu Provincial Key Laboratory of Secondary Forest Cultivation, Tianshui, China
| | - Jianfeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Wenfa Xiao
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Zeping Jiang
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Zirui Jia
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
24
|
Zhang KY, Yang D, Zhang YB, Liu Q, Wang YSD, Ke Y, Xiao Y, Wang Q, Dossa GGO, Schnitzer SA, Zhang JL. Vessel dimorphism and wood traits in lianas and trees among three contrasting environments. AMERICAN JOURNAL OF BOTANY 2023; 110:e16154. [PMID: 36912354 DOI: 10.1002/ajb2.16154] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 05/11/2023]
Abstract
PREMISE Determining how xylem vessel diameters vary among plants and across environments gives insights into different water-use strategies among species and ultimately their distributions. Here, we tested the vessel dimorphism hypothesis that the simultaneous occurrence of many narrow and a few wide vessels gives lianas an advantage over trees in seasonally dry environments. METHODS We measured the diameters of 13,958 vessels from 15 liana species and 10,430 vessels from 16 tree species in a tropical seasonal rainforest, savanna, and subtropical evergreen broadleaved forest. We compared differences in mean and hydraulically weighted vessel diameter (MVD and Dh ), vessel density (VD), theoretical hydraulic conductivity (Kt ), vessel area fraction (VAF), and wood density (WD) between lianas and trees and among three sites. RESULTS Nine liana species and four tree species had dimorphic vessels. From the tropical seasonal rainforest to the savanna, liana MVD, Dh and Kt decreased, and VD and WD increased, while only tree WD increased. From the tropical seasonal rainforest to the subtropical forest, six wood traits remained unchanged for lianas, while tree MVD, Dh and Kt decreased and VD increased. Trait space for lianas and trees were more similar in the savanna and more divergent in the subtropical forest compared to the tropical seasonal rainforest. CONCLUSIONS These results suggest that lianas tend to possess greater vessel dimorphism, which may explain how lianas grow well during seasonal drought, influencing their unique distribution across tropical rainfall gradients.
Collapse
Affiliation(s)
- Ke-Yan Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
- University of Chinese Academy of Sciences, 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Da Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
| | - Yun-Bing Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
- University of Chinese Academy of Sciences, 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Qi Liu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
| | - Yang-Si-Ding Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
- University of Chinese Academy of Sciences, 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Yan Ke
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
- University of Chinese Academy of Sciences, 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Yan Xiao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
- University of Chinese Academy of Sciences, 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Qin Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
- University of Chinese Academy of Sciences, 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Gbadamassi G O Dossa
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
| | - Stefan A Schnitzer
- Department of Biological Sciences, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201, USA
| | - Jiao-Lin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
| |
Collapse
|
25
|
Melián E, Gatica G, Pucheta E. Wood trait trade‐offs in desert plants: A triangular model to understand intra‐ and interspecific variations along an aridity gradient. AUSTRAL ECOL 2023. [DOI: 10.1111/aec.13300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Affiliation(s)
- Edgardo Melián
- Departamento de Biología, Facultad de Ciencias Exactas, Físicas y Naturales Universidad Nacional de San Juan San Juan Argentina
| | - Gabriel Gatica
- Instituto de Innovación para la Producción Agropecuaria y Desarrollo Sostenible UEDD INTA CONICET Tandil Argentina
| | - Eduardo Pucheta
- Departamento de Biología, Facultad de Ciencias Exactas, Físicas y Naturales Universidad Nacional de San Juan San Juan Argentina
| |
Collapse
|
26
|
Yao Y, Ciais P, Viovy N, Joetzjer E, Chave J. How drought events during the last century have impacted biomass carbon in Amazonian rainforests. GLOBAL CHANGE BIOLOGY 2023; 29:747-762. [PMID: 36285645 PMCID: PMC10100251 DOI: 10.1111/gcb.16504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
During the last two decades, inventory data show that droughts have reduced biomass carbon sink of the Amazon forest by causing mortality to exceed growth. However, process-based models have struggled to include drought-induced responses of growth and mortality and have not been evaluated against plot data. A process-based model, ORCHIDEE-CAN-NHA, including forest demography with tree cohorts, plant hydraulic architecture and drought-induced tree mortality, was applied over Amazonia rainforests forced by gridded climate fields and rising CO2 from 1901 to 2019. The model reproduced the decelerating signal of net carbon sink and drought sensitivity of aboveground biomass (AGB) growth and mortality observed at forest plots across selected Amazon intact forests for 2005 and 2010. We predicted a larger mortality rate and a more negative sensitivity of the net carbon sink during the 2015/16 El Niño compared with the former droughts. 2015/16 was indeed the most severe drought since 1901 regarding both AGB loss and area experiencing a severe carbon loss. We found that even if climate change did increase mortality, elevated CO2 contributed to balance the biomass mortality, since CO2 -induced stomatal closure reduces transpiration, thus, offsets increased transpiration from CO2 -induced higher foliage area.
Collapse
Affiliation(s)
- Yitong Yao
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA‐CNRS‐UVSQUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA‐CNRS‐UVSQUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Nicolas Viovy
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA‐CNRS‐UVSQUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Emilie Joetzjer
- INRAE, Universite de Lorraine, AgroParisTech, UMR SilvaNancyFrance
| | - Jerome Chave
- Laboratoire Evolution et Diversité Biologique UMR 5174 CNRS, IRDUniversité Paul SabatierToulouseFrance
| |
Collapse
|
27
|
Costa LDS, Vuralhan-Eckert J, Fromm J. Effect of Elevated CO 2 and Drought on Biomass, Gas Exchange and Wood Structure of Eucalyptus grandis. PLANTS (BASEL, SWITZERLAND) 2022; 12:148. [PMID: 36616277 PMCID: PMC9823954 DOI: 10.3390/plants12010148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Juvenile Eucalyptus grandis were exposed to drought and elevated CO2 to evaluate the independent and interactive effects on growth, gas exchange and wood structure. Trees were grown in a greenhouse at ambient and elevated CO2 (aCO2, 410 ppm; eCO2, 950 ppm), in combination with daily irrigation and cyclic drought during one growing season. The results demonstrated that drought stress limited intercellular CO2 concentration, photosynthesis, stomatal conductance, and transpiration, which correlated with a lower increment in height, stem diameter and biomass. Drought also induced formation of frequent and narrow vessels accompanied by a reduction in vessel lumen area. Conversely, elevated CO2 increased intercellular CO2 concentration as well as photosynthesis, and partially closed stomata, leading to a more efficient water use, especially under drought. There was a clear trend towards greater biomass accumulation at eCO2, although the results did not show statistical significance for this parameter. We observed an increase in vessel diameter and vessel lumen area at eCO2, and, contrarily, the vessel frequency decreased. Thus, we conclude that eCO2 delayed the effects of drought and potentialized growth. However, results on vessel anatomy suggest that increasing vulnerability to cavitation due to formation of larger vessels may counteract the beneficial effects of eCO2 under severe drought.
Collapse
Affiliation(s)
| | | | - Jörg Fromm
- Correspondence: (L.d.S.C.); (J.F.); Tel.: +49-40-73962-466 (L.d.S.C.)
| |
Collapse
|
28
|
Dória LC, Sonsin-Oliveira J, Rossi S, Marcati CR. Functional trade-offs in volume allocation to xylem cell types in 75 species from the Brazilian savanna Cerrado. ANNALS OF BOTANY 2022; 130:445-456. [PMID: 35863898 PMCID: PMC9486921 DOI: 10.1093/aob/mcac095] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/20/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND AND AIMS Xylem is a crucial tissue for plant survival, performing the functions of water transport, mechanical support and storage. Functional trade-offs are a result of the different assemblages of xylem cell types within a certain wood volume. We assessed how the volume allocated to different xylem cell types can be associated with wood functional trade-offs (hydraulics, mechanical and storage) in species from the Cerrado, the Brazilian savanna. We also assessed the xylem anatomical characters linked to wood density across species. METHODS We analysed cross-sections of branches collected from 75 woody species belonging to 42 angiosperm families from the Cerrado. We estimated the wood volume fraction allocated to different cell types and performed measurements of vessel diameter and wood density. KEY RESULTS The largest volume of wood is allocated to fibres (0.47), followed by parenchyma (0.33) and vessels (0.20). Wood density is positively correlated to cell wall (fibre and vessel wall), and negatively to the fractions of fibre lumen and gelatinous fibres. We observed a trade-off between hydraulics (vessel diameter) and mechanics (cell wall fraction), and between mechanics and storage (parenchyma fraction). The expected positive functional relationships between hydraulics (vessel diameter) and water and carbohydrate storage (parenchyma and fibre lumen fractions) were not detected, though larger vessels are linked to a larger wood volume allocated to gelatinous fibres. CONCLUSIONS Woody species from the Cerrado show evidence of functional trade-offs between water transport, mechanical support and storage. Gelatinous fibres might be potentially linked to water storage and release by their positive relationship to increased vessel diameter, thus replacing the functional role of parenchyma and fibre lumen cells. Species can profit from the increased mechanical strength under tension provided by the presence of gelatinous fibres, avoiding expensive investments in high wood density.
Collapse
Affiliation(s)
| | - Julia Sonsin-Oliveira
- Departamento de Biologia Vegetal, Programa de Pós-Graduação em Botânica, Instituto de Ciências Biológicas, Universidade de Brasilia (UnB), Brasília, DF, Brazil
| | - Sergio Rossi
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| | - Carmen Regina Marcati
- Departamento de Ciência Florestal, Solos e Ambiente, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agronômicas, Avenida Universitária, Botucatu, SP, Brazil
| |
Collapse
|
29
|
Echeverría A, Petrone‐Mendoza E, Segovia‐Rivas A, Figueroa‐Abundiz VA, Olson ME. The vessel wall thickness-vessel diameter relationship across woody angiosperms. AMERICAN JOURNAL OF BOTANY 2022; 109:856-873. [PMID: 35435252 PMCID: PMC9328290 DOI: 10.1002/ajb2.1854] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 05/26/2023]
Abstract
PREMISE Comparative anatomy is necessary to identify the extremes of combinations of functionally relevant structural traits, to ensure that physiological data cover xylem anatomical diversity adequately, and thus achieve a global understanding of xylem structure-function relations. A key trait relationship is that between xylem vessel diameter and wall thickness of both the single vessel and the double vessel+adjacent imperforate tracheary element (ITE). METHODS We compiled a comparative data set with 1093 samples, 858 species, 350 genera, 86 families, and 33 orders. We used broken linear regression and an algorithm to explore changes in parameter values from linear regressions using subsets of the data set to identify a threshold, at 90-µm vessel diameter, in the wall thickness-diameter relationship. RESULTS Below 90 µm diameter for vessels, virtually any wall thickness could be associated with virtually any diameter. Below this threshold, selection is free to favor a very wide array of combinations, such as very thick walls and narrow vessels in ITE-free herbs, or very thin-walled, wide vessels in evergreen dryland pioneers. Above 90 µm, there was a moderate positive relationship. CONCLUSIONS Our analysis shows that the space of vessel wall thickness-diameter combinations is very wide, with selection apparently eliminating individuals with vessel walls "too thin" for their diameter. Most importantly, our survey revealed poorly studied plant hydraulic syndromes (functionally significant trait combinations). These data suggest that the full span of trait combinations, and thus the minimal set of hydraulic syndromes requiring study to span woody plant functional diversity adequately, remains to be documented.
Collapse
Affiliation(s)
- Alberto Echeverría
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Ciudad de México, 04510México
| | - Emilio Petrone‐Mendoza
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Ciudad de México, 04510México
| | - Alí Segovia‐Rivas
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Ciudad de México, 04510México
| | - Víctor A. Figueroa‐Abundiz
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Ciudad de México, 04510México
| | - Mark E. Olson
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Ciudad de México, 04510México
| |
Collapse
|
30
|
Lourenço J, Enquist BJ, von Arx G, Sonsin-Oliveira J, Morino K, Thomaz LD, Milanez CRD. Hydraulic tradeoffs underlie local variation in tropical forest functional diversity and sensitivity to drought. THE NEW PHYTOLOGIST 2022; 234:50-63. [PMID: 34981534 DOI: 10.1111/nph.17944] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Tropical forests are important to the regulation of climate and the maintenance of biodiversity on Earth. However, these ecosystems are threatened by climate change, as temperatures rise and droughts' frequency and duration increase. Xylem anatomical traits are an essential component in understanding and predicting forest responses to changes in water availability. We calculated the community-weighted means and variances of xylem anatomical traits of hydraulic and structural importance (plot-level trait values weighted by species abundance) to assess their linkages to local adaptation and community assembly in response to varying soil water conditions in an environmentally diverse Brazilian Atlantic Forest habitat. Scaling approaches revealed community-level tradeoffs in xylem traits not observed at the species level. Towards drier sites, xylem structural reinforcement and integration balanced against hydraulic efficiency and capacitance xylem traits, leading to changes in plant community diversity. We show how general community assembly rules are reflected in persistent fiber-parenchyma and xylem hydraulic tradeoffs. Trait variation across a moisture gradient is larger between species than within species and is realized mainly through changes in species composition and abundance, suggesting habitat specialization. Modeling efforts to predict tropical forest diversity and drought sensitivity may benefit from adding hydraulic architecture traits into the analysis.
Collapse
Affiliation(s)
- Jehová Lourenço
- Programa de Pós-graduação em Biologia Vegetal, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, ES, 29075-910, Brazil
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
- Department of Biological Sciences, University of Quebec in Montreal, Montreal, QC, H3C 3J7, Canada
- College of Life and Environmental Sciences, Geography, Exeter, Devon, EX4 4QE, UK
| | - Brian J Enquist
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
- The Santa Fe Institute, Santa Fe, NM, 87501, USA
| | - Georg von Arx
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, CH-8903, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, Bern, CH-3012, Switzerland
| | - Julia Sonsin-Oliveira
- Programa de Pós-Graduação (PPG) em Botânica, Departamento de Botânica, Instituto de Ciências Biológicas - Universidade de Brasília - UNB, Brasília, DF, 70919-970, Brazil
| | - Kiyomi Morino
- Laboratory of Tree-Ring Research, University of Arizona, Tucson, AZ, 85721, USA
| | - Luciana Dias Thomaz
- Herbário VIES, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, ES, 29075-910, Brazil
| | - Camilla Rozindo Dias Milanez
- Programa de Pós-graduação em Biologia Vegetal, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, ES, 29075-910, Brazil
| |
Collapse
|
31
|
Zhang G, Mao Z, Fortunel C, Martínez-Vilalta J, Viennois G, Maillard P, Stokes A. Parenchyma fractions drive the storage capacity of nonstructural carbohydrates across a broad range of tree species. AMERICAN JOURNAL OF BOTANY 2022; 109:535-549. [PMID: 35266560 DOI: 10.1002/ajb2.1838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
PREMISE Nonstructural carbohydrates (NSCs) play a key role in tree performance and functioning and are stored in radial and axial parenchyma (RAP) cells. Whether this relationship is altered among species and climates or is linked to functional traits describing xylem structure (wood density) and tree stature is not known. METHODS In a systematic review, we collated data for NSC content and the proportion of RAP in stems for 68 tree species. To examine the relationships of NSCs and RAP with climatic factors and other functional traits, we also collected climatic data at each tree's location, as well as wood density and maximum height. A phylogenetic tree was constructed to examine the influence of species' evolutionary relationships on the associations among NSCs, RAP, and functional traits. RESULTS Across all 68 tree species, NSCs were positively correlated with RAP and mean annual temperature, but relationships were only weakly significant in temperate species and angiosperms. When separating RAP into radial parenchyma (RP) and axial parenchyma (AP), both NSCs and wood density were positively correlated with RP but not with AP. Wood in taller trees was less dense and had lower RAP than in shorter trees, but height was not related to NSCs. CONCLUSIONS In trees, NSCs are stored mostly in the RP fraction, which has a larger surface area in warmer climates. Additionally, NSCs were only weakly linked to wood density and tree height. Our analysis of evolutionary relationships demonstrated that RAP fractions and NSC content were always closely related across all 68 tree species, suggesting that RAP can act as a reliable proxy for potential NSC storage capacity in tree stems.
Collapse
Affiliation(s)
- Guangqi Zhang
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, 34000 Montpellier, France
| | - Zhun Mao
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, 34000 Montpellier, France
| | - Claire Fortunel
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, 34000 Montpellier, France
| | - Jordi Martínez-Vilalta
- CREAF, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- Universitat Autònoma Barcelona, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
| | - Gaëlle Viennois
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, 34000 Montpellier, France
| | - Pascale Maillard
- SILVA, INRAE, Université de Lorraine, Agroparistech, Centre de Recherche Grand-Est Nancy, 54280 Champenoux, France
| | - Alexia Stokes
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, 34000 Montpellier, France
| |
Collapse
|
32
|
Kawai K, Minagi K, Nakamura T, Saiki ST, Yazaki K, Ishida A. Parenchyma underlies the interspecific variation of xylem hydraulics and carbon storage across 15 woody species on a subtropical island in Japan. TREE PHYSIOLOGY 2022; 42:337-350. [PMID: 34328187 DOI: 10.1093/treephys/tpab100] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Parenchyma is an important component of the secondary xylem. It has multiple functions and its fraction is known to vary substantially across angiosperm species. However, the physiological significance of this variation is not yet fully understood. Here, we examined how different types of parenchyma (ray parenchyma [RP], axial parenchyma [AP] and AP in direct contact with vessels [APV]) are coordinated with three essential xylem functions: water conduction, storage of non-structural carbohydrate (NSC) and mechanical support. Using branch sapwood of 15 co-occurring drought-adapted woody species from the subtropical Bonin Islands, Japan, we quantified 10 xylem anatomical traits and examined their linkages to hydraulic properties, storage of soluble sugars and starch and sapwood density. The fractions of APV and AP in the xylem transverse sections were positively correlated with the percentage loss of conductivity in the native condition, whereas that of RP was negatively correlated with the maximum conductivity across species. Axial and ray parenchyma fractions were positively associated with concentrations of starch and NSC. The fraction of parenchyma was independent of sapwood density, regardless of parenchyma type. We also identified a negative relationship between hydraulic conductivity and NSC storage and sapwood density, mirroring the negative relationship between the fractions of parenchyma and vessels. These results suggest that parenchyma fraction underlies species variation in xylem hydraulic and carbon use strategies, wherein xylem with a high fraction of AP may adopt an embolism repair strategy through an increased starch storage with low cavitation resistance.
Collapse
Affiliation(s)
- Kiyosada Kawai
- Center for Ecological Research, Kyoto University, Hirano 2 509-3 Otsu, Shiga 520-2113, Japan
- Forestry Division, Japan International Research Center for Agricultural Sciences, Ohwashi 1-1 Tsukuba, Ibaraki 305-8686, Japan
| | - Kanji Minagi
- Center for Ecological Research, Kyoto University, Hirano 2 509-3 Otsu, Shiga 520-2113, Japan
| | - Tomomi Nakamura
- Center for Ecological Research, Kyoto University, Hirano 2 509-3 Otsu, Shiga 520-2113, Japan
| | - Shin-Taro Saiki
- Department of Plant Ecology, Forestry and Forest Products Research Institute, Matsunosato 1, Tsukuba, Ibaraki 305-8687, Japan
| | - Kenichi Yazaki
- Department of Plant Ecology, Forestry and Forest Products Research Institute, Matsunosato 1, Tsukuba, Ibaraki 305-8687, Japan
- Soil-Plant Ecosystem Group, Hokkaido Research Center, Forestry and Forest Products Research Institute, Hitsujigaoka 7, Sapporo, Hokkaido 062-8516, Japan
| | - Atsushi Ishida
- Center for Ecological Research, Kyoto University, Hirano 2 509-3 Otsu, Shiga 520-2113, Japan
| |
Collapse
|
33
|
Nie ZF, Liao ZQ, Yao GQ, Tian XQ, Bi MH, Teixeira da Silva JA, Gao TP, Fang XW. Divergent stem hydraulic strategies of Caragana korshinskii resprouts following a disturbance. TREE PHYSIOLOGY 2022; 42:325-336. [PMID: 34387352 DOI: 10.1093/treephys/tpab108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Resprouting plants are distributed in many vegetation communities worldwide. With increasing resprout age post-severe-disturbance, new stems grow rapidly at their early age, and decrease in their growth with gradually decreasing water status thereafter. However, there is little knowledge about how stem hydraulic strategies and anatomical traits vary post-disturbance. In this study, the stem water potential (Ψstem), maximum stem hydraulic conductivity (Kstem-max), water potential at 50% loss of hydraulic conductivity (Kstem P50) and anatomical traits of Caragana korshinkii resprouts were measured during a 1- to 13-year post-disturbance period. We found that the Kstem-max decreased with resprout age from 1-year-old resprouts (84.2 mol m-1 s-1 MPa-1) to 13-year-old resprouts (54.2 mol m-1 s-1 MPa-1) as a result of decreases in the aperture fraction (Fap) and the sum of aperture area on per unit intervessel wall area (Aap). The Kstem P50 of the resprouts decreased from 1-year-old resprouts (-1.8 MPa) to 13-year-old resprouts (-2.9 MPa) as a result of increases in vessel implosion resistance (t/b)2, wood density (WD), vessel grouping index (GI) and decreases in Fap and Aap. These shifts in hydraulic structure and function resulted in an age-based divergence in hydraulic strategies i.e., a change from an acquisitive strategy to a conservative strategy, with increasing resprout age post-disturbance.
Collapse
Affiliation(s)
- Zheng-Fei Nie
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhong-Qiang Liao
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Guang-Qian Yao
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xue-Qian Tian
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Min-Hui Bi
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | | | - Tian-Peng Gao
- School of Biological and Environmental Engineering, Xi'an University, Xi'an 710065, China
| | - Xiang-Wen Fang
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
34
|
Influence of Colder Temperature on the Axial and Radial Parenchyma Fraction of Quercus ciliaris C.C.Huang & Y.T.Chang Wood and Its Relationship with Carbohydrate Reserve (NSC). FORESTS 2022. [DOI: 10.3390/f13020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Parenchyma in the secondary xylem comprises the main tissue for the storage of non-structural carbohydrates (NSC) in woody plants. Across species, the amount of parenchyma depends on the general environment of the distribution area and determines to a large extent the NSC storage. However, little information is available on the relationship between parenchyma fractions, NSC storage, and the environmental influences within individual species. This information is crucial to assessing the adaptive capacities of tree populations in the context of increasing the frequency and severity of stress-inducing events. In this study, parenchyma fractions and NSC concentrations of the secondary xylem in trunks of a subtropical evergreen oak (Quercus ciliaris C.C.Huang & Y.T.Chang) were quantified along an elevational gradient from 700 m to 1200 m a.s.l. in eastern China. Air temperatures within the distribution area correlated with altitude were recorded. The results showed that the total parenchyma fractions did not covary with the colder temperatures. However, axial parenchyma fractions were lower with a colder climate, while the fractions of multiseriate rays and total ray parenchyma were higher. Higher concentrations of starch and NSC were significantly associated with larger axial parenchyma fractions. The sugar concentration displayed no significant relationship with parenchyma fractions. These findings suggest that the total parenchyma fractions in secondary xylem do not increase in response to a colder climate, while colder temperatures drive changes in the composition of parenchyma for Q. ciliaris.
Collapse
|
35
|
Abstract
In this study, we analyzed the mechanism and the process of fungal-induced agarwood formation in Aquilaria sinensis and studied the functional changes in the xylem structure after the process. The microscopic structure of the white zone, transition zone, agarwood zone, and decay zone of 12-and 18-months of inoculation A. sinensis xylem was studied. The distribution of nuclei, starch grains, soluble sugars, sesquiterpenes, fungal propagules, and mycelium in xylem tissues was investigated by histochemical analysis. The results show that the process of agarwood formation was accompanied by apoptosis of parenchyma cells such as interxylary phloem, xylem rays, and axial parenchyma. Regular changes in the conversion of starch grains to soluble sugars, the production of sesquiterpenoids, and other characteristic components of agarwood in various types of parenchyma cells were also observed. The material transformation was concentrated in the interxylary phloem, providing a structural and material basis for the formation of agarwood. It is the core part of the production of sesquiterpenoids and other characteristic products of agarwood. Compared with the A. sinensis inoculated for 12 months, the xylem of the A. sinensis inoculated for 18 months was more vigorous. There were no significant differences between the 12 and 18 months of inoculation in terms of sugars and agarwood characteristic products. In production, harvesting after 12 months of inoculation can improve harvesting efficiency.
Collapse
|
36
|
Trade-offs among transport, support, and storage in xylem from shrubs in a semiarid chaparral environment tested with structural equation modeling. Proc Natl Acad Sci U S A 2021; 118:2104336118. [PMID: 34389676 PMCID: PMC8379947 DOI: 10.1073/pnas.2104336118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plant vascular systems play a central role in global water and carbon cycles and drought resistance. These vascular systems perform multiple functions that affect the fitness of plants, and trade-offs are present among these functions. Some trade-offs are well established, but studies have not examined the full suite of functions of these complex systems. Here, we used a powerful multivariate method, structural equation modeling, to test hypotheses about the trade-offs that govern this vital and globally important tissue. We show that xylem traits are broadly governed by trade-offs related to transport, mechanical support, and storage, which are rooted in cellular structure, and that the level of dehydration experienced by plants in the field exerts a strong influence over these relationships. The xylem in plants is specialized to transport water, mechanically support the plant body, and store water and carbohydrates. Balancing these functions leads to trade-offs that are linked to xylem structure. We proposed a multivariate hypothesis regarding the main xylem functions and tested it using structural equation modeling. We sampled 29 native shrub species from field sites in semiarid Southern California. We quantified xylem water transport (embolism resistance and transport efficiency), mechanical strength, storage of water (capacitance) and starch, minimum hydrostatic pressures (Pmin), and proportions of fibers, vessels, and parenchyma, which were treated as a latent variable representing “cellular trade-offs.” We found that xylem functions (transport, mechanical support, water storage, and starch storage) were independent, a result driven by Pmin. Pmin was strongly and directly or indirectly associated with all xylem functions as a hub trait. More negative Pmin was associated with increased embolism resistance and tissue strength and reduced capacitance and starch storage. We found strong support for a trade-off between embolism resistance and transport efficiency. Tissue strength was not directly associated with embolism resistance or transport efficiency, and any associations were indirect involving Pmin. With Pmin removed from the model, cellular trade-offs were central and related to all other traits. We conclude that xylem traits are broadly governed by functional trade-offs and that the Pmin experienced by plants in the field exerts a strong influence over these relationships. Angiosperm xylem contains different cell types that contribute to different functions and that underpin trade-offs.
Collapse
|
37
|
Jiang P, Meinzer FC, Fu X, Kou L, Dai X, Wang H. Trade-offs between xylem water and carbohydrate storage among 24 coexisting subtropical understory shrub species spanning a spectrum of isohydry. TREE PHYSIOLOGY 2021; 41:403-415. [PMID: 33079181 DOI: 10.1093/treephys/tpaa138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Hydraulic capacitance and carbohydrate storage are two drought adaptation strategies of woody angiosperms. However, we currently lack information on their associations and how they are associated with species' degree of isohydry. We measured total stem xylem nonstructural carbohydrate (NSC) concentration in the dry and wet seasons, xylem hydraulic capacitance, native leaf water potentials, pressure-volume curve parameters and photosynthetic performance in 24 woody understory species differing in their degree of isohydry. We found a trade-off between xylem water and carbohydrate storage both in storage capacitance and along a spectrum of isohydry. Species with higher hydraulic capacitance had lower native NSC storage. The less isohydric species tended to show greater NSC depletion in the dry season and have more drought-tolerant leaves. In contrast, the more isohydric species had higher hydraulic capacitance, which may enhance their drought avoidance capacity. In these species, leaf flushing in the wet season and higher photosynthetic rates in the dry season resulted in accumulation rather than depletion of NSC in the dry season. Our results provide new insights into the mechanisms through which xylem storage functions determine co-occurring species' drought adaptation strategies and improve our capacity to predict community assembly processes under drought.
Collapse
Affiliation(s)
- Peipei Jiang
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Frederick C Meinzer
- USDA Forest Service, Pacific Northwest Research Station, 3200 SW Jefferson Way, Corvallis, OR 97331, USA
| | - Xiaoli Fu
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Liang Kou
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoqin Dai
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Huimin Wang
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
38
|
Aritsara ANA, Razakandraibe VM, Ramananantoandro T, Gleason SM, Cao KF. Increasing axial parenchyma fraction in the Malagasy Magnoliids facilitated the co-optimisation of hydraulic efficiency and safety. THE NEW PHYTOLOGIST 2021; 229:1467-1480. [PMID: 32981106 DOI: 10.1111/nph.16969] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
The evolution of angiosperms was accompanied by the segregation and specialisation of their xylem tissues. This study aimed to determine whether the fraction and arrangement of parenchyma tissue influence the hydraulic efficiency-safety trade-off in the basal angiosperms. We examined xylem anatomical structure and hydraulic functioning of 28 woody species of Magnoliids in a tropical rainforest of Madagascar and reported, for the first time, quantitative measurements that support the relationship between vessel-to-xylem parenchyma connectivity and the hydraulic efficiency-safety trade-off. We also introduced a new measurement - the distance of species from the trade-off limit - to quantify the co-optimisation of hydraulic efficiency and safety. Although the basal angiosperms in this study had low hydraulic conductivity and safety, species with higher axial parenchyma fraction (APf) had significantly higher hydraulic conductivity. Hydraulic efficiency-safety optimisation was accompanied by higher APf and vessel-to-axial parenchyma connectivity. Conversely, species exhibiting high ray parenchyma fraction and high vessel-to-ray connectivity had lower Ks and were further away from the hydraulic trade-off limit line. Our results provide evidence that axial parenchyma fraction and paratracheal arrangement are associated with both enhanced hydraulic efficiency and safety.
Collapse
Affiliation(s)
- Amy Ny Aina Aritsara
- Plant Ecophysiology and Evolution Group, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China
- Unité de Formation et de Recherche Sciences du Bois, Département Foresterie et Environnement, Ecole Supérieure des Sciences Agronomiques, Université d'Antananarivo, BP 175, Antananarivo, 101, Madagascar
| | - Vonjisoa M Razakandraibe
- Unité de Formation et de Recherche Sciences du Bois, Département Foresterie et Environnement, Ecole Supérieure des Sciences Agronomiques, Université d'Antananarivo, BP 175, Antananarivo, 101, Madagascar
| | - Tahiana Ramananantoandro
- Unité de Formation et de Recherche Sciences du Bois, Département Foresterie et Environnement, Ecole Supérieure des Sciences Agronomiques, Université d'Antananarivo, BP 175, Antananarivo, 101, Madagascar
| | - Sean M Gleason
- Water Management and Systems Research Unit, USDA-ARS, Fort Collins, CO, 80526, USA
| | - Kun-Fang Cao
- Plant Ecophysiology and Evolution Group, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China
| |
Collapse
|
39
|
Pratt RB, Tobin MF, Jacobsen AL, Traugh CA, De Guzman ME, Hayes CC, Toschi HS, MacKinnon ED, Percolla MI, Clem ME, Smith PT. Starch storage capacity of sapwood is related to dehydration avoidance during drought. AMERICAN JOURNAL OF BOTANY 2021; 108:91-101. [PMID: 33349932 DOI: 10.1002/ajb2.1586] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/22/2020] [Indexed: 05/26/2023]
Abstract
PREMISE The xylem tissue of plants performs three principal functions: transport of water, support of the plant body, and nutrient storage. Tradeoffs may arise because different structural requirements are associated with different functions or because suites of traits are under selection that relate to resource acquisition, use, and turnover. The structural and functional basis of xylem storage is not well established. We hypothesized that greater starch storage would be associated with greater sapwood parenchyma and reduced fibers, which would compromise resistance to xylem tensions during dehydration. METHODS We measured cavitation resistance, minimum water potential, starch content, and sapwood parenchyma and fiber area in 30 species of southern California chaparral shrubs (evergreen and deciduous). RESULTS We found that species storing greater starch within their xylem tended to avoid dehydration and were less cavitation resistant, and this was supported by phylogenetic independent contrasts. Greater sapwood starch was associated with greater parenchyma area and reduced fiber area. For species without living fibers, the associations with parenchyma were stronger, suggesting that living fibers may expand starch storage capacity while also contributing to the support function of the vascular tissue. Drought-deciduous species were associated with greater dehydration avoidance than evergreens. CONCLUSIONS Evolutionary forces have led to an association between starch storage and dehydration resistance as part of an adaptive suite of traits. We found evidence for a tradeoff between tissue mechanical traits and starch storage; moreover, the evolution of novel strategies, such as starch-storing living fibers, may mitigate the strength of this tradeoff.
Collapse
Affiliation(s)
- R Brandon Pratt
- California State University, Bakersfield, Department of Biology, Bakersfield, California, 93311, USA
| | - Michael F Tobin
- University of Houston-Downtown, Department of Natural Sciences, One Main Street, Houston, Texas, 77002, USA
| | - Anna L Jacobsen
- California State University, Bakersfield, Department of Biology, Bakersfield, California, 93311, USA
| | - Courtney A Traugh
- California State University, Bakersfield, Department of Biology, Bakersfield, California, 93311, USA
| | - Mark E De Guzman
- California State University, Bakersfield, Department of Biology, Bakersfield, California, 93311, USA
| | - Christine C Hayes
- California State University, Bakersfield, Department of Biology, Bakersfield, California, 93311, USA
| | - Hayden S Toschi
- California State University, Bakersfield, Department of Biology, Bakersfield, California, 93311, USA
| | - Evan D MacKinnon
- California State University, Bakersfield, Department of Biology, Bakersfield, California, 93311, USA
| | - Marta I Percolla
- California State University, Bakersfield, Department of Biology, Bakersfield, California, 93311, USA
| | - Michael E Clem
- California State University, Bakersfield, Department of Biology, Bakersfield, California, 93311, USA
| | - Paul T Smith
- California State University, Bakersfield, Department of Biology, Bakersfield, California, 93311, USA
| |
Collapse
|