1
|
Bruhn D, Fan Y, Griffin KL, Cowan‐Turner D, Scafaro AP, Møller IM, Atkin OK. Importance of the leaf respiratory quotient. PHYSIOLOGIA PLANTARUM 2025; 177:e70235. [PMID: 40259516 PMCID: PMC12012293 DOI: 10.1111/ppl.70235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/15/2025] [Accepted: 02/27/2025] [Indexed: 04/23/2025]
Abstract
Rates of leaf respiratory CO2-release (RCO2) are important for terrestrial biosphere models that estimate carbon exchange between plants and the atmosphere. Hitherto, models of RCO2 have primarily been based on considerations of respiratory energy demand (particularly ATP) for maintenance and growth purposes. Respiratory ATP synthesis is closely tied to the rate of respiratory O2-uptake (RO2), with relative engagement of the alternative oxidase influencing the ATP:O ratio. However, the extent to which respiratory ATP synthesis is coupled to leaf RCO2 depends on the respiratory quotient (RQ, mol CO2 efflux per unit mol O2 uptake), with models predicting leaf RCO2 assuming that the RQ is at unity. Here, we show systematic inter-specific, temporal and temperature-dependent variation in leaf RQ, with values of RQ ranging from 0.51 to 2.2, challenging model assumptions on the RQ. We discuss possible mechanisms underlying the variation in leaf RQ, potential ways forward in terms of new measurement protocols, and perspectives for modelled RCO2. Our analyses highlight a range of outstanding research questions that need to be answered before we can mechanistically model leaf RCO2 at various scales.
Collapse
Affiliation(s)
- Dan Bruhn
- Department of Chemistry and BioscienceAalborg UniversityAalborgDenmark
| | - Yuzhen Fan
- Division of Plant Sciences, Research School of BiologyAustralian National UniversityCanberraAustralia
| | - Kevin L. Griffin
- Department of Ecology, Evolution and Environmental Biology, Lamont‐Doherty Earth Observatory, Department of Earth and Environmental SciencesColumbia UniversityNew YorkNYUSA
| | - Daniel Cowan‐Turner
- Division of Plant Sciences, Research School of BiologyAustralian National UniversityCanberraAustralia
| | - Andrew P. Scafaro
- Division of Plant Sciences, Research School of BiologyAustralian National UniversityCanberraAustralia
| | - Ian Max Møller
- Department of Molecular Biology and GeneticsAarhus UniversitySlagelseDenmark
| | - Owen K. Atkin
- Division of Plant Sciences, Research School of BiologyAustralian National UniversityCanberraAustralia
| |
Collapse
|
2
|
Gaju O, Bloomfield KJ, Negrini ACA, Bowerman AF, Cullerne D, Posch BC, Bryant C, Fan Y, Spence M, Stone B, Gilliham M, Furbank RT, Molero G, Pogson BJ, Mathews K, Millar AH, Pearson AL, Reynolds MP, Stroeher E, Taylor NL, Turnbull MH, Atkin OK. Accounting for the impact of genotype and environment on variation in leaf respiration of wheat in Mexico and Australia. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1099-1115. [PMID: 39548831 PMCID: PMC11850970 DOI: 10.1093/jxb/erae449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/03/2024] [Indexed: 11/18/2024]
Abstract
An approach to improving radiation use efficiency (RUE) in wheat is to screen for variability in rates of leaf respiration in darkness (Rdark). We used a high-throughput system to quantify variation in Rdark among a diverse range of spring wheat genotypes (301 lines) grown in two countries (Mexico and Australia) and two seasons (2017 and 2018), and in doing so quantify the relative importance of genotype (G) and environment (E) in influencing variations in leaf Rdark. Through careful design, residual (unexplained) variation represented <10% of the total observed. Up to a third of the variation in Rdark (and related traits) was under genetic control. This suggests opportunities for breeders to use Rdark as a novel selection tool. In addition, E accounted for more than half of the total variation in area-based rates of Rdark. Here, the day of measurement was crucial, suggesting that day-to-day variations in the environment influence rates of Rdark measured at a common temperature. Overall, this study provides new insights into the role G and E play in determining variation in rates of leaf Rdark of one of the most important cereal crops, with implications for future improvements in carbon use efficiency and yield.
Collapse
Affiliation(s)
- Oorbessy Gaju
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- College of Science, Lincoln Institute for Agri-Food Technology, University of Lincoln, Lincolnshire LN2 2LG, UK
| | - Keith J Bloomfield
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, UK
| | - Anna C A Negrini
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Andrew F Bowerman
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Darren Cullerne
- Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Bradley Cooper Posch
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Callum Bryant
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Yuzhen Fan
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Matthew Spence
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Bethany Stone
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Matthew Gilliham
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Robert T Furbank
- Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Gemma Molero
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera Mexico, El Batan, Texcoco, 56237, Mexico
- KWS Momont Recherche, 7 Rue de Martinval, 56246 Mons-en-Pévèle, France
| | - Barry J Pogson
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Ky Mathews
- Center for Bioinformatics and Biometrics, University of Wollongong, Northfields Ave, Wollongong NSW 2522, Australia
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences & Institute of Agriculture, The University of Western Australia, Crawley, WA 6009, Australia
| | - Allison L Pearson
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Matthew P Reynolds
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera Mexico, El Batan, Texcoco, 56237, Mexico
| | - Elke Stroeher
- Centre for Microscopy, Characterisation & Analysis, The University of Western Australia, Perth WA 60C09, Australia
| | - Nicolas L Taylor
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences & Institute of Agriculture, The University of Western Australia, Crawley, WA 6009, Australia
| | - Matthew H Turnbull
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Owen K Atkin
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
3
|
Busch FA, Ainsworth EA, Amtmann A, Cavanagh AP, Driever SM, Ferguson JN, Kromdijk J, Lawson T, Leakey ADB, Matthews JSA, Meacham-Hensold K, Vath RL, Vialet-Chabrand S, Walker BJ, Papanatsiou M. A guide to photosynthetic gas exchange measurements: Fundamental principles, best practice and potential pitfalls. PLANT, CELL & ENVIRONMENT 2024; 47:3344-3364. [PMID: 38321805 DOI: 10.1111/pce.14815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/31/2023] [Indexed: 02/08/2024]
Abstract
Gas exchange measurements enable mechanistic insights into the processes that underpin carbon and water fluxes in plant leaves which in turn inform understanding of related processes at a range of scales from individual cells to entire ecosytems. Given the importance of photosynthesis for the global climate discussion it is important to (a) foster a basic understanding of the fundamental principles underpinning the experimental methods used by the broad community, and (b) ensure best practice and correct data interpretation within the research community. In this review, we outline the biochemical and biophysical parameters of photosynthesis that can be investigated with gas exchange measurements and we provide step-by-step guidance on how to reliably measure them. We advise on best practices for using gas exchange equipment and highlight potential pitfalls in experimental design and data interpretation. The Supporting Information contains exemplary data sets, experimental protocols and data-modelling routines. This review is a community effort to equip both the experimental researcher and the data modeller with a solid understanding of the theoretical basis of gas-exchange measurements, the rationale behind different experimental protocols and the approaches to data interpretation.
Collapse
Affiliation(s)
- Florian A Busch
- School of Biosciences and Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK
- Research School of Biology, The Australian National University, Canberra, Australian Captial Territory, Australia
| | | | - Anna Amtmann
- School of Molecular Biosciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Amanda P Cavanagh
- School of Life Sciences, University of Essex, Colchester, UK
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois, USA
| | - Steven M Driever
- Centre for Crop Systems Analysis, Wageningen University & Research, Wageningen, The Netherlands
| | - John N Ferguson
- School of Life Sciences, University of Essex, Colchester, UK
| | - Johannes Kromdijk
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois, USA
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, UK
| | - Andrew D B Leakey
- Departments of Plant Biology and Crop Sciences, University of Illinois Urbana Champaign, Urbana, Illinois, USA
| | | | | | - Richard L Vath
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
- LI-COR Environmental, Lincoln, Nebraska, USA
| | - Silvere Vialet-Chabrand
- Department of Plant Sciences, Horticulture and Product Physiology, Wageningen, The Netherlands
| | - Berkley J Walker
- Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Maria Papanatsiou
- School of Molecular Biosciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
4
|
Wang Z, Wang X, Han B, Liu D, Wang C. Balance between carbon gain and loss in warmer environments: impacts on photosynthesis and leaf respiration in four temperate tree species. TREE PHYSIOLOGY 2024; 44:tpae070. [PMID: 38905287 DOI: 10.1093/treephys/tpae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/31/2024] [Accepted: 06/20/2024] [Indexed: 06/23/2024]
Abstract
The temperature sensitivities of photosynthesis and respiration remain a key uncertainty in predicting how forests will respond to climate warming. We grew seedlings of four temperate tree species, including Betula platyphylla, Fraxinus mandshurica, Juglans mandshurica and Tilia amurensis, at three temperature regimes (ambient, +2 °C, and +4 °C in daytime air temperature). We investigated net photosynthesis (Anet25), maximum rate of RuBP-carboxylation (Vcmax25) and RuBP-regeneration (Jmax25), stomatal conductance (gs25), mesophyll conductance (gm25), and leaf respiration (Rleaf) in dark (Rdark25) and in light (Rlight25) at 25 °C in all species. Additionally, we examined the temperature sensitivities of Anet, Vcmax, Jmax, Rdark and Rlight in F. mandshurica. Our findings showed that the warming-induced decreases in Anet25, Vcmax25 and Jmax25 were more prevalent in the late-successional species T. amurensis. Warming had negative impacts on gs25 in all species. Overall, Anet25 was positively correlated with Vcmax25 and Jmax25 across all growth temperatures. However, a positive correlation between Anet25 and gs25 was observed only under warming conditions, and gs25 was negatively associated with vapor pressure deficit. This implies that the vapor pressure deficit-induced decrease in gs25 was responsible for the decline in Anet25 at higher temperatures. The optimum temperature of Anet in F. mandshurica increased by 0.59 °C per 1.0 °C rise in growth temperature. While +2 °C elevated the thermal optima of Jmax, it did not affect the other temperature sensitivity parameters of Vcmax and Jmax. Rdark25 was not affected by warming in any species, and Rlight25 was stimulated in T. amurensis. The temperature response curves of Rdark and Rlight in F. mandshurica were not altered by warming, implying a lack of thermal acclimation. The ratios of Rdark25 and Rlight25 to Anet25 and Vcmax25 in T. amurensis increased with warming. These results suggest that Anet and Rleaf did not acclimate to warming synchronously in these temperate tree species.
Collapse
Affiliation(s)
- Zhaoguo Wang
- School of Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Xiaochun Wang
- School of Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Bingxin Han
- School of Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Di Liu
- School of Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Chuankuan Wang
- School of Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| |
Collapse
|
5
|
Fan Y, Tcherkez G, Scafaro AP, Taylor NL, Furbank RT, von Caemmerer S, Atkin OK. Variation in leaf dark respiration among C3 and C4 grasses is associated with use of different substrates. PLANT PHYSIOLOGY 2024; 195:1475-1490. [PMID: 38324704 PMCID: PMC11142371 DOI: 10.1093/plphys/kiae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/04/2023] [Accepted: 01/11/2024] [Indexed: 02/09/2024]
Abstract
Measurements of respiratory properties have often been made at a single time point either during daytime using dark-adapted leaves or during nighttime. The influence of the day-night cycle on respiratory metabolism has received less attention but is crucial to understand photosynthesis and photorespiration. Here, we examined how CO2- and O2-based rates of leaf dark respiration (Rdark) differed between midday (after 30-min dark adaptation) and midnight in 8 C3 and C4 grasses. We used these data to calculate the respiratory quotient (RQ; ratio of CO2 release to O2 uptake), and assessed relationships between Rdark and leaf metabolome. Rdark was higher at midday than midnight, especially in C4 species. The day-night difference in Rdark was more evident when expressed on a CO2 than O2 basis, with the RQ being higher at midday than midnight in all species, except in rice (Oryza sativa). Metabolomic analyses showed little correlation of Rdark or RQ with leaf carbohydrates (sucrose, glucose, fructose, or starch) but strong multivariate relationships with other metabolites. The results suggest that rates of Rdark and differences in RQ were determined by several concurrent CO2-producing and O2-consuming metabolic pathways, not only the tricarboxylic acid cycle (organic acids utilization) but also the pentose phosphate pathway, galactose metabolism, and secondary metabolism. As such, Rdark was time-, type- (C3/C4) and species-dependent, due to the use of different substrates.
Collapse
Affiliation(s)
- Yuzhen Fan
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Guillaume Tcherkez
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- Institut de Recherche en Horticulture et Semences, INRAe, Université d'Angers, Beaucouzé 49100, France
| | - Andrew P Scafaro
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Nicolas L Taylor
- School of Molecular Sciences and Institute of Agriculture, The University of Western Australia, Crawley, WA 6009, Australia
| | - Robert T Furbank
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Susanne von Caemmerer
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Owen K Atkin
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
6
|
Parkash V, Snider JL, Virk G, Dhillon KK, Lee JM. Diffusional and Biochemical Limitations to Photosynthesis Under Water Deficit for Field-Grown Cotton. PHYSIOLOGIA PLANTARUM 2024; 176:e14281. [PMID: 38606698 DOI: 10.1111/ppl.14281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024]
Abstract
Water deficit stress limits net photosynthetic rate (AN), but the relative sensitivities of underlying processes such as thylakoid reactions, ATP production, carbon fixation reactions, and carbon loss processes to water deficit stress in field-grown upland cotton require further exploration. Therefore, the objective of the present study was to assess (1) the diffusional and biochemical mechanisms associated with water deficit-induced declines in AN and (2) associations between water deficit-induced variation in oxidative stress and energy dissipation for field-grown cotton. Water deficit stress was imposed for three weeks during the peak bloom stage of cotton development, causing significant reductions in leaf water potential and AN. Among diffusional limitations, mesophyll conductance was the major contributor to the AN decline. Several biochemical processes were adversely impacted by water deficit. Among these, electron transport rate and RuBP regeneration were most sensitive to AN-limiting water deficit. Carbon loss processes (photorespiration and dark respiration) were less sensitive than carbon assimilation, contributing to the water deficit-induced declines in AN. Increased energy dissipation via non-photochemical quenching or maintenance of electron flux to photorespiration prevented oxidative stress. Declines in AN were not associated with water deficit-induced variation in ATP production. It was concluded that diffusional limitations followed by biochemical limitations (ETR and RuBP regeneration) contributed to declines in AN, carbon loss processes partially contributed to the decline in AN, and increased energy dissipation prevented oxidative stress under water deficit in field-grown cotton.
Collapse
Affiliation(s)
- Ved Parkash
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA, USA
| | - John L Snider
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA, USA
| | - Gurpreet Virk
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA, USA
| | | | - Joshua M Lee
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA, USA
| |
Collapse
|
7
|
Li L, Li Y, Ding G. Response mechanism of carbon metabolism of Pinus massoniana to gradient high temperature and drought stress. BMC Genomics 2024; 25:166. [PMID: 38347506 PMCID: PMC10860282 DOI: 10.1186/s12864-024-10054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/25/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND The carbon metabolism pathway is of paramount importance for the growth and development of plants, exerting a pivotal regulatory role in stress responses. The exacerbation of drought impacts on the plant carbon cycle due to global warming necessitates comprehensive investigation into the response mechanisms of Masson Pine (Pinus massoniana Lamb.), an exemplary pioneer drought-tolerant tree, thereby establishing a foundation for predicting future forest ecosystem responses to climate change. RESULTS The seedlings of Masson Pine were utilized as experimental materials in this study, and the transcriptome, metabolome, and photosynthesis were assessed under varying temperatures and drought intensities. The findings demonstrated that the impact of high temperature and drought on the photosynthetic rate and transpiration rate of Masson Pine seedlings was more pronounced compared to individual stressors. The analysis of transcriptome data revealed that the carbon metabolic pathways of Masson Pine seedlings were significantly influenced by high temperature and drought co-stress, with a particular impact on genes involved in starch and sucrose metabolism. The metabolome analysis revealed that only trehalose and Galactose 1-phosphate were specifically associated with the starch and sucrose metabolic pathways. Furthermore, the trehalose metabolic heat map was constructed by integrating metabolome and transcriptome data, revealing a significant increase in trehalose levels across all three comparison groups. Additionally, the PmTPS1, PmTPS5, and PmTPPD genes were identified as key regulatory genes governing trehalose accumulation. CONCLUSIONS The combined effects of high temperature and drought on photosynthetic rate, transpiration rate, transcriptome, and metabolome were more pronounced than those induced by either high temperature or drought alone. Starch and sucrose metabolism emerged as the pivotal carbon metabolic pathways in response to high temperature and drought stress in Masson pine. Trehalose along with PmTPS1, PmTPS5, and PmTPPD genes played crucial roles as metabolites and key regulators within the starch and sucrose metabolism.
Collapse
Affiliation(s)
- Liangliang Li
- Forest Resources and Environment Research Center, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, 550001, Guiyang, China
- Institute of Mountain Resources of Guizhou Province, Guiyang, China, 550001
| | - Yan Li
- Forest Resources and Environment Research Center, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, 550001, Guiyang, China
| | - Guijie Ding
- Forest Resources and Environment Research Center, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, 550001, Guiyang, China.
| |
Collapse
|
8
|
Coast O, Scafaro AP, Bramley H, Taylor NL, Atkin OK. Photosynthesis in newly developed leaves of heat-tolerant wheat acclimates to long-term nocturnal warming. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:962-978. [PMID: 37935881 PMCID: PMC10837020 DOI: 10.1093/jxb/erad437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023]
Abstract
We examined photosynthetic traits of pre-existing and newly developed flag leaves of four wheat genotypes grown in controlled-environment experiments. In newly developed leaves, acclimation of the maximum rate of net CO2 assimilation (An) to warm nights (i.e. increased An) was associated with increased capacity of Rubisco carboxylation and photosynthetic electron transport, with Rubisco activation state probably contributing to increased Rubisco activity. Metabolite profiling linked acclimation of An to greater accumulation of monosaccharides and saturated fatty acids in leaves; these changes suggest roles for osmotic adjustment of leaf turgor pressure and maintenance of cell membrane integrity. By contrast, where An decreased under warm nights, the decline was related to lower stomatal conductance and rates of photosynthetic electron transport. Decreases in An occurred despite higher basal PSII thermal stability in all genotypes exposed to warm nights: Tcrit of 45-46.5 °C in non-acclimated versus 43.8-45 °C in acclimated leaves. Pre-existing leaves showed no change in An-temperature response curves, except for an elite heat-tolerant genotype. These findings illustrate the impact of night-time warming on the ability of wheat plants to photosynthesize during the day, thereby contributing to explain the impact of global warming on crop productivity.
Collapse
Affiliation(s)
- Onoriode Coast
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK
- School of Environmental and Rural Sciences, Faculty of Science, Agriculture, Business, and Law, University of New England, Armidale, NSW 2351, Australia
| | - Andrew P Scafaro
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- Division of Plant Science, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Helen Bramley
- School of Life and Environmental Sciences, Plant Breeding Institute, Sydney Institute of Agriculture, The University of Sydney, Narrabri, NSW 2390, Australia
| | - Nicolas L Taylor
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences and Institute of Agriculture, The University of Western Australia, Crawley, WA 6009, Australia
| | - Owen K Atkin
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- Division of Plant Science, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
9
|
Keller B, Soto J, Steier A, Portilla-Benavides AE, Raatz B, Studer B, Walter A, Muller O, Urban MO. Linking photosynthesis and yield reveals a strategy to improve light use efficiency in a climbing bean breeding population. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:901-916. [PMID: 37878015 PMCID: PMC10837016 DOI: 10.1093/jxb/erad416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/21/2023] [Indexed: 10/26/2023]
Abstract
Photosynthesis drives plant physiology, biomass accumulation, and yield. Photosynthetic efficiency, specifically the operating efficiency of PSII (Fq'/Fm'), is highly responsive to actual growth conditions, especially to fluctuating photosynthetic photon fluence rate (PPFR). Under field conditions, plants constantly balance energy uptake to optimize growth. The dynamic regulation complicates the quantification of cumulative photochemical energy uptake based on the intercepted solar energy, its transduction into biomass, and the identification of efficient breeding lines. Here, we show significant effects on biomass related to genetic variation in photosynthetic efficiency of 178 climbing bean (Phaseolus vulgaris L.) lines. Under fluctuating conditions, the Fq'/Fm' was monitored throughout the growing period using hand-held and automated chlorophyll fluorescence phenotyping. The seasonal response of Fq'/Fm' to PPFR (ResponseG:PPFR) achieved significant correlations with biomass and yield, ranging from 0.33 to 0.35 and from 0.22 to 0.31 in two glasshouse and three field trials, respectively. Phenomic yield prediction outperformed genomic predictions for new environments in four trials under different growing conditions. Investigating genetic control over photosynthesis, one single nucleotide polymorphism (Chr09_37766289_13052) on chromosome 9 was significantly associated with ResponseG:PPFR in proximity to a candidate gene controlling chloroplast thylakoid formation. In conclusion, photosynthetic screening facilitates and accelerates selection for high yield potential.
Collapse
Affiliation(s)
- Beat Keller
- Crop Science, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Jonatan Soto
- Bean Program, Crops for nutrition and health, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Angelina Steier
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | | | - Bodo Raatz
- Bean Program, Crops for nutrition and health, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Bruno Studer
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Achim Walter
- Crop Science, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Onno Muller
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Milan O Urban
- Bean Program, Crops for nutrition and health, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| |
Collapse
|
10
|
McAusland L, Acevedo‐Siaca LG, Pinto RS, Pinto F, Molero G, Garatuza‐Payan J, Reynolds MP, Murchie EH, Yepez EA. Night-time warming in the field reduces nocturnal stomatal conductance and grain yield but does not alter daytime physiological responses. THE NEW PHYTOLOGIST 2023; 239:1622-1636. [PMID: 37430457 PMCID: PMC10952344 DOI: 10.1111/nph.19075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/11/2023] [Indexed: 07/12/2023]
Abstract
Global nocturnal temperatures are rising more rapidly than daytime temperatures and have a large effect on crop productivity. In particular, stomatal conductance at night (gsn ) is surprisingly poorly understood and has not been investigated despite constituting a significant proportion of overall canopy water loss. Here, we present the results of 3 yr of field data using 12 spring Triticum aestivum genotypes which were grown in NW Mexico and subjected to an artificial increase in night-time temperatures of 2°C. Under nocturnal heating, grain yields decreased (1.9% per 1°C) without significant changes in daytime leaf-level physiological responses. Under warmer nights, there were significant differences in the magnitude and decrease in gsn , values of which were between 9 and 33% of daytime rates while respiration appeared to acclimate to higher temperatures. Decreases in grain yield were genotype-specific; genotypes categorised as heat tolerant demonstrated some of the greatest declines in yield in response to warmer nights. We conclude the essential components of nocturnal heat tolerance in wheat are uncoupled from resilience to daytime temperatures, raising fundamental questions for physiological breeding. Furthermore, this study discusses key physiological traits such as pollen viability, root depth and irrigation type may also play a role in genotype-specific nocturnal heat tolerance.
Collapse
Affiliation(s)
- Lorna McAusland
- Division of Plant and Crop Sciences, School of BiosciencesUniversity of NottinghamLeicestershireLE12 5RDUK
| | - Liana G. Acevedo‐Siaca
- International Maize and Wheat Improvement Centre (CIMMYT)Carretera México‐Veracruz Km 45, El Batán, TexcocoMéxicoCP 56237Mexico
| | - R. Suzuky Pinto
- Instituto Tecnológico de Sonora (ITSON)5 de Febrero 818 Sur, Col. Centro, Cd. Obregón, SonoraMéxicoCP 85000Mexico
| | - Francisco Pinto
- International Maize and Wheat Improvement Centre (CIMMYT)Carretera México‐Veracruz Km 45, El Batán, TexcocoMéxicoCP 56237Mexico
| | - Gemma Molero
- International Maize and Wheat Improvement Centre (CIMMYT)Carretera México‐Veracruz Km 45, El Batán, TexcocoMéxicoCP 56237Mexico
| | - Jaime Garatuza‐Payan
- Instituto Tecnológico de Sonora (ITSON)5 de Febrero 818 Sur, Col. Centro, Cd. Obregón, SonoraMéxicoCP 85000Mexico
| | - Matthew P. Reynolds
- International Maize and Wheat Improvement Centre (CIMMYT)Carretera México‐Veracruz Km 45, El Batán, TexcocoMéxicoCP 56237Mexico
| | - Erik H. Murchie
- Division of Plant and Crop Sciences, School of BiosciencesUniversity of NottinghamLeicestershireLE12 5RDUK
| | - Enrico A. Yepez
- Instituto Tecnológico de Sonora (ITSON)5 de Febrero 818 Sur, Col. Centro, Cd. Obregón, SonoraMéxicoCP 85000Mexico
| |
Collapse
|
11
|
Coast O, Posch BC, Rognoni BG, Bramley H, Gaju O, Mackenzie J, Pickles C, Kelly AM, Lu M, Ruan YL, Trethowan R, Atkin OK. Wheat photosystem II heat tolerance: evidence for genotype-by-environment interactions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1368-1382. [PMID: 35781899 DOI: 10.1111/tpj.15894] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
High temperature stress inhibits photosynthesis and threatens wheat production. One measure of photosynthetic heat tolerance is Tcrit - the critical temperature at which incipient damage to photosystem II (PSII) occurs. This trait could be improved in wheat by exploiting genetic variation and genotype-by-environment interactions (GEI). Flag leaf Tcrit of 54 wheat genotypes was evaluated in 12 thermal environments over 3 years in Australia, and analysed using linear mixed models to assess GEI effects. Nine of the 12 environments had significant genetic effects and highly variable broad-sense heritability (H2 ranged from 0.15 to 0.75). Tcrit GEI was variable, with 55.6% of the genetic variance across environments accounted for by the factor analytic model. Mean daily growth temperature in the month preceding anthesis was the most influential environmental driver of Tcrit GEI, suggesting biochemical, physiological and structural adjustments to temperature requiring different durations to manifest. These changes help protect or repair PSII upon exposure to heat stress, and may improve carbon assimilation under high temperature. To support breeding efforts to improve wheat performance under high temperature, we identified genotypes superior to commercial cultivars commonly grown by farmers, and demonstrated potential for developing genotypes with greater photosynthetic heat tolerance.
Collapse
Affiliation(s)
- Onoriode Coast
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent, ME4 4TB, UK
- School of Environmental and Rural Sciences, Faculty of Science Agriculture Business and Law, University of New England, Armidale, NSW, 2351, Australia
| | - Bradley C Posch
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Bethany G Rognoni
- Department of Agriculture and Fisheries, Leslie Research Facility, Toowoomba, QLD, 4350, Australia
| | - Helen Bramley
- School of Life and Environmental Sciences, Plant Breeding Institute, Sydney Institute of Agriculture, The University of Sydney, Narrabri, NSW, 2390, Australia
| | - Oorbessy Gaju
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
- Lincoln Institute of Agri-Food Technology, University of Lincoln, Riseholme Park, Lincoln, Lincolnshire, LN2 2LG, UK
| | - John Mackenzie
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Claire Pickles
- Birchip Cropping Group, 73 Cumming Avenue, Birchip, VIC, 3483, Australia
| | - Alison M Kelly
- Department of Agriculture and Fisheries, Leslie Research Facility, Toowoomba, QLD, 4350, Australia
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Toowoomba, QLD, 4350, Australia
| | - Meiqin Lu
- Australian Grain Technologies, 12656 Newell Highway, Narrabri, NSW, 2390, Australia
| | - Yong-Ling Ruan
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Richard Trethowan
- School of Life and Environmental Sciences, Plant Breeding Institute, Sydney Institute of Agriculture, The University of Sydney, Narrabri, NSW, 2390, Australia
- School of Life and Environmental Sciences, Plant Breeding Institute, Sydney Institute of Agriculture, The University of Sydney, Cobbitty, NSW, 2570, Australia
| | - Owen K Atkin
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
12
|
Transpirational Leaf Cooling Effect Did Not Contribute Equally to Biomass Retention in Wheat Genotypes under High Temperature. PLANTS 2022; 11:plants11162174. [PMID: 36015478 PMCID: PMC9416376 DOI: 10.3390/plants11162174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 12/02/2022]
Abstract
High temperature and water deficit are the most critical yield-limiting environmental factors for wheat in rainfed environments. It is important to understand the heat avoidance mechanisms and their associations with leaf morpho-physiological traits that allow crops to stay cool and retain high biomass under warm and dry conditions. We examined 20 morpho-physiologically diverse wheat genotypes under ambient and elevated temperatures (Tair) to investigate whether increased water use leads to high biomass retention due to increased leaf cooling. An experiment was conducted under well-watered conditions in two partially controlled glasshouses. We measured plant transpiration (Tr), leaf temperature (Tleaf), vapor pressure deficit (VPD), and associated leaf morpho-physiological characteristics. High water use and leaf cooling increased biomass retention under high temperatures, but increased use did not always increase biomass retention. Some genotypes maintained biomass, irrespective of water use, possibly through mechanisms other than leaf cooling, indicating their adaptation under water shortage. Genotypic differences in leaf cooling capacity did not always correlate with Tr (VPD) response. In summary, the contribution of high water use or the leaf cooling effect on biomass retention under high temperature is genotype-dependent and possibly due to variations in leaf morpho-physiological traits. These findings are useful for breeding programs to develop climate resilient wheat cultivars.
Collapse
|
13
|
Ren Y, Zhu J, Zhang H, Lin B, Hao P, Hua S. Leaf Carbohydrate Metabolism Variation Caused by Late Planting in Rapeseed (Brassica napus L.) at Reproductive Stage. PLANTS 2022; 11:plants11131696. [PMID: 35807649 PMCID: PMC9268982 DOI: 10.3390/plants11131696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022]
Abstract
Delayed planting date of rapeseed is an important factor affecting seed yield. However, regulation of the leaf carbohydrate metabolism in rapeseed by a late planting date at the reproductive stage is scarcely investigated. A two-year field experiment was conducted to assess the effect of planting dates, including early (15 September), optimal (1 October), late (15 October), and very late (30 October), on leaf growth and carbohydrate biosynthetic and catabolic metabolism at the reproductive stage. The results showed that leaf dry matter decreased linearly on average from 7.48 to 0.62 g plant−1 with an early planting date, whereas it increased at first and peaked at 14 days after anthesis (DAA) with other planting dates. Leaf dry matter was the lowest at the very late planting date during the reproductive stage. For leaf chlorophyll content, rapeseed planted at an optimal date maximized at 14 DAA with an average content of 1.51 mg g−1 fresh weight, whereas it kept high and stable at a very late planting date after 28 DAA. For the carbohydrate catabolic system, acid and neutral invertase (AI and NI, respectively) showed higher activity before 14 DAA, whereas both sucrose synthase (SS) and starch phosphorylase (SP) showed higher activity after 14 DAA. For the carbohydrate biosynthetic system, the activity of sucrose phosphate synthase (SPS) was the highest at the late planting date after 14 DAA, whereas it was at the lowest at the very late planting date. However, the activity of ADP-glucose pyrophosphorylase (AGPase) at the late and very late planting dates was significantly higher than that of the early and optimal plant dates after 21 DAA, which is in accordance with the leaf total soluble sugar content, suggesting that leaf carbohydrate metabolism is governed by a biosynthetic system. The current study provides new insights on leaf carbohydrate metabolism regulation by late planting in rapeseed at the reproductive stage.
Collapse
Affiliation(s)
- Yun Ren
- Huzhou Agricultural Science and Technology Development Center, Huzhou Academy of Agricultural Sciences, Huzhou 313000, China; (Y.R.); (J.Z.)
| | - Jianfang Zhu
- Huzhou Agricultural Science and Technology Development Center, Huzhou Academy of Agricultural Sciences, Huzhou 313000, China; (Y.R.); (J.Z.)
| | - Hui Zhang
- Zhejiang Agro-Tech Extension and Service Center, Hangzhou 310020, China;
| | - Baogang Lin
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (B.L.); (P.H.)
| | - Pengfei Hao
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (B.L.); (P.H.)
| | - Shuijin Hua
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (B.L.); (P.H.)
- Correspondence:
| |
Collapse
|
14
|
Theeuwen TPJM, Logie LL, Harbinson J, Aarts MGM. Genetics as a key to improving crop photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3122-3137. [PMID: 35235648 PMCID: PMC9126732 DOI: 10.1093/jxb/erac076] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/23/2022] [Indexed: 05/02/2023]
Abstract
Since the basic biochemical mechanisms of photosynthesis are remarkably conserved among plant species, genetic modification approaches have so far been the main route to improve the photosynthetic performance of crops. Yet, phenotypic variation observed in wild species and between varieties of crop species implies there is standing natural genetic variation for photosynthesis, offering a largely unexplored resource to use for breeding crops with improved photosynthesis and higher yields. The reason this has not yet been explored is that the variation probably involves thousands of genes, each contributing only a little to photosynthesis, making them hard to identify without proper phenotyping and genetic tools. This is changing, though, and increasingly studies report on quantitative trait loci for photosynthetic phenotypes. So far, hardly any of these quantitative trait loci have been used in marker assisted breeding or genomic selection approaches to improve crop photosynthesis and yield, and hardly ever have the underlying causal genes been identified. We propose to take the genetics of photosynthesis to a higher level, and identify the genes and alleles nature has used for millions of years to tune photosynthesis to be in line with local environmental conditions. We will need to determine the physiological function of the genes and alleles, and design novel strategies to use this knowledge to improve crop photosynthesis through conventional plant breeding, based on readily available crop plant germplasm. In this work, we present and discuss the genetic methods needed to reveal natural genetic variation, and elaborate on how to apply this to improve crop photosynthesis.
Collapse
Affiliation(s)
- Tom P J M Theeuwen
- Laboratory of Genetics, Wageningen University & Research, Wageningen, The Netherlands
- Correspondence:
| | - Louise L Logie
- Laboratory of Genetics, Wageningen University & Research, Wageningen, The Netherlands
| | - Jeremy Harbinson
- Biophysics, Wageningen University & Research, Wageningen, The Netherlands
| | - Mark G M Aarts
- Laboratory of Genetics, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
15
|
Posch BC, Hammer J, Atkin OK, Bramley H, Ruan YL, Trethowan R, Coast O. Wheat photosystem II heat tolerance responds dynamically to short- and long-term warming. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:erac039. [PMID: 35604885 PMCID: PMC9127437 DOI: 10.1093/jxb/erac039] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 05/10/2023]
Abstract
Wheat photosynthetic heat tolerance can be characterized using minimal chlorophyll fluorescence to quantify the critical temperature (Tcrit) above which incipient damage to the photosynthetic machinery occurs. We investigated intraspecies variation and plasticity of wheat Tcrit under elevated temperature in field and controlled-environment experiments, and assessed whether intraspecies variation mirrored interspecific patterns of global heat tolerance. In the field, wheat Tcrit varied diurnally-declining from noon through to sunrise-and increased with phenological development. Under controlled conditions, heat stress (36 °C) drove a rapid (within 2 h) rise in Tcrit that peaked after 3-4 d. The peak in Tcrit indicated an upper limit to PSII heat tolerance. A global dataset [comprising 183 Triticum and wild wheat (Aegilops) species] generated from the current study and a systematic literature review showed that wheat leaf Tcrit varied by up to 20 °C (roughly two-thirds of reported global plant interspecies variation). However, unlike global patterns of interspecies Tcrit variation that have been linked to latitude of genotype origin, intraspecific variation in wheat Tcrit was unrelated to that. Overall, the observed genotypic variation and plasticity of wheat Tcrit suggest that this trait could be useful in high-throughput phenotyping of wheat photosynthetic heat tolerance.
Collapse
Affiliation(s)
- Bradley C Posch
- ARC Centre of Excellence in Plant Energy Biology, Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Julia Hammer
- ARC Centre of Excellence in Plant Energy Biology, Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- Department of Biology, The University of Western Ontario, 1151 Richmond St, N6A 3K7, London, Canada
| | - Owen K Atkin
- ARC Centre of Excellence in Plant Energy Biology, Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Helen Bramley
- Plant Breeding Institute, Sydney Institute of Agriculture & School of Life and Environmental Sciences, The University of Sydney, Narrabri, NSW 2390, Australia
| | - Yong-Ling Ruan
- Australia-China Research Centre for Crop Improvement and School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Richard Trethowan
- Plant Breeding Institute, Sydney Institute of Agriculture & School of Life and Environmental Sciences, The University of Sydney, Narrabri, NSW 2390, Australia
- School of Life and Environmental Sciences, Plant Breeding Institute, Sydney Institute of Agriculture, The University of Sydney, Cobbitty, NSW 2570, Australia
| | - Onoriode Coast
- ARC Centre of Excellence in Plant Energy Biology, Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK
- School of Environmental and Rural Sciences, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
16
|
Posch BC, Zhai D, Coast O, Scafaro AP, Bramley H, Reich P, Ruan YL, Trethowan R, Way DA, Atkin O. Wheat respiratory O2 consumption falls with night warming alongside greater respiratory CO2 loss and reduced biomass. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:915-926. [PMID: 34652413 DOI: 10.1093/jxb/erab454] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Warming nights are correlated with declining wheat growth and yield. As a key determinant of plant biomass, respiration consumes O2 as it produces ATP and releases CO2 and is typically reduced under warming to maintain metabolic efficiency. We compared the response of respiratory O2 and CO2 flux to multiple night and day warming treatments in wheat leaves and roots, using one commercial (Mace) and one breeding cultivar grown in controlled environments. We also examined the effect of night warming and a day heatwave on the capacity of the ATP-uncoupled alternative oxidase (AOX) pathway. Under warm nights, plant biomass fell, respiratory CO2 release measured at a common temperature was unchanged (indicating higher rates of CO2 release at prevailing growth temperature), respiratory O2 consumption at a common temperature declined, and AOX pathway capacity increased. The uncoupling of CO2 and O2 exchange and enhanced AOX pathway capacity suggest a reduction in plant energy demand under warm nights (lower O2 consumption), alongside higher rates of CO2 release under prevailing growth temperature (due to a lack of down-regulation of respiratory CO2 release). Less efficient ATP synthesis, teamed with sustained CO2 flux, could thus be driving observed biomass declines under warm nights.
Collapse
Affiliation(s)
- Bradley C Posch
- ARC Centre of Excellence in Plant Energy Biology, Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Deping Zhai
- ARC Centre of Excellence in Plant Energy Biology, Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Onoriode Coast
- ARC Centre of Excellence in Plant Energy Biology, Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK
- School of Environmental and Rural Sciences, Faculty of Science Agriculture Business and Law, University of New England, Armidale, NSW 2351, Australia
| | - Andrew P Scafaro
- ARC Centre of Excellence in Plant Energy Biology, Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Helen Bramley
- Plant Breeding Institute, Sydney Institute of Agriculture & School of Life and Environmental Sciences, The University of Sydney, Narrabri, NSW 2390, Australia
| | - PeterB Reich
- Department of Forest Resources, University of Minnesota, St Paul, MN 55108, USA
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales 2753, Australia
- Institute for Global Change Biology and School for Environment and Sustainability, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yong-Ling Ruan
- Australia-China Research Centre for Crop Improvement and School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Richard Trethowan
- School of Environmental and Rural Sciences, Faculty of Science Agriculture Business and Law, University of New England, Armidale, NSW 2351, Australia
- School of Life and Environmental Sciences, Plant Breeding Institute, Sydney Institute of Agriculture, The University of Sydney, Cobbitty, NSW 2570, Australia
| | - Danielle A Way
- Department of Biology, The University of Western Ontario, 1151 Richmond St., N6A 3K7, London, Canada
- Nicholas School of the Environment, Duke University, 9 Circuit Dr., 27710, Durham, NC, USA
- Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - OwenK Atkin
- ARC Centre of Excellence in Plant Energy Biology, Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
17
|
Jagadish SVK, Way DA, Sharkey TD. Scaling plant responses to high temperature from cell to ecosystem. PLANT, CELL & ENVIRONMENT 2021; 44:1987-1991. [PMID: 33987846 DOI: 10.1111/pce.14082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Affiliation(s)
| | - Danielle A Way
- Department of Biology, University of Western Ontario, London, Ontario, Canada
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
- Terrestrial Ecosystem Science & Technology Group, Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, New York, USA
| | - Thomas D Sharkey
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|